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Abstract:We show that a cross independence (CI) transformation
of some Gaussian mixture has an asymptotically Gaussian distribu-
tion connected with the Gaussian core of the mixture by the same
type of transform. We suggest using this fact for testing the �t of
high-dimensional samples to a mixture of Gaussian distributions.
In addition we study a behavior of extreme values in related trian-
gular arrays.

Keywords: Gaussian mixture, multivariate copula, multivariate t
distribution, extreme values, mixture identi�cation

1 Introduction

Consider a random vector Xn = (X1, X2, . . . , Xn) with an absolutely
continuous distribution function F (x1, . . . , xn). Denote f1...n(x1, . . . , xn) the

Savinov, E.A., On the Asymptotics of Rosenblatt-Type Transformations

in a Gaussian Mixture Identification Problem.

© 2024 E.A Savinov.

Received November, 18, 2023, published December, 31, 2024.

1483

https://orcid.org/0000-0001-9414-8820


1484 E.A. SAVINOV

probability density function of the vector Xn, and

Fi | 1...̂ı...n(xi|x1, . . . , x̂i, . . . , xn) =
xi∫

−∞

f1...n(x1, . . . , ui, . . . , xn) dui

/
/ +∞∫

−∞

f1...n(x1, . . . , ui, . . . , xn) dui

denote the conditional distribution function of the random variable Xi given
all others (where the symbol ·̂ indicates the omission of the corresponding
element). In his work [1], Murray Rosenblatt suggested a transformation
using conditional distribution functions

Y1 = F1(X1)
Y2 = F2|1(X2|X1)
. . .
Yn = Fn|1,2,...,n−1(Xn|X1, . . . , Xn−1),

(1)

which, in this case, results in a uniform distribution of the vector Y =
(Y1, Y2, . . . , Yn) on the unit cube and, consequently, in the independence
of the random variables Yi.

A similar transformation was speci�cally considered by S.Ya. Shatskikh,
particularly in [2]

X∗
1 = F−1

1

[
F1|2,3,...,n(X1|X2, X3, . . . , Xn)

]
X∗

2 = F−1
2

[
F2|1,3,...,n(X2|X1, X3, . . . , Xn)

]
. . .
X∗

n = F−1
n

[
Fn|1,2,...,n−1(Xn|X1, X2, . . . , Xn−1)

]
.

(2)

Both the original system (vector) of random variables {Xi} and the new
system {X∗

i } consist, generally speaking, of dependent random variables.
However, both systems can be called 'cross-independent' in a certain sense,
since it is not hard to show (similar to [1]) that for each i, the random variable

X∗
i is independent of the system {X1, . . . , X̂i, . . . , Xn}, which includes all

original random variables except the one with the same index (the symbol ·̂
again indicates the omission of the corresponding element).

Recall one of the de�nitions of the so-called copula: a multivariate distri-
bution function with univariate marginal distributions that are uniform on
the segment [0, 1]. According to Sklar's theorem (see, for example, [3]), for
any multivariate distribution function, there exists a copula C(u1, . . . , un)
connecting it with its univariate marginal distributions:

F (x1, . . . , xn) = C (F1(x1), . . . , Fn(xn)) .

Thus, a separation occurs between univariate distributions and the depen-
dence structure characterized by the copula.

In [4] it was shown, in particular, that the transformation (2) (without
applying inverse functions) applied to any absolutely continuous vector with
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a dependence structure described by the copula C produces a new copula that
depends only on C and, thus, can be regarded as a copula transformation.

In this paper, it is shown how this transformation can be utilized in the
problem of �tting a sample to a mixture of distributions that have a Gaussian
structure.

Let's outline the problem formulation. Consider the following general
problem of identifying mixture components. Consider a system of random
variables X1, X2, . . . , Xn, modeling the lifetimes of n di�erent components
of a complex system operating in a random environment. We assume that,
given the state of the environment (t), the components are dependent, have
di�erent characteristics, and the joint distribution function of their lifetimes

is de�ned as G
(t)
n (x1, x2, . . . , xn). Thus, the lifetimes of the components op-

erating in random environments are described by a mixture

Fn(x1, x2, . . . , xn) =

∞∫
−∞

G(t)
n (x1, x2, . . . , xn) µ(dt), (3)

where the environment parameter is assumed to be univariate and the mea-
sure µ describes its probabilistic behavior.

Among the studies focused on estimating the components of such con-
tinuous (scale) mixtures, works on estimating the weight distribution can
primarily be highlighted (see, for example, [5], [6], [7]), as well as studies on
the parameters of mixture components in the case of conditionally indepen-
dent random variables ([8]).

In this paper, we will be interested in the question of whether something

can be inferred about the distribution G
(t)
n from a sample drawn from the

distribution Fn, without any knowledge of µ. Theorem 1 in Section 3 of this
paper establishes that the CI-transformation allows for the identi�cation

of the Gaussian structure (type of dependence) of the functions G
(t)
n in the

mixture (3), provided that the latter is one of the variants of the multivariate
Student's t distribution (Kshirsagar's Multivariate t Distribution, see [9],
p. 87) with r degrees of freedom. Furthermore, the modeling experiments
described in Section 4 support the assumption that the Gaussian structure
of components can be identi�ed for a broader class of Gaussian mixtures
of the type (3). At the same time, there exist samples from multivariate
distributions whose CI-transformations do not lead to a Gaussian structure
through the described procedure, which negates their extraction from any
Gaussian mixture.

In Section 5, we investigate the behavior of the maximum of Gaussian
random variables in a triangular array, where the joint distributions of each
row are not Gaussian but are generated by a mixture of Gaussian distributions
whose copulas have undergone the CI-transformation. The results of this
section are not directly related to the procedure for determining the Gaussi-
anity of the mixture. Here, we raise the question of whether, given the con-
clusions of Theorem 1, the asymptotically Gaussian random vectors obtained
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in the rows of the triangular array will behave like Gaussian vectors in terms
of the asymptotic behavior of the maxima of their components. In the case
of strong dependence considered here, it has been shown that the behavior
of the maxima in such triangular arrays is analogous to that in Gaussian
schemes. Note that a similar problem for the case of weak dependence was
addressed in [10].

2 Basic concepts.

We introduce the concept of CI-transformation of a copula.
Consider a random vector Xn with an absolutely continuous distribution

function given by

F (x1, . . . , xn) = C (F1(x1), . . . , Fn(xn))

on the probability space {Ω,B,P}. Here, Fi(xi) are the marginal distributions
and C is the copula. We consider the random variables

X∗
i,n = Fi | 1...̂ı...n(Xi|X1, . . . , X̂i, . . . , Xn). (4)

As shown in [4], their joint distribution function is a copula, and the following
de�nition is valid.

De�nition 1. We denote the mapping C 7→ Cci as

Cci(u) = P{X∗
1,n ⩽ u1, . . . , X

∗
n,n ⩽ un}, u = (u1, . . . , un),

where Xn = (X1, . . . , Xn) is an absolutely continuous vector with copula
C. We will refer to this transformation as the CI-transformation (Cross-
Independence) of the absolutely continuous copula C. The copula Cci(u) will
be called the CI-copula or the CI-image of the copula C.

Next, we introduce a measure on the Hilbert space solely for the purpose
of obtaining a consistent family of copulas through the projections of the
measure onto a certain orthonormal basis.

Consider a measurable space {H,B(H)}, where H a real separable Hilbert
space with a countable orthonormal basis {ei}∞i=1, Borel σ-algebra and inner
product ⟨·, ·⟩. We will consider a countably additive measure µ on it with a
characteristic functional

Ψµ(y) =

∫ ∞

0
exp

{
− t

2
⟨By, y⟩

}
gr(t) dt, y ∈ H, (5)

where B is a linear self-adjoint positive de�nite nuclear operator with eigen-
vectors {ei}∞i=1 and

gr(t) =
rr/2

2r/2Γ(r/2)
t−r/2−1 exp

{
− r

2t

}
, t > 0.

It should be noted that this measure can be referred to as the Student's
measure on {H,B(H)} with r degrees of freedom. Indeed, let {fk} be an
arbitrary orthonormal basis in the Hilbert space H, and consider the random
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variables Xi = ⟨·, fi⟩ on the probability space {H,B(H), µ}. It is clear that
the corresponding projections of the measure µ (distributions of the random
vectors Xn = (X1, . . . , Xn)) have characteristic functions given by

ψµn(y1, . . . , yn) =

∫ ∞

0
exp

{
− t

2

n∑
i,j=1

yiyj⟨Bfi, fj⟩
}
gr(t) dt. (6)

We will show that the characteristic function (6) corresponds to one of the
variants of the Kshirsagar's Multivariate t distribution (see [9], p. 87).

Lemma 1. Assume that the vector Y has an n-variate Gaussian distribution
with zero mean and covariance matrix C = (⟨Bfi, fj⟩), and that S2

r is a
random variable with a χ2(r) distribution, independent of Y (r ∈ N). Then
the random vector T = Y/

√
S2/r has the characteristic function given by

(6).

Proof. The characteristic function of the random vector T is given by

φT (y) = E exp

{
i
⟨Y, y⟩√
S2
r/r

}
= E

[
E

(
exp

{
i
⟨Y, y⟩√
S2
r/r

}∣∣∣∣∣ 1

S2
r/r

)]
= E

[
E
(
exp

{
i⟨Y, y⟩

√
U
}∣∣∣U)] ,

where U ∼ invΓ
(
r
2 ,

r
2

)
(the inverse gamma distribution with parameters

(r/2, r/2)). Then

φT (y) =

∞∫
0

E
(
exp

{
i⟨Y, y

√
t⟩
})

gr(t) dt =

∞∫
0

φY

(
y
√
t
)
gr(t) dt

=

∞∫
0

exp

{
− t

2
⟨Cy, y⟩

}
gr(t) dt.

□

Of course, this representation of the Student's t distribution as a mixture
of Gaussians is well known, and its dependence structure (as well as that of
other normal mixtures in the case of dimension two) has been studied using
copulas, for example, in [11].

3 Convergence of CI-copulas

Let's introduce some auxiliary notations.
Let Bn = πnBπn, where πn is the orthogonal projector H → Hn =

span {f1, . . . , fn}.
We denote by µtB (for t = 1, simply µB) the Gaussian measure on H,B(H)

with the characteristic functional

ΨµtB (y) = exp

{
− t

2
⟨By, y⟩

}
, y ∈ H.
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Its projections onto Hn have characteristic functions

ψµtB
n
(y1, . . . , yn) = exp

{
− t

2

n∑
i,j=1

yiyj⟨Bnfi, fj⟩
}
.

Let us denote the corresponding correlation matrix (it does not depend on

t) Rn =
(
r
(n)
i,j

)
, where

r
(n)
i,j =

⟨Bnfi, fj⟩
[⟨Bnfi, fi⟩⟨Bnfj , fj⟩]1/2

, 1 ≤ i, j ≤ n.

Let us introduce notations for the following quadratic forms:

s2n := s2n(h) =
1

n
⟨B−1

n πnh, πnh⟩,

s2∞ := s2∞(h) = lim
n→∞

s2n(h),

and for the random variables:

ζi,n := ζi,n(h) =
⟨B−1

n fi, h⟩
s∞⟨B−1

n fi, fi⟩1/2
, i = 1, . . . , n, (7)

Lemma 2. With respect to the measure µ, the random variables {ζi,n}ni=1
are jointly Gaussian with covariances (which obviously coincide with the
correlation coe�cients) given by

c
(n)
ij := cov

(
ζi,n, ζj,n

)
=

⟨B−1
n fi, fj⟩

[⟨B−1
n fi, fi⟩⟨B−1

n fj , fj⟩]1/2
. (8)

Proof. Indeed, let us introduce the random variables

ζ̃i,n := ζi,ns∞ =
⟨B−1

n fi, h⟩
⟨B−1

n fi, fi⟩1/2
, i = 1..n

and consider the distribution function of the random vector ζ·,n with respect
to the measure µ

µ {ζ1,n ⩽ u1, . . . , ζn,n ⩽ un} =

∞∫
0

µtB {ζ1,n ⩽ u1, . . . , ζn,n ⩽ un} gr(t) dt.

Moreover (see the proof of Lemma 7 in [2]), we have µtB{s2∞(h) = t} = 1,
then

µ {ζ1,n ⩽ u1, . . . , ζn,n ⩽ un}

=

∞∫
0

µtB
{
ζ̃1,n/

√
t ⩽ u1, . . . , ζ̃n,n/

√
t ⩽ un

}
gr(t) dt.

Note that ζ̃i,n are linear continuous functionals on H, and

µtB
{
ζ̃1,n/

√
t ⩽ u1, . . . , ζ̃n,n/

√
t ⩽ un

}
= µB

{
ζ̃1,n ⩽ u1, . . . , ζ̃n,n ⩽ un

}
,
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since the corresponding characteristic functions are equal:

exp

−

〈
tB

n∑
i=1

yiζ̃i,n/
√
t,

n∑
j=1

yiζ̃j,n/
√
t

〉
= exp

−

〈
B

n∑
i=1

yiζ̃i,n,
n∑

j=1

yiζ̃j,n

〉 .

Thus,

µ {ζ1,n ⩽ u1, . . . , ζn,n ⩽ un} = µB
{
ζ̃1,n ⩽ u1, . . . , ζ̃n,n ⩽ un

}
.

Since the vector ζ̃·,n is a vector of linear continuous functionals on H and is
Gaussian with respect to the measure µB, the vector ζ·,n is also Gaussian
with respect to the measure µ. Moreover,

cov(ζi,n, ζj,n) = covµB (ζ̃i,n, ζ̃j,n) =
〈
Bζ̃i,n, ζ̃j,n

〉
=

⟨BB−1
n fi, B

−1
n fj⟩

[⟨B−1
n fi, fi⟩⟨B−1

n fj , fj⟩]1/2
.

(9)

Let's consider the numerator and establish the identity:

⟨BB−1
n fi, B

−1
n fj⟩ = ⟨B−1

n fi, fj⟩. (10)

To this end, let us denote:

h := B−1
n fi ∈ Hn, g := B−1

n fj ∈ Hn. (11)

Then

fj = Bng = πnBg = πn

∞∑
j̃=1

λ2
j̃
⟨g, ej̃⟩ej̃ = πn

∞∑
j̃=1

λ2
j̃

 n∑
ĩ=1

⟨g, fĩ⟩⟨fĩ, ej̃⟩

 ej̃
=

n∑
k̃=1

n∑
ĩ=1

⟨g, fĩ⟩

 ∞∑
j̃=1

λ2
j̃
⟨fĩ, ej̃⟩⟨ej̃ , fk̃⟩

 fk̃.
Consequently,

n∑
ĩ=1

⟨g, fĩ⟩aĩ,k̃ = δjk̃ =

{
1, j = k̃

0, j ̸= k̃
, where aĩ,k̃ =

∞∑
j̃=1

λ2
j̃
⟨fĩ, ej̃⟩⟨ej̃ , fk̃⟩.

(12)
Now, let's calculate

⟨Bh, g⟩ =

〈 ∞∑
j̃=1

λ2
j̃

 n∑
ĩ=1

⟨h, fĩ⟩⟨fĩ, ej̃⟩

 ej̃ , n∑
m=1

⟨g, fm⟩fm

〉

=

n∑
ĩ=1

n∑
m=1

⟨h, fĩ⟩⟨g, fm⟩aĩ,m
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=

n∑
ĩ=1

⟨h, fĩ⟩

[
n∑

m=1

⟨g, fm⟩aĩ,m

]
=

n∑
ĩ=1

⟨h, fĩ⟩δĩ,j = ⟨h, fj⟩,

which is the identity (10). From (9) and (10), it follows (8). □

Let R−
n =

(
c
(n)
ij

)
be the matrix composed of the correlations given by (8).

Let us also introduce notations for the matrices Mn = (⟨Bnfi, fi⟩) and
M−

n =
(
⟨B−1

n fi, fi⟩
)
.

Since the Gaussian copula is completely de�ned by the correlation matrix,
let us introduce notations for the corresponding Gaussian copulas: CRn and
CR−

n
.

Theorem 1. Let Cn be the Student's t copulas of the distributions with
characteristic functions (6). Let CR−

n
be the Gaussian copula de�ned above.

Then for any k ∈ N and (u1, . . . , uk) ∈ (0, 1)k, the convergence holds:

Cci

n (u1, . . . , uk, 1, . . . , 1) → CR−
k
(u1, . . . , uk) , n→ ∞.

Proof. Without loss of generality, we can assume Cn to be the copulas of the
Student's vector family Xn = {X1, X2, . . . , Xn}, n = 1, 2, . . ., de�ned on the
measurable space {H,B(H)}, where H is a real separable Hilbert space with
a countable orthonormal basis {fi}∞i=1, Borel σ-algebra, and inner product
⟨·, ·⟩, a countably additive Student's measure µ with r degrees of freedom
and characteristic functional (5), Xi = ⟨·, fi⟩.

Let's denote xi := Φ−1(ui). Then

Cci
n (u1, . . . , uk, 1 . . . , 1) = Cci

n (Φ (x1) , . . . ,Φ (xk) , 1 . . . , 1)

= µ
{
Φ−1

(
X∗

1,n

)
≤ x1, . . . ,Φ

−1
(
X∗

k,n

)
≤ xk

}
. (13)

It follows from item 3 of Lemma 3 in [10] that

lim
n→∞

µ
{
Φ−1

(
X∗

1,n

)
≤ x1, . . . ,Φ

−1
(
X∗

k,n

)
≤ xk

}
= lim

n→∞
µ {ζ1,n ≤ x1, . . . , ζk,n ≤ xk} . (14)

Note that for any i ≤ k < n, the following holds:

B−1
n fi = B−1

k fi. (15)

Indeed, let us set

h := B−1
n fi ∈ Hn, h′ := B−1

k fi ∈ Hk,
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therefore,

fi = Bkh
′ = πkBh

′ = πk

k∑
ĩ=1

〈
h′, fĩ

〉
Bfĩ =

k∑
k̃=1

k∑
ĩ=1

〈
h′, fĩ

〉 〈
Bfĩ, fk̃

〉
fk̃ ⇒

k∑
ĩ=1

〈
h′, fĩ

〉 〈
Bfĩ, fk̃

〉
= δik̃,

Bnh
′ = πnBh

′ =
n∑

k̃=1

k∑
ĩ=1

〈
h′, fĩ

〉 〈
Bfĩ, fk̃

〉
fk̃ =

n∑
k̃=1

δik̃fk̃ = fi = Bnh ⇒

Bn(h− h′) = 0 ⇒ h = h′,

which proves the equality (15).

It follows from (15) that c
(n)
ij = c

(k)
ij for i, j ≤ k < n, and, taking into

account (7) and (8), we obtain

µ {ζ1,n ≤ x1, . . . , ζk,n ≤ xk} = µ {ζ1,k ≤ x1, . . . , ζk,k ≤ xk} = (16)

= CR−
k
(Φ (x1) , . . . ,Φ (xk)) = CR−

k
(u1, . . . , uk) ,

and the proof of the theorem follows from equalities (13), (14), and (16). □

Next, we will show that the limiting copula CR−
n

is connected to the

Gaussian core of the mixture (6) by the CI-transformation. First, we will
prove the following auxiliary result.

Lemma 3.

M−
n =M−1

n

Proof. Let us consider the element mij of the matrix M−
n ·Mn

mij =
n∑

ℓ=1

⟨B−1
n fi, fℓ⟩⟨Bnfℓ, fj⟩.

Using the notations (11), one can show, analogous to (12), that
n∑

ĩ=1

⟨h, fĩ⟩aĩ,k̃ = δik̃, where aĩ,k̃ =

∞∑
j̃=1

λ2
j̃
⟨fĩ, ej̃⟩⟨ej̃ , fk̃⟩. (17)

Then

⟨Bnfℓ, fj⟩ =
∞∑
j̃=1

λ2
j̃
⟨fℓ, ej̃⟩⟨ej̃ , fj⟩ = aℓj ,

mij =

n∑
ℓ=1

⟨h, fℓ⟩aℓj = δij ,

which is what was to be proved. □
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Corollary 1 (from Theorem 1).

Cci

n (u1, . . . , uk, 1, . . . , 1) → Cci

Rk
(u1, . . . , uk), n→ ∞.

Proof. An example of the CI-transformation of an n-dimensional Gaussian
copula in [4] shows that for any covariance matrix Mk corresponding to a
Gaussian distribution with copula CRk

, the CI-transformation Cci
Rk

of this
copula coincides with the copula of the Gaussian distribution with covariance
matrix M−1

k . Therefore, by Lemma 3

Cci
Rk

(u1, . . . , uk) = CR−
k
(u1, . . . , uk) .

□

4 Modeling and testing the �t of a high-dimensional

sample with a normal mixture

To test the �t of a certain n-dimensional sample (for su�ciently large
n) with the family of distributions (3), a procedure is proposed, consisting
of sequential CI-transformation, normalization (in the sense of bringing the
coordinates of the elements of the obtained sample to a standard Gaussian
distribution), reduction (projecting the sample onto a lower dimension), and
checking the resulting sample for compliance with a multivariate normal
distribution.

For participation in the experiment, samples of dimension n = 20 and 40
with a volume ofN = 200 were simulated from the following six distributions:
the Kshirsagar's Multivariate t distribution of the form (6) with non-diagonal
matrices C = (⟨Bfi, fj⟩) with r = 1, 2, 4 and 8 degrees of freedom, a Gaussian
mixture of the form (3), where the measure µ is de�ned by an exponential
distribution with density e−t, t > 0 (thus yielding one of the variants of
the multivariate Laplace distribution), and a multivariate distribution where
the univariate Gaussian components are linked by D-vine copulas (see, for
example, [12], [13], [14]), in which bivariate conditional copulas were chosen
to be bivariate Gaussian and Clayton copulas (with di�erent parameters).

In calculating the CI-transformation for estimates of conditional distri-
bution functions, an approach that utilizes dimensionality reduction was
employed (see [15]).

To check for multivariate normality, the criterion described in [16] was
used, with a signi�cance level of α = 0.05. All twelve samples collected in
Tables 1 and 2 were �rst transformed to one-dimensional marginal normal
distributions and exhibit the corresponding dependency structure indicated
by the speci�ed distribution (for example, t̃(8) is a sample from the distri-
bution with the Student's t(8) copula and marginal N(0, 1), while ci t̃(8)
represents the distribution with the CI-image of the Student's t copula and
the same marginal normal distributions). Thus, the multivariate normality
test effectively checks for the presence of a Gaussian dependency structure.
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The cells in the tables contain p-values and the results of normality checks
(True/False) for the projections of the corresponding dimensions indicated
in the column headings.

As can be seen, the projections of the original samples of any dimension
demonstrated a deviation from the Gaussian structure. At the same time,
the projections of low-dimensional (2-3) CI-images showed agreement with
the Gaussian distribution for all Gaussian mixtures, including the case with
exponential mixing (Laplace), while there was a predominant deviation from
the Gaussian structure for the projections of the distribution based on the
CI-image of the D-vine copula.

Figures 1�11 show two-dimensional projections of kernel density estimations
for all pairs of distributions, before and after the ci-transformation, which
are listed in Tables 1 and 2.

Table 1.

n=200 d=20 2 3 5 8

t̃(8) 3.0e-01 (True) 1.8e-01 (True) 2.5e-02 (False) 2.0e-11 (False)

t̃(4) 9.0e-02 (True) 1.1e-02 (False) 3.9e-09 (False) 2.2e-46 (False)

t̃(2) 4.1e-03 (False) 1.8e-13 (False) 3.7e-69 (False) 1.8e-299 (False)

t̃(1) 3.3e-09 (False) 4.8e-15 (False) 5.2e-95 (False) 0.0e+00 (False)

˜Laplace 8.6e-04 (False) 8.1e-07 (False) 2.2e-26 (False) 0.0e+00 (False)

vine 1.3e-04 (False) 6.8e-05 (False) 1.5e-29 (False) 2.4e-178 (False)

ci t̃(8) 9.0e-01 (True) 8.2e-01 (True) 5.2e-01 (True) 1.2e-01 (True)

ci t̃(4) 6.9e-02 (True) 1.9e-01 (True) 1.9e-01 (True) 2.9e-02 (False)

ci t̃(2) 9.3e-01 (True) 1.9e-01 (True) 2.2e-01 (True) 7.4e-02 (True)

ci t̃(1) 1.5e-01 (True) 3.6e-01 (True) 1.3e-02 (False) 9.4e-05 (False)

ci ˜Laplace 8.2e-01 (True) 5.3e-01 (True) 4.1e-02 (False) 1.7e-23 (False)

ci vine 2.5e-02 (False) 4.8e-01 (True) 2.4e-02 (False) 4.7e-13 (False)

Fig. 1. 2D projected density estimation for t̃(8) (left) and
ci t̃(8) (right) for base dimension 20
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Fig. 2. 2D projected density estimation for t̃(4) (left) and
ci t̃(4) (right) for base dimension 20

Fig. 3. 2D projected density estimation for t̃(2) (left) and
ci t̃(2) (right) for base dimension 20

Fig. 4. 2D projected density estimation for t̃(1) (left) and
ci t̃(1) (right) for base dimension 20
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Fig. 5. 2D projected density estimation for L̃aplace (left)

and ci L̃aplace (right) for base dimension 20

Fig. 6. 2D projected density estimation for vine (left) and
ci vine (right) for base dimension 20

Table 2.

n=200 d=40 2 3 5 8

t̃(8) 1.3e-01 (True) 1.3e-01 (True) 3.8e-01 (True) 1.2e-01 (True)

t̃(4) 1.7e-01 (True) 3.2e-02 (False) 7.7e-05 (False) 1.6e-13 (False)

t̃(2) 2.6e-01 (True) 1.2e-05 (False) 4.0e-19 (False) 6.9e-157 (False)

t̃(1) 1.6e-05 (False) 5.2e-15 (False) 8.8e-93 (False) 0.0e+00 (False)

˜Laplace 6.1e-03 (False) 6.2e-07 (False) 3.0e-35 (False) 0.0e+00 (False)

ci t̃(8) 9.3e-01 (True) 9.7e-01 (True) 7.2e-01 (True) 4.9e-01 (True)

ci t̃(4) 9.8e-01 (True) 9.5e-01 (True) 9.3e-01 (True) 5.8e-01 (True)

ci t̃(2) 7.3e-01 (True) 9.0e-01 (True) 6.7e-01 (True) 7.6e-01 (True)

ci t̃(1) 7.0e-01 (True) 1.1e-01 (True) 1.2e-01 (True) 3.3e-01 (True)

ci ˜Laplace 8.2e-02 (True) 7.9e-02 (True) 6.6e-10 (False) 6.9e-48 (False)
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Fig. 7. 2D projected density estimation for t̃(8) (left) and
ci t̃(8) (right) for base dimension 40

Fig. 8. 2D projected density estimation for t̃(4) (left) and
ci t̃(4) (right) for base dimension 40

Fig. 9. 2D projected density estimation for t̃(2) (left) and
ci t̃(2) (right) for base dimension 40
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Fig. 10. 2D projected density estimation for t̃(1) (left) and
ci t̃(1) (right) for base dimension 40

Fig. 11. 2D projected density estimation for L̃aplace (left)

and ci L̃aplace (right) for base dimension 40

Let's note that it is not surprising that sometimes we obtain 'True' for
t̃(8), given that t(8) itself resembles a multivariate normal distribution, much
less t̃(8).

The relatively small sample size (N = 200) is explained by the fact that,
with a �xed base dimension n, increasing the sample size leads to an increase
in the power of the test, which begins to show a deviation from normality in
the projections of all CI-images. This is natural since these images are only
asymptotically Gaussian.

5 Extreme limit theorem

Theorem 1 and Corollary 1 show that the CI-transformation of the t
distribution turns out to be an asymptotically Gaussian copula, which, in
turn, is the result of the CI-transformation of the Gaussian core of the
original mixture.
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We are now interested in the following question: is it true that the extreme
values of random variables with t distribution CI-copulas and Gaussian
marginal distributions behave similarly to the extremes of Gaussian vectors
in a triangular array?

It is worth noting that the extreme values in triangular array of dependent
random variables associated with various families of copulas have been stud-
ied in the work [17]. This paper also presents generalized results on extreme
indices for triangular arrays with Archimedean copulas. Additionally, ques-
tions regarding series of random lengths were explored in [18].

We use classical numerical sequences from extreme value theory (see [19])
(n ≥ 2)

αn = (2 lnn)1/2, βn = (2 lnn)1/2 − 1

2
(2 lnn)−1/2(ln lnn+ ln(4π)),

arising naturally when analyzing the asymptotics of probabilities of the form
P{Mn ≤ un(x)}, where Mn is the maximum of n independent standard
normal random variables, and the sequence un(x) is required to have a
limiting non-degenerate distribution function G(x) under linear normaliza-
tion of Mn. It turns out that this is only possible when un(x) = x/αn + βn
for the speci�ed αn and βn.

Theorem 2. Let us consider a family of t-distributed random vectors. Xn =
{X1, X2, . . . , Xn} n = 1, 2, . . . , de�ned on a probability space {H,B(H), µ}
with characteristic functions given by (6). Let Cn be the corresponding t-
copulas, Φ(x) and φ(x) denote the standard normal cumulative distribution
function and density function, respectively. Let us introduce a triangular

array of random variables
{
X

(n)
i

}n

i=1
, n = 1, 2, . . . , de�ned on a suitable

probability space {Ω0,B0,P0} and having a joint distribution function

P0

{
X

(n)
1 ⩽ x1, . . . , X

(n)
n ⩽ xn

}
= Cci

n (Φ(x1), . . . ,Φ(xn)).

If the basis {fk} is such that

δ := lim sup
n→∞

max
i ̸=j

∣∣∣c(n)ij

∣∣∣ < 1, (18)

and for γ > 0 there exists 0 < α < 1−δ
1+δ such that

max
nα<j−i<n

∣∣∣c(n)ij ln(j − i)− γ
∣∣∣→ 0, n→ ∞, (19)

then for any x ∈ R the convergence holds:

P0

{
αn

(
max
1≤i≤n

X
(n)
i − βn

)
≤ x

}
→

∞∫
−∞

exp
{
−e−x−γ+

√
2γ z
}
φ(z) dz.

(20)

Proof.



ON THE ASYMPTOTICS OF ROSENBLATT-TYPE TRANSFORMATIONS 1499

In the proof, Theorem 1 from the work [20] and Lemmas 2, 3, and 4 from
the work [10] are used.

Without loss of generality, we can assume that the probability space
{Ω0,B0,P0} is {H,B(H), µ}, and

X
(n)
i = Φ−1

(
X∗

i,n

)
. (21)

Let us denote
Mn := max

1≤i≤n
X

(n)
i . (22)

We will now use the following notations:

ai(n) :=
X

(n)
i

ζi,n
, bi(n) := ζi,n,

a∗(n) := min
1≤i≤n

X
(n)
i

ζi,n
, a∗(n) := max

1≤i≤n

X
(n)
i

ζi,n
, b∗(n) := max

1≤i≤n
ζi,n,

d(n) := a∗(n)1{b∗(n)≥0} + a∗(n)1{b∗(n)<0},

e(n) := a∗(n)1{b∗(n)≥0} + a∗(n)1{b∗(n)<0},

where ζi,n de�ned in (7) from the paper [10].
Since µ-a.s. a∗(n) > 0 (see Lemma 3, item2 in [10]) and µ-a.s.

d(n)b∗(n) ≤Mn ≤ e(n)b∗(n),

(see Lemma 4 in [10]), then µ-a.s.

αn [d(n)b
∗(n)− βn] ≤ αn

(
Mn − βn

)
≤ αn [e(n)b

∗(n)− βn] . (23)

Note (see Lemma 3, item 3 in [10]) that µ-a.s. a∗(n) → 1 and a∗(n) → 1, ;
therefore, due to

a∗(n) ≤ d(n) ≤ a∗(n), a∗(n) ≤ e(n) ≤ a∗(n),

we have
d(n) → 1, e(n) → 1, µ− a.s. (24)

Let's consider the left side of inequality (23)

αn [d(n)b
∗(n)− βn] = d(n)αn [b

∗(n)− βn] + αnβn [d(n)− 1] . (25)

According to Lemma 2, the random variables ζi,n for i = 1, 2, . . . , n are
jointly Gaussian with covariances

cov
(
ζi,n, ζj,n

)
= c

(n)
ij ,

de�ned by (8). Therefore, due to (24) and Theorem 1 from [20], for all x ∈ R

µ
{
d(n)αn [b

∗(n)− βn] ≤ x
}
→

∞∫
−∞

exp
{
−e−x−γ+

√
2γ z
}
φ(z) dz. (26)

Let us use the previously obtained results, noting that for n ≥ 2

αnβn = 2 lnn− 1

2
(ln lnn+ ln 4π) > 0,
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µ-a.s. (see Lemma 3, item1 in [10])

αnβnA
(n) ≤ αnβn [a∗(n)− 1] ≤

≤ αnβn [d(n)− 1] ≤

≤ αnβn [a
∗(n)− 1] ≤ αnβn max

1≤i≤n
B

(n)
i .

Thus, (see Lemma 2, items 2 and 3 in [10]) µ-a.s. αnβn [d(n)− 1] → 0. Hence,
taking into account (25) and (26), we have

µ
{
αn [d(n)b

∗(n)− βn] ≤ x
}
→

∞∫
−∞

exp
{
−e−x−γ+

√
2γ z
}
φ(z) dz.

The convergence on the right side of (23) is proven similarly, from which the
statement of the theorem follows. □

We note that the limit in (20) has the same form as that for the case of
a stationary normal sequence (see [19], p. 137), which is not surprising, as

Theorem 1 implies the asymptotic normality of the vectors
(
X

(n)
1 , . . . , X

(n)
n

)
,

whose distribution functions are linked by the copulas Cci
n . It is important

to emphasize that, unlike the aforementioned result, our case involves a
triangular array, where its rows are neither stationary nor Gaussian.

6 Conclusion

Mixture distributions are widely studied in various contexts, such as relia-
bility theory and other similar cases where we deal with a set of observations
consisting of heterogeneous subgroups. As demonstrated in this work, by
applying methods for estimating conditional distribution functions and util-
izing the CI-transformation, it is possible to construct some criteria for
assessing the �t of a sample to a Gaussian mixture (more precisely, to a
mixture of distributions with a Gaussian structure), albeit currently in a
relatively speci�c case of the family of t distributions.

To illustrate, experiments were conducted on model data, which showed
that there is indeed hope to extend this approach to Gaussian mixtures with
other weight distributions.

It should be noted that the result of the work [4] allows us to discuss the
use of this approach for testing in�nite exchangeability (i.e., membership,
due to de Finetti's theorem, in mixtures of independent random variables).

Finally, it was shown that the maximum component of the vector from
the transformed multivariate sample of such a Gaussian mixture behaves
analogously to the maximum component of the vector from the transformed
multivariate Gaussian sample.

Since the results of Theorem 1 provide insights into the limiting depen-
dence structure and its connection to the original structure, subsequent

research may focus on estimating the parameters of the distributions G
(t)
k
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and their asymptotic properties, including for a broader class of continuous
mixtures.

We express our sincere gratitude to the reviewer and the editor for their
valuable suggestions and extremely helpful comments. Their feedback signif-
icantly contributed to the improvement of the work.

References

[1] M. Rosenblatt, Remarks on multivariate transformation, Ann. Math. Stat., 23:3
(1952), 470�472. Zbl 0047.13104

[2] S.Ya. Shatskikh, The strong law of large numbers for a triangular array scheme of

conditional distributions of stable elliptically contoured measures, Theory Probab.
Appl., 50:2 (2006), 248�264. Zbl 1090.60031

[3] R. Nelsen, An Introduction to copulas, 2nd ed., Springer-Verlag, New York, 2006.
Zbl 1152.62030

[4] E. Savinov, V. Shamraeva, On a Rosenblatt-type transformation of multivariate

copulas, Econom. Stat., 25 (2023), 39�48. MR4527277
[5] T. Eltoft, T. Kim, T.-W. Lee, Multivariate scale mixture of Gaussians modeling,

in: Rosca, Justinian (ed.) et al., Independent component analysis and blind signal

separation, 6th international conference, ICA, 2006, Proceedings, Springer, Berlin,
2006, 799�806. Zbl 1178.94067

[6] R. Orellana, R. Carvajal, J.C. Aguero, Maximum likelihood in�nite mixture

distribution estimation utilizing �nite Gaussian mixtures, IFAC-Papers OnLine, 51:15
(2018), 706�711.

[7] L. Melkumova, S.Ya. Shatskikh, Maximum likelihood method in de Finetti's theorem,
Theory Probab. Appl., 63:4 (2019) , 657�663. Zbl 1442.60026

[8] D.K. Dey, Estimation of scale parameters in mixture distributions, Can. J. Stat., 18:2
(1990), 171�178. Zbl 0702.62046

[9] S. Kotz, S. Nadarajah, Multivariate t distributions and their applications, Cambridge
University Press, Cambridge, 2004. Zbl 1100.62059

[10] E.A. Savinov, Limit theorem for the maximum of random variables connected by

IT-copulas of Student's t-distribution, Theory Probab. Appl., 59:3 (2015), 508�516.
Zbl 1342.60035

[11] A. Heinen, A. Valdesogo, Spearman rank correlation of the bivariate Student t and

scale mixtures of normal distributions, J. Multivariate Anal., 179 (2020), Article ID
104650. Zbl 1448.62086

[12] H. Joe, Families of m-variate distributions with given margins and m(m − 1)/2
bivariate dependence parameters, IMS Lecture Notes Monogr. Ser., 28 (1996), 120�
141. MR1485527

[13] T. Bedford, R.M. Cooke, Probability density decomposition for conditionally

dependent random variables modeled by vines, Ann. Math. Artif. Intell., 32:1-4 (2001),
245�268. Zbl 1314.62040

[14] T. Bedford, R.M. Cooke, Vines � a new graphical model for dependent random

variables, Ann. Stat., 30:4 (2002), 1031�1068. Zbl 1101.62339
[15] P. Hall, Q. Yao, Approximating conditional distribution functions using dimension

reduction, Ann. Stat., 33:3 (2005), 1404�1421. Zbl 1072.62008
[16] N. Henze, B. Zirkler, A class of invariant consistent tests for multivariate normality,

Commun. Stat., Theory Methods, 19:10 (1990), 3595�3617. Zbl 0738.62068
[17] A.V. Lebedev, Extremal indices in a series scheme and their applications, Informatics

Appl., 9:3 (2015), 39�54.

https://doi.org/10.1214/aoms/1177729394
https://doi.org/10.1137/S0040585X97981652
https://doi.org/10.1137/S0040585X97981652
https://doi.org/10.1007/0-387-28678-0
https://doi.org/10.1016/j.ecosta.2021.10.016
https://doi.org/10.1016/j.ecosta.2021.10.016
https://doi.org/10.1007/11679363_99
https://doi.org/10.1016/j.ifacol.2018.09.200
https://doi.org/10.1016/j.ifacol.2018.09.200
https://doi.org/10.1137/S0040585X97T989313
https://doi.org/10.2307/3315566
https://doi.org/10.1017/CBO9780511550683
https://doi.org/10.1137/S0040585X97T987260
https://doi.org/10.1137/S0040585X97T987260
https://doi.org/10.1016/j.jmva.2020.104650
https://doi.org/10.1016/j.jmva.2020.104650
https://doi.org/10.1214/lnms/1215452614
https://doi.org/10.1214/lnms/1215452614
https://doi.org/10.1023/A:1016725902970
https://doi.org/10.1023/A:1016725902970
https://doi.org/10.1214/aos/1031689016
https://doi.org/10.1214/aos/1031689016
https://doi.org/10.1214/009053604000001282
https://doi.org/10.1214/009053604000001282
https://doi.org/10.1080/03610929008830400
https://doi.org/10.14357/19922264150305


1502 E.A. SAVINOV

[18] A.A. Goldaeva, A.V. Lebedev, On extremal indices greater than one for a scheme of

series, Lith. Math. J., 58:4 (2018), 384�398. Zbl 1407.60075
[19] M. Leadbetter, G. Lindgren, H. Rootzen, Extremes and related properties of random

sequences and processes, Springer Series in Statistics, Springer-Verlag, New York etc.,
1983. Zbl 0518.60021

[20] E. Savinov, On Gaussian triangular arrays in the case of strong dependence,
Extremes, 27 (2024), 557�570.

Evgeniy Savinov

Financial University under the Government of the Russian Federation,

49 Leningradsky Prospekt, GSP-3,

125993, Moscow, Russian Federation

Email address: easavinov@fa.ru

https://doi.org/10.1007/s10986-018-9407-2
https://doi.org/10.1007/s10986-018-9407-2
https://doi.org/10.1007/978-1-4612-5449-2
https://doi.org/10.1007/978-1-4612-5449-2
https://doi.org/10.1007/s10687-024-00491-3

	Introduction
	Basic concepts.
	Convergence of CI-copulas
	Modeling and testing the fit of a high-dimensional sample with a normal mixture
	Extreme limit theorem
	Conclusion

