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Abstract: The problem of controlling one-dimensional viscous
gas flow through an interval with a fixed boundary is considered.
The flow regime takes into account complex convective conductive
radiative heat exchange in the medium. The heat transfer coefficient
and the reflection coeflicient at the boundaries are chosen to be
controls. The existence of optimal control is proved. The necessary
conditions for the optimality system are derived. A numerical solu-
tion to the optimal control problem is calculated using the Physics
Informed Neural Network (PINN) method. The method involves
approximating an unknown function with a neural network by
minimizing a quadratic functional that includes terms for the resi-
duals of equations, boundary and initial conditions, and additional
information. The method avoids the need for linearization and
solving optimality systems. The functions of velocity, density, tempe-
rature, and radiation intensity are sought for boundary control
with two coefficients on the left boundary and two coefficients
on the right boundary. All unknowns are approximated by neural
networks. The temperatures at observation points match the specified
temperature using optimal control of the boundary coefficients.
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The case with observation points inside the region and on the
boundaries is considered.

Keywords: Inverse problem, heat and mass transfer, radiation
heat exchange, Navier-Stokes equations for a compressible medium,
Physics Informed Neural Network.

1 Introduction

In this paper, we study a system of equations for the one-dimensional
flow of a viscous compressible gas taking into account radiative, conductive
and convective heat transfer. For the case of one spatial variable, the model
of a viscous heat-conducting gas under radiative exchange conditions in a
limited region €2 C R is modeled in normalized form by the following system,
where the P1 (diffusion) approximation is used for the radiation transfer
equation [1-3]:

p(us + uty) = Vugy — R(p )y,
pt + upgy + pug =0,
p(0; + uby) = abpy + (Vuy — RpO)uy — bka(]016% — ),
—QPzy + ka(ﬁp — |9|(93) =0.
The flow of the gas through the interval Qy = {x: 0 < z < Lo} with

permeable fixed boundaries is considered. At the initial moment of time,
the characteristics of the medium are known:

u‘t:() = UQ(I‘), P’t:o = po(:E) > 0, 9’,5:0 = (90(1‘), xr € Qo.

At t > 0 the flow region is bounded by two boundaries. Gas flows through the
left boundary u|,—¢ > 0. Then the conditions for the velocity, temperature,
radiation intensity, and density of the medium are set on the left boundary:

Ulz=0 = u1(t),  pla=o = p1(2),
00 "
—a%‘xzo + B(0|z=0 — 01) =0, —agox‘zzo + v(p|z=0 — 07) = 0.
The gas flows out through the right boundary. Therefore, only the velocity,
temperature and radiation intensity of the medium are specified on the right

boundary:
U‘IZLO = UQ(t)’
00 dp
a— + B(8lper, —62) =0, a—== + _1, —03)=0.
92 loes, T POle=ro —02) 95 laery T VPle=Lo = 02)
The coefficient v describes the reflective properties of the boundary, 3 is the
heat transfer coefficient.

The equations describing the processes of convective-conductive transfer of
thermal radiation of an incompressible medium are considered in works [4-7]
and are well studied. The problems of complex heat exchange in scattering
media with reflecting boundaries are presented in works [8-17].
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The behavior of solutions of the Navier—Stokes equations «in generals
over time for a compressible medium has been exhaustively studied only in
the one-dimensional case. The analysis of various boundary value problems
associated with the flow of viscous gas is considered in [18,19].

At the same time, the questions of correctness of initial-boundary value
problems for the model of viscous heat-conducting gas, taking into account
radiative heat exchange inside the region, as well as the analysis of the
stability of stationary solutions, are open. The correctness of the model
of viscous heat-conducting gas under conditions of radiative exchange in
a limited region is studied in [20].

Problems of optimal control of viscous fluid flow in the one-dimensional
case, where the characteristics of the medium were chosen as control, were
considered in [21-24].

The questions of correctness in Sobolev spaces of inverse problems on
determination of the coefficient in Robin type boundary condition for the
convection-diffusion equation with observation point overdetermination condi-
tions are studied in [25]. Based on the reduction of the problem to the
Volterra integral equation of the second kind, a theorem of existence and
uniqueness of the inverse problem is obtained.

In this paper, we study the correctness of the inverse problem of determining
the properties of a medium at the boundary of a domain under conditions
of complex radiative heat and mass transfer so that the gas temperature at
fixed points of the boundary or inside the domain would take specified values
at all moments of time ¢ € [0, 7. A numerical solution of the inverse problem
is presented, obtained using a Physics Informed Neural Network method.

2 Problem formulation

When studying problems of gas dynamics, it is convenient to use Lagrangian
coordinates. According to the transition formulas |26] the interval (0, Lo)
with fixed boundaries in Euler coordinates in the new coordinates will go
over to a domain with time-varying boundaries that preserve the length of
the interval at each moment of time. We denote by

Lo
L= [ mia) dz, L0
0

where pg — is the gas density at time t = 0. The images of the boundaries
=0 and z = Ly in the new variables will be the functions

aft) = — / w(r)o(r)dr, bt) = L - / w(rpp(r)dr, (1)
0 0

where {ug, pe}, £ = 1,7 — are velocity and density of the gas at the boundary
points * = 0 and «* = Lg, respectively. The density value at the right
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boundary p,(t) = p(z,t)|z=r, is determined from the equality
prup = prur =m(t) >0, t>0, (2)

which is a consequence of the continuity equation for a compressible medium.
The domain of change of the environment at ¢ > 0 in the new coordinates
is denoted by

Q={(z;t):0<t<T; 2}, Q=A{zr:alt)<z<b(t)}, (3)

and at t = 0 — respectively through the interval Qp = {z: 0 <z < L}.

In mass Lagrangian variables, the problem of the flow of a viscous heat-
conducting gas under conditions of radiative exchange in a limited region @
has the following form [1]:

Ut = V(puﬂﬁ)x - R(p 9)% pt + p2uw =0,
0y = a(plz)s + (vpuz — RpO)uy — bka(‘94 - SD)P_1>

—a(ppz)s + kalp — 94)[’_1 = 0. (4)

Here u, p, 0 — are velocity, density, and normalized temperature of a perfect
gas, respectively, the pressure is determined from the Clapeyron equation
p = Rp 6, the function ¢ is interpreted as the normalized radiation intensity.
Through v, R we denote positive physical constants characterizing the medium,
v —is the dynamic viscosity coefficient, R —is the gas constant. The constants
b, a, a describe the radiation-thermal properties of the medium, k, — is the
absorption coefficient.

At the initial moment of time, the characteristics of the environment are
known

ulg—o = uo(x), Oli=0 = Oo(x), pli=o = po(xz) >0, x€Qy.  (5)

At t > 0 the region is bounded by two boundaries. Gas flows in through the
left boundary:

Ulo—a(ty = ta(t),  ploca@y = pa(t), 0<E<T. (6)
Gas flows out through the right boundary:
Ulpepy = up(t), 0<t<T. (7)

The conditions for temperature and radiation intensity at the boundary take
into account the influence of external factors and are described using the
Newton-Richmann law:

—aply + B0 — 0,) =0, —app, +(p—0"), z=a(t), t€(0,T)
aply + B0 —60,) =0, apps +(p—0;) =0, z=b(t), t€(0,T). (8)
We will consider the reflection process function v, which takes the values
v=(t) at z=all),
Y= plt) at @ = b()
and the function of the heat transfer process in the form:

B = Balt) = Poalt) + Bi(t)Aa(t) at x = a(t),
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B = Bu(t) = Bob(t) + Br(t)Ap(t) at z = b(t). (9)
Given the values po, tq, pa, Ub, Vir, Bap the problem (4)—-(8) is called a direct
problem.
Let us formulate an optimal control problem. Let wug, po, 6o, %a, Pa, Wb
and the overdetermination conditions be given:

9(1‘, t)‘x:a(t) = da(t)7 9($7 t)’m:b(t) = db(t)' (10)
It is required to find the state u, p, 8, @, both the solution of the system
(4)-(8), (10), and the unknown functions ~;(¢), v»(t), 5i(t), Br(t). Moreover,
the reflection coefficients at the ends of the interval, the functions v;(¢), v, ()
are selected from a limited set, and F;(t), B,(t) satisfy (9), where 5oa, Bob,
Ay, Ay are considered given, and the functions f,, B are positive.

3 Solvability of the optimal control problem

Below we will use the usual notation LP(WIﬁ) for spaces of functions
integrable with degree p > 1 (together with generalized derivatives up to
order [ > 0). By L?(0,T; X) we denote the space of measurable functions
(the space of continuous functions with continuous derivatives in [0, 7] up to
order [) mapping the interval ([0,7]) ([0,T]) to the space X such that

T
1900 = [ 1715 dt < o0, I llero) = s 1fllx < .

By H?®(X) we will denote the space W3 (X), s > 0, respectively, H*(X) =
(H*(X))" — the space conjugate to H*(X),

H>' = {q: ¢ € L®(0,T; H' (%)) N L*(0, T; H*()), ¢ € L*(0,T; L*()},
Y = {q: g € L*(0,T; L*(%)) N L*(0,T; H* (%)) : ¢ € L*(0,T; L*()},
HY0 = {q: ¢ € L*(0,T; L*(%%)) N L*(0,T; H*())},

H = L*0,T) x L*(0,T) x HY(0,T) x H(0,T). (11)
The following properties of embeddings take place:
H>' ¢ L2(0,T; H*(€)) continuous and compact,
H*' ¢ C(Q) continuous. (12)
Let’s consider the spaces
W={q, ¢, ¢, @a: @1 € Hl’o, ql’x:a(t) =0, Ch’;g:b(t) = 0;
g € L>(0,T; L*(Y)), g3 € H"YY; qu € H'},

Y ={a, @, a3, g1 1 € H>'; gp € H"'; g3 € HY'; qa € L*(0,T5 H* ()}

(13)

Definition 1. A strong solution of problem (4) — (9) is a set of functions

{u,p,0,p} € Y that satisfies equations (4) almost everywhere in (0,7") x

2 and takes boundary and initial values (5)—(8) in the sense of traces of
functions from the specified classes.
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Let the following conditions be satisfied:
Ua, up, pa € H'(0,T), g, 00 € H'(Q), po € L®(Q),
0<mog<py<My<oo, pg>0, ug>0; (14)
Vas Y2a> V16, Y25 € H'(0,T),
Boa: Bovs Aa, Ny € L¥(0,T), 6, € H'(0,T), (15)
Boa(t) =0, Bop(t) >0, Ba > Bmin >0, By > Bmin >0,
Ao(t) > Apin >0, Ap(t) > Apin > 0,

'72a(t) > 'Yla(t) > Ymin > O> 72b(t) > 'Ylb(t) > Ymin > 0. (16)
Here the constants Bmin, Amin, Ymin, Mo, Mo are given.
Let us define the set of admissible controls U,q = Ug x U, where

Us ={ys ={B Br}: B e L*(0,T), B, € L*0,T)
61 > (ﬁmzn - tél(l(]n%) ﬁOa)/Aa(t)a BT > (Bmzn - ten(l(}ril") BOb)/Ab<t) }7

Uy={yy={n w}:neH(,T), ~ €H (0,T),

Ve <% < Vas Y6 < W < Y- (17)

Note that Ug is a closed set in L?(0,T) x L?(0,T), U, is a closed convex set
in H1(0,T) x H(0,T).

The correctness of the direct problem (4)—(8) in the case of Dirichlet
boundary conditions for temperature was studied in [20]. Note that this
result can be extended to the case of Robin-type boundary conditions for
the energy equation without loss of generality.

Theorem 1. Let conditions (1/)- (16) be satisfied. Then there exists a
unique strong solution to problem (4) — (9), where the functions 0, p, u,
w(a(t),t), p(b(t),t) are bounded, 0,p(a(t),t), p(b(t),t) are non-negative, and
p 18 positive and the following estimates take place:

O<m <p< M <oo, 0<O<M <oco a.e inQ,
0<pla) <M <oo, 0<pb) <M <oo forae te(0,T),
1wl Loo (0,711 (20)) + 101l oo (0,111 (020)) < Cs

lull z21@) + 10l B21(@) + ol ra@) + el z20.1m2(0)) < C,

where constants C', my, My do not depend on time. The proof of Theorem 1 is
based on the use of a priori estimates, the constants in which depend only on
the problem data and T'. The obtained estimates allow us to extend the local
solution, which is established using the principle of contracted mappings, to
the entire time interval. The operator equation equivalent to the problem is
constructed by linearizing equations (4) and conditions (5)—(8), just as was
done in [5,6]. On a small time interval, the resulting operator is contracting,
therefore, Banach’s theorem can be applied. The necessary a priori estimates
are obtained in a similar way as in [20].
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Let’s consider the following quality functionality:

T T
1 1
= L [10ta), ) — da()Pdt + = [ 00(t), ) — dy@)Pdt. (18)

Let y = {ys, Y4} € Uaa be the admissible optimal control.
The optimal control problem is formulated as a problem of minimizing the
functional

T T
Tyl =+ [ 18P at+ % / B@P . (9)
0

Here is the state of the system a(y) = {u(y), p(y), 0(y), p(y)} € Y is
defined as a strong solution to problem (4)—(9). It is required to find y¢ € Uyq
such, as

Jelyol = inf {Jx[yl}- (20)

Y€Uaa

Theorem 2. Let k; > 0, k. > 0. Then there exists at least one solution
to the problem (20).

Proof. Since x; > 0, x, > 0, any minimizing sequence {y;}7°, is bounded
in H, where the space H is defined in (11). By the statement of Theorem
1, for each k there exists a strong solution a; € Y of problem (4) — (9), for
which the following estimates [20] hold:

0<m <pp <M <oo, 0<60,< M <oo ae. in@,
0<¢rla) <M <oo, 0<gp(b) <M <oo forae. te(0,T),
1wkl Loo (0,751 (20)) + 10kl oo (0,751 (20)) < €
vkl 20 (@) + 10kl 21 (@) + okl a1 (@) + ekl L2082y < €, (21)
where constants C', my, M; do not depend on k.

To justify the transition to the limit with respect to k in the nonlinear
terms of the equations of system (4) written for the sequence {a;}7°,,
it is necessary to obtain additional a priori estimates that guarantee the
compactness of the sequences p, ¢p in L?*(Q). The compactness of the
sequences ug, 0 in L?(Q) follows from the compact embedding H'2(Q) C
12(Q).

Further, we will denote g(z(t),t) = g(t). Consider the second equation in
(4) for the sequence py in the following form:

(o (t) = pr(T))e + pi(Dua(t) = 0, t,7 € (0, 7).
We multiply this equality by (pr(t) — px(7)) and, taking into account the
formula for differentiation with respect to the parameter, we integrate with
respect to x(t) from a(t) to b(t),

oY / |01 (t) = pi(7) [ d + 1m0 (t) (p20(t) — p2r(7)) = m(t) (P11 (t) — pr&(T)) =
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b(t)
—— [ OO er0) - pu(r) da (22)
a(t)
We integrate (22) with respect to t on the interval [r; 7 + h|. Taking into

account the boundedness of the function [|us(t)|z2(q,) in L*(0,T), and
applying Gronwall’s lemma to the last inequality, we obtain the estimate

k(7 +h) = pu() 72, ,,) < Chs 7 <T—h. (23)
From which it follows
T—h

[ ok +0) = puls, 7 < COTh.
0

Let us proceed to obtaining an estimate of equicontinuity for the sequence
k. We denote by ¢ = o (x(7 + h), 7+ h) — pr(x(7), 7). We consider the
last equation in (4) for ¢ = 7+ h and ¢ = 7 and subtract one from the other.
Using integration by parts and taking into account the boundary conditions
(8), we find

b(t+h) b(t+h)
o / ol + W) d + / ra(T) (PR + B) = pi(7)) ke da+
a(t+h) a(t+h)
b(t+h) b(t+h)
ko [ e emlnl ek [ ) — oo
a(t+h) a(t+h)
b(T+h)

o [ (on(r) = D6+ 1) - g ok
a(T+h)
o (T+h)YE(a) +ayi(T+R)2(b) + I(a, 7+h, 7)+I(b,7+h,T) =0, (24)
where

I(6,7+h,7) = alpp((r+h), T+h) =0, (L(T+h), T+)] [ (7+h) =74 (1) [ (£) -

—a (T + )[BT + h), 7+ h) = Gy (¢(7), 7)o (0).
Considering the positivity and boundedness of the sequence pi, we estimate
the integral terms in (24) as follows

ami H@/}kx||%2(§27+h) + kaMl_l qu/}k‘|L2(QT+h) +047min|1/}k(a)|2 + O‘Vmin’¢k(b)‘2 <
< a max \rall|Vrall2 @, ) lloe(T + h) — k(T L2, )t
€4
T [l 2, o 107 + 1) — 030l g0+
+hamy”? L 0k (T) = O (P 1¥kall L2 ) llok(T + B) = pr(T) | 200 s )+
+I(a,7+ h,7)+ I(b,7+ h,7), 7€ (0,T—h). (25)
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Let’s get additional estimates of the sequence . Let’s represent ¢ as:
z(t)
pula(t).) = [ orede + pn(alt) 1),
a(t)
z(t)
apn(a(®). Opala(®):) = [ (u(alt) Dpr0)ede
a(t)
() pr(a(t), ) (er(alt), t) — 65 (a(t), 1)).
From here we get

4
max lok ()| < Lllekell L2, + M7,
;%%Xlwkx(t)\ < Cllpraallzzn) + 2M7|e(t)],  for ae.t € (0,T).  (26)
t

Let us estimate each term of the right-hand side of (25) in L?(0,T — h)
separately. Taking into account (21), (23), (26) we estimate the first term

T—h

& / max |zl |Vkzll L2, ) loE(T + B) — pr(T) 220, ) dT <
TEQ 4 p
0

T—h T—h
S £ / "¢k$||%2(97-+h) dT + Ceh / ||¢k$$”%2(97+h) dT S
0 0

T—h
<e / ||¢kx||%z(QT+h) dr + C.h. (27)
0

To estimate the second term, we use the inequality
16%(7 + h) = 0h(T) 220, 1) < AMTN1OK(T + 1) = ()| 220
Then

T+h)'

T—h
kamfl / [¥ll 222, 10) 163(7 + h) — 9%(7)’&2(9#,1) dr <
0

T—h T—h
<e / kel 720, , ) A7 + Cs / 164 (7 + h) = Ok(T)l[72(a, AT (28)
0 0

When evaluating the third term on the right-hand side of (25), we take into
account (23), (26)

T—h

kamy ® R | (7) =0k () [Vkall 202, . loe (THR) = pr(T) | 220, ) dT <
0
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S

—h

<e ||¢kx||%z(QT+h) dr + C.h. (29)

o

Let us estimate I(a, T + h,T).
T—h T—h
/ I(a,7+h,7)dr = a / (op (@, 7+R)—02(a, 7+1)] [y (rh) —yi ()] e (@) dr—
0 0
T—h

—a / W + WO (a 7+ h) — 60, T)]ibi(a) <
0

T—h T+h T—h T+h
<oufa [ unla) / il dedr + o [ 0e(a) / 16310y] dt dr <
0 0
< k@l 20 + CHlel 0y + OM ey (50

For I(b,7 4+ h,7) the estimate is similar to (30). We integrate (25) with
respect to 7 on the interval [0,7 — h]. We choose € = am1/6, § = aYmin/4
and substitute the estimates (27)-(30) into the right-hand side of (25), after
simple transformations we obtain the estimate

T—h

/ H?bka%z(QTM) dr+

0
T—h

4 / Ikl 2@y 47 + 196 (@ z2rrsny + 06O L2(rr ) <
0

T—h
<Ch+cC / 18407 + B) — 84722y, dr =

—hb(t+h) 1+h

_Ch+C/ / /thdt‘ da dr <

a(t+h) T
T—hb(t+h) +h

§0h+0h/ / /yektyzdtdxdTgChH@ktH%g(Q)gCh. (31)
0 a(r+h) T

From (31) we conclude that there exists a subsequence (we will denote it by
the same name) such that

@ — ¢ strong in L3(Q),
and besides

vr(a(t)) — ¢(a(t)) strong in L2(O,T), wr(b(t)) — @(b(t)) strong in LQ(O,T).
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Estimates (21) guarantee the choice of a subsequence (we also denote it by
) such that

up — v weak in L2(0,T; H*(Q)), strong in L*(Q);
pr — p weak in L?(0,T; H' ());
Op — 0 weak in L*(0,T; H*(Q)), strong in L*(Q);
or — ¢ weak in L*(0,T; H*(Q));
Upy — up  weak in LQ(Q),
pre — pr weak in L*(Q),

th — Ht weak in Lz(Q)

Estimates (21), (31) are sufficient to justify that a = {u, p, 6, ¢} is a strong
solution of problem (4)-(9). Due to the weak lower semicontinuity of the
functional J[a] and the property of weak lower semicontinuity in y for the
remaining part of the functional Jy[y], we conclude that y is a solution of
problem (20). Consequently, any limit (in the sense of weak convergence)
point of the minimizing sequence is a solution of problem (20).

Let us prove auxiliary lemmas.

Lemma 1. Let Q be the domain defined in (1)-(3). For any g € L*(0,T
HY(Q)) such that g; € L*(0,T; H-1(Q)) the equality

d
(90:) s i) = 596 + (1) (00, €) +m(1)(0,&)  ae on (0,7)
(2)
Ve € HY(SY), where m(t) € C[0,T)] is defined in (2).

Proof. Let g be the function defined in the lemma, & € H'(Q;) be an
arbitrary function. Using the formula for differentiation of an integral with
integration limits depending on a parameter, which is valid for the domain
with conditions (1), (2), we find

b(t)
d
o [ agda=
a(t)
= bl(t)g‘x t)=b(t f’x(t):b(t)—
_a,(t)g|m(t) €|x =a( <gt’£>1:1_1(ﬂt)><H1(Qt)' (33)

By the hypothesis of Lemma ¢,& € Hl(Qt) almost everywhere on (0,7),
therefore,

b(t) b(t)
t/(%£+1ﬁ$ (9€)2 4z = (9) ey os(t) — (9)la(t)—a(ty < -

a(t) a(t

N

Considering that a'(t) = b/(t) = —m(t), we obtain the proof of the lemma.
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Remark 1. Let the conditions of Lemma 1 be satisfied and it is known
that g(a(t),t) = g(b(t),t) =0, then
<gt’g>ﬁ*1(ﬂt)><H1(Qt) - §$HQHL2(Q,5) a.c. on (OaT> (34)

Lemma 2. For an arbitrary function g € C([0,T]; HP(%)), p = 1,2 the
inequality holds

l9@llcr-1@,) < CUlg@llar @ + 19O rr-1(00)- (35)
And there exists x* € C(Qy) such that
1—aflt
Iluty=a+t) = L( ) /gdw. (36)
Q4

Proof. Let g € C([0,T]; H*(€)). For an arbitrary x(t) € C(§), we introduce
an auxiliary function

z(t)
g1(x,t) = /g(s,t)ds. (37)
®

a

Note that
ala(t),t) =0, qu(b(t),1) = / gdr, teo,T).
Q

For an arbitrary v € C(0,T; C(£;)) satisfying the conditions v(a(t),t) = 0,
v(b(t),t) = 0 there exists x*(t) € C'(€%) such that vy |y)—gx) = 0. Let

v(z,t) = g1(z,t) — g1(b(t), t)(x(t) — a(t))/L,
g1(z,t) = v(w,t) + g1 (b(t),t)(x(t) — a(t))/L, x=(t) €y, te€[0,T]. (38)
From (38) we find
Gizle=a*(2) = Valo=ar(2) T 91(0(),1)(1 —a(t))/L = g1(b(t),t)(1 — a(t))/L.

On the other hand, for an arbitrary = € C(£), the equality holds

z(t)
G1z(z(1), ) = / Giss A + 1o |a(t)=ar (1) =

_ / Grss ds + g1 (b(t), ) (1 — a(t))/ L. (39)
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Note that g1, = g, we rewrite (39), taking into account (37), as follows:

z(t)
ol = [ gedst
+0
+1—L“<t) /g(;v(t),t) do, ()€, tel0,T]. (40)
Q¢

From (40) follows the estimate (35) for p = 1. Considering (40) for z = z*,
we obtain (36). In the case p = 2, the estimate (35) is obtained in a similar
way.

Remark 2. For an arbitrary g € C([0,T]; H*(Q)) the following inequalities
hold:

l9(2(t),0)|* < ellgall® + Cellga 9], >0, ¢=2,3. (41)
Proof. The inequality (41) for ¢ = 2 is obvious, let’s consider ¢ = 3. The
equality is true
z(t)
/ )ods + 6> (@* (1), 1),
z*(t)

where z*(t) € C(£;) is the same as in Lemma 2. From the last equality we
find

o(@(t) 0 <3 [ gPlgaldo+C [ 1o do <

< Cllgzllgll3sny + Cllaldagy < CllgalPllgll + Cllgz /219> <

Cillgall*llgll < ellgall* + Cellgal*llgl1*.
Lemma 3. Let {uy, p1, 01, ¢1}, {u2, p2, 02, 2} be two strong solutions
of problem (4)—(9). Then for the functions

Ay = vuy, — ROy, Az = pa(vug, — Rb), = ka(03 — 2)/(p1p2),
0 =501+ (1—5)0y, s ¢ (0, 1) (42)
the following inclusions are valid
A1, Ay, Be HY, 0, Be L>®(0,T; L®()).
For the functions u;, 0;, @i, i = 1,2 the following estimates are valid:
lwill o 0,700,y T 1tizll L2 0,m0(00)) < €
163l oo 0,70y + W0zl 220, 150@0)) < C

23l Loo (0,1:0(04)) T+ izl L2 0, m:0(00)) < C- (43)
If0 =01 — 0, ¢ = o1 — 2, then

101 20, 7,0(00)) < 110zl L2(0,1:22(0))

lell 20,00 < NesllL2or2@0)- (44)
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Proof. The boundedness of Ay, A, B in L>(0,T; L?($4))NL2(0, T; H'(Y))
follows from the definition of a strong solution to problem (4)-(9). As a
consequence of Lemma 2, estimates (43), (44) hold.

4 Differential properties of control-state mapping

Let us study the differential properties of the mapping

y = {u(y), p(y), 0(y), ¢(y)}, y: H—=W,

where the spaces H and W are defined in (11), (13), respectively.
Let a = a; — ag, where a; = a(yj; Fo), ¢ = 1,2 — strong solutions of
problem (4)7(9)7 Fy = {’LL(], Po, 907 Uqs Uby Pas Aaa Ab7 BOav BOb}u Yy =Y¥Y1—

Y2 = {Blv 67'7 R /77“}7 Yi = {Bli? ﬁ?‘ia Viis ’77“1'}’ i = 172
Let’s consider integral operators

Li: H Y () — HY (), Los: H () — HY (),
Ri: HY Q) — HY (%)), Ros: HYQ) — HY(Qy),
Rus: L*(%) — L*(), Rg: L'(Q) — L®() (45)
and functionals f; € L*(0,T), i = 1,...,4, valid for any u,&; € Hg (),
0,0,6,¢ € HY (), 7 € L?>(0,T), i = 1,...,4 and corresponding to the

formulas

(L1u, &) = v(p2ug, &1a),
(L2, &2) = a(p2ba, Eaz) + 4Dka(py 10°0, E2)+
+B2a[082] |2 (t)y=a(t) + B20[082]|2()=bt)
(L3, &3) = a(p2ga, 32) + kalpy !, ©&3)
2 [0€3] 2 (t)=a(t) T V2r [9€3] 2 (t)=b(t) (46)
(Ria,&1) = (Aip — ROp2, &1z),
(Roa, &2) = a(pbiz, &22),
(Rsa,&3) = al(ppiz, &3z),
(R4a, &) = —((vuy — RO)poury + Asug + bBp + bkapy o, &),
(Rsa, &) = —(Bp + 4kapy '6°0, &) da,
(Rsa, 52) —(Arurzp, §2); (47)

(A1(B). ) ze0:m) = / B Aat) (B1(a(t). 1) — By(0)) (1) dt,
(B ) 20y = /@@mww@@w—%mmmﬁ,

0
T

(f3(n)sm3)L200m) = —/w(t)(sm(a(t),t) — Oy (a(t), t))7s(t) dt,
0
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T
(fa(yr)s ma) 201y = /% ), t) = O, (b(t), t))ma(t) dt. (48
0

Note that the operators Lj 23 defined in (46) are symmetric, positive
definite, and such that

(Liu,u) > ClH“H?Jé(Q
(LQG,O) > ClHQH?‘Il(Qz)’

(Lag, ) > Cillel T g, (49)

almost everywhere on (0, 7T"), where the constant C7 > 0. For Ry 23,45 defined
in (47) the following inequalities hold:

|Brallg-r = sup (B &a) < Cmax|dy[jpll + Cllpzll= ) 19]]
H£1”H1(Qt):1 Tl
0
HRQ&HH,1 = sup (R2a7 §2x) < Cmaéx Wlx\HPW
||£2|‘H1(Qt):1 TE
1Rzl g1 = sup  (Rsa, &) < Cmax|oy||pfl
HfSHHl(Qt):l el
|Raal = sup _ (Rsa, &) < Cmax fura|(Jua | + [16]])+
x t

||£2||L2(Qt):1
+Cmax |[As||uz|| + Cllpll + Cllell,
rEQ

[Rsal =  sup  (Rsa,&3) < Clpl + Cl0],

H£3||L2(Qt):1
IReallLi) = sup  (Rea,&) < Cmax|[Ayf[jussllfloll.  (50)
ll€2l Loo () =1 ek

To find estimates of the functionals (48), we will use estimates (43).
Applying the Cauchy inequality in (48), we obtain

[fillezory = sup  (f1.71) < CllBillz2o,1)
IT1 ‘LQ(O,T):I
| follz2ory = sup  (f2,72) < C|Brll20,1)s
||7_2HL2(07T):1
Hf3HL2(o,T) = sup (f3,73) < CH’YZHL2(0,T)7
”TSHLZ((),T):l
| fallz2o,ry = sup (fa,74) < Cllvellp2(0.1)- (51)

||7'4HL2(0,T):1
Theorem 3. The mappingy — a(y) is defined and acts continuously from
H to W. Proof. We obtain conditions for the difference of strong solutions
of the problem (4)—(9) {u1 —ug, p1 — p2, 01 — b2, 1 — @2} . For this purpose,
the first, third and fourth equations of the system (4), considered for strong
solutions {u;, pi, 0;, ¢;} for each i = 1,2 are multiplied by & € H} (),
9,83 € H'(S), respectively, as a scalar in L2(€;), taking into account the
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boundary conditions, and subtract one from the other, and the equation for
the density function is rewritten as follows: (1/p;)r = Wiz, i = 1,2.
Taking into account (45)—(48), we obtain conditions for the functions

{u, p, 0, o} = {u1 —uz, p1 — p2, 01 — b2, 1 — Pa}:
ut+ Liu+Ria=0, ae. on te(0,7),
t

p= —ppo/ux ds, ae.on xze€, te€(0,7T),
0
0; + Lof + Roa+ Rja+ Rga = f1 + fo, ae.on te (0,7),
L3sp+ Rsa+ Rsa= f3+ f4, ae. on te(0,7),
ult=0 =0, Oli=o = 0. (52)
We obtain a priori estimates for the functions u, p, 8, ¢ and their derivatives

through the data of the problem. From the second equation (52) we find the
inequality

lo@®)* < C/Hux(S)Hst, t € (0, 7). (53)
0

We rewrite the first equation (52) as
(ut,w) + (Liu,u) + (Ria,u) =0 a.e. on (0,7).
Taking into account (34), (49), (50), we obtain the estimate

1d
5@”“”2 + Cl”“”ip(gt) < HRla|’H*1(Qt)HUHHl(Qt) <

< Clmax|Ai[lpll + 101Dl () <

Gy 2 2 2 2
< 7HuHH1<Qt)+C(%§|A1\ [pll= + 1161])-

Moving the first term to the left and taking into account (53), we find

p t

Sl Nl < Cmax ] [ 1w ds+Cllol. 54)

0
Let us denote by
t
M) = [ 10(6) B o
0

and integrate over ¢ from 0 to t (54), we get

t t
(O + 41(6) <€ [ max|Ax(s)ida(s)ds -+ C [ 0] ds.
0 0
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From here, applying Gronwall’s lemma, we find the estimate

2 2 < T).
s [u®F + [ o) de<C [0l te.1. ()
0 0

Let us rewrite the fourth equation (52) as
(Lap, ) + (Rsa, @) + (Rsa, ) = fsp(a(t),t) + fap(b(t),t).  (56)
Taking into account (44), (49), (50), we obtain the estimate
Crllpl2 iy < I1Rsall -+ 19l oy +

+lRsallllell + [f3lle(al®)] + | fallo(0(t)] <
C((1+ gé%f\solx\z)llpll H 101+ sl + [faDllell -

We integrate the last inequality from 0 to an arbitrary ¢. Taking into account
(53), (55), we obtain the estimate
¢

160,y ds < CloI [ 1+ max|owf?) ds+
0

+C/WW%+WH“+hWS

t
<C [ 1612 ds + Clhullsy + 1 Bz (57)
0

Let us rewrite the second equation (52), taking into account Lemma 1, in
the form
1d

5 g 101+ m()(0,62) + (L26,0) + (R2a,0) + (Raa, 0) + (Rea, 0) =

= f10(a(t), t) + f20(b(t), 1). (58)
Taking into account (46), (47), we find

31017 + 208 < €1+ ma s P 4+ max o) 6]+

+O(1 + macx | Ay s, |2 + max 81 [2) o]+
€Q z€Q

+Clluz|* + Clloal® + CIA* + Ol faf. (59)

t
AN%=WWF+/W®@mmM&
0

d(t) = 1+ max(luie (t)]* + [A2 ()] + |01 (8)* + [A1(2) ).

rEQ:

Let us denote by
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We integrate (59) from 0 to an arbitrary ¢ and take into account that ||ui,|| €
L>(0,T), as a consequence of Lemma 3 d(t) € L%(0,T). From (59) we obtain

t

t t
As(t) < C’/d(s)Az(s) ds+0\|p\%w(0,t)+c/\|ux||2ds+c/||gox\|2ds+
0 0 0

+C|IBilI7 20,y + CllB N Z207) <
t
< C’/(l +d(s))A2(s) ds + Ol Bill72 0.1+
0

2 2 2
+CBr 720,y + Clvillz2 0.7y + 1l 22007
From here, applying Gronwall’s lemma, we obtain the inequality

t
l6)1* + / 161170y < CIBNZ20.) + ClBr 20y +
0

+C”’Yl||2L2(0,T) + ||%||%2(0,T)~ (60)
Substituting (60) into the right-hand sides of (55), (57), and then into (53),
we find the estimate

tg%(\\p(t)\\Q +u@)? + 10O + o)1)+

+ [ ()0 + 1061, + 10671 (0,)) ds <

St~

—~

< Cllmlzeeor) + 1l 20m) + 18l F20m) + 18- 1 7200,)- (61)
Estimate (61) proves the statement of the theorem.
Theorem 4. For any z = {z1, 22, 23, 24} € H there exists a Gateaux
differential Da(y)(z) = {v, 7, n, ¥} of the mapping a(y) in the direction z
satisfying the conditions

<, 91 > -1 xi@) TPz, 1) + (AT — Rnp, 1) =0, (62)
Vo € H&(Qt),

t
T = —p2/vz ds daan. e. (x,t) € x(0,7), (63)
0

<1, 2t > -1,y ) T, 2)+(10, d20)|+alpne, d2e)+al(mbe, dog)—
—((vvz — Rn)pug, ¢2) — (Apvz, ¢2) — ((Aug + bB)T, ¢2)+
+A4bko (p~ 0%, d2) — bka(p™ b, ¢2)+
+Ban(a)p2(a) + Bpn(b)d2(b) =
= —Ag(0(a) — Op)z102(a) — Ap(0(D) — Op)z202(b), (64)
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Yoy € H(),
a(pe, d3a) + (T Pe, G3a) + kalp™ "0, d3) — 4ka(p™'0°n, ¢3) — (B, ¢3)+
+yp(a)ps(a) + v (b)gs(b) =
= —(p = Oy)z383(a) — (v — 0;)za03(b), (65)
Vo3 € HY (), where
A=vu, — RO € H, B =k, (0" —)/p? € L=(0,T; L=(%)).  (66)

Proof. Let z = {21, 22, 23, 24} € H and h € R. Consider strong solutions of
problem (4)—(9) with initial and boundary data {y + hz; Fo} and {y; Fo}.
Denote by
a(y + hz; Fy) — a(y; Fi
ap = {un, pn, On, on} = b 2) i £o)
In (45)-(52) we set a; = a(y + hz; Fp), a2 = a(y; Fo). It is easy to see that
ay, satisfies the following system:

upt + Liup + Riap, =0, ae.on (0,7),
¢
pn = —p(y + hz; Fo)p(y; Fo) /th ds, a.e. on (,
0
One + LoBy, + Roay, + Riap, + Regay, = f1 (Z]) + fQ(ZQ), a.e.on te (O, T),
Lspp + Rsap, + Rsap, = f3(23) + f4(Z4), a.e. on (0, T), (67)
uplt=0 =0, Opli=0 = 0. (68)
When h # 0 the vector function aj has the following properties:

max (||pn(6)|1* + llun()]* + 061 + [on®)1*)+
te(0,T]

T

[ Uun s 0y + 100Ny + lon () ds < Ko, (69)
0
where Ky does not depend on h. Theorem 1 implies the following property
of solutions to the problem (67), (68)
[une||” + [|6re]|> < C(h).

As a consequence of the last estimate, the condition (72) makes sense.
The estimates (69) allow us to choose a sequence of values h — 0 such
that
up — v weak in L2(0, T; Hp (%)),
pn — 7 weak in L?(0,T; L*(%)),
0, —n weak in L*(0,T; H' (%)),
on — 1 weak in L*(0,T; H' (Q)
The results on convergence (70) are sufficient for t
the obtained relations (45)-(52), (67).

(70)

).
he limit transition in
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We denote by ag = }llin%) ap, ag = {v, m, n, ¥}. We pass to the limit with
H
respect to h — 0 in the system of equations (67), and obtain the following
equalities
v+ Liv+ Rjag =0, a.e.on (0,7),
t
= —p2 /vm ds, a.e.on (),
0
n: + Lon 4+ Roag + Ryag + Rgag = fi1 (21) + fQ(ZQ), a.e.on t e (0, T),
L3y + Rszag + Rsag = fg(zg) + f4(Z4), a.e. on (0, T), (71)

Here the operators Ly 23, R1 23456 are defined in (46)-(48), where u;, pi, 6, 1,
1 = 1,2 should be replaced by u, p, 6, ¥ respectively. Note that by definition
of the operators L1, Ry and L, R2 46 from the first and third equations of
the system (71) it follows that v; € L2(0,T; H=1 (%)), n: € L2(~0, T; H-1()).
We define the trace v|;—g € H~1(Q) and the trace nj—g € H1(Q2) by the
formulas

<U|t:07 ¢1>H_1(Q)><H6(Q) =0, Vo1 € H&,
<77|t:07 ¢2>I:I—1(Q)><H1(Q) =0 v¢2 S Hl- (72)
From (71), (72) follows (62)-(65).
5 Necessary optimality conditions

Consider the following problem. Given {u, p, 6, ¢} € Y, it is required to
find {¢, 7, ¢, x} that in the domain Q; x (0, T") satisfy the following equations:

—& — v(p€a)e + o + [(Vpus + Ap)(lz = 0, (73)
71/p? + A&y + a0, + apuxe — (Aug +DB)C = Bx =0,  (74)
—G — a(pCe)a + Rpual — Rp&e + dkap ' 03(C —x) =0,  (75)
—a(pXa)e + kap” (X =) =0 (76)
and boundary conditions

fli=r =0, Tli=7 =0, C(li=r=0, z€Qr; (77)
lo=a(ty =0, &lo=br) =0, (78)

(—apCs + Ba(t)C — m()Q)|o=a(r) = 0(a(t), t) — da(?),
(apCe + Bo(t)C + m(t)()a=pey = O(b(¢), t) — d(t), (79)

(—apxs +’7l(t)X)|ac:a(t) =0, (apxa +7r(t)X)’z:b(t) =0, te(0,T). (80)
Here the functions A, B are defined in (66), and v;, v, B4, Bp are given and
satisfy the conditions:

0 <71a(t) < Y(t) < 720(t) <00, 0 <1p(t) <7 (t) < y25(t) <00, (81)
Ba(t) = Boa(t) + MaBi(t),  B(t) = Bon(t) + Aoy (1),

where

61(1)] < K1 max{Ka; [C(a(t), )]},
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|Br(t)] < K1 max{Ka; |((b(t),1)[}, (82)
where Yia, Yoa, Y16, Y26, € H'(0,T), constants K1 > 0, Ko > 0 do not depend
on t.

Note that the adjoint system is nonlinear. The nonlinearity is expressed by
the multiplicative boundary condition for the function adjoint to temperature.

Definition 2. A weak solution of problem (73)-(80) is a function {&, 7, ¢, x}
€ W, where W is defined in (13), such that

& € L2((07 T)a Hil(Qt))v <£|t=T: U1>H_1(Qt)><H6(Qt) =0 Vv € Hé(Qt),
Gt € L2((O T) (Qt)) <<|t:T7 U2>Iq*1(Qt)><H1(Qt) =0 Vi € Hl(Qt)
and almost everywhere on (0,7") the following conditions are satisfied:
<£tavl>H Q)XHl(Qt (Péﬁale)*

—(7,v12) — (vpuy + Ap)(,v1,) =0 Vo € H&(Qt), (83)

T
T= / p2(A§$ + aby(p + apr Xz — (Aug + bB)C — By) ds, (84)
t

_<Cta /U2>H_1(Qt)><H1(Qt) + a(pgarv U2x>+

+R(pug, v2) — R(ps,v2)+
+4/€a(p7103(b< - X)7U2) + Il(t) =0 VUQ S Hl(Qt)7 (85)

a(anchBw) + Ha(/fl(X - bC)a U3) + IQ(t) =0 VU3 € Hl(Qt)a (86)

where

I1(t) = Ba(t)[Cva]la=b(r) + Bo(t)[CV2]|z=a(t) — (87)
—[(0 — dp)valla—p(r) — [(0 = da)vall—a(s) (88)
Iz (t) = v () [xvslo=b(r) + MO [XV3]2=a(r)- (89)
Theorem 5. Let {u, p, 0, ¢} € Y and the inequality
T ~
[ 6@ = duf+160) ~ doPydt < 7. (90)
0

where the constant ¢ > 1 does not depend on ¢, and m = min{m;, amy, am }.
Then there exists a weak solution to problem (73)—(80).

Proof. Note that for the weak solution of problem (73)—(80) the following
equalities are valid

2
<§t7£>H—1(Qt)><H1(Qt) thHfH

<Ct7C>H Q) x H () 2 dtHCH2 (t)(dx:b(t) - <|x:a(t))' (91)
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Taking into account (91), from (83)-(86), we find

7@”5”2 /p|§m2da? < Nl + max [vpus + Apllicl 1
Q

I+ a [ ple do s amab [ o 0YcP s <
Qt Qt

< Rgé%;f |pua||CI ¢ l? + MiR||EIC|| + 4radim x|+
+K1|Cal? + K| Gl + Kol Cal® + Kol Gl + 10(b) — dal|G| + 10(a) — dal|Cal,

/plxxl dx+ Kamy /|x|2dx+%b<b!2+%|xa|2<bﬂam11HXIIHCH (92)
Qt Qt

Here (o = Cla—a()s b = Cla=b(t)s Ya = Ylz=a(t)s Yo = V]o=b(t)-
Applying the Cauchy inequality to the right-hand sides of the inequalities
(92), and taking into account that p > mgy > 0, we obtain the estimate

d d
—aHfHQ - @HCH2 +ma|l|* +maal|Gll* + ama [ xa|* <

< C||T”2+CHCH2H<IH2+C(1+gé%§|u$‘2)||<||2+‘9(a)_da|2+|9(b)_db‘27 (93)

where the constant C' does not depend on ¢t. We obtain an estimate for 7:
T

1712 < (k/C) / (IEal? + Gl + X ?) ds, (94)

where
T

k= Cy /m%lx(|A]2 10012 + [al? + | Aug + bBJ + |B|?) ds < oo.
EAS O

Let us denote m = min{my; amy; am,},

r(t) = C(1+max us|?),  6(t) = |0(a) — daf® + [0(b) — d*,

T
di(t) = €O + lc@OI,  da( / €2 ()11 + I ()17 + X2 ()11%) ds

(95)
Note that
di(t) >0, da(t)>0, —dy(t)>0 forae.te (0,7T);

di(T) =0, do(T) =0,

T
r(t)dt < oo, o(t)dt < oo. (96)
[rone~]
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Let’s substitute (94), (95) into (93), we get
—di(t) —mdy(t) < kda(t) +r(t)di(t) — cdy(t)dy(t) +6(¢), te (0,T). (97)

Here the constants k£ > 0, ¢ > 1.
Next, we obtain an estimate for the functions dy, dy from inequality (97).
First, we get rid of the first and second terms on the right-hand side (97).
Let r1 € C[0,T] be an arbitrary function. Let us denote by

—%(T t)— fr(s)ds
ri(t) =e ¢ , ro=r1(0)<r(t) <1, te][0,T].

Multiply (97) by 71(¢) > 0 and transform to the form

[ (6)+ (1)) 1) + AW — (01 (6) < e (1) (~db(D)r 1),

€ (0,7). (98)
Here

Now let us estimate the right-hand side (98). Let ro € C[0,T] be an arbitrary
function. Let us denote by

N [ di(s)d
ro(t) =e , N=const>0, te(0,7T).

Multiply (98) by r2(t) > 0 and transform to the form

—[((d1(?) + 5d2(t))7”1 (t) + A(t)r2 (1)) + (=d5 () [N — cJda (t)r1(t)ra(t)+

+(—d§(t))[% + NA@®)ra(t) <0, t€(0,7). (99)

Let us set N = ¢ and find the condition for the restriction of the function
A(t) < 0 from the inequality
mro

5 FNA®M) = %57 eel0,1), te(0,7T).

The last inequality will be satisfied if

/5 2@1—5), e€[0,1).

We integrate (99) with respect to ¢ from an arbitrary ¢ to T, taking into
account the conditions di(T") =0, do(T') = 0, A(T') = 0 and (90), we obtain
the inequality

B B T
(dr(6) + 5 daft)rs () + "oy 1) [(~dj()rals) ds < ~A(D) <
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T T
_ Q) — d. |2 A1) dt
< O/ (t) dt = O/<|9<> dal? + 10(8) — d )

Note that r1(t) > rg > 0, —d4(t) > 0, r2(t) is a monotonically increasing
function for all ¢ € [0,T7], therefore, transforming the integral term on the
left-hand side of the last inequality, we find

T

(0@ =i+ - aar. (a00)
0

m 1
dqi(t —ds(t) < —
1()+2 2()_7,0

Thus, taking into account (95), from (100) we obtain

T
max (€O +1CO1) + [U&IP + 16O + )P <
€[0,7]
0
T
< [(6(a) ol +160) — dof) . (101)
0
From (94) we obtain the estimate
T
2 2 2
ma 717 < [ (16(0) = o + 16(6) — o) . (102)
0

Given u, p, 0, ¢ for the difference of functions & = & — &, 7 = 11 — 79,
¢ =1 — (2, x = X1 — X2, in the same way we obtain the following a priori
estimates

T

max ([[£()[|* + [I¢(8)]1* + ||T!!2)+/(\€a:(8)!2+ I () I+ lIxz(s)[1) dt < 0.

t€[0,T]
0

guaranteeing the uniqueness of the solution.
The system (73)—(80) will be called the adjoint system for the problem
Theorem 6. For each solution y of the extremal problem (19) there exists
a unique solution of the adjoint problem (73)-(80) and the following relations
are valid:

Ai(t) = max {;Aa(t) [0(a(t), t) = Os(8)]¢(alt), t); Bor(t)},

B(8) = max { A (OB(b(0), 1) — B (OICO(0.0): B0} (108)
almost everywhere on (0,7), where
Bo(t) = {Bor(t), Boz(t)} =
= {(6mm - ter?(},l}) BO(L)/Aa(t)> (Bmm - tEH(IOI,%) BOa)/Ab(ﬂ}' (104)
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And the variational inequality
T
[leta(o).0) - N ale) (o) ~ (o) e+
0
T
+/[¢(b(t)at) — G (D)X (b(1), )[r(t) = (D] dt <0 V{w,r} € U,. (105)
0

Proof. Let us calculate the Gateaux differential of the functional J,.[y] on
the element y in the direction z:

T
DJy](z) = / (0a(t), 1) — da(t)) DY) o—agr) di-+

T
+ / 00(£)) DO(Y) oy i+
0
—i—m/ﬂl 21 dt—i—mr/ﬁr 2o dt. (106)

Here DO(y) = n. Let ¢>1 =& ¢ = (, (bg = x in (62), (64), (65), and
vy = v, vy =1, v3 =1 in (83), (85), (86), respectively. Subtract the obtained
relations and integrate with respect to ¢ from 0 to 7', taking into account the
following property, which is valid for any continuous functions f(¢) and g(t):

t
/f / %ﬁ/ Jf s)dsdt =0

and, taking into account (106), we find
T

/(mﬁz(t) — Aa(B)[0(a(t), 1) = O(1)]¢(alt), )21 (t) di+

T
+ / (kn B (£) — Ap(D)[O(B(E), 1) — B (£)]C(B(2), £)) 2a(2) di+
0
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Note that U,q is convex, so we can set z1 = w1 — [, 20 = wa— fBr, 23 = W3—",
z4 = wy — 7y, for any w € Uyq, where w = {wy, wa, ws, wy }.
Let us introduce the following notations for vector functions:

5(t) = {Bl(t)v B?"(t)} € UB? ’V(t) = {’Yl(t)v Vr(t)} € U’Y’ K= {Kh “r}a
Pe(t) = {Aa(®)[0(a(t), t) — Ou(t)]C(alt), 1), Ap(t)[O(b(2), 1) — 6(2)]C(D(E), 1)},
Py(t) = {[e(a(t), t) = 5 ()]x(a(t), 1), [p(b(t),t) — 6 (1)]x(b(t),1)}. (108)

Due to the necessary optimality condition y, the inequality DJ[y](z) > 0
Vz € Uyq holds. Taking into account (108), we rewrite (107) as follows

T T
/ (kB — Pe(t))(wp — B) di — / P(t)(wy —7)dt =0 (109)
0 0

for arbitrary wg € Ug and wy € U,, where wg = {w, wa}, wy = {ws, wa}.
Here kf is a vector function with components {15, k25, }. In (109), the
vector function v € U, will be determined from the condition

/P V) dt <0 Vw, € U,. (110)

Then from (109), (110) we obtain

T
/ kB — Pe(t))(wg — B)dt >0 Ywg € Ug. (111)

It follows that either § = g and kB—P¢(t) = 0, or § = o, or kB—P(t) =0,
where [y is defined in (104). The first option implies P¢(t) = xfp and is of
no interest. Let us consider the cases when the following options are fulfilled:

(1) p=po, KB > FPe(t);
(2) B> o, KB =Pt).

Then the optimality conditions for § can be written as
B =~ max{P; Kb} (112)

Next, we obtain the variational maximum principle for the optimal solution
v € U,. Let us denote by

P(t) = [p(a(t),t) — 0, (t)]x(a(t), 1),

Pe(t) = [p(b(t),t) — 6,(1)]x(b(t),1) t € (0,T).
Then from the variational inequality (111) we find in the standard way

Py (t) (w3 — ) + Py2(t)(ws — ) <0 Vws € [y145 724);

YVwy € [y1p; y26) a.e. on (0,7).
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Inequality (109) provides an analogue of the «bang-bang» principle. Indeed,

Y2a, ecmu Py > 0; Yop, ecau Pyo > 0;

ecmn Py < 0; , ecan Pyo < 0;
Y2a, ecm Py > 0; Yip, ecau Py < 0;
Via, ecmu Py < 0; Yop, ecau Py > 0.

Equalities (103), (113) together with the direct (5)—(9) and adjoint problem
(73)—(80) are necessary conditions for optimality.

6 PINN method

The method of using neural networks to solve differential equations proposed
in [27] consists of training neural networks to minimize a quadratic functional
G, which includes terms for the residuals of equations, initial and boundary
conditions, and additional information.

To solve optimal control problem the functional has the following form:

G =G, + Gy + G1 + G + Gata, (114)

where G, is the term for the residual of equations (1)-(5), Go, G1, G2 are
the terms for the initial and boundary conditions (1)—(5), respectively, Gaatq
is the term with additional information (1)-(5).

The terms G, Go, G1, G2, Ggqtq have the following form:

Ny

K,
Gr =5 STl ) + r3 @l ) + rd (], ) + i (] )]
T =1
Ky o , )
0 - ~,
Go=3p Y [(u(x&t?) —ug(29,4))7 + (p(22,8)) — po(2?,19))” +
=1
~ 2
+ () - oot a))|.
K O ) ,
1 - o~
Gy = EZ [(U(x},t}) —uy(zh, 1)) + (B(al, 1) — pr (2l th) +
=1

ox

N 2
00(x}, t! ~
+ (—aw + B1(0(x,t}) — 9b)> )

op(xt )y 2
i <—a“”(”> A ) - e§>) n
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Ko AT, 2
Go= 7 2 (b 1) = us(a?, )" +
+ GW + B (0 1) — eb)>2 +
b (P2 5 ety o) |,
Gdam:J[aH/oT*;l1@<t>\2dt+/:*;l 5|t

T /. 2 |~ 2
Jlal :/ <’9(0,t) = 0a(0, )|+ [B(L, 1) — Ga(L,1) >dt,
0
where 27 € (0,1),t7 € (0,T], 2¥ € [0,L],t2 = 0 , 27 = 0,¢] € [0,T],
xhy = Lty € [0,T], Ny, No, N1, N — are total numbers of point sets for the
corresponding regions, K., Ko, K1, Ko — are weighting coefficients.
Here u, p, @ o, Bl, Brﬁl,:y} — are approximations of unknowns by neural
networks, which have the form:

J(X) = Hoisn (Huann (Hiann (XWO) W) W)WY, 1 =050,

f(t) = Hiann (Htanh (tW1f> WZf) WSf’ f = @’BZ’BT’:Y\Z’WT’

where Wlf , WQf ,W?fc ,W4f — are weight matrices between layers of a neural
network, Htanh(l‘) = (ex - e—x)/(eﬂc + e—x)’ stish(:[:) = l‘/(l + e—x)‘

Thus, the optimal control problem is reduced to the problem of minimizing
the functional G:

G — min. (115)

7 Numerical experiments

The following characteristics were chosen for all numerical experiments:
K, =1, Ky =K = Ky = 10, ki =k, =102

When using the PINN method, the problem is solved in dimensionless variables.
All graphs will also be presented in dimensionless variables.

In total, N, = 10000 collocation points were generated, while at the
boundaries and at the initial time, Ng = N7 = No = 200 points were
generated.

In the first numerical experiment, temperature observations 0, are considered
at the boundary. The physical characteristics of the medium correspond to
carbon dioxide and, together with the other parameters of the problem, have
the following form:

X =50[m], T=30[s, (116)
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J J
L, =700 |——|, R=8314|——|, 117
¢ [kg . K] [mole . K] (117)
p=>5-10"°[Pa-s|k=22-10"2 W (118)
m-K
m m
uo = 10 {ﬂ C ui—up = 10+2¢ [ﬂ , (119)
Oo(z) = 389.7 — 0.86622 [K],
Oy (x,t) = 389.7 — 0.86622 — 0.866t [K], (120)
kg kg
=18|—= =18-0.2t|—= 121
" 8{m3}, pr=18-0 {mg}, (121)
04(x) = 346.4 + 0.433z [K] (122)

During the calculation, the functional G reached the value 10~#, which
the authors consider to be corresponding to the solution of the problem. The
obtained solution is shown in figures 1.a, 1.b, 1.c, 1.d at different moments
in time.

The profiles of the predicted boundary coefficients are shown in Figures
2.a, 2.b. The coefficients v, and 72 are nonlinear functions, but when calculated
in the equations they passed through a mask function, turning them into
piecewise constant functions:

Y

_ Jman(v),
fmask(7) = {mam(’y), N> w'

in(y)+maz(y)
7§m1n72max7

The temperature profile at the observed points is shown in figures 3.a, 3.b.
In the second numerical experiment, temperature observations 6, are considered
inside the domain. The parameters of the problem are:

X =50[m], T =30]s], (123)
J J
k=22.1072 | p="5-107"[Ia- | (125)
m-K ’
m m
up = 10 [ﬂ C u —ug=10+2¢ [ﬂ , (126)
Bo(z) = 389.7 — 0.86622 [K]
Oy(x,t) = 389.7 — 0.8662> — 0.866t [K] (127)
kg kg
po=1.8 [m?’} . p1=18-02t [m?’} , (128)
04(z) = 346.4 + 0.433z [K] (129)

The obtained solution is shown in figures 4.a, 4.b, 4.c, 4.d at different moments
in time.

The profiles of the predicted boundary coefficients is presented in figures
5.a, 5.b.
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Fia. 1. Solution of the optimal control problem (115) with
parameters (116)-(122) at different moments of time.

The temperature profile at the observed points is shown in figures 6.a, 6.b
and 6.c.

8 Conclusion

The paper presents a numerical and theoretical study of the problem of
controlling one-dimensional viscous gas flow. The theorem of the existence
of optimal control is proved, and the necessary conditions for the optimality
system are derived. A numerical solution to the problem of optimal control of
the viscous heat-conducting gas flow in a one-dimensional region is obtained
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Fia. 2. Boundary coefficients.
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FiGg. 3. Temperature profile at observed points on the boundaries.

using the PINN method, based on the neural networks usage. The possibility
of solving the inverse problem of controlling one of several unknown functions
describing the state of the system is shown, where the heat transfer coefficient
and the reflection coefficient from the boundary of the region are selected as
the control. The advantage of using the PINN method to solve the inverse
problem of a strongly nonlinear, singularly perturbed system of equations
is the absence of the need to linearize the system and solve the optimality
system, as well as the possibility of solving the problem on a uniform and
not excessively dense grid. It is shown that the use of the method does not
require excessive computing resources for operation.
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