
S e⃝MR
ÑÈÁÈÐÑÊÈÅ ÝËÅÊÒÐÎÍÍÛÅ

ÌÀÒÅÌÀÒÈ×ÅÑÊÈÅ ÈÇÂÅÑÒÈß

Siberian Electronic Mathematical Reports

http://semr.math.nsc.ru
ISSN 1813-3304

Vol 21, � 2, pp. 1549�1561 (2024) ÓÄÊ 519.174.2, 519.175.4

https://doi.org/10.33048/semi.2024.21.098 MSC 05C45, 05C80

ARE ALMOST ALL n-VERTEX GRAPHS

OF GIVEN DIAMETER HAMILTONIAN?

T.I. FEDORYAEVA

11/10/2019 ORCID-iD_icon-vector.svg

file:///Users/tao/Downloads/5008697/ORCID-iD_icon-vector.svg 1/1

Communicated by A.V. Pyatkin

Abstract: Typical Hamiltonian properties of the class of n-vertex
graphs of a �xed diameter k are studied. A new class of typical
n-vertex graphs of a given diameter is constructed.

The question of S.V. Avgustinovich on the Hamiltonian property
of almost all such n-vertex graphs has been solved. It is proved
that almost all n-vertex graphs of �xed diameter k = 1, 2, 3 are
Hamiltonian, while almost all n-vertex graph of �xed diameter
k ≥ 4 are nonHamiltonian graphs. All found typical Hamiltonian
properties of n-vertex graphs of a �xed diameter k ≥ 1 are also
typical for connected graphs of diameter at least k, as well as for
graphs (not necessarily connected) containing the shortest path of
length at least k.
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Introduction

We study Hamiltonian property for �nite labeled ordinary n-vertex
graphs of a given diameter. For a connected graph G = (V,E), the distance
ρG(u, v) between its vertices u, v ∈ V is de�ned as the length of the shortest
path connecting these vertices. In this case, d(G) = maxu,v∈V ρG(u, v) is the
diameter of graph G. A cycle which passes through every vertex of the graph
exactly once is called Hamiltonian. A graph is Hamiltonian (nonHamiltonian)
if it contains (does not contain) a Hamiltonian cycle.

Hamiltonicity is one of the central concepts of Graph Theory, also arising
in various applied problems, when it is required to �nd out the presence of
a Hamiltonian cycle for a graph modeling the problem under consideration.
By now, a huge number of papers have been written on this topic. Many
ideas that arose here still go back to the classical results of G.A. Dirac and
O. Ore, who �rst opened this "Pandora's box". The main course of research
development and the results obtained on the topic of Hamiltonian graphs in
various directions can be found in the surveys [9] and [14]. As it turns out,
the problem of deciding whether a graph is Hamiltonian is an NP -complete
problem, and accordingly one cannot expect a simple classi�cation of graphs
that have this property.

The complexity of the problem and the diversity of Hamiltonian graphs
encountered also led to the development of an asymptotic or probabilistic
approach to the study of Hamiltonicity, in particular, an approach conditioned
by the concept of almost all. A number of results were obtained along this
path, opening up the subject of research into Hamiltonicity in this direction.
Thus, considering all n-vertex graphs, Yu.D. Perepeliza [17] and J.W. Moon
[15] proved that almost all graphs are Hamiltonian. There are also a number
of papers in which the Hamiltonian property is studied within given classes of
graphs. Of particular interest here is the classes in which su�cient conditions
for the existence of a Hamiltonian cycle are satis�ed for all or almost all
graphs, and the veri�cation and construction of such a cycle is implemented
polynomially. In particular, problems about Hamiltonicity of regular and
Cayley graphs are known. It was found that almost all Cayley graphs [13]
and almost all r-regular graphs for every r ≥ 3 [18] are Hamiltonian.

It is well-known that almost all graphs have diameter 2 [16]. From this
result of J.W. Moon and L. Moser, and Yu.D. Perepeliza's Theorem, it is
easy to obtain that almost all n-vertex graphs of diameter 2 are Hamiltonian
(see, for detail, Section 2). In this regard, the question naturally arises about
a Hamiltonian property of almost all n-vertex graphs of a �xed diameter k.
This problem was posed by S.V. Avgustinovich.

In the present paper, an answer to this one is obtained. Previously, the
author investigated asymptotically the class of n-vertex graphs of a �xed
diameter. A number of typical properties of graphs under consideration were
found (for more information, see survey article [8]). In the present paper, for
every ∆, 0 < ∆ < 1, a new class Hn,k,∆ of typical n-vertex graphs of a given
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diameter k is constructed in Section 2 (Theorem 2). In Section 3, based on
the found typical properties and Theorem 2, we establish when almost all
such graphs are Hamiltonian. It turned out that almost all n-vertex graphs
of given diameter k = 1, 2, 3 are Hamiltonian and are nonHamiltonian for
every �xed k ≥ 4 (Theorem 4).

All obtained typical Hamiltonian properties for n-vertex graphs of a �xed
diameter k ≥ 1 remain typical for connected graphs of diameter at least k,
as well as for graphs (not necessarily connected) containing a shortest path
of a length at least k (Corollary 2).

1. Preliminary information

The article uses the generally accepted concepts and notation of graph
theory [2,12], as well as the standard concepts of combinatorial analysis [10].
We consider only �nite ordinary (i.e., without loops and multiple edges)
graphs G = (V,E) with set of vertices V = {1, 2, . . . , n}, n ∈ N. As usual,
a graph G is s-connected if its connectivity is at least s, a set S ⊆ V is the
independence set of graph G if all vertices in S are pairwise non-adjacent
in G, the number of independence of a graph is the greatest cardinality of
its independent sets. Let α(G) denote the number of independence of graph
G, BG

i (v) = {u ∈ V | ρG(v, u) ≤ i} is a ball of radius i centered at a vertex
v ∈ V in the metric space of graph G with the metric ρG, S

G
i (v) = {u ∈

V | ρG(v, u) = i } is a sphere of radius i centered at a vertex v ∈ V , Kn � a
complete n-vertex graph. For a path P with endpoints v0 and vn, sequentially
passing through vertices v0, v1, . . . , vn, the notation P (v0, v1, . . . , vn) is used.
A shortest path of length d(G) is the diametral path of the graph G, and
under by a pair of diametral vertices we mean an unordered sample of two
vertices from the set V , the distance between which is equal to the diameter,
a vertex of degree 1 is pendant.

We will write ⌊x⌋ to denote the largest integer less or equal to a real
nonnegative number x and further apply the following well-known binomial
identity (

n−m

2

)
=

(
n

2

)
− nm+

m(m+ 1)

2
. (1)

To denote the asymptotic equality of functions f(n) and g(n) as n tends to
in�nity, we use the notation f(n) ∼ g(n), which by de�nition means that

limn→∞
f(n)
g(n) = 1 or, equivalently, f(n) = g(n)(1 + r(n)) for all large enough

n, where in�nitesimal function r(n) is the approximation error of g(n).
To estimate the measure of the number of graphs with a certain property,

the concept of almost all is often used; in this approach, the studied property
is considered for graphs with a large number of vertices. Let Jn be the class
of labeled n-vertex graphs with the �xed set of vertices V = {1, 2, . . . , n},
n ∈ N. Consider some property P, by which each graph may or may not
possess. Through J P

n denote the set of all graphs from Jn that possess the
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property P. Almost all graphs possess the property P if limn→∞
|JP

n |
|Jn| = 1,

i.e. |J P
n | ∼ |Jn|, and there are almost no graphs with the property P, if

limn→∞
|JP

n |
|Jn| = 0.

In the study and selection of almost all graphs in the class of graphs
under consideration it is often useful to de�ne not characteristic properties
themselves for the notion of almost all, but directly select a subclass of typical
graphs itself (in [4], a more general concept of a class of typical combinatorial
objects for a given class of objects admitting the concept of dimension is
formulated, further we will also use this formal concept for graphs when the
dimension of a graph is understood as the number of its vertices). Let Ω
be an arbitrary class of graphs such that Ωn ̸= ∅ for all large enough n,
where Ωn = Ω ∩ Jn. A subclass Ω∗ ⊆ Ω is the class of typical graphs of the
class Ω if limn→∞ |Ω∗

n|/|Ωn| = 1. A property of graphs of the class under
consideration is typical if almost all graphs of this class have this property.

Let Jn, d=k, Jn, d≥k, J ∗
n, d≥k be the following classes of labeled n-vertex

graphs: graphs of diameter k; connected graphs of diameter at least k;
graphs (not necessarily connected) with the shortest path of length at least
k, respectively. In paper [5], it is proved that for k ≥ 3 all three classes of
graphs Jn, d=k, Jn, d≥k, J ∗

n, d≥k have the same asymptotic cardinality, and

asymptotically exact value 2(
n
2) ξn,k of the number of graphs in these classes

is found. Here

ξn,k = qk (n)k−1

( 3

2k−1

)n−k+1
, qk =

1

2
(k − 2) 2−(

k−1
2 ),

(n)k = n(n− 1) · · · (n− k + 1), (n)0 = (0)0 = 1 and (n)k = 0 if n < k.
In [7], when studying the variety of metric balls in graphs, for every ∆,

0 < ∆ < 1, it is de�ned a constant ε∆, depending only on ∆ and 0 < ε∆ < 1.
Then a class Fn,k,∆, k ≥ 3 (the detailed de�nition of this class is given
in Section 2) of typical graphs for the classes Jn, d=k, Jn, d≥k, J ∗

n, d≥k is
constructed.

Theorem 1 (asymptotics of |Fn,k,∆| [7]). Let k ≥ 3, 0 < ∆ < 1, ε∆ <
ε < 1, and k, ∆, ε do not depend on n. Then there exists a constant c > 0
independent of n such that for every n ∈ N the following inequalities are
valid

2(
n
2)ξn,k

(
1− c

(
5+ε
6

)n−k+1)
≤ |Fn,k,∆| ≤ |Jn, d=k|

≤ |Jn, d≥k| ≤ |J ∗
n, d≥k| ≤ 2(

n
2)ξn,k

(
1 + c

(
5+ε
6

)n−k+1)
.

Note that for k = 3 the upper bound in Theorem 1 takes the form

2(
n
2)ξn,3 [4]. Moreover, this upper estimate is valid even for a class of graphs

containing additionally all disconnected graphs (which do not necessarily
have a connected component with shortest path of length 3). Class Fn,3,∆ is
the union of the subclasses Fn,3,∆(x, y) over all di�erent x, y ∈ V , and x, y is
the unique pair of diametral vertices of every graph from Fn,3,∆(x, y). Further
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we use the following estimate of the number of graphs in class Fn,3,∆(x, y)
obtained in [7].

Lemma 1 (lower bound [7]). Let x, y be di�erent vertices in V , ∆ is arbitrary
constant independent of n, and 0 < ∆ < 1. Then the following inequality
holds as n tends to in�nity |Fn,3,∆(x, y) ≥ an(1 − r(n)), where r(n) is a

positive in�nitesimal function and an = 2(
n
2) 8

9

(
3
4

)n
.

2. Class of graphs Hn,k,∆

For every integer k ≥ 3 and ∆, 0 < ∆ < 1, the class Fn,k,∆ of typical
graphs of class Jn, d=k was constructed by author in [7]. In this section we
de�ne a subclass Hn,k,∆ of class Fn,k,∆. To de�ne this class, �rst consider
the following properties of n-vertex graphs F of diameter 3 with vertex set
V and �xed vertices x, y ∈ V .

a) Non-Pendant condition: vertices x, y are not pendant in F ;
b) Existence of a pole: ρF (z, x) = ρF (z, y) = 2 for some vertex z ∈ V ;
c) Property of diametral vertices: d(F ) = 3 and graph F has the unique

pair of diametral vertices x, y;
d) Nonexistence of a shuttlecocks: graph F does not contain shuttlecocks

(subgraphs de�ned in [3]) or, equivalently, does not contain coinciding balls
of radius 1 with centers at di�erent vertices;

e) Property of spheres intersections:

|SF
1 (u) ∩ SF

1 (v)| ≥
⌊n
6
∆
⌋
+ 1 ∀u, v ∈ V \ {x, y} and u ̸= v,

|SF
1 (u) ∩ SF

1 (z)| ≥
⌊n
6
∆
⌋
+ 1 ∀u ∈ V \ {x, y} ∀z ∈ {x, y};

f) Property of cardinality of independence sets: α(F ) < ⌊2 log2 n⌋.
In [7], Fn,3,∆(x, y) was de�ned for x, y ∈ V as the class of all graphs

F ∈ Jn with the properties a), b), c), d), e). Let Hn,3,∆(x, y) be the class
of all graphs in Fn,3,∆(x, y) possessing property f) additionally. Now, for
k ≥ 3, we de�ne a class Hn,k,∆ as follows. Let u = (u0, u1, . . . , uk−2)
be an arbitrary ordered sequence of di�erent vertices from the set V . Fix
an arbitrary pair of neighboring elements us and us+1. On the set V \
{u0, . . . , us−1, us+2, . . . , uk−2} of n−k+3 vertices, de�ne an arbitrary graph
F from the class Hn−k+3,3,∆(us, us+1). Finally, join by edges the vertices
ui, ui+1 for i ̸= s and 0 ≤ i < k − 2. Denote the so-obtained graph by
G(u, s, F ). Let Hn,k,∆ be the class of all graphs G(u, s, F ) constructed under

condition 0 ≤ s ≤ ⌊k−3
2 ⌋. Note that if, in de�ning the graphs G(u, s, F ),

instead of class of graphs Hn−k+3,3,∆(us, us+1), we use Fn−k+3,3,∆(us, us+1),
then we arrive at the de�nition of class Fn,k,∆ [7]. Hence, we have

Hn,3,∆(x, y) ⊆ Fn,3,∆(x, y), Hn,3,∆ ⊆ Fn,3,∆. (2)
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Therefore, all properties of graphs G(u, s, F ) obtained earlier in [5, 7] will
also hold for graphs of class Hn,k,∆ or can be proven in a similar way. In
particular, the properties stated in Lemmas 2 and 3 are valid.

Lemma 2 (properties of graphs G(u, s, F )). Let k ≥ 3, 0 < ∆ < 1 and
G = G(u, s, F ) ∈ Hn,k,∆. Then the following properties hold:

(i) G ∈ Jn,d=k;
(ii) us, us+1 are not pendant vertices in F ;
(iii) u0, uk−2 is the unique pair of diametral vertices of graph G and every

its diametral path contains vertices u0, u1, . . . , uk−2.

Using Lemma 2, as in [5, 7] one can express the number of graphs of class
Hn,k,∆ through the number of graphs of class Hn,3,∆(x, y).

Lemma 3 (number of graphs in Hn,k,∆). Let k ≥ 3, 0 < ∆ < 1. Then

|Hn,k,∆| =
1

2
(k − 2)(n)k−1|Hn−k+3,3,∆(x, y)|, where x ̸= y.

Estimate the number of graphs in Hn,3,∆(x, y). For this we need the
following classes of graphs and estimates of the number of such graphs
obtained in Lemma 5 below. Let x, y be di�erent elements of V , α = ⌊2 log2 n⌋,

Sn(x, y) = {G ∈ Jn |BG
1 (x) ∩BG

1 (y) = ∅ and α(F ) ≥ ⌊2 log2 n⌋},

and Sn(x, y;x), Sn(x, y;x, y), Sn(x, y;∅) be the classes of n-vertex graphs
G ∈ Jn such that BG

1 (x) ∩ BG
1 (y) = ∅, there is an independent α-element

set S and the following inclusions hold: x ∈ S, y /∈ S; x ∈ S, y ∈ S; x /∈ S,
y /∈ S, respectively. It is obvious that the following inclusions of the sets hold

Sn(x, y) ⊆ Sn(x, y;∅) ∪ Sn(x, y;x) ∪ Sn(x, y; y) ∪ Sn(x, y;x, y). (3)

Lemma 4. Let λ > 0, λ does not depend on n and α = ⌊2 log2 n⌋. Then the
following equality is ful�lled as n tends to in�nity(

n

α

)
2−(

α
2) =

1

λα
√
α
O(1).

Proof. Using Stirling's formula, we obtain(
n

α

)
=

nα

α!
O(1) =

(ne
α

)α 1√
α
O(1). (4)

Using the inequality ⌊x⌋ ≥ x− 1, we obtain

2−(
α
2) = 2−α(log2 n−1)O(1) =

( 2

n

)α
O(1). (5)

From (4),(5) we conclude(
n

α

)
2−(

α
2) =

(2e
α

)α 1√
α
O(1) =

( 1
λ

)α 1√
α
O(1).

□
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Lemma 5. Let x, y be di�erent vertices of V , q > 1, q does not depend on
n, and α = ⌊2 log2 n⌋. Then the following equalities are ful�lled as n tends
to in�nity

(i) Sn(x, y;x) = an(
1
q )

α 1√
α
O(1);

(ii) Sn(x, y;x, y) = an(
1
q )

α 1√
α
O(1);

(iii) Sn(x, y;∅) = an(
1
q )

α 1√
α
O(1);

Proof. (i) From the de�nition of class Sn(x, y;x), it is easy to understand
that all graphs of this class are contained among graphs G constructed as
follows:

1) choose an (α − 1)-element subset S ⊆ V \ {x, y}, there are
(
n−2
α−1

)
possibilities. In graph G, the vertices of set S ∪ {x} will remain pairwise
non-adjacent, resulting in S ∪ {x} being an α-element independent set;

2) choose an i-element subset Vx ⊆ V \ (S∪{x, y}), 0 ≤ i ≤ n−1−α, and
join each vertex from Vx by an edge with x, as a result we have SG

1 (x) = Vx;
3) choose a j-element subset of Vy ⊆ V \(Vx∪{x, y}), 0 ≤ j ≤ n−2−i and

join each vertex from Vy by an edge with y, as a result we obtain SG
1 (y) = Vy

and Vx ∩ Vy = ∅;
4) on (n − 2)-element set V \ {x, y} de�ne an arbitrary graph in which

there are no
(
α−1
2

)
edges between the vertices of the set S.

Thus, using the Newton's Binomial Theorem, the binomial identity (1),
Lemma 4 and the inequality α ≤ ⌊n2 ⌋, valid for all large enough n, we obtain
as n → ∞

|Sn(x, y;x)|=
(
n− 2

α− 1

)n−1−α∑
i=0

(
n− 1− α

i

)n−2−i∑
j=0

(
n− 2− i

j

)
2(

n−2
2 )−(α−1

2 )O(1)

= 2(
n−2
2 )

(
n

α

)
2−(

α
2)+α

n−1−α∑
i=0

(
n− 1− α

i

)
2n−2−iO(1)

= 2(
n
2)
(1
4

)n
4α

(
n

α

)
2−(

α
2)

n−1−α∑
i=0

(
n− 1− α

i

)
2n−1−α−iO(1)

= 2(
n
2)
(3
4

)n (4
3

)α
(
n

α

)
2−(

α
2)O(1)

= an

(1
q

)α 1√
α
O(1).
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(ii) Similarly to the proof of the statement (i), we construct graphs forming
a superclass of the class Sn(x, y;x, y) and obtain the following estimates

|Sn(x, y;x, y)| =
(
n− 2

α− 2

) n−α∑
i=0

(
n− α

i

) n−α−i∑
j=0

(
n− α− i

j

)
2(

n−2
2 )−(α−2

2 )O(1)

= 2(
n−2
2 )3n−α

(
n

α

)
2−(

α−2
2 )O(1)

= 2(
n
2)
(3
4

)n (4
3

)α
(
n

α

)
2−(

α
2)O(1)

= an

(1
q

)α 1√
α
O(1).

(iii) The estimate of the number of graphs of class Sn(x, y;∅) is proved
similarly:

|Sn(x, y;∅)| =

(
n− 2

α

) n−2∑
i=0

(
n− 2

i

) n−2−i∑
j=0

(
n− 2− i

j

)
2(

n−2
2 )−(α2)O(1)

= 2(
n
2)
(3
4

)n
(
n

α

)
2−(

α
2)O(1) = an

(1
q

)α 1√
α
O(1).

□

Lemma 6. Let x, y be di�erent vertices in V , 0 < ∆ < 1 and ∆ is arbitrary
constant independent of n. Then |Hn,3,∆(x, y) ≥ an(1 − r(n)) as n tends to
in�nity, where r(n) is a positive in�nitesimal function.

Proof. Directly from the class de�nitions we obtain

Fn,3,∆(x, y) \ Sn(x, y) ⊆ Hn,3,∆(x, y).

Hence, |Hn,3,∆(x, y)| ≥ |Fn,3,∆(x, y)|−|Sn(x, y)|. It remains to apply Lemmas
1, 5 and relation (3). □

Lemma 7 (lower bound). Let k ≥ 3 and 0 < ∆ < 1 are constants independent
of n. Then the following inequality holds as n tends to in�nity

|Hn,k,∆| ≥ 2(
n
2)ξn,k(1− r(n)),

where r(n) is a positive in�nitesimal function.

Proof. Using Lemmas 3 and 6, the de�nitions of numbers an and ξn,k, and
the binomial identity (1), we conclude

|Hn,k,∆| ≥ 1

2
(k − 2)(n)k−1 2

(n−k+3
2 ) 8

9

(3
4

)n−k+3
(1− r(n))

= 2(
n
2) qk(n)k−1 2

−(n−k+1)(k−3)
(3
4

)n−k+1
(1− r(n))

= 2(
n
2) ξn,k (1− r(n)).

□
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The following theorem follows directly from Lemma 7, relation (2) and
Theorem 1.

Theorem 2 (asymptotics of |Hn,k,∆|). Let k ≥ 3, 0 < ∆ < 1 and k, ∆ do
not depend on n. Then the following inequalities hold as n tends to in�nity

2(
n
2)ξn,k(1− r1(n)) ≤ |Hn,k,∆| ≤ |Fn,k,∆| ≤ |Jn, d=k| ≤ 2(

n
2)ξn,k(1 + r2(n)).

Here r1(n), r2(n) are positive in�nitesimal functions.

Ñorollary 1. Let k ≥ 3 and 0 < ∆ < 1 be independent of n. Then Hn,k,∆

is the class of typical graphs of the class of n-vertex graphs of diameter k and
the following asymptotic equalities hold as n → ∞

|Hn,k,∆| ∼ |Fn,k,∆| ∼ |Jn, d=k| ∼ 2(
n
2)ξn,k.

3. Hamiltonian property of almost all graphs of diameter k

Note that Kn is the unique n-vertex graph of diameter k = 1. For
n ≥ 3 its Hamiltonian cycle is constructed by graph vertex traversal and
K2 is nonhamiltonian. Therefore, almost all graphs of diameter k = 1 are
Hamiltonian. A similar fact for graphs of diameter 2 also trivially follows
from well-known theorems.

Lemma 8. Almost all graphs of diameter 2 are Hamiltonian.

Proof. Through KH denote the set of all Hamiltonian graphs from class K.
It is well known that almost all graphs are Hamiltonian [17] and almost all
graphs have diameter 2 [16]. Thus,

|JH
n | ∼ |Jn| ∼ |Jn, d=2|.

Hence, as n → ∞ we infer

|JH
n, d=2|

|Jn, d=2|
= 1−

|Jn, d=2| − |JH
n, d=2|

|Jn, d=2|
≥ 1− |Jn| − |JH

n |
|Jn|

|Jn|
|Jn, d=2|

−→ 1.

□

Now for k = 3, let us investigate Hamiltonian property for graphs in
the classes of typical graphs Fn,k,∆ and Hn,k,∆. Obviously, 2-connectivity is
a necessary condition for a graph to be Hamiltonian. Note that not every
graph of class Fn,3,∆ is 2-connected. Indeed, using graph properties a), b)
and c), it is easy to see that Fn,3,∆ = ∅ if n < 7. Let us consider graph F 1

n

shown in Fig. 1. Given the equality |SF 1
n

1 (x)∩S
F 1
n

1 (x1)| = 1, it is not di�cult

to understand that F 1
n ∈ Fn,3,∆ if and only if 7 ≤ n < 6/∆. At the same

time, for all admissible values of n and ∆, F 1
n ∈ Fn,3,∆ and graph F 1

n is
not 2-connected, since there are no two vertex-disjoint paths connecting its
diametral vertices x and y.
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Fig. 1. Graph F 1
n

Lemma 9. For n ≥ 6/∆ and 0 < ∆ < 1, all graphs in class Fn,3,∆ are
2-connected.

Proof. Let G ∈ Fn,3,∆ and n ≥ 6/∆. Then |SG
1 (u) ∩ SG

1 (v)| ≥ 2 if {u, v} ≠
{x, y} due to the property of spheres intersections. By Whitney's Theorem
(see, for example, [12]), it su�cient to connect every two vertices u, v by two
vertex-disjoint paths.

Let P (x, x1, y1, y) is a diametral path of graph G. If u, v are not a pair
of diametral vertices then there are exist di�erent vertices w1, w2 ∈ SG

1 (u)∩
SG
1 (v). Hence, P (u,wi, v), i = 1, 2, are two vertex-disjoint paths. Therefore,

we further assume that {u, v} = {x, y}. Vertex x is not pendant. Hence, there
is exist a vertex x2 ∈ V \ {x1} adjacent to x. Note that x2 ̸∈ {x, x1, y1, y},
otherwise ρG(x, y) ≤ 2. Further, there is exist a vertex y2 ∈ (SG

1 (x2) ∩
SG
1 (y)) \ {y1}. Similarly, we have y2 ̸∈ {x, x2, x1, y1, y}. Thus, P (x, x1, y1, y),

P (x, x2, y2, y) are required two vertex-disjoint paths. □

Note that not every 2-connected graph in class Fn,3,∆ is Hamiltonian.
Indeed, using the properties of graphs of class Fn,3,∆, it is easy to prove that
Fn,3,∆ = ∅ if 6/∆ ≤ n < 9 (see also [6], page 350). Let us consider graph F 2

n

shown in Fig. 2 for n ≥ 9. Obviously, F 2
n is a 2-connected graph. Moreover,

Fig. 2. Graph F 2
n

|SF 2
n

1 (x) ∩ S
F 2
n

1 (x2)| = 2. Now, it is not di�cult to prove that F 2
n ∈ Fn,3,∆

if and only if 9 ≤ n < 12/∆. Note that graph F 2
n is Hamiltonian for n =

9, 10, 11 (as example, the Hamiltonian cycle of graph F 2
11 is shown in Fig. 3)
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and it is nonHamiltonian if n = 12. Besides, in all these cases F 2
n ∈ Fn,3,∆

for any ∆, 0 < ∆ < 1. In addition, F 2
n ∈ Fn,3,∆ and F 2

n is nonHamiltonian,
for example, if n = 13, 14, . . . , 18 and ∆ < 12/n. The veri�cation of the
Hamiltonian property for the above graphs was performed on a computer,
you can also use the online service [11] or similar.

Now we will show that all graphs of class Fn,3,∆ have su�ciently high
connectivity.

Lemma 10. Let ∆ does not depend on n and 0 < ∆ < 1. Then all graphs
in class Fn,3,∆ are κ-connected, where κ = ⌊n∆/18⌋.

Proof. Without loss of generality, we assume κ ≥ 1. Let G ∈ Fn,3,∆ and x, y
is the unique pair of diametral vertices of graph G. By Whitney's Theorem,
it is su�cient to connect every two vertices u, v by κ vertex-disjoint paths.

Let ρG(u, v) < 3. Then |SG
1 (u) ∩ SG

1 (v)| ≥ n
6∆ > κ by the property

of sphere intersections. So further we assume {u, v} = {x, y}. Using the
property of sphere intersections we obtain the following relations

BG
1 (x) ∩BG

1 (y) = ∅,

|SG
1 (x)| ≥ n

6∆, |SG
1 (y)| ≥ n

6∆, (6)

|SG
1 (x

′) ∩ SG
1 (y

′)| ≥ n
6∆, if x′ ∈ SG

1 (x) and y′ ∈ SG
1 (y).

We will construct step by step a sequence of pairwise disjoint 3-element sets
Vi = {xi, yi, zi} such that Pi(x, xi, yi, y) is a simple path of graph G.

Step 1. Consider arbitrary vertices x1 ∈ SG
1 (x) and y1 ∈ SG

1 (y). By virtue
of (6) there is a vertex z1 ∈ SG

1 (x1) ∩ SG
1 (y1). Using (6) and property c)

for graph G, it is also easy to see that graph G contains a simple path
P1(x, x1, z1, y1, y). We de�ne V1 = {x1, y1, z1}.

Step i+ 1. Let the sets V1, . . . , Vi be constructed and i < κ. Then

|
i⋃

s=1

Vs| = 3i < 3κ ≤ n

6
∆. (7)

By virtue of (6) and (7) the following vertices exist:

xi+1 ∈ SG
1 (x) \ ∪i

s=1Vs,

Fig. 3. Hamiltonian cycle of graph F 2
11 ∈ F11,3,∆
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yi+1 ∈ SG
1 (y) \ ∪i

s=1Vs,

zi+1 ∈ SG
1 (xi+1) ∩ SG

1 (yi+1) \ ∪i
s=1Vs.

We de�ne Vi+1 = {xi+1, yi+1, zi+1}. Using property c) for graph G, we obtain
Pi+1(x, xi+1, zi+1, yi+1, y) is a simple path of graph G.

Thus, at step κ, the vertex-disjoint simple paths Pi, i = 1, . . . ,κ with
endpoints x, y will be constructed. □

Let us turn to graphs of class Hn,k,∆. We apply the following su�cient
condition of V.Chvátal and P.Erdös for a graph to be Hamiltonian.

Theorem 3 (V.Chvátal and P.Erdös [1]). Let G be a graph with at least
three vertices. If for some s, graph G is s-connected and α(G) ≤ s, then G
has a Hamiltonian cycle.

Lemma 11. Let k ≥ 3. Then all graphs of class Hn,k=3,∆ are Hamiltonian
for all large enough n and every graph in Hn,k,∆ is nonHamiltonian if k ≥ 4.

Proof. There is an integer N > 0 such that for all n ≥ N the following
inequality holds ⌊2 log2 n⌋ − 1 ≤ ⌊n∆/18⌋. Let n ≥ N , G ∈ Hn,3,∆ and
s = ⌊2 log2 n⌋ − 1. By the property of cardinality of independence sets,
α(G) ≤ s. In addition, G is s-connected due to (2) and Lemma 10. Therefore,
graph G is Hamiltonian by Theorem 3.

It remains to note that for k ≥ 4 every graph in class Hn,k,∆ contains a
pendant vertex due to the de�nition of graph G(u, s, F ). □

Lemma 8, Corollary 1 and Lemma 11 imply the following theorem.

Theorem 4. Almost all n-vertex graphs of �xed diameter k = 1, 2, 3 are
Hamiltonian, while almost all n-vertex graph of �xed diameter k ≥ 4 are
nonHamiltonian graphs.

By Theorem 1, for k ≥ 3 all three classes of graphs Jn, d=k, Jn, d≥k, J ∗
n, d≥k

have the same asymptotic cardinality. Therefore, we obtain the following
corollary.

Ñorollary 2. For every �xed k = 1, 2, 3, almost all n-vertex graphs of each
of the following classes Jn, d≥k, J ∗

n, d≥k are Hamiltonian, while almost all
n-vertex graphs of these classes are nonHamiltonian for every �xed k ≥ 4.

4. Conclusion

Note that the existence of a Hamiltonian cycle in Theorem 3 is based
on Dirac's generalization of Theorem of Menger on s-connected graphs. This
requires considering a large variety of paths to construct s vertex-disjoint
paths starting at a given vertex x and terminating in a given cycle C if
x /∈ V (C). This makes this method of constructing a Hamiltonian cycle
algorithmically complex. In this connection, a fairly e�ective method for
constructing a Hamiltonian cycle for almost all n-vertex graphs of diameter
3 is of further interest.
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In conclusion, the author is grateful to S.V. Avgustinovich, who attracted
him to the topic of Hamiltonian graphs, and also to the Referee for careful
reading of the article.
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