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Abstract: The numerical solution of the problem of optimal control
of the non-stationary �ow of a viscous, heat-conducting compressible
medium in the one-dimensional case is considered., The initial state
velocity and velocity at the right boundary are used as control.
To solve the problem, the PINN method, is used. To do this,
the problem of minimizing a quadratic functional is solved. The
functional includes terms for the residuals of the equations, boundary
and initial conditions, and also, for the inverse problem, additional
information. Numerical experiments were performed in cases where
the velocity, density and temperature separately are minimized to
the given functions. The parameters of the medium correspond to
the physical parameters of real gases at high Reynolds numbers,
Re = 1.5 · 107 − 2.4 · 108, and Peclet numbers, Pe = 3 · 107 − 1.6 ·
108. The method allows to solve numerically complex nonlinear
problems of optimal control without discretization, linearization
and solving optimality systems.

Kuznetsov, K.S., Amosova, E.V. Numerical solution of the optimal

control problem of viscous heat-conducting gas flow using the PINN

method.

© 2024 Kuznetsov K.S., Amosova E.V..

The work was carried out within the state assignment of the IAM FEB RAS (No.
075-00459-25-00).

Received September, 24, 2024, Published August, 30, 2025.

B1

https://orcid.org/0000-0002-8204-6138
https://orcid.org/0000-0003-2154-5010


B2 K.S. KUZNETSOV AND E.V. AMOSOVA

Keywords: optimal control, inverse problems, partial di�erential
equations, Navier-Stokes equations for compressible media, gas
dynamics, neural networks, PINN.

1 Introduction

Numerical solution of the system of equations including the equation of
motion, the continuity equation, and the heat equation is an actual problem
of modern mathematics, in particular, due to it's signi�cant importance in
the context of solving scienti�c and technical problems. It is worth noting
that the solution of these equations is especially di�cult when they describe
the motion of a compressible medium. In this case, the system of equations
di�ers from the equations of hydrodynamics by the type of di�erential equa-
tions and the presence of large heterogeneity in the medium, caused by the
presence of small coe�cients before the second derivatives. It is worth noting
that the behavior of this system of equations for a compressible medium was
fully studied in [1, 2], but only in the one-dimensional case.
The solution of inverse problems of gas dynamics is of particular interest

due to its practical signi�cance, for example, in problems of aerodynamics
[3, 4], power engineering [5, 6]. Problems of optimal control of gas �ow are
also relevant when working with gas turbines and compressors [7]. The
ability to control gas �ow can increase their operating e�ciency, as well
as improve their reliability and durability, achieving optimal performance of
the mechanism.
The authors propose to use a method called Physics Informed Neural

Networks (PINN) to solve the optimal control problem. It involves approxi-
mating unknown functions using neural networks by minimizing a quadratic
quality functional, which includes terms for the residual equations, boundary
and initial conditions, as well as the term with an additional information
in the case of solving an inverse or ill-posed problem. The method was �rst
presented in the pioneering study [8] as a new way to solve partial di�erential
equations, and has since been widely used.
In [9] the method is considered to solve the direct problem of metal

melting, in which the motion of the liquid phase is described the Navier�
Stokes and heat equations. The authors solve the problem in a non-stationary
one-dimensional case without using additional information, making a compa-
rison with calculations performed using the �nite element method. In addition,
the authors calculate the system of equations for a quasi-stationary three-
dimensional case, using data obtained by the �nite element method as additio-
nal information for the neural network, after which they verify the obtained
results by comparing them with data from physical experiments.
In the paper [10] the application of PINN to solve the Reynolds equations

in two dimensional case at Reynolds numbers in the range Re = 102−2 ·105
is considered, also verifying the result by comparison with experimental data.
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In the paper [11] the authors use the method to calculate laminar �ows of
the Navier-Stokes equations in two dimensional case, comparing the results
with the exact solution.
In addition, the method is also used to solve various inverse and ill-posed

problems. For example, in [12], the application of the PINN method to
reconstruct the parameters of the medium in solid mechanics problems was
studied, comparing the results with the exact solution. In [13], the solution of
the inverse problem of determining the optimal parameters of a multiphase
�ow is considered. In [14�16], , variations of the PINN method suitable for
solving inverse problems are proposed.
Solving optimal control problems for gas dynamics equations is di�cult

due to the high nonlinearity of the system of equations, which requires
linearization, as well as solving nonlinear conjugate optimality systems. The
presence of zones of rapid function growth requires the use of a small step
of the spatial grid, which also apply high computational costs. Using PINN
allows one to avoid both the need for linearization and solving optimality
systems. In addition, the method allows one to solve systems with high
heterogeneity of the medium, caused by large Reynolds numbers [10] on
a uniform sample of training data, which does not require thickening in the
area of rapid function growth.
The papers [17] and [18] consider solving gas dynamics problems using

the DeepONet method, �rst presented in [19]. The principle of the method
is to use the theorem on the approximation of any nonlinear operator by
a fully connected neural network with one hidden layer [20]. However, the
DeepONet method di�ers from the PINN method proposed in the current
paper. [17] also mentions that the PINN method is more e�ective in solving
inverse problems.
In this paper, the approach proposed in [8] is used to solve the problem

of optimal control of the state of the system of motion, continuity, and
heat equations for a compressible medium, where the gas velocity initial
and right boundary conditions are used as control functions. The possibility
of controlling the unknown gas velocity, density, and temperature is studied.
The optimal control problem was �rst considered in [21], where the existence
of optimal control was proven, the necessary optimality conditions were
derived, and the compactness of the solution set was established. A numerical
experiment is calculated and presented for cases of control of each of the
unknowns. The advantages of the method used and the potential for its
application to solving inverse and ill-posed problems of gas dynamics are
shown.

2 Mathematical model

The mathematical model describing the non-stationary �ow of a viscous
heat-conducting gas in one-dimensional space together with boundary and
initial conditions has the following form in dimensionless variables:
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u|t=0 = u0, ρ|t=0 = ρ0, θ|t=0 = θ0, (4)

u|x=0 = u1, ρ|x=0 = ρ1, θ|x=0 = θ1, (5)

u|x=1 = u2, θ|x=1 = θ2, x ∈ [0, 1], t ∈ [0, 1]. (6)

Here u, ρ, θ � are unknown velocity, density and temperature of the gas
consequently, Sh � is the Strouhal number, Re � is the Reynolds number,
Pe � is the Peclet number, k, π � are dimensionless coe�cients. The listed
above coe�cients can be calculated as follows:

Sh =
X

Tus
, Re =

us X

ν
, ν =

µ

ρs
,

P e =
usρscvX

κ
, k =

Rθs
u2s

, π =
R

cv
,

where us, ρs, θs � are reference values of velocity, density and temperature
of the gas consequently, X � is the reference size value of the domain, T � is
the total time of the process, µ � is the dynamic viscosity of the gas, cv � is
the speci�c heat capacity of the gas, R � is the universal gas constant.
In [21], the optimal control of the state of the system s(v) = {u(v); ρ(v);

θ(v)} is considered, which is a generalized solution of the system (1)�(6),
where the gas velocity initial state, u0, and velocity at the right boundary,
u2, are chosen as the control v={u0;u2}. Then the optimal control problem
to minimize the following functional:

Jα = J(s) + α1

∫ 1

0

∂u0(x)

∂x
dx+ α2

∫ 1

0

∂u2(t)

∂t
dt, (7)

Jα → min, (8)

where α1, α2 � are non-negative constants, and the following functionals can
be used as J(s):

Ju(s) =

∫ 1

0

∫ 1

0
(u− ud)

2 dxdt, (9)

Jρ(s) =

∫ 1

0

∫ 1

0
(ρ− ρd)

2 dxdt, (10)

Jθ(s) =

∫ 1

0

∫ 1

0
(θ − θd)

2 dxdt, (11)

where ud = ud(x, t), ρd = ρd(x, t), θd = θd(x, t) � are given functions.
We use the usual notation Lp(W l

p) for spaces of functions integrable to
degree p ≥ 1 (together with generalized derivatives up to order l ≥ 0).
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By L2(0, T ;X) we denote the space of measurable functions mapping the
interval (0, T ) into the space X, such that

∥f∥2L2(0,T ;X) =

T∫
0

∥f∥2X dt < ∞.

By Hs we denote the space W l
2, l > 0,

H2,1 = {q ∈ L2(0, T ;H2(Ω)) : q ∈ H1(0, T ;L2(Ω)}.

Let us denote

Y = {{q1; q2; q3} : q1, q3 ∈ H2,1(Q) ∩ L∞(0, T ;H1(0, 1)),

q2 ∈ L∞(0, T ;H1(0, 1)), q2t ∈ L∞(0, T ;L2(0, 1)) ∩ L∞(0, T ;H1(0, 1))}.
De�nition. A generalized solution of problem (1)�(6) is a vector-function

s = {u; ρ; θ} belonging to the space Y , satisfying equations (1)�(6) almost
everywhere in (0, 1) × (0, T ) and accepting boundary and initial conditions
in the sense of traces of functions from the speci�ed classes.
As shown in [22], when the conditions on the initial data are satis�ed,

u0, ρ0, θ0 ∈ H1(0, 1), u1, u2, ρ1, θ1 ∈ H1(0, T )

there exists a unique generalized solution u, ρ, θ of problem (1)�(6) that has
the following properties:

0 < m ≤ ρ, θ ≤ M < ∞, ∥s∥Y ≤ C,

where the constant C does not depend on T .
We de�ne the set of admissible controls as follows:

U = {h = {h1, h2} : h1 ∈ H1(0, 1), h2 ∈ H1(0, T ), h1(1) = h2(0)},

which is a closed convex set in H1(0, 1)×H1(0, T ).
The optimal control problem is formulated as follows. Let the state of

the system s = {u; ρ; θ} be de�ned as a generalized solution of the problem
(1)�(6). It is required to �nd v0 ∈ U such that

Jα(v0) = inf
v∈U

{Jα(v)}.

Here Jα(v) is de�ned in (7).
In [21] the following theorem is proved.
Theorem. Let α1 > 0, α2 > 0. Then there exists at least one solution to

the optimal control problem.

3 PINN method

The PINN method involves the approximation of unknown functions using
neural networks by minimizing the quadratic functionalR. To solve the direct
problem (1)�(6), the functional R must include terms for the residuals of
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equations (1)�(3), Rr, as well as terms Ru
0 , R

u
1 , R

u
2 , R

ρ
0, R

ρ
1, R

θ
0, R

θ
1, R

θ
2,

corresponding to the initial and boundary conditions (4)�(6):

R = Rr +Ru
0 +Ru

1 +Ru
2 +Rρ

0 +Rρ
1 +Rθ

0 +Rθ
1 +Rθ

2, (12)
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Wr

Nr
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[
r21

(
û
(
xrj , t

r
j

)
, ρ̂

(
xrj , t

r
j

)
, θ̂

(
xrj , t

r
j

))
+ r22

(
û
(
xrj , t

r
j

)
, ρ̂

(
xrj , t

r
j

))
+

+ r23

(
û
(
xrj , t

r
j

)
, ρ̂

(
xrj , t

r
j

)
, θ̂

(
xrj , t

r
j

))]
,

where û, ρ̂, θ̂ � are approximations of unknowns u, ρ, θ by neural networks,
r1(x, t), r2(x, t), r3(x, t) are residuals of equations (1)�(3), xrj ∈ (0, 1), trj ∈
(0, 1].
All other terms of the functional have the form:

Ru
i =

Wi

Ni

Ni∑
j=1

[
û(xij , t

i
j)− ui(x

i
j , t

i
j)
]2

, i = 0, 1, 2,

Rρ
i =

Wi

Ni

Ni∑
j=1

[
ρ̂(xij , t

i
j)− ρi(x

i
j , t

i
j)
]2

, i = 0, 1,

Rθ
i =

Wi

Ni

Ni∑
j=1

[
θ̂(xij , t

i
j)− θi(x

i
j , t

i
j)
]2

, i = 0, 1, 2,

where x0j ∈ [0, 1], t0j = 0, x1j = 0, t1j ∈ [0, 1], x2j = 1, t2j ∈ [0, 1].
In the current work, a separate neural network is used to approximate each

unknown function. This approach is used due to the fact that each unknown
function has its own dependence on spatio-temporal characteristics. Each
approximation of the unknown function can be represented as a superposition
of activation functions and weight matrices of the neural network:

û(X) = Hswish (Htanh (Htanh (XW u
1 )W

u
2 )W

u
3 )W

u
4 , (13)

ρ̂(X) = Hswish (Htanh (Htanh (XW ρ
1 )W

ρ
2 )W

ρ
3 )W

ρ
4 , (14)

θ̂(X) = Hswish

(
Htanh

(
Htanh

(
XW θ

1

)
W θ

2

)
W θ

3

)
W θ

4 , (15)

where X = (x, t), Hswish = x/(1 + e−x), Htanh = (ex − e−x)/(ex + e−x),W j
i

� is the weight matrix between hidden i and the previous layer for a neural
network approximating function j, where i = 1, 2, 3, 4, j = u, ρ, θ.
The activation functions used are the hyperbolic tangent functions, Rtanh,

which have shown the best results in solving partial di�erential equations
[8], [10], and the modi�ed logistic function, Rswish, which, according to [23],
allows to solve the vanishing gradient problem [9], arising in neural network
related problems.
The neural networks used in the work are feedforward. Every neural

network have the same architecture, which simpli�es the task of �nding
hyperparameters. The architecture of the neural networks is shown at the
�gure 1 using the example of a neural network for approximating an unknown
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function u. In three hidden layers, 64, 32 and 16 neurons were used sequentially,
starting from the �rst hidden layer.

Fig. 1. Architecture of a neural network approximating an
unknown function u.

The training dataset for the neural network is a set of points, where
denotation j = 1 corresponds to the left boundary, j = 2 corresponds to
the right boundary, j = r corresponds to the domain Ω = {x, t : 0 < x <
1, 0 < t ≤ 1}. The points are generated using a random sampling from a
uniform distribution. In the current work, an approach is used when the
pre-generated data inside the region Ω at the initial setup of training of
the neural network is selected not over the entire intervals, but with a small
indentation from the boundaries. This is done so that the neural network can
approximate the transition layer at the boundaries in the solution, caused
by the presence of small coe�cients before the second derivatives in the
equations of motion (1) and thermal conductivity (3). As the neural network
is training, the indentation from the boundaries decreases until it becomes
equal to the step of the spatio-temporal grid. The training sample at the
beginning and end of the training process is schematically shown at �gures
2.a and 2.b, respectively.
To solve the optimal control problem, the termsRu

0 andRu
2 in the quadratic

functional (12), are not taken into account, but the functional Jα, responsible
for control, are added. Then the quadratic functional of the neural network
for solving the optimal control problem Ri will take the following form:

Ri(s) = Rr +Ru
1 +Rρ

0 +Rρ
1 +Rθ

0 +Rθ
1 +Rθ

2 + Ji(s)+

+α1

∫ 1

0

∂u0(x)

∂x
dx+ α2

∫ 1

0

∂u2(t)

∂t
dt,

(16)

where, depending on the selected index i = u, ρ, θ, by minimizing this
functional, the problem of controlling the gas velocity, (9), gas density, (10),
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(a) The begin of training (b) The end of training

Fig. 2. Training dataset a) at the begin of neural network
training, b) at the end of neural network training.

or gas temperature, (11) to the given functions will be solved:

Ri(s) → min. (17)

4 Numerical experiments

In the current work, three numerical experiments were calculated to solve
the optimal control problem (17) for the cases of gas velocity, density, and
temperature control.
As described earlier, the gas temperature at the beginning of the process,

u0(x), and at the right boundary, u2(t), are used as control. The following
coe�cients were used in all numerical experiments:

α1 = α2 = 10−3, Wr = 1, W0 = W1 = W2 = 15,

As a training sample, 10, 000 points were generated in the XT space
and 200 points for each of boundary and initial state. The PINN method
implementation is performed using the Tensor�ow [24] library of the Python
programming language. The Adam [25] algorithm is used as a training method,
and the constant lr = 10−4 is used as a learning rate.
For the �rst numerical experiment, the functional (9) is chosen for i = u,

which corresponds to the problem of optimal control of the gas velocity to
match the given function ud(x, t). The physical characteristics of the medium
correspond to carbon dioxide. The reference values of the unknown functions,
dimensionless coe�cients, and other parameters are as follows:

us = 15
[m
s

]
, ρs = 2

[
kg

m3

]
, θs = 444 [K] ,

X = 50 [m] , T = 3600 [s] ,

Sh = 9.26 · 10−2, Re = 3.0 · 107, P e = 4.7 · 107,
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u1(0, t) = 0.5− 0.1t, ρ0(x, 0) = 0.7 + 0.1x2, ρ1(0, t) = 0.7 + 0.1t,

θ0(x, 0) = 0.8 + 0.1x2, θ1(0, t) = 0.8 + 0.1t, θ2(1, t) = 0.9 + 0.1t.

The function ud is as follows:

ud(x, t) = 0.5− 0.1t− 0.01x2. (18)

The obtained solution is shown at �gures 3.a, 3.b, 3.c, 3.d at di�erent
moments of time.

(a) t = 0 s. (b) t = 60 s.

(c) t = 1800 s. (d) t = 3600 s.

Fig. 3. Solution of the optimal control problem (17) with
condition (18) at di�erent moments of time.

The control pro�le of functions u0 and u2 is presented at �gures 4.a and
4.b.
For the second experiment, the functional (10) is chosen for i = ρ, which

corresponds to the problem of optimal control of gas density to match the
given function ρd(x, t). The physical characteristics of the medium correspond
to air. All other process parameters were chosen as follows:

us = 10
[m
s

]
, ρs = 1.35

[
kg

m3

]
, θs = 403 [K] ,

X = 100 [m] , T = 600 [s] ,
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(a) u0(x). (b) u2(t).

Fig. 4. Control pro�le, a) u0, b)u2.

Sh = 2.77 · 10−3, Re = 2.4 · 108, P e = 1.6 · 108,
u1(0, t) = 0.85− 0.35t, ρ0(x, 0) = 1.0, ρ1(0, t) = 1.0− 0.1t,

θ0(x, 0) = 1.0− 0.1x2, θ1(0, t) = 1.0− 0.1t, θ2(1, t) = 0.9− 0.1t.

Function ρd has the following form:

ρd(x, t) = 1.0− 0.1t. (19)

The obtained solution is shown in �gures 5.a, 5.b, 5.c, 5.d at di�erent moments
of time.
The control pro�le of functions u0 and u2 is presented in �gures 6.a and

6.b.
For the third numerical experiment, the functional (17) is chosen for

i = θ, which corresponds to the problem of optimal control of the gas
temperature to match the given function θd(x, t). The physical characteristics
of the medium also correspond to carbon dioxide. The reference values of the
unknown functions, dimensionless coe�cients, and other process parameters
are as follows:

us = 15
[ì
c

]
, ρs = 2

[êã
ì3

]
, θs = 343 [Ê] ,

X = 25 [m] , T = 60 [s] ,

Sh = 2.78 · 10−2, Re = 1.5 · 107, P e = 3.0 · 107,
u1(0, t) = 0.5− 0.025t, ρ0(x, 0) = 0.8 + 0.025x2, ρ1(0, t) = 0.8,

θ0(x, 0) = 1.0−0.025x2, θ1(0, t) = 1.0−0.025t, θ2(1, t) = 0.975−0.025t.

The function θd has the following form:

θd(x, t) = 1.0− 0.025t− 0.025x2. (20)

The obtained solution is shown in �gures 7.a, 7.b, 7.c, 7.d at di�erent moments
of time.
The control pro�le of functions u0 and u2 is presented in �gures 8.a and

8.b.
The calculation of all experiments was stopped upon reaching the value of

Ri = 10−4, which the authors consider an optimal value for such problems [8].
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(a) t = 0 s. (b) t = 150 s.

(c) t = 300 s. (d) t = 600 s.

Fig. 5. Solution of the optimal control problem (17) with
condition (19) at di�erent moments of time.

(a) u0(x). (b) u2(t).

Fig. 6. Control pro�le, a) u0, b)u2.

The training of PINN for each numerical experiment took approximately
2 hours. From the presented graphs it is evident that the approximated
functions u, ρ and θ almost completely match the speci�ed functions ud, ρd,
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(a) t = 0 s. (b) t = 150 s.

(c) t = 30 s. (d) t = 60 s.

Fig. 7. Solution of the optimal control problem (17) with
condition (20) at di�erent moments of time.

(a) u0(x). (b) u2(t).

Fig. 8. Control pro�le, a) u0, b)u2.

θd. In this case, the control pro�le is actually linear. It is also worth noting
that the solution of the optimal control problems was performed on a uniform



NUMERICAL SOLUTION OF GAS FLOW OPTIMAL CONTROL PROBLEM B13

grid even in the presence of transition layers in the solution due to very high
Reynolds and Strouhal numbers.
All numerical experiments were performed using the following computational

resources: Inter core i7-12700H CPU, NVIDIA GeForce RTX 3070 TI laptop
GPU, 8 GB VRAM.

5 Conclusion

The current work presents a numerical experiments of the viscous heat
conducting gas �ow control problem. The parameters of the medium in
performed experiments are close to the real parameters of the gases, including
very high Reynolds and Peclet numbers. Due to the complexity of the system
of equations for a compressible medium, the calculation was performed with
the case of one-dimensional gas �ow. In the future, it is planned to study
the possibility of applying the developed technique to the multidimensional
case.
It is worth noting that this is the �rst case of a numerical solution of the

inverse problem for the Navier-Stokes equations in the case of a compressible
medium, taking into account viscosity and thermal conductivity. Previously,
such problems were considered only theoretically, since the numerical solution
of even a direct problem by other numerical methods seems di�cult. The
possibility of numerically solving inverse problems of gas dynamics, shown
in the work, can lay the foundation for solving many practical problems that
arise in engineering and oil production.
The advantage of using the PINN method to solve the inverse problem

of a highly nonlinear, singularly perturbed system of equations is shown.
Those are the absence of the need to linearize the system and solve the
optimality system, as well as the possibility of solving the problem on a
relatively small amount of training dataset (about 104 points), while classical
methods require a extremely small step of the computational grid for such
cases. It is shown that the use of the method does not require excessive
computing resources for operation.
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