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1 Introduction

The problem of reconstructing an unknown input (either a disturbance
or a control) in a system of ordinary di�erential equations (ODEs) of a
special kind on the basis of incomplete and inaccurate information on the
phase state falls into the range of inverse problems of dynamics of controlled
systems. This �eld has been intensively developing within the framework of
identi�cation theory due to its numerous applications. The �rst publications
go back to the 60's of the previous century [1, 2], when some criteria of the
unique solvability of inverse problems and of the continuous �input/output�
dependence for systems described by ODEs were obtained. Inverse problems
of dynamics, as a rule, are ill-posed and require the application of regularizing
procedures. The huge amount of works is devoted to a posteriori approaches
to constructing regularizing algorithms for solving di�erent identi�cation
problems with the use of the whole history of output measurements. We list
only some of related references. For an introduction to identi�cation theory,
see classical monograph [3]. In [4, 5], the emphasis is on the foundations of
the theory of inverse and ill-posed problems.

Here, to solve the problem in question, we use the classical nowadays
approach proposed and developed in the works by Kryazhimskii, Osipov, and
their colleagues (see [6, 7, 8, 9] and bibliography in [8, 9]) and known now as
the method of dynamic inversion. It is based on a combination of principles
of the theory of positional control, �rst of all, of the Krasovskii principle
of extremal aiming [10], and ideas of the theory of ill-posed problems [4].
The essence of the approach is that a reconstruction problem is reduced
to a feedback control problem for an auxiliary dynamical system called a
model. In the process, the adaptation of the model control to the results
of current observations provides a required approximation of the unknown
input. The method of dynamic inversion was applied many times to solving
reconstruction, control, guidance problems in di�erent statements for systems
described by ODEs, functional di�erential equations, equations and varia-
tional inequalities with distributed parameters, equations with time delay,
stochastic di�erential equations, fractional di�erential equations [8, 9, 11, 12,
13, 14, 15]. Stable algorithms operating for some classes of partially observed
systems were designed [8, 11, 12, 13]; there the role of input signals can be
played, for example, by measurements of a part of coordinates of the phase
vector of a �nite-dimensional system or by values of a solution on some
subsets of the domain of de�nition in an in�nite-dimensional problem. As
an intrinsic feature of the considered systems, one should note their linearity
with respect to input/control/disturbance.

The peculiarity of the dynamic reconstruction problem under incomplete
information considered in the present paper is that an equation describing
the dynamics of the unmeasured component of a system of ODEs is nonlinear
with respect to input action. Note that a partial case of such problem was
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investigated in [16]. It seems that the results obtained will be useful to study
the solvability of di�erent nonlinear reconstruction problems.

2 Problem statement

Consider a nonlinear system of ODEs of the following form:

ẏ(t) = f1(t, y(t), z(t)) + g1(t, y(t), z(t))u(t), y(t0) = y0,

ż(t) = f2(t, y(t), z(t)) + g2(t, y(t), z(t), u(t)), z(t0) = z0.
(1)

Here, t ∈ T = [t0, ϑ], (y(·), z(·)) is the phase trajectory of the system,
y(t) ∈ Rn1 , z(t) ∈ Rn2 ; u(·) is an input action with values from a given
compact convex set P ⊆ Rm and with bounded variation on T , i. e., u(·) ∈ U ,
U = {u(·) ∈ V (T ;Rm) : u(t) ∈ P ∀t ∈ T}; the vector functions f1 and f2
acting from T × Rn1 × Rn2 into Rn1 and Rn2 , respectively, and the matrix
function g1 acting from T ×Rn1 ×Rn2 into Rn1×m, and the vector function
g2 acting from T × Rn1 × Rn2 × Rm into Rn2 are Lipschitz with respect to
their variables. A solution of the Cauchy problem is understood in the sense
of Caratheodory.

The problem under discussion consists in the following. At discrete, fre-
quent enough, times τi ∈ T , τi = t0 + iδ, δ = (ϑ − t0)/l, i ∈ [1 : (l − 1)],
the inaccurate information on the �rst component of the system is received.
We assume that the initial state is known and τ0 = t0. The measurement
results, values ξi ∈ Rn1 , satisfy the inequalities

∥ξi − y(τi)∥n1 ≤ h, (2)

where ∥·∥ is the corresponding Euclidean norm, h ∈ (0, 1) is the measurement
error.

It is required to design an algorithm for the dynamic reconstruction of
the unknown disturbance u(t) from the information ξi, i ∈ [1 : (l − 1)].
The deviation of an approximation from the real input should be arbitrarily
small in the metric of space L2(T ;Rm) for su�ciently small h and for time
discretization step δ = δ(h) concordant with h in a special way.

A �nite-step software-oriented solution algorithm is based on the ideas of
[6, 11]. In connection with the incomplete input information (only a part of
the phase vector is measured at the times τi), �rst, we should construct a
block of dynamic reconstructing of the unknown coordinate z(t), which is
treated as a provider of the information on the whole current phase state
of the system. This information is operatively fed onto a block forming,
by the feedback principle, a model control approximating the real input.
The work of these blocks should be synchronized in time. As is said above,
the novelty of the present paper consists namely in considering the inverse
problem for dynamical system (1), when an input to be reconstructed and
subject to known geometrical restrictions nonlinearly enters the equation for
the unmeasured component z(t).
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3 Solution algorithm

The algorithm below is an application of the computational procedure
from [11, 16] given the speci�c properties of system (1). At the initial moment
τ0 = t0, we �x a value h, determine parameters of the algorithm, including
the value l = l(h), and construct the uniform partition of the interval T with
the step δ(h) = (ϑ− t0)/l(h): τi ∈ T, τi = t0 + iδ(h), i ∈ [0 : l(h)]. We need
a special condition restricting the dynamics of the system.

Condition 1. The derivative ẏ(·) has bounded variation on T , m ≤ n1, and
the matrix g1 is a matrix of full rank (i.e., of rank m) for all t, y, z.

We introduce a controlled model system actually containing two blocks.
The �rst block, identi�er, using inaccurate measurements of the form (2),
approximates the unmeasured component z(t) in the continuous metric.
The second block, controller, basing on the obtained information on the
whole phase state of system (1), calculates a control approximating the
desired input u(t) in L2(T ;Rm)-metric. Input model controls are produced
by feedback laws based on the regularized Krasovskii principle of extremal
aiming [10].

It is principal for us that, in virtue of the assumptions from Condition 1,
we can formally solve the �rst equation of (1) with respect to u(t):

u(t) = g+1 (t, y(t), z(t))(ẏ(t)− f1(t, y(t), z(t))), (3)

where g+1 is the pseudoinverse matrix of dimension m×n1. The phase vector
of the model is denoted by w(t); it consists of two components with di�erent
destinations:

(i) an n1-dimensional vector wy(t) and an n2-dimensional vector wz(t)
(identi�er);

(ii) an n1-dimensional vector wv(t) (controller).
The dynamics of the model and its initial state are de�ned by the relations

ẇy(t) = ūi,

ẇz(t) = f2(τi, ξi, wz(τi))+

+g2(τi, ξi, wz(τi), g
+
1 (τi, ξi, wz(τi))(ūi − f1(τi, ξi, wz(τi)))),

ẇv(t) = f1(τi, ξi, wz(τi)) + g1(τi, ξi, wz(τi))vi,

wy(t0) = y0, wz(t0) = z0, wv(t0) = y0. (4)

Here, t ∈ (τi, τi+1], i ∈ [0 : (l(h) − 1)]; ūi and vi are control actions of
corresponding dimensions calculated (by the feedback principle) at the time
τi by rules speci�ed below.

Assuming the boundedness of the norms of the right-hand sides of system
(1) by a constant K̄ (its existence is evident), we �nd the value ūi from the
relation

ūi = argmin
{
2⟨wy(τi)− ξi, u⟩n1 + ᾱ∥u∥2n1

: ∥u∥n1
≤ K̄

}
. (5)
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The second model control vi is de�ned as follows:

vi = argmin
{
2⟨wv(τi)− ξi, g1(τi, ξi, wz(τi))v⟩m + α∥v∥2m : v ∈ P

}
. (6)

Here, ᾱ = ᾱ(h) and α = α(h) are regularization parameters, ⟨·, ·⟩ is the
corresponding scalar product. Obviously, situations are possible when the
model controls can be found explicitly from formulas (5) and (6).

Dynamics (4) is chosen from the following argument. The motion of the
component wy(t), for the choice of model control (5), provides the approxima-
tion of the derivative ẏ(t) by this control in the L2(T ;Rn1)-metric; thus
overcoming the ill-posedness of the problem of numerical di�erentiation.
This fact follows from the results of [6, 8, 17] concerning the principle of
regularized extremal aiming applied to the �rst equation of (4). Then, using
estimate (2) and formal expression (3) of the disturbance u(t) from the �rst
equation of the given system with the change of ẏ(t) for ūi, we expect the
closeness of wz(t) to z(t). In turn, this allows us to track the coordinate y(t)
by the component wv(t), and to approximate the desired input by model
control (6), which form is explained (again as (5)) by the application of the
regularized extremal aiming to the third equation of (4).

Let us choose regularization functions ᾱ(h), α(h) : (0, 1) → R+ and a
family of partitions of the interval T with step δ(h), h ∈ (0, 1), with the
properties

δ(h) → 0, ᾱ(h) → 0, α(h) → 0,

ρ̄(h) =
((h+ δ(h))2

ᾱ2(h)
+ ᾱ(h)

)1/2
, ρ̄(h) → 0,

ρ(h) =
((h+ δ(h) + ρ̄(h))2

α2(h)
+ α(h)

)1/2
, ρ(h) → 0 as h → 0. (7)

Note that the relation between ρ̄(h) and ρ(h) in (7) substantiates the fact
that we need two regularization parameters, ᾱ(h) and α(h). The control
process for the model is organized as follows. At the initial time t0, we
�x h, δ(h), ᾱ(h), and α(h). The work of the algorithm is decomposed into
l(h) identical steps. At the ith step performed on the interval (τi, τi+1],
the input data for calculations are the measurement ξi and the model state
w(τi) obtained by this moment. The following operations are ful�lled. First,
the block-identi�er calculates model controls (5), then the block-controller,
controls (6), after that the model state w(τi+1) is recomputed. Actually,
during the interval (τi, τi+1], the constant controls

ū(t) = ūi, v(t) = vi, (8)

are fed onto the input of system (4), thus forming the piece-wise constant
functions ū(t), v(t), t ∈ T . At the next, (i+1)th, step, analogous actions are
repeated. The work of the algorithm stops at the terminal time t = ϑ. Let
us formulate the main result of the paper.
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Theorem 1. Let conditions (7) of concordance of the parameters be ful�lled.
Then, for model control (6), (8), we have the following estimate for the
approximation error:

∥u(·)− v(·)∥L2(T ;Rm) ≤ Cρ(h), (9)

where C is a constant independent of the values under estimation.

Proof. We use results obtained earlier for the reconstruction problem for a
system of ODEs in the case of measuring the whole phase vector [8, 17].
Under the assumption that the variation of ẏ(·) is bounded, according to the
general scheme from [17], we derive the estimate

∥ẏ(·)− ū(·)∥L2(T ;Rn1 ) ≤ C1ρ̄(h). (10)

Here and below, we denote by Ci auxiliary constants, which are indepen-
dent of estimated values and can be written explicitly.

Using estimate (10), �rst, we show that the model variable wz(·) approxi-
mates the unmeasured component z(·):

∥z(τi)− wz(τi)∥n2 ≤ C2(h+ δ(h) + ρ̄(h)) ∀i ∈ [0 : l(h)]. (11)

Then, we complete the proof by means of the reapplication of an estimate
like (10) to the third equation of model (4).

So, consider t ∈ (τi, τi+1]. Using relation (3), for almost all t, we write the
equality:

ż(t) = f2(t, y(t), z(t))+g2(t, y(t), z(t), g
+
1 (t, y(t), z(t))(ẏ(t)−f1(t, y(t), z(t)))).

Subtracting the similar equation for the model component wz(t), we obtain

ż(t)− ẇz(t) = f2(t, y(t), z(t))− f2(τi, ξi, wz(τi))

+g2(t, y(t), z(t), g
+
1 (t, y(t), z(t))(ẏ(t)− f1(t, y(t), z(t))))

−g2(τi, ξi, wz(τi), g
+
1 (τi, ξi, wz(τi))(ūi − f1(τi, ξi, wz(τi)))).

Note that this relation, due to the arbitrariness of index i, is ful�lled for
almost all t ∈ T . Taking into account that wz(t0) = z0 and integrating, we
have for all t ∈ T

z(t)− wz(t) =
i−1∑
k=0

τk+1∫
τk

(
f2(τ, y(τ), z(τ))− f2(τk, ξk, wz(τk))

+g2(τ, y(τ), z(τ), g
+
1 (τ, y(τ), z(τ))(ẏ(τ)− f1(τ, y(τ), z(τ))))

−g2(τk, ξk, wz(τk), g
+
1 (τk, ξk, wz(τk))(ūk − f1(τk, ξk, wz(τk))))

)
dτ

+

t∫
τi

(
f2(τ, y(τ), z(τ))− f2(τi, ξi, wz(τi))

+g2(τ, y(τ), z(τ), g
+
1 (τ, y(τ), z(τ))(ẏ(τ)− f1(τ, y(τ), z(τ))))

−g2(τi, ξi, wz(τi), g
+
1 (τi, ξi, wz(τi))(ūi − f1(τi, ξi, wz(τi))))

)
dτ.
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The fact that the functions fi, gi, i = 1, 2, are Lipschitz and bounded and
the matrix g1 is always of full rank implies the boundedness and Lipschitz
property of all their possible products and combinations as well as of the
matrix g+1 (the desired properties of the latter are proved, for example, in
[11]). Using these results, the inequality ∥wz(t) − wz(τk)∥n2 ≤ C3δ(h) for
t ∈ (τk, τk+1], and the boundedness of the model controls, we get an estimate
similar to (11). Namely,

∥z(t)− wz(t)∥n2 ≤ C4

i−1∑
k=0

τk+1∫
τk

(
δ(h) + h+ ∥z(τ)− wz(τk)∥n2

+∥g2(τ, y(τ), z(τ), g+1 (τ, y(τ), z(τ))(ẏ(τ)− f1(τ, y(τ), z(τ))))

−g2(τk, ξk, wz(τk), g
+
1 (τk, ξk, wz(τk))(ūk − f1(τk, ξk, wz(τk))))∥n2

)
dτ

+C5

t∫
τi

(
δ(h) + h+ ∥z(τ)− wz(τi)∥n2

+∥g2(τ, y(τ), z(τ), g+1 (τ, y(τ), z(τ))(ẏ(τ)− f1(τ, y(τ), z(τ))))

−g2(τi, ξi, wz(τi), g
+
1 (τi, ξi, wz(τi))(ūi − f1(τi, ξi, wz(τi))))∥n2

)
dτ.

Let us estimate separately the following integrals under the summation sign
in the right-hand side of the inequality above:

τk+1∫
τk

∥g2(τ, y(τ), z(τ), g+1 (τ, y(τ), z(τ))(ẏ(τ)− f1(τ, y(τ), z(τ))))

−g2(τk, ξk, wz(τk), g
+
1 (τk, ξk, wz(τk))(ūk − f1(τk, ξk, wz(τk))))∥n2 dτ

≤ C6

τk+1∫
τk

(
δ(h) + h+ ∥z(τ)− wz(τk)∥n2 + ∥g+1 (τ, y(τ), z(τ))(ẏ(τ)−

−f1(τ, y(τ), z(τ)))− g+1 (τk, ξk, wz(τk))(ūk − f1(τk, ξk, wz(τk)))∥m
)
dτ

= C6

τk+1∫
τk

(
δ(h) + h+ ∥z(τ)− wz(τk)∥n2

+∥g+1 (τ, y(τ), z(τ))(ẏ(τ)− ūk) + (g+1 (τ, y(τ), z(τ))− g+1 (τk, ξk, wz(τk)))ūk

+g+1 (τk, ξk, wz(τk))f1(τk, ξk, wz(τk))−g+1 (τ, y(τ), z(τ))f1(τ, y(τ), z(τ))∥m
)
dτ

≤ C7

τk+1∫
τk

(
δ(h) + h+ ∥z(τ)− wz(τk)∥n2 + ∥ẏ(τ)− ūk∥n1

)
dτ
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≤ C8

τk+1∫
τk

(
δ(h) + h+ ∥z(τ)− wz(τ)∥n2 + ∥ẏ(τ)− ū(τ)∥n1

)
dτ.

After the similar estimation of the same integral over the segment [τi, t],
summarizing all such estimates, we obtain

∥z(t)−wz(t)∥n2 ≤ C9

i−1∑
k=0

τk+1∫
τk

(
δ(h)+h+∥z(τ)−wz(τ)∥n2+∥ẏ(τ)−ū(τ)∥n1

)
dτ

+C10

t∫
τi

(
δ(h) + h+ ∥z(τ)− wz(τ)∥n2 + ∥ẏ(τ)− ū(τ)∥n1

)
dτ

≤ C11

t∫
t0

(
δ(h) + h+ ∥z(τ)− wz(τ)∥n2 + ∥ẏ(τ)− ū(τ)∥n1

)
dτ.

Using (10), we derive

∥z(t)− wz(t)∥n2 ≤ C12

t∫
t0

∥z(τ)− wz(τ)∥n2 dτ + C10(δ(h) + h+ ρ̄(h)).

The application of the Gronwall lemma results in desired relation (11).
Now, we can declare that the second component of the model solves the

problem of reconstructing the input action u(t) on the base of measurements
of the phase state of accuracy (11). We use again results of [17], namely, an
estimate similar to (10), where the role of measurement accuracy is played
by the right-hand part of (11). Thus, the �nal estimate of approximation
quality (9) from the assertion of the theorem is proved:

∥u(·)− v(·)∥L2(T ;Rm) ≤ C
((h+ δ(h) + ρ̄(h))2

α2(h)
+ α(h)

)1/2
.

□

Setting δ(h) = h, ᾱ(h) = h2/3, and α(h) = h2/9, we can easily see that

the estimate is of order O(h1/9). Note that its optimality is not investigated;
here, it is important that the sequence of model controls converges to the
real input as h → 0.
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4 Numerical example

As a model example, we consider the problem for the following system of
ODEs:

ẋ1(t) = −x1(t)− x2(t)− x3(t) + (x23(t) + 1)u1(t),

ẋ2(t) = −x21(t) + 2t2 + (x21(t) + x23(t))u2(t),

ẋ3(t) = (2x1(t)− 1)x3(t)− (1/t)x2(t)− 2te−t + 1 + (u21(t) + t)u2(t),

t ∈ T = [0, 1], x1(0) = 1, x2(0) = 0, x3(0) = 0, u1, u2 ∈ [0, 1.5].

At discrete times, the vector y(t) = (x1(t), x2(t)) is inaccurately measured,
i.e., we know ξ(t) = (ξ1(t), ξ2(t)). The coordinate z(t) = x3(t) and disturban-
ce u(t) = (u1(t), u2(t)) are to be reconstructed.

In the terms of system (1), we have

f1(t) =

(
−x1(t)− x2(t)− x3(t)

−x21(t) + 2t2

)
, g1(t) =

(
x23(t) + 1 0

0 x21(t) + x23(t)

)
,

f2(t) = (2x1(t)− 1)x3(t)− (1/t)x2(t)− 2te−t + 1, g2(t) = (u21(t) + t)u2(t),

g+1 (t) =

(
1/(x23(t) + 1) 0

0 1/(x21(t) + x23(t))

)
.

Note that n1 = 2, n2 = 1, m = 2, and Condition 1 is evidently ful�lled.
Let us brie�y describe the analog of model (4), where the vectors wy(t)

and wv(t) are two-dimensional, wz(t) is one-dimensional:

ẇy1(t) = ū1i, ẇy2(t) = ū2i,

ẇz(t) = (2ξ1i − 1)wzi − (1/τi)ξ2i − 2τie
−τi + 1

+

((
ū1i + ξ1i + ξ2i + wzi

w2
zi + 1

)2

+ τi

)(
ū2i + ξ21i − 2τ2i

ξ21i + w2
zi

)
,

ẇv1(t) = −ξ1i − ξ2i − wzi + (w2
zi + 1)v1i,

ẇv2(t) = −ξ21i + 2τ2i + (ξ21i + w2
zi)v2i,

t ∈ (τi, τi+1], wy1(0) = 1, wy2(0) = 0, wz(0) = 0, wv1(0) = 1, wv2(0) = 0.

At each time τi, the control values ū1i, ū2i, v1i, v2i are calculated explicitly
from (5), (6) with the use of the values of measurements and model variables
obtained till this moment.

In the computational experiment, we choose the unknown functions u1(t) =
t and u2(t) = 1; they generate the solution of the Cauchy problem x1(t) =
e−t, x2(t) = t3, x3(t) = t.

The results of reconstructing u(t) for di�erent sets of parameters of the
algorithm are presented in Figs. 1, 2, where the real function
u(t) = (u1(t), u2(t)) is shown by the dashed line, and the result of its
reconstruction, the function v(t) = (v1(t), v2(t)), by the solid one. This is
in agreement with the main assertion of the paper; convergence (9) takes
place provided relations (7) between the parameters are ful�lled.
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Fig. 1. Parameters: h = 0.01, δ = 0.01, ᾱ = 0.045, α = 0.35;

approximation error: ∥u(·)− v(·)∥L2(T ;R2) = 0.443.

Fig. 2. Parameters: h = 0.0001, δ = 0.0001, ᾱ = 0.002, α = 0.12;

approximation error: ∥u(·)− v(·)∥L2(T ;R2) = 0.029.

5 Conclusions

In the paper, we consider the problem of dynamic reconstruction of an
unknown input action in a partially observed system of ODEs with a nonlinear
with respect to input equation describing the dynamics of the unmeasured
coordinate. A �nite-step software-oriented solution algorithm based on the
method of auxiliary closed-loop models is proposed; its error is estimated.

As a perspective direction of further development of the topic, we plan to
apply the results obtained to solving the problem of reconstructing disturban-
ces in a quasilinear stochastic di�erential equation by means of the method of
moments under assumption that the information on a number of realizations
of a part of coordinates of the stochastic process is available.
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