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Abstract: The problem of controlling one-dimensional viscous
gas �ow through an interval with a �xed boundary is considered.
The �ow regime takes into account complex convective conductive
radiative heat exchange in the medium. The heat transfer coe�cient
and the re�ection coe�cient at the boundaries are chosen to be
controls. The existence of optimal control is proved. The necessary
conditions for the optimality system are derived. A numerical solu-
tion to the optimal control problem is calculated using the Physics
Informed Neural Network (PINN) method. The method involves
approximating an unknown function with a neural network by
minimizing a quadratic functional that includes terms for the resi-
duals of equations, boundary and initial conditions, and additional
information. The method avoids the need for linearization and
solving optimality systems. The functions of velocity, density, tempe-
rature, and radiation intensity are sought for boundary control
with two coe�cients on the left boundary and two coe�cients
on the right boundary. All unknowns are approximated by neural
networks. The temperatures at observation points match the speci�ed
temperature using optimal control of the boundary coe�cients.
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The case with observation points inside the region and on the
boundaries is considered.

Keywords: Inverse problem, heat and mass transfer, radiation
heat exchange, Navier-Stokes equations for a compressible medium,
Physics Informed Neural Network.

1 Introduction

In this paper, we study a system of equations for the one-dimensional
�ow of a viscous compressible gas taking into account radiative, conductive
and convective heat transfer. For the case of one spatial variable, the model
of a viscous heat-conducting gas under radiative exchange conditions in a
limited region Ω0 ⊂ R is modeled in normalized form by the following system,
where the P1 (di�usion) approximation is used for the radiation transfer
equation [1�3]:

ρ(ut + uux) = νuxx −R(ρ θ)x,

ρt + uρx + ρux = 0,

ρ(θt + uθx) = aθxx + (νux −Rρ θ)ux − b kα(|θ|θ3 − φ),

−αφxx + kα(φ− |θ|θ3) = 0.

The �ow of the gas through the interval Ω0 = {x : 0 < x < L0} with
permeable �xed boundaries is considered. At the initial moment of time,
the characteristics of the medium are known:

u|t=0 = u0(x), ρ|t=0 = ρ0(x) > 0, θ|t=0 = θ0(x), x ∈ Ω̄0.

At t > 0 the �ow region is bounded by two boundaries. Gas �ows through the
left boundary u|x=0 > 0. Then the conditions for the velocity, temperature,
radiation intensity, and density of the medium are set on the left boundary:

u|x=0 = u1(t), ρ|x=0 = ρ1(t),

−a∂θ
∂x

∣∣
x=0

+ β(θ|x=0 − θ1) = 0, −αφx

∣∣
x=0

+ γ(φ|x=0 − θ41) = 0.

The gas �ows out through the right boundary. Therefore, only the velocity,
temperature and radiation intensity of the medium are speci�ed on the right
boundary:

u|x=L0 = u2(t),

a
∂θ

∂x

∣∣∣
x=L0

+ β(θ|x=L0 − θ2) = 0, α
∂φ

∂x

∣∣∣
x=L0

+ γ(φ|x=L0 − θ42) = 0.

The coe�cient γ describes the re�ective properties of the boundary, β is the
heat transfer coe�cient.

The equations describing the processes of convective-conductive transfer of
thermal radiation of an incompressible medium are considered in works [4�7]
and are well studied. The problems of complex heat exchange in scattering
media with re�ecting boundaries are presented in works [8�17].
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The behavior of solutions of the Navier�Stokes equations ¾in general¿
over time for a compressible medium has been exhaustively studied only in
the one-dimensional case. The analysis of various boundary value problems
associated with the �ow of viscous gas is considered in [18,19].

At the same time, the questions of correctness of initial-boundary value
problems for the model of viscous heat-conducting gas, taking into account
radiative heat exchange inside the region, as well as the analysis of the
stability of stationary solutions, are open. The correctness of the model
of viscous heat-conducting gas under conditions of radiative exchange in
a limited region is studied in [20].

Problems of optimal control of viscous �uid �ow in the one-dimensional
case, where the characteristics of the medium were chosen as control, were
considered in [21�24].

The questions of correctness in Sobolev spaces of inverse problems on
determination of the coe�cient in Robin type boundary condition for the
convection-di�usion equation with observation point overdetermination condi-
tions are studied in [25]. Based on the reduction of the problem to the
Volterra integral equation of the second kind, a theorem of existence and
uniqueness of the inverse problem is obtained.

In this paper, we study the correctness of the inverse problem of determining
the properties of a medium at the boundary of a domain under conditions
of complex radiative heat and mass transfer so that the gas temperature at
�xed points of the boundary or inside the domain would take speci�ed values
at all moments of time t ∈ [0, T ]. A numerical solution of the inverse problem
is presented, obtained using a Physics Informed Neural Network method.

2 Problem formulation

When studying problems of gas dynamics, it is convenient to use Lagrangian
coordinates. According to the transition formulas [26] the interval (0, L0)
with �xed boundaries in Euler coordinates in the new coordinates will go
over to a domain with time-varying boundaries that preserve the length of
the interval at each moment of time. We denote by

L =

L0∫
0

ρ0(x) dx, L ̸= 0,

where ρ0 � is the gas density at time t = 0. The images of the boundaries
x = 0 and x = L0 in the new variables will be the functions

a(t) = −
t∫

0

ul(τ)ρl(τ) dτ, b(t) = L−
t∫

0

ur(τ)ρr(τ) dτ, (1)

where {uℓ, ρℓ}, ℓ = l, r � are velocity and density of the gas at the boundary
points x = 0 and x = L0, respectively. The density value at the right
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boundary ρr(t) = ρ(x, t)|x=L0 is determined from the equality

ρlul = ρrur = m(t) > 0, t ≥ 0, (2)

which is a consequence of the continuity equation for a compressible medium.
The domain of change of the environment at t > 0 in the new coordinates

is denoted by

Q = {(x; t) : 0 < t < T ; x ∈ Ωt}, Ωt = {x : a(t) < x < b(t)}, (3)

and at t = 0 � respectively through the interval Ω0 = {x : 0 < x < L}.
In mass Lagrangian variables, the problem of the �ow of a viscous heat-

conducting gas under conditions of radiative exchange in a limited region Q
has the following form [1]:

ut = ν(ρux)x −R(ρ θ)x, ρt + ρ2ux = 0,

θt = a(ρθx)x + (νρux −Rρ θ)ux − bkα(θ
4 − φ)ρ−1,

−α(ρφx)x + kα(φ− θ4)ρ−1 = 0. (4)

Here u, ρ, θ � are velocity, density, and normalized temperature of a perfect
gas, respectively, the pressure is determined from the Clapeyron equation
p = Rρ θ, the function φ is interpreted as the normalized radiation intensity.
Through ν,R we denote positive physical constants characterizing the medium,
ν � is the dynamic viscosity coe�cient, R � is the gas constant. The constants
b, a, α describe the radiation-thermal properties of the medium, kα � is the
absorption coe�cient.

At the initial moment of time, the characteristics of the environment are
known

u|t=0 = u0(x), θ|t=0 = θ0(x), ρ|t=0 = ρ0(x) > 0, x ∈ Ω0. (5)

At t > 0 the region is bounded by two boundaries. Gas �ows in through the
left boundary:

u|x=a(t) = ua(t), ρ|x=a(t) = ρa(t), 0 ≤ t ≤ T. (6)

Gas �ows out through the right boundary:

u|x=b(t) = ub(t), 0 ≤ t ≤ T. (7)

The conditions for temperature and radiation intensity at the boundary take
into account the in�uence of external factors and are described using the
Newton-Richmann law:

−aρθx + β(θ − θb) = 0, −αρφx + γ(φ− θ4), x = a(t), t ∈ (0, T )

aρθx + β(θ − θb) = 0, αρφx + γ(φ− θ4b ) = 0, x = b(t), t ∈ (0, T ). (8)

We will consider the re�ection process function γ, which takes the values

γ = γl(t) at x = a(t),

γ = γr(t) at x = b(t)

and the function of the heat transfer process in the form:

β = βa(t) = β0a(t) + βl(t)Λa(t) at x = a(t),
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β = βb(t) = β0b(t) + βr(t)Λb(t) at x = b(t). (9)

Given the values ρ0, ua, ρa, ub, γl,r, βa,b the problem (4)�(8) is called a direct
problem.

Let us formulate an optimal control problem. Let u0, ρ0, θ0, ua, ρa, ub
and the overdetermination conditions be given:

θ(x, t)|x=a(t) = da(t), θ(x, t)|x=b(t) = db(t). (10)

It is required to �nd the state u, ρ, θ, φ, both the solution of the system
(4)�(8), (10), and the unknown functions γl(t), γr(t), βl(t), βr(t). Moreover,
the re�ection coe�cients at the ends of the interval, the functions γl(t), γr(t)
are selected from a limited set, and βl(t), βr(t) satisfy (9), where β0a, β0b,
Λa, Λb are considered given, and the functions βa, βb are positive.

3 Solvability of the optimal control problem

Below we will use the usual notation Lp(W l
p) for spaces of functions

integrable with degree p ≥ 1 (together with generalized derivatives up to
order l ≥ 0). By L2(0, T ;X) we denote the space of measurable functions
(the space of continuous functions with continuous derivatives in [0, T ] up to
order l) mapping the interval ([0, T ]) ([0, T ]) to the space X such that

∥f∥2L2(0,T ;X) =

T∫
0

∥f∥2X dt <∞, ∥f∥Cl([0,T ];X) = max
0≤t≤T

∥f∥X <∞.

By Hs(X) we will denote the space W s
2 (X), s > 0, respectively, H̃−s(X) =

(Hs(X))′ � the space conjugate to Hs(X),

H2,1 = {q : q ∈ L∞(0, T ;H1(Ωt)) ∩ L2(0, T ;H2(Ωt)), qt ∈ L2(0, T ;L2(Ωt)},
H1,1 = {q : q ∈ L∞(0, T ;L2(Ωt)) ∩ L2(0, T ;H1(Ωt)) : qt ∈ L2(0, T ;L2(Ωt)},

H1,0 = {q : q ∈ L∞(0, T ;L2(Ωt)) ∩ L2(0, T ;H1(Ωt))},
H = L2(0, T )× L2(0, T )×H1(0, T )×H1(0, T ). (11)

The following properties of embeddings take place:

H2,1 ⊂ L2(0, T ;H1(Ωt)) continuous and compact,

H2,1 ⊂ C(Q) continuous. (12)

Let's consider the spaces

W = {q1, q2, q3, q4 : q1 ∈ H1,0, q1|x=a(t) = 0, q1|x=b(t) = 0;

q2 ∈ L∞(0, T ;L2(Ωt)), q3 ∈ H1,0; q4 ∈ H1,0},
Y = {q1, q2, q3, q4 : q1 ∈ H2,1; q2 ∈ H1,1; q3 ∈ H2,1; q4 ∈ L2(0, T ;H2(Ωt))}.

(13)
De�nition 1. A strong solution of problem (4) � (9) is a set of functions

{u, ρ, θ, φ} ∈ Y that satis�es equations (4) almost everywhere in (0, T ) ×
Ωt and takes boundary and initial values (5)�(8) in the sense of traces of
functions from the speci�ed classes.
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Let the following conditions be satis�ed:

ua, ub, ρa ∈ H1(0, T ), u0, θ0 ∈ H1(Ω), ρ0 ∈ L∞(Ω),

0 < m0 ≤ ρ0 ≤M0 <∞, ρa > 0, ua > 0; (14)

γ1a, γ2a, γ1b, γ2b ∈ H1(0, T ),

β0a, β0b, Λa, Λb ∈ L∞(0, T ), θb ∈ H1(0, T ), (15)

β0a(t) ≥ 0, β0b(t) ≥ 0, βa ≥ βmin > 0, βb ≥ βmin > 0,

Λa(t) ≥ Λmin > 0, Λb(t) ≥ Λmin > 0,

γ2a(t) ≥ γ1a(t) ≥ γmin > 0, γ2b(t) ≥ γ1b(t) ≥ γmin > 0. (16)

Here the constants βmin, Λmin, γmin, m0, M0 are given.
Let us de�ne the set of admissible controls Uad = Uβ × Uγ , where

Uβ =
{
yβ = {βl, βr} : βl ∈ L2(0, T ), βr ∈ L2(0, T )

βl ≥ (βmin − min
t∈(0,T )

β0a)/Λa(t), βr ≥ (βmin − min
t∈(0,T )

β0b)/Λb(t)
}
,

Uγ =
{
yγ = {γl, γr} : γl ∈ H1(0, T ), γr ∈ H1(0, T ),

γ1a ≤ γl ≤ γ2a, γ1b ≤ γr ≤ γ2b
}
. (17)

Note that Uβ is a closed set in L2(0, T )×L2(0, T ), Uγ is a closed convex set
in H1(0, T )×H1(0, T ).

The correctness of the direct problem (4)�(8) in the case of Dirichlet
boundary conditions for temperature was studied in [20]. Note that this
result can be extended to the case of Robin-type boundary conditions for
the energy equation without loss of generality.
Theorem 1. Let conditions (14)� (16) be satis�ed. Then there exists a

unique strong solution to problem (4) � (9), where the functions θ, ρ, u,
φ(a(t), t), φ(b(t), t) are bounded, θ,φ(a(t), t), φ(b(t), t) are non-negative, and
ρ is positive and the following estimates take place:

0 < m1 ≤ ρ ≤M1 <∞, 0 ≤ θ ≤M1 <∞ a.e. in Q,

0 ≤ φ(a) ≤M4
1 <∞, 0 ≤ φ(b) ≤M4

1 <∞ for a.e. t ∈ (0, T ),

∥u∥L∞(0,T ;H1(Ωt)) + ∥θ∥L∞(0,T ;H1(Ωt)) ≤ C,

∥u∥H2,1(Q) + ∥θ∥H2,1(Q) + ∥ρ∥H1,1(Q) + ∥φ∥L2(0,T ;H2(Ω)) ≤ C,

where constants C,m1,M1 do not depend on time. The proof of Theorem 1 is
based on the use of a priori estimates, the constants in which depend only on
the problem data and T . The obtained estimates allow us to extend the local
solution, which is established using the principle of contracted mappings, to
the entire time interval. The operator equation equivalent to the problem is
constructed by linearizing equations (4) and conditions (5)�(8), just as was
done in [5,6]. On a small time interval, the resulting operator is contracting,
therefore, Banach's theorem can be applied. The necessary a priori estimates
are obtained in a similar way as in [20].
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Let's consider the following quality functionality:

J [a] =
1

2

T∫
0

|θ(a(t), t)− da(t)|2 dt+
1

2

T∫
0

|θ(b(t), t)− db(t)|2 dt. (18)

Let y = {yβ, yγ} ∈ Uad be the admissible optimal control.
The optimal control problem is formulated as a problem of minimizing the

functional

Jκ[y] = J [a] +
κl
2

T∫
0

|βl(t)|2 dt+
κr
2

T∫
0

|βr(t)|2 dt. (19)

Here is the state of the system a(y) = {u(y), ρ(y), θ(y), φ(y)} ∈ Y is
de�ned as a strong solution to problem (4)�(9). It is required to �nd y0 ∈ Uad

such, as
Jκ[y0] = inf

y∈Uad

{Jκ[y]}. (20)

Theorem 2. Let κl > 0, κr > 0. Then there exists at least one solution
to the problem (20).

Proof. Since κl > 0, κr > 0, any minimizing sequence {yk}∞k=1 is bounded
in H, where the space H is de�ned in (11). By the statement of Theorem
1, for each k there exists a strong solution ak ∈ Y of problem (4) � (9), for
which the following estimates [20] hold:

0 < m1 ≤ ρk ≤M1 <∞, 0 ≤ θk ≤M1 <∞ a.e. in Q,

0 ≤ φk(a) ≤M4
1 <∞, 0 ≤ φk(b) ≤M4

1 <∞ for a.e. t ∈ (0, T ),

∥uk∥L∞(0,T ;H1(Ωt)) + ∥θk∥L∞(0,T ;H1(Ωt)) ≤ C,

∥uk∥H2,1(Q) + ∥θk∥H2,1(Q) + ∥ρk∥H1,1(Q) + ∥φk∥L2(0,T ;H2(Ω)) ≤ C, (21)

where constants C, m1, M1 do not depend on k.
To justify the transition to the limit with respect to k in the nonlinear

terms of the equations of system (4) written for the sequence {ak}∞k=1,
it is necessary to obtain additional a priori estimates that guarantee the
compactness of the sequences ρk, φk in L2(Q). The compactness of the
sequences uk, θk in L2(Q) follows from the compact embedding H1,2(Q) ⊂
L2(Q).

Further, we will denote g(x(t), t) = g(t). Consider the second equation in
(4) for the sequence ρk in the following form:

(ρk(t)− ρk(τ))t + ρ2k(t)ukx(t) = 0, t, τ ∈ (0, T ).

We multiply this equality by (ρk(t) − ρk(τ)) and, taking into account the
formula for di�erentiation with respect to the parameter, we integrate with
respect to x(t) from a(t) to b(t),

1

2

d

dt

b(t)∫
a(t)

|ρk(t)− ρk(τ)|2 dx+m(t)(ρ2k(t)− ρ2k(τ))−m(t)(ρ1k(t)− ρ1k(τ)) =
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= −
b(t)∫

a(t)

ρ2k(t)ukx(t)(ρk(t)− ρk(τ)) dx. (22)

We integrate (22) with respect to t on the interval [τ ; τ + h]. Taking into
account the boundedness of the function ∥ux(t)∥L2(Ωt) in L∞(0, T ), and
applying Gronwall's lemma to the last inequality, we obtain the estimate

∥ρk(τ + h)− ρk(τ)∥2L2(Ωτ+h)
≤ Ch, τ < T − h. (23)

From which it follows
T−h∫
0

∥ρk(τ + h)− ρk(τ)∥2L2(Ωτ+h)
dτ ≤ CTh.

Let us proceed to obtaining an estimate of equicontinuity for the sequence
φk. We denote by ψk = φk(x(τ + h), τ + h) − φk(x(τ), τ). We consider the
last equation in (4) for t = τ +h and t = τ and subtract one from the other.
Using integration by parts and taking into account the boundary conditions
(8), we �nd

α

b(τ+h)∫
a(τ+h)

ρk(τ + h)|ψkx|2 dx+ α

b(τ+h)∫
a(τ+h)

φkx(τ)(ρk(τ + h)− ρk(τ))ψkx dx+

kα

b(τ+h)∫
a(τ+h)

ρ−1
k (τ + h)|ψk|2 dx− kα

b(τ+h)∫
a(τ+h)

ρ−1
k (τ + h)(θ4k(τ + h)− θ4k(τ))ψk dx+

+kα

b(τ+h)∫
a(τ+h)

(φk(τ)− θ4k(τ))(ρ
−1
k (τ + h)− ρ−1

k (τ))ψk dx+

+αγk(τ+h)ψ
2
k(a)+αγk(τ+h)ψ

2
k(b)+I(a, τ+h, τ)+I(b, τ+h, τ) = 0, (24)

where

I(ℓ, τ+h, τ) = α[φk(ℓ(τ+h), τ+h)−θ4b (ℓ(τ+h), τ+h)][γk(τ+h)−γk(τ)]ψk(ℓ)−
−αγk(τ + h)[θ4b (ℓ(τ + h), τ + h)− θ4b (ℓ(τ), τ)]ψk(ℓ).

Considering the positivity and boundedness of the sequence ρk, we estimate
the integral terms in (24) as follows

αm1∥ψkx∥2L2(Ωτ+h)
+kαM

−1
1 ∥ψk∥L2(Ωτ+h)+αγmin|ψk(a)|2+αγmin|ψk(b)|2 ≤

≤ α max
x∈Ωτ+h

|φkx|∥ψkx∥L2(Ωτ+h)∥ρk(τ + h)− ρk(τ)∥L2(Ωτ+h)+

+kαm
−1
1 ∥ψk∥L2(Ωτ+h)∥θ

4
k(τ + h)− θ4k(τ)∥L2(Ωτ+h)+

+kαm
−2
1 max

x∈Ωτ+h

|φk(τ)− θ4k(τ)|∥ψkx∥L2(Ωτ+h)∥ρk(τ + h)− ρk(τ)∥L2(Ωτ+h)+

+I(a, τ + h, τ) + I(b, τ + h, τ), τ ∈ (0, T − h). (25)
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Let's get additional estimates of the sequence φk. Let's represent φk as:

φk(x(t), t) =

x(t)∫
a(t)

φkξ dξ + φk(a(t), t),

αρk(x(t), t)φkx(x(t), t) =

x(t)∫
a(t)

(ρk(x(t), t)φkξ)ξ dξ+

+γk(t)ρk(a(t), t)(φk(a(t), t)− θ4b (a(t), t)).

From here we get

max
x∈Ωt

|φk(t)| ≤ L∥φkx∥L2(Ωt) +M4
1 ,

max
x∈Ωt

|φkx(t)| ≤ C∥φkxx∥L2(Ωt) + 2M5
1 |γk(t)|, for a.e. t ∈ (0, T ). (26)

Let us estimate each term of the right-hand side of (25) in L2(0, T − h)
separately. Taking into account (21), (23), (26) we estimate the �rst term

α

T−h∫
0

max
x∈Ωτ+h

|φkx|∥ψkx∥L2(Ωτ+h)∥ρk(τ + h)− ρk(τ)∥L2(Ωτ+h) dτ ≤

≤ ε

T−h∫
0

∥ψkx∥2L2(Ωτ+h)
dτ + Cεh

T−h∫
0

∥φkxx∥2L2(Ωτ+h)
dτ ≤

≤ ε

T−h∫
0

∥ψkx∥2L2(Ωτ+h)
dτ + Cεh. (27)

To estimate the second term, we use the inequality

∥θ4k(τ + h)− θ4k(τ)∥L2(Ωτ+h) ≤ 4M3
1 ∥θk(τ + h)− θk(τ)∥L2(Ωτ+h).

Then

kαm
−1
1

T−h∫
0

∥ψk∥L2(Ωτ+h)∥θ
4
k(τ + h)− θ4k(τ)∥L2(Ωτ+h) dτ ≤

≤ ε

T−h∫
0

∥ψkx∥2L2(Ωτ+h)
dτ + Cε

T−h∫
0

∥θk(τ + h)− θk(τ)∥2L2(Ωτ+h)
dτ. (28)

When evaluating the third term on the right-hand side of (25), we take into
account (23), (26)

kαm
−2
1

T−h∫
0

max
x∈Ωτ+h

|φk(τ)−θ4k(τ)|∥ψkx∥L2(Ωτ+h)∥ρk(τ+h)−ρk(τ)∥L2(Ωτ+h) dτ ≤
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≤ ε

T−h∫
0

∥ψkx∥2L2(Ωτ+h)
dτ + Cεh. (29)

Let us estimate I(a, τ + h, τ).

T−h∫
0

I(a, τ+h, τ) dτ = α

T−h∫
0

[φk(a, τ+h)−θ4b (a, τ+h)][γk(τ+h)−γk(τ)]ψk(a) dτ−

−α
T−h∫
0

γk(τ + h)[θ4b (a, τ + h)− θ4b (a, τ)]ψk(a) ≤

≤ 2M4
1α

T−h∫
0

|ψk(a)|
τ+h∫
τ

|γt| dt dτ + αγmin

T−h∫
0

|ψk(a)|
τ+h∫
τ

4θ3b |θbt| dt dτ ≤

≤ δ∥ψk(a)∥L2(0,T−h) + Ch∥γk∥2H1(0,T ) + Ch∥θk∥2H1(0,T ;C(Ωt))
. (30)

For I(b, τ + h, τ) the estimate is similar to (30). We integrate (25) with
respect to τ on the interval [0, T − h]. We choose ε = αm1/6, δ = αγmin/4
and substitute the estimates (27)�(30) into the right-hand side of (25), after
simple transformations we obtain the estimate

T−h∫
0

∥ψkx∥2L2(Ωτ+h)
dτ+

+

T−h∫
0

∥ψk∥L2(Ωτ+h) dτ + ∥ψk(a)∥L2(τ,τ+h) + ∥ψk(b)∥L2(τ,τ+h) ≤

≤ Ch+ C

T−h∫
0

∥θk(τ + h)− θk(τ)∥2L2(Ωτ+h)
dτ =

= Ch+ C

T−h∫
0

b(τ+h)∫
a(τ+h)

∣∣∣ τ+h∫
τ

θkt dt
∣∣∣2 dx dτ ≤

≤ Ch+ Ch

T−h∫
0

b(τ+h)∫
a(τ+h)

τ+h∫
τ

|θkt|2 dt dx dτ ≤ Ch∥θkt∥2L2(Q) ≤ Ch. (31)

From (31) we conclude that there exists a subsequence (we will denote it by
the same name) such that

φk → φ strong in L2(Q),

and besides

φk(a(t)) → φ(a(t)) strong in L2(0, T ), φk(b(t)) → φ(b(t)) strong in L2(0, T ).
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Estimates (21) guarantee the choice of a subsequence (we also denote it by
) such that

uk → u weak in L2(0, T ;H2(Ωt)), strong in L2(Q);

ρk → ρ weak in L2(0, T ;H1(Ωt));

θk → θ weak in L2(0, T ;H2(Ωt)), strong in L2(Q);

φk → φ weak in L2(0, T ;H2(Ωt));

ukt → ut weak in L2(Q),

ρkt → ρt weak in L2(Q),

θkt → θt weak in L2(Q).

Estimates (21), (31) are su�cient to justify that a = {u, ρ, θ, φ} is a strong
solution of problem (4)�(9). Due to the weak lower semicontinuity of the
functional J [a] and the property of weak lower semicontinuity in y for the
remaining part of the functional Jκ[y], we conclude that y is a solution of
problem (20). Consequently, any limit (in the sense of weak convergence)
point of the minimizing sequence is a solution of problem (20).

Let us prove auxiliary lemmas.
Lemma 1. Let Q be the domain de�ned in (1)�(3). For any g ∈ L2(0, T ;

H1(Ωt)) such that gt ∈ L2(0, T ; H̃−1(Ωt)) the equality〈
gt, ξ

〉
H̃−1(Ωt)×H1(Ωt)

=
d

dt
(g, ξ) +m(t)(gx, ξ) +m(t)(g, ξx) a.e. on (0, T )

(32)
∀ξ ∈ H1(Ωt), where m(t) ∈ C[0, T ] is de�ned in (2).

Proof. Let g be the function de�ned in the lemma, ξ ∈ H1(Ωt) be an
arbitrary function. Using the formula for di�erentiation of an integral with
integration limits depending on a parameter, which is valid for the domain
with conditions (1), (2), we �nd

d

dt

b(t)∫
a(t)

gξ dx =

= b′(t)g|x(t)=b(t)ξ|x(t)=b(t)−

−a′(t)g|x(t)=a(t)ξ|x(t)=a(t) +
〈
gt, ξ

〉
H̃−1(Ωt)×H1(Ωt)

. (33)

By the hypothesis of Lemma g, ξ ∈ H1(Ωt) almost everywhere on (0, T ),
therefore,

b(t)∫
a(t)

(gxξ + gξx) dx =

b(t)∫
a(t)

(gξ)x dx = (gξ)|x(t)=b(t) − (gξ)|x(t)=a(t) <∞.

Considering that a′(t) = b′(t) = −m(t), we obtain the proof of the lemma.
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Remark 1. Let the conditions of Lemma 1 be satis�ed and it is known
that g(a(t), t) = g(b(t), t) = 0, then〈

gt, g
〉
H̃−1(Ωt)×H1(Ωt)

=
1

2

d

dt
∥g∥2L2(Ωt)

a.e. on (0, T ). (34)

Lemma 2. For an arbitrary function g ∈ C([0, T ];Hp(Ωt)), p = 1, 2 the
inequality holds

∥g(t)∥Cp−1(Ω̄t) ≤ C(∥g(t)∥Hp(Ωt) + ∥g(t)∥Hp−1(Ωt)). (35)

And there exists x⋆ ∈ C(Ωt) such that

g|x(t)=x⋆(t) =
1− a(t)

L

∫
Ωt

g dx. (36)

Proof. Let g ∈ C([0, T ];H1(Ωt)). For an arbitrary x(t) ∈ C(Ωt), we introduce
an auxiliary function

g1(x, t) =

x(t)∫
a(t)

g(s, t) ds. (37)

Note that

g1(a(t), t) = 0, g1(b(t), t) =

∫
Ωt

g dx, t ∈ [0, T ].

For an arbitrary v ∈ C(0, T ;C(Ω̄t)) satisfying the conditions v(a(t), t) = 0,
v(b(t), t) = 0 there exists x⋆(t) ∈ C(Ωt) such that vx|x(t)=x⋆(t) = 0. Let

v(x, t) = g1(x, t)− g1(b(t), t)(x(t)− a(t))/L,

or

g1(x, t) = v(x, t) + g1(b(t), t)(x(t)− a(t))/L, x(t) ∈ Ω̄t, t ∈ [0, T ]. (38)

From (38) we �nd

g1x|x=x⋆(x) = vx|x=x⋆(x) + g1(b(t), t)(1− a(t))/L = g1(b(t), t)(1− a(t))/L.

On the other hand, for an arbitrary x ∈ C(Ω̄t), the equality holds

g1x(x(t), t) =

x(t)∫
x⋆(t)

g1ss ds+ g1x|x(t)=x⋆(t) =

=

x(t)∫
x⋆(t)

g1ss ds+ g1(b(t), t)(1− a(t))/L. (39)
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Note that g1x = g, we rewrite (39), taking into account (37), as follows:

g(x(t), t) =

x(t)∫
x⋆(t)

gs ds+

+
1− a(t)

L

∫
Ωt

g(x(t), t) dx, x(t) ∈ Ω̄t, t ∈ [0, T ]. (40)

From (40) follows the estimate (35) for p = 1. Considering (40) for x = x⋆,
we obtain (36). In the case p = 2, the estimate (35) is obtained in a similar
way.
Remark 2. For an arbitrary g ∈ C([0, T ];H1(Ωt)) the following inequalities

hold:

|g(x(t), t)|q ≤ ε∥gx∥2 + Cε∥gx∥2(q−2)∥g∥2, ε > 0, q = 2, 3. (41)

Proof. The inequality (41) for q = 2 is obvious, let's consider q = 3. The
equality is true

g3(x(t), t) =

x(t)∫
x⋆(t)

(g3)s ds+ g3(x⋆(t), t),

where x⋆(t) ∈ C(Ωt) is the same as in Lemma 2. From the last equality we
�nd

|g(x(t), t)|3 ≤ 3

∫
Ωt

|g|2|gx| dx+ C

∫
Ωt

|g|3 dx ≤

≤ C∥gx∥∥g∥2L4(Ωt)
+ C∥g∥3L4(Ωt)

≤ C∥gx∥2∥g∥+ C∥gx∥3/2∥g∥3/2 ≤
C1∥gx∥2∥g∥ ≤ ε∥gx∥2 + Cε∥gx∥2∥g∥2.

Lemma 3. Let {u1, ρ1, θ1, φ1}, {u2, ρ2, θ2, φ2} be two strong solutions
of problem (4)�(9). Then for the functions

A1 = νu1x −Rθ1, A2 = ρ2(νu2x −Rθ2), B = kα(θ
4
2 − φ2)/(ρ1ρ2),

θ̃ = s′θ1 + (1− s′)θ2, s′ ∈ (0, 1) (42)

the following inclusions are valid

A1, A2, B ∈ H1,0, θ̃, B ∈ L∞(0, T ;L∞(Ωt)).

For the functions ui, θi, φi, i = 1, 2 the following estimates are valid:

∥ui∥L∞(0,T ;C(Ω̄t)) + ∥uix∥L2(0,T ;C(Ω̄t)) ≤ C,

∥θi∥L∞(0,T ;C(Ω̄t)) + ∥θix∥L2(0,T ;C(Ω̄t)) ≤ C,

∥φi∥L∞(0,T ;C(Ω̄t)) + ∥φix∥L2(0,T ;C(Ω̄t)) ≤ C. (43)

If θ = θ1 − θ2, φ = φ1 − φ2, then

∥θ∥L2(0,T ;C(Ω̄t)) ≤ ∥θx∥L2(0,T ;L2(Ωt)),

∥φ∥L2(0,T ;C(Ω̄t)) ≤ ∥φx∥L2(0,T ;L2(Ωt)). (44)
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Proof. The boundedness of A1, A2, B in L∞(0, T ;L2(Ωt))∩L2(0, T ;H1(Ωt))
follows from the de�nition of a strong solution to problem (4)�(9). As a
consequence of Lemma 2, estimates (43), (44) hold.

4 Di�erential properties of control-state mapping

Let us study the di�erential properties of the mapping

y → {u(y), ρ(y), θ(y), φ(y)}, y : H →W,

where the spaces H and W are de�ned in (11), (13), respectively.
Let a = a1 − a2, where ai = a(yi;F0), i = 1, 2 � strong solutions of

problem (4)�(9), F0 = {u0, ρ0, θ0, ua, ub, ρa, Λa, Λb, β0a, β0b}, y = y1 −
y2 = {βl, βr, γl, γr}, yi = {βli, βri, γli, γri}, i = 1, 2.

Let's consider integral operators

L1 : H
−1(Ωt) → H1

0 (Ωt)), L2,3 : H̃
−1(Ωt) → H1(Ωt),

R1 : H
−1(Ωt) → H1

0 (Ωt)), R2,3 : H̃
−1(Ωt) → H1(Ωt),

R4,5 : L
2(Ωt) → L2(Ωt), R6 : L

1(Ωt) → L∞(Ωt) (45)

and functionals fi ∈ L2(0, T ), i = 1, . . . , 4, valid for any u, ξ1 ∈ H1
0 (Ωt),

θ, φ, ξ2, ξ3 ∈ H1(Ωt), τi ∈ L2(0, T ), i = 1, . . . , 4 and corresponding to the
formulas

(L1u, ξ1) = ν(ρ2ux, ξ1x),

(L2θ, ξ2) = a(ρ2θx, ξ2x) + 4bkα(ρ
−1
1 θ̃3θ, ξ2)+

+β2a[θξ2]|x(t)=a(t) + β2b[θξ2]|x(t)=b(t),

(L3φ, ξ3) = α(ρ2φx, ξ3x) + kα(ρ
−1
1 , φξ3)

+γ2l[φξ3]|x(t)=a(t) + γ2r[φξ3]|x(t)=b(t); (46)

(R1a, ξ1) = (A1ρ−Rθρ2, ξ1x),

(R2a, ξ2) = a(ρθ1x, ξ2x),

(R3a, ξ3) = α(ρφ1x, ξ3x),

(R4a, ξ2) = −((νux −Rθ)ρ2u1x +A2ux + bBρ+ bkαρ
−1
1 φ, ξ2),

(R5a, ξ3) = −(Bρ+ 4kαρ
−1
1 θ̃3θ, ξ3) dx,

(R6a, ξ2) = −(A1u1xρ, ξ2); (47)

(f1(βl), τ1)L2(0,T ) = −
T∫
0

βl(t)Λa(t)(θ1(a(t), t)− θb(t))τ1(t) dt,

(f2(βr), τ2)L2(0,T ) = −
T∫
0

βr(t)Λb(t)(θ1(b(t), t)− θb(t))τ2(t) dt,

(f3(γl), τ3)L2(0,T ) = −
T∫
0

γl(t)(φ1(a(t), t)− θ4b (a(t), t))τ3(t) dt,
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(f4(γr), τ4)L2(0,T ) = −
T∫
0

γr(t)(φ1(b(t), t)− θ4b (b(t), t))τ4(t) dt. (48)

Note that the operators L1,2,3 de�ned in (46) are symmetric, positive
de�nite, and such that

(L1u, u) ≥ C1∥u∥2H1
0 (Ωt)

,

(L2θ, θ) ≥ C1∥θ∥2H1(Ωt)
,

(L3φ,φ) ≥ C1∥φ∥2H1(Ωt)
(49)

almost everywhere on (0, T ), where the constant C1 > 0. For R1,2,3,4,5 de�ned
in (47) the following inequalities hold:

∥R1a∥H−1 = sup
∥ξ1∥H1

0(Ωt)
=1
(R1a, ξ1x) ≤ Cmax

x∈Ωt

|A1|∥ρ∥+ C∥ρ2∥L∞(Q)∥θ∥,

∥R2a∥H̃−1 = sup
∥ξ2∥H1(Ωt)

=1
(R2a, ξ2x) ≤ Cmax

x∈Ωt

|θ1x|∥ρ∥,

∥R3a∥H̃−1 = sup
∥ξ3∥H1(Ωt)

=1
(R3a, ξ2x) ≤ Cmax

x∈Ωt

|φ1x|∥ρ∥.

∥R4a∥ = sup
∥ξ2∥L2(Ωt)

=1
(R4a, ξ2) ≤ Cmax

x∈Ω̄t

|u1x|(∥ux∥+ ∥θ∥)+

+Cmax
x∈Ω̄t

|A2|∥ux∥+ C∥ρ∥+ C∥φ∥,

∥R5a∥ = sup
∥ξ3∥L2(Ωt)

=1
(R5a, ξ3) ≤ C∥ρ∥+ C∥θ∥,

∥R6a∥L1(Ωt) = sup
∥ξ2∥L∞(Ωt)

=1
(R6a, ξ2) ≤ Cmax

x∈Ωt

|A1|∥u1x∥∥ρ∥. (50)

To �nd estimates of the functionals (48), we will use estimates (43).
Applying the Cauchy inequality in (48), we obtain

∥f1∥L2(0,T ) = sup
∥τ1∥L2(0,T )=1

(f1, τ1) ≤ C∥βl∥L2(0,T ),

∥f2∥L2(0,T ) = sup
∥τ2∥L2(0,T )=1

(f2, τ2) ≤ C∥βr∥L2(0,T ),

∥f3∥L2(0,T ) = sup
∥τ3∥L2(0,T )=1

(f3, τ3) ≤ C∥γl∥L2(0,T ),

∥f4∥L2(0,T ) = sup
∥τ4∥L2(0,T )=1

(f4, τ4) ≤ C∥γr∥L2(0,T ). (51)

Theorem 3. The mapping y → a(y) is de�ned and acts continuously from
H to W . Proof. We obtain conditions for the di�erence of strong solutions
of the problem (4)�(9) {u1−u2, ρ1−ρ2, θ1−θ2, φ1−φ2} . For this purpose,
the �rst, third and fourth equations of the system (4), considered for strong
solutions {ui, ρi, θi, φi} for each i = 1, 2 are multiplied by ξ1 ∈ H1

0 (Ωt),
ξ2, ξ3 ∈ H1(Ωt), respectively, as a scalar in L2(Ωt), taking into account the
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boundary conditions, and subtract one from the other, and the equation for
the density function is rewritten as follows: (1/ρi)t = uix, i = 1, 2.

Taking into account (45)�(48), we obtain conditions for the functions
{u, ρ, θ, φ} = {u1 − u2, ρ1 − ρ2, θ1 − θ2, φ1 − φ2}:

ut + L1u+R1a = 0, a.e. on t ∈ (0, T ),

ρ = −ρ1ρ2

t∫
0

ux ds, a.e. on x ∈ Ωt, t ∈ (0, T ),

θt + L2θ +R2a+R4a+R6a = f1 + f2, a.e. on t ∈ (0, T ),

L3φ+R3a+R5a = f3 + f4, a.e. on t ∈ (0, T ),

u|t=0 = 0, θ|t=0 = 0. (52)

We obtain a priori estimates for the functions u, ρ, θ, φ and their derivatives
through the data of the problem. From the second equation (52) we �nd the
inequality

∥ρ(t)∥2 ≤ C

t∫
0

∥ux(s)∥2 ds, t ∈ (0, T ). (53)

We rewrite the �rst equation (52) as

(ut, u) + (L1u, u) + (R1a, u) = 0 a.e. on (0, T ).

Taking into account (34), (49), (50), we obtain the estimate

1

2

d

dt
∥u∥2 + C1∥u∥2H1(Ωt)

≤ ∥R1a∥H−1(Ωt)∥u∥H1(Ωt) ≤

≤ C(max
x∈Ωt

|A1|∥ρ∥+ ∥θ∥)∥u∥H1(Ωt) ≤

≤ C1

2
∥u∥2H1(Ωt)

+ C(max
x∈Ωt

|A1|2∥ρ∥2 + ∥θ∥2).

Moving the �rst term to the left and taking into account (53), we �nd

d

dt
∥u∥2 + ∥u∥2H1(Ωt)

≤ Cmax
x∈Ωt

|A1|
t∫

0

∥u(s)∥2H1(Ωt)
ds+ C∥θ∥. (54)

Let us denote by

Λ1(t) =

t∫
0

∥u(s)∥2H1(Ωt)
ds

and integrate over t from 0 to t (54), we get

∥u(t)∥2 + Λ1(t) ≤ C

t∫
0

max
x∈Ωt

|A1(s)|Λ1(s) ds+ C

t∫
0

∥θ∥ ds.



OPTIMAL CONTROL OF GAS FLOW WITH RADIATION HEAT TRANSFER B47

From here, applying Gronwall's lemma, we �nd the estimate

max
t∈(0,T )

∥u(t)∥2 +
t∫

0

∥u(t)∥2H1(Ωt)
dt ≤ C

t∫
0

∥θ∥ dt t ∈ [0, T ]. (55)

Let us rewrite the fourth equation (52) as

(L3φ,φ) + (R3a, φ) + (R5a, φ) = f3φ(a(t), t) + f4φ(b(t), t). (56)

Taking into account (44), (49), (50), we obtain the estimate

C1∥φ∥2H1(Ωt)
≤ ∥R3a∥H̃−1(Ωt)

∥φ∥H1(Ωt)+

+∥R5a∥∥φ∥+ |f3||φ(a(t))|+ |f4||φ(b(t))| ≤
C((1 + max

x∈Ω̄t

|φ1x|2)∥ρ∥+ ∥θ∥+ |f3|+ |f4|)∥φ∥H1(Ωt).

We integrate the last inequality from 0 to an arbitrary t. Taking into account
(53), (55), we obtain the estimate

t∫
0

∥φ(s)∥2H1(Ωt)
ds ≤ C∥ρ(t)∥2

t∫
0

(1 + max
x∈Ω̄s

|φ1x|2) ds+

+C

t∫
0

∥θ∥2 ds+ ∥f3∥2 + ∥f4∥2 ≤

≤ C

t∫
0

∥θ∥2 ds+ C∥γl∥2L2(0,T ) + ∥γr∥2L2(0,T ). (57)

Let us rewrite the second equation (52), taking into account Lemma 1, in
the form

1

2

d

dt
∥θ∥2 +m(t)(θ, θx) + (L2θ, θ) + (R2a, θ) + (R4a, θ) + (R6a, θ) =

= f1θ(a(t), t) + f2θ(b(t), t). (58)

Taking into account (46), (47), we �nd

1

2

d

dt
∥θ∥2 + C2

2
∥θ∥2H1(Ωt)

≤ C(1 + max
x∈Ω̄t

|u1x|2 +max
x∈Ω̄t

|A2|2)∥θ∥2+

+C(1 + max
x∈Ω̄t

|A1|2∥u1x∥2 +max
x∈Ω̄t

|θ1x|2)∥ρ∥2+

+C∥ux∥2 + C∥φx∥2 + C|f1|2 + C|f2|2. (59)

Let us denote by

Λ2(t) = ∥θ(t)∥2 +
t∫

0

∥θ(s)∥2H1(Ωs)
ds,

d(t) = 1 +max
x∈Ω̄t

(|u1x(t)|2 + |A2(t)|2 + |θ1x(t)|2 + |A1(t)|2).
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We integrate (59) from 0 to an arbitrary t and take into account that ∥u1x∥ ∈
L∞(0, T ), as a consequence of Lemma 3 d(t) ∈ L2(0, T ). From (59) we obtain

Λ2(t) ≤ C

t∫
0

d(s)Λ2(s) ds+ C∥ρ∥2L∞(0,t) + C

t∫
0

∥ux∥2 ds+ C

t∫
0

∥φx∥2 ds+

+C∥βl∥2L2(0,T ) + C∥βr∥2L2(0,T ) ≤

≤ C

t∫
0

(1 + d(s))Λ2(s) ds+ C∥βl∥2L2(0,T )+

+C∥βr∥2L2(0,T ) + C∥γl∥2L2(0,T ) + ∥γr∥2L2(0,T ).

From here, applying Gronwall's lemma, we obtain the inequality

∥θ(t)∥2 +
t∫

0

∥θ∥2H1(Ωt)
≤ C∥βl∥2L2(0,T ) + C∥βr∥2L2(0,T )+

+C∥γl∥2L2(0,T ) + ∥γr∥2L2(0,T ). (60)

Substituting (60) into the right-hand sides of (55), (57), and then into (53),
we �nd the estimate

max
t∈(0,T ]

(∥ρ(t)∥2 + ∥u(t)∥2 + ∥θ(t)∥2 + ∥φ(t)∥2)+

+

T∫
0

(∥u(s)∥2H1(Ωt)
+ ∥θ(s)∥2H1(Ωt)

+ ∥φ(s)∥2H1(Ωt)
) ds ≤

≤ C(∥γl∥2L2(0,T ) + ∥γr∥2L2(0,T ) + ∥βl∥2L2(0,T ) + ∥βr∥2L2(0,T )). (61)

Estimate (61) proves the statement of the theorem.
Theorem 4. For any z = {z1, z2, z3, z4} ∈ H there exists a Gateaux

di�erential Da(y)(z) = {v, π, η, ψ} of the mapping a(y) in the direction z
satisfying the conditions

< vt, ϕ1 >H−1(Ωt)×H1
0 (Ωt) +(ρvx, ϕ1x) + (Aπ −Rηρ, ϕ1x) = 0, (62)

∀ϕ1 ∈ H1
0 (Ωt),

π = −ρ2
t∫

0

vx ds äëÿ ï. â. (x, t) ∈ Ωt × (0, T ), (63)

< η, ϕ2t >H̃−1(Ωt)×H1(Ωt)
+m(t)[(ηx, ϕ2)+(η, ϕ2x)]+a(ρηx, ϕ2x)+a(πθx, ϕ2x)−

−((νvx −Rη)ρux, ϕ2)− (Aρvx, ϕ2)− ((Aux + bB)π, ϕ2)+

+4bkα(ρ
−1θ3η, ϕ2)− bkα(ρ

−1ψ, ϕ2)+

+βaη(a)ϕ2(a) + βbη(b)ϕ2(b) =

= −Λa(θ(a)− θb)z1ϕ2(a)− Λb(θ(b)− θb)z2ϕ2(b), (64)
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∀ϕ2 ∈ H1(Ωt),

α(ρψx, ϕ3x) + α(πφx, ϕ3x) + kα(ρ
−1ψ, ϕ3)− 4kα(ρ

−1θ3η, ϕ3)− (Bπ, ϕ3)+

+γlψ(a)ϕ3(a) + γrψ(b)ϕ3(b) =

= −(φ− θ4b )z3ϕ3(a)− (φ− θ4b )z4ϕ3(b), (65)

∀ϕ3 ∈ H1(Ωt), where

A = νux −Rθ ∈ H1,0, B = kα(θ
4 − φ)/ρ2 ∈ L∞(0, T ;L∞(Ωt)). (66)

Proof. Let z = {z1, z2, z3, z4} ∈ H and h ∈ R. Consider strong solutions of
problem (4)�(9) with initial and boundary data {y + hz; F0} and {y; F0}.
Denote by

ah = {uh, ρh, θh, φh} =
a(y + hz; F0)− a(y; F0)

h
.

In (45)�(52) we set a1 = a(y+ hz; F0), a2 = a(y; F0). It is easy to see that
ah satis�es the following system:

uht + L1uh +R1ah = 0, a.e. on (0, T ),

ρh = −ρ(y + hz; F0)ρ(y; F0)

t∫
0

uhx ds, a.e. on Ωt,

θht + L2θh +R2ah +R4ah +R6ah = f1(z1) + f2(z2), a.e. on t ∈ (0, T ),

L3φh +R3ah +R5ah = f3(z3) + f4(z4), a.e. on (0, T ), (67)

uh|t=0 = 0, θh|t=0 = 0. (68)

When h ̸= 0 the vector function ah has the following properties:

max
t∈(0,T ]

(∥ρh(t)∥2 + ∥uh(t)∥2 + ∥θh(t)∥2 + ∥φh(t)∥2)+

+

T∫
0

(∥uh(s)∥2H1(Ωt)
+ ∥θh(s)∥2H1(Ωt)

+ ∥φh(s)∥2H1(Ωt)
) ds ≤ K0, (69)

where K0 does not depend on h. Theorem 1 implies the following property
of solutions to the problem (67), (68)

∥uht∥2 + ∥θht∥2 ≤ C(h).

As a consequence of the last estimate, the condition (72) makes sense.
The estimates (69) allow us to choose a sequence of values h → 0 such

that
uh → v weak in L2(0, T ;H1

0 (Ωt)),

ρh → π weak in L2(0, T ;L2(Ωt)),

θh → η weak in L2(0, T ;H1(Ωt)),

φh → ψ weak in L2(0, T ;H1(Ωt)). (70)

The results on convergence (70) are su�cient for the limit transition in
the obtained relations (45)�(52), (67).
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We denote by a0 = lim
h→0

ah, a0 = {v, π, η, ψ}. We pass to the limit with

respect to h → 0 in the system of equations (67), and obtain the following
equalities

vt + L1v +R1a0 = 0, a.e. on (0, T ),

π = −ρ2
t∫

0

vx ds, a.e. on Ωt,

ηt + L2η +R2a0 +R4a0 +R6a0 = f1(z1) + f2(z2), a.e. on t ∈ (0, T ),

L3ψ +R3a0 +R5a0 = f3(z3) + f4(z4), a.e. on (0, T ), (71)

Here the operators L1,2,3,R1,2,3,4,5,6 are de�ned in (46)-(48), where ui, ρi, θi, ψi,
i = 1, 2 should be replaced by u, ρ, θ, ψ respectively. Note that by de�nition
of the operators L1, R1 and L2, R2,4,6 from the �rst and third equations of

the system (71) it follows that vt ∈ L2(0, T ;H−1(Ωt)), ηt ∈ L2(0, T ; H̃−1(Ωt)).

We de�ne the trace v|t=0 ∈ H−1(Ω) and the trace η|t=0 ∈ H̃−1(Ω) by the
formulas 〈

v|t=0, ϕ1
〉
H−1(Ω)×H1

0 (Ω)
= 0, ∀ϕ1 ∈ H1

0 ;〈
η|t=0, ϕ2

〉
H̃−1(Ω)×H1(Ω)

= 0 ∀ϕ2 ∈ H1. (72)

From (71), (72) follows (62)�(65).

5 Necessary optimality conditions

Consider the following problem. Given {u, ρ, θ, φ} ∈ Y , it is required to
�nd {ξ, τ, ζ, χ} that in the domain Ωt×(0, T ) satisfy the following equations:

−ξt − ν(ρξx)x + τx + [(νρux +Aρ)ζ]x = 0, (73)

τt/ρ
2 +Aξx + aθxζx + αφxχx − (Aux + bB)ζ −Bχ = 0, (74)

−ζt − a(ρζx)x +Rρuxζ −Rρξx + 4kαρ
−1θ3(bζ − χ) = 0, (75)

−α(ρχx)x + kαρ
−1(χ− bζ) = 0 (76)

and boundary conditions

ξ|t=T = 0, τ |t=T = 0, ζ|t=T = 0, x ∈ ΩT ; (77)

ξ|x=a(t) = 0, ξ|x=b(t) = 0, (78)

(−aρζx + βa(t)ζ −m(t)ζ)|x=a(t) = θ(a(t), t)− da(t),

(aρζx + βb(t)ζ +m(t)ζ)|x=b(t) = θ(b(t), t)− db(t), (79)

(−αρχx+γl(t)χ)|x=a(t) = 0, (αρχx+γr(t)χ)|x=b(t) = 0, t ∈ (0, T ). (80)

Here the functions A, B are de�ned in (66), and γl, γr, βa, βb are given and
satisfy the conditions:

0 < γ1a(t) ≤ γl(t) ≤ γ2a(t) <∞, 0 < γ1b(t) ≤ γr(t) ≤ γ2b(t) <∞, (81)

βa(t) = β0a(t) + Λaβl(t), βb(t) = β0b(t) + Λbβr(t),

where
|βl(t)| ≤ K1max{K2; |ζ(a(t), t)|},
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|βr(t)| ≤ K1max{K2; |ζ(b(t), t)|}, (82)

where γ1a, γ2a, γ1b, γ2b,∈ H1(0, T ), constants K1 > 0, K2 > 0 do not depend
on t.

Note that the adjoint system is nonlinear. The nonlinearity is expressed by
the multiplicative boundary condition for the function adjoint to temperature.
De�nition 2.A weak solution of problem (73)�(80) is a function {ξ, τ, ζ, χ}

∈ W , where W is de�ned in (13), such that

ξt ∈ L2((0, T );H−1(Ωt)),
〈
ξ|t=T , v1

〉
H−1(Ωt)×H1

0 (Ωt)
= 0 ∀v1 ∈ H1

0 (Ωt),

ζt ∈ L2((0, T ); H̃−1(Ωt)),
〈
ζ|t=T , v2

〉
H̃−1(Ωt)×H1(Ωt)

= 0 ∀v2 ∈ H1(Ωt)

and almost everywhere on (0, T ) the following conditions are satis�ed:

−
〈
ξt, v1

〉
H−1(Ωt)×H1

0 (Ωt)
+ (ρξx, v1x)−

−(τ, v1x)− ((νρux +Aρ)ζ, v1x) = 0 ∀v1 ∈ H1
0 (Ωt), (83)

τ =

∫ T

t
ρ2(Aξx + aθxζx + αφxχx − (Aux + bB)ζ −Bχ) ds, (84)

−
〈
ζt, v2

〉
H̃−1(Ωt)×H1(Ωt)

+ a(ρζx, v2x)+

+R(ρuxζ, v2)−R(ρξx, v2)+

+4κα(ρ
−1θ3(bζ − χ), v2) + I1(t) = 0 ∀v2 ∈ H1(Ωt), (85)

α(ρχx, v3x) + κα(ρ
−1(χ− bζ), v3) + I2(t) = 0 ∀v3 ∈ H1(Ωt), (86)

where

I1(t) = βa(t)[ζv2]|x=b(t) + βb(t)[ζv2]|x=a(t)− (87)

−[(θ − db)v2]|x=b(t) − [(θ − da)v2]|x=a(t), (88)

I2(t) = γr(t)[χv3]x=b(t) + γl(t)[χv3]x=a(t). (89)

Theorem 5. Let {u, ρ, θ, φ} ∈ Y and the inequality

T∫
0

(|θ(a)− da|2 + |θ(b)− db|2) dt ≤
m̃

2c
, (90)

where the constant c > 1 does not depend on t, and m̃ = min{m1, am1, αm1}.
Then there exists a weak solution to problem (73)�(80).

Proof. Note that for the weak solution of problem (73)�(80) the following
equalities are valid 〈

ξt, ξ
〉
H−1(Ωt)×H1

0 (Ωt)
= −1

2

d

dt
∥ξ∥2,

〈
ζt, ζ

〉
H̃−1(Ωt)×H1(Ωt)

= −1

2

d

dt
∥ζ∥2 −m(t)(ζ|x=b(t) − ζ|x=a(t)). (91)
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Taking into account (91), from (83)�(86), we �nd

−1

2

d

dt
∥ξ∥2 +

∫
Ωt

ρ|ξx|2 dx ≤ ∥ξx∥∥τ∥+max
x∈Ωt

|νρux +Aρ|∥ζ∥∥ξx∥,

−1

2

d

dt
∥ζ∥2 + a

∫
Ωt

ρ|ζx|2 dx+ 4καb

∫
Ωt

ρ−1θ3|ζ|2 dx ≤

≤ Rmax
x∈Ωt

|ρux|∥ζ∥∥ζx∥2 +M1R∥ξx∥∥ζ∥+ 4καM
3
1m

−1
1 ∥χ∥∥ζ∥+

+K1|ζa|2 +K1|ζb|2 +K2|ζa|3 +K2|ζb|3 + |θ(b)− dd||ζb|+ |θ(a)− da||ζa|,

α

∫
Ωt

ρ|χx|2 dx+καm−1
1

∫
Ωt

|χ|2 dx+γr|χb|2+γl|χa|2 ≤ bκαm
−1
1 ∥χ∥∥ζ∥. (92)

Here ζa = ζ|x=a(t), ζb = ζ|x=b(t), γa = γ|x=a(t), γb = γ|x=b(t).
Applying the Cauchy inequality to the right-hand sides of the inequalities

(92), and taking into account that ρ ≥ m0 > 0, we obtain the estimate

− d

dt
∥ξ∥2 − d

dt
∥ζ∥2 +m1∥ξx∥2 +m1a∥ζx∥2 + αm1∥χx∥2 ≤

≤ C∥τ∥2+C∥ζ∥2∥ζx∥2+C(1+max
x∈Ωt

|ux|2)∥ζ∥2+|θ(a)−da|2+|θ(b)−db|2, (93)

where the constant C does not depend on t. We obtain an estimate for τ :

∥τ∥2 ≤ (k/C)

T∫
t

(|ξx|2 + |ζx|2 + |χx|2) ds, (94)

where

k = C1

T∫
0

max
x∈Ωt

(|A|2 + |θx|2 + |φx|2 + |Aux + bB|2 + |B|2) ds <∞.

Let us denote m̃ = min{m1; am1; αm1},
r(t) = C(1 + max

x∈Ωt

|ux|2), δ(t) = |θ(a)− da|2 + |θ(b)− db|2,

d1(t) = ∥ξ(t)∥2 + ∥ζ(t)∥2, d2(t) =

T∫
t

(∥ξx(s)∥2 + ∥ζx(s)∥2 + ∥χx(s)∥2) ds.

(95)
Note that

d1(t) > 0, d2(t) > 0, −d ′
2(t) > 0 for a.e. t ∈ (0, T );

d1(T ) = 0, d2(T ) = 0,

T∫
0

r(t)dt <∞,

T∫
0

δ(t)dt <∞. (96)
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Let's substitute (94), (95) into (93), we get

−d ′
1(t)− m̃d ′

2(t) ≤ kd2(t) + r(t)d1(t)− cd1(t)d
′
2(t) + δ(t), t ∈ (0, T ). (97)

Here the constants k ≥ 0, c > 1.
Next, we obtain an estimate for the functions d1, d2 from inequality (97).

First, we get rid of the �rst and second terms on the right-hand side (97).
Let r1 ∈ C[0, T ] be an arbitrary function. Let us denote by

r1(t) = e
− 2k

m̃
(T−t)−

T∫
t
r(s) ds

, r0 = r1(0) ≤ r1(t) ≤ 1, t ∈ [0, T ].

Multiply (97) by r1(t) > 0 and transform to the form

−[(d1(t) +
m̃

2
d2(t))r1(t) + Λ(t)] ′ − m̃

2
d ′
2(t)r1(t) ≤ cd1(t)(−d ′

2(t))r1(t),

t ∈ (0, T ). (98)

Here

Λ(t) = −
T∫
t

r1(s)δ(s) ds, Λ(T ) = 0.

Now let us estimate the right-hand side (98). Let r2 ∈ C[0, T ] be an arbitrary
function. Let us denote by

r2(t) = e
N

T∫
t
d ′
2(s) ds

, N = const > 0, t ∈ (0, T ).

Multiply (98) by r2(t) > 0 and transform to the form

−[((d1(t) +
m̃

2
d2(t))r1(t) + Λ(t))r2(t)]

′ + (−d ′
2(t))[N − c]d1(t)r1(t)r2(t)+

+(−d ′
2(t))[

m̃r0
2

+NΛ(t)]r2(t) ≤ 0, t ∈ (0, T ). (99)

Let us set N = c and �nd the condition for the restriction of the function
Λ(t) < 0 from the inequality

m̃r0
2

+NΛ(t) ≥ m̃r0
2
ε, ε ∈ [0, 1), t ∈ (0, T ).

The last inequality will be satis�ed if

T∫
0

δ(t) dt ≤ m̃

2c
(1− ε), ε ∈ [0, 1).

We integrate (99) with respect to t from an arbitrary t to T , taking into
account the conditions d1(T ) = 0, d2(T ) = 0, Λ(T ) = 0 and (90), we obtain
the inequality

(d1(t) +
m̃

2
d2(t))r1(t) +

m̃r0
2
εr−1

2 (t)

T∫
t

(−d ′
2(s))r2(s) ds ≤ −Λ(t) ≤
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≤
T∫
0

δ(t) dt =

T∫
0

(|θ(a)− da|2 + |θ(b)− db|2) dt.

Note that r1(t) ≥ r0 > 0, −d ′
2(t) > 0, r2(t) is a monotonically increasing

function for all t ∈ [0, T ], therefore, transforming the integral term on the
left-hand side of the last inequality, we �nd

d1(t) +
m̃

2
d2(t) ≤

1

r0

T∫
0

(|θ(a)− da|2 + |θ(b)− db|2) dt. (100)

Thus, taking into account (95), from (100) we obtain

max
t∈[0,T ]

(∥ξ(t)∥2 + ∥ζ(t)∥2) +
T∫
0

(∥ξx(s)∥2 + ∥ζx(s)∥2 + ∥χx(s)∥2) dt ≤

≤ C

T∫
0

(|θ(a)− da|2 + |θ(b)− db|2) dt. (101)

From (94) we obtain the estimate

max
t∈[0,T ]

∥τ∥2 ≤ C

T∫
0

(|θ(a)− da|2 + |θ(b)− db|2) dt. (102)

Given u, ρ, θ, φ for the di�erence of functions ξ = ξ1 − ξ2, τ = τ1 − τ2,
ζ = ζ1 − ζ2, χ = χ1 − χ2, in the same way we obtain the following a priori
estimates

max
t∈[0,T ]

(∥ξ(t)∥2 + ∥ζ(t)∥2 + ∥τ∥2) +
T∫
0

(∥ξx(s)∥2 + ∥ζx(s)∥2 + ∥χx(s)∥2) dt ≤ 0.

guaranteeing the uniqueness of the solution.
The system (73)�(80) will be called the adjoint system for the problem
Theorem 6. For each solution y of the extremal problem (19) there exists

a unique solution of the adjoint problem (73)�(80) and the following relations
are valid:

βl(t) = max
{ 1

κl
Λa(t)[θ(a(t), t)− θb(t)]ζ(a(t), t); β01(t)

}
,

βr(t) = max
{ 1

κr
Λb(t)[θ(b(t), t)− θb(t)]ζ(b(t), t); β02(t)

}
(103)

almost everywhere on (0, T ), where

β0(t) = {β01(t), β02(t)} =

= {(βmin − min
t∈(0,T )

β0a)/Λa(t), (βmin − min
t∈(0,T )

β0a)/Λb(t)}. (104)
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And the variational inequality

T∫
0

[φ(a(t), t)− θ4b (t)]χ(a(t), t)[w(t)− γl(t)] dt+

+

T∫
0

[φ(b(t), t)− θ4b (t)]χ(b(t), t)[r(t)− γr(t)] dt ≤ 0 ∀{w, r} ∈ Uγ . (105)

Proof. Let us calculate the Gateaux di�erential of the functional Jκ[y] on
the element y in the direction z:

DJκ[y](z) =

T∫
0

(θ(a(t), t)− da(t))Dθ(y)|x=a(t) dt+

+

T∫
0

(θ(a(t), t)− da(t))Dθ(y)|x=b(t) dt+

+κl

T∫
0

βl(t)z1 dt+ κr

T∫
0

βr(t)z2 dt. (106)

Here Dθ(y) = η. Let ϕ1 = ξ, ϕ2 = ζ, ϕ3 = χ in (62), (64), (65), and
v1 = v, v2 = η, v3 = ψ in (83), (85), (86), respectively. Subtract the obtained
relations and integrate with respect to t from 0 to T , taking into account the
following property, which is valid for any continuous functions f(t) and g(t):

T∫
0

f(t)

T∫
t

g(s) ds dt−
T∫
0

g(t)

t∫
0

f(s) ds dt = 0

and, taking into account (106), we �nd

T∫
0

(κlβl(t)− Λa(t)[θ(a(t), t)− θb(t)]ζ(a(t), t))z1(t) dt+

+

T∫
0

(κrβr(t)− Λb(t)[θ(b(t), t)− θb(t)]ζ(b(t), t))z2(t) dt+

−
T∫
0

[φ(a(t), t)− θ4b (t)]χ(a(t), t)z3(t) dt−

−
T∫
0

[φ(b(t), t)− θ4b (t)]χ(b(t), t)z4(t) dt = DJκ[y](z). (107)
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Note that Uad is convex, so we can set z1 = w1−βl, z2 = w2−βr, z3 = w3−γl,
z4 = w4 − γr for any w ∈ Uad, where w = {w1, w2, w3, w4 }.

Let us introduce the following notations for vector functions:

β(t) = {βl(t), βr(t)} ∈ Uβ, γ(t) = {γl(t), γr(t)} ∈ Uγ , κ = {κl, κr},

Pζ(t) = {Λa(t)[θ(a(t), t)− θb(t)]ζ(a(t), t), Λb(t)[θ(b(t), t)− θb(t)]ζ(b(t), t)},

Pχ(t) = {[φ(a(t), t)− θ4b (t)]χ(a(t), t), [φ(b(t), t)− θ4b (t)]χ(b(t), t)}. (108)

Due to the necessary optimality condition y, the inequality DJκ[y](z) ≥ 0
∀z ∈ Uad holds. Taking into account (108), we rewrite (107) as follows

T∫
0

(κβ − Pζ(t))(wβ − β) dt−
T∫
0

Pχ(t)(wγ − γ) dt ≥ 0 (109)

for arbitrary wβ ∈ Uβ and wγ ∈ Uγ , where wβ = {w1, w2}, wγ = {w3, w4}.
Here κβ is a vector function with components {κ1βl, κ2βr}. In (109), the
vector function γ ∈ Uγ will be determined from the condition

T∫
0

Pχ(t)(wγ − γ) dt ≤ 0 ∀wγ ∈ Uγ . (110)

Then from (109), (110) we obtain

T∫
0

(κβ − Pζ(t))(wβ − β) dt ≥ 0 ∀wβ ∈ Uβ. (111)

It follows that either β = β0 and κβ−Pζ(t) = 0, or β = β0, or κβ−Pζ(t) = 0,
where β0 is de�ned in (104). The �rst option implies Pζ(t) = κβ0 and is of
no interest. Let us consider the cases when the following options are ful�lled:

(1) β = β0, κβ > Pζ(t);
(2) β > β0, κβ = Pζ(t).

Then the optimality conditions for β can be written as

β = κ−1max{Pζ ; κβ0}. (112)

Next, we obtain the variational maximum principle for the optimal solution
γ ∈ Uγ . Let us denote by

Pχ1(t) = [φ(a(t), t)− θ4b (t)]χ(a(t), t),

Pχ2(t) = [φ(b(t), t)− θ4b (t)]χ(b(t), t) t ∈ (0, T ).

Then from the variational inequality (111) we �nd in the standard way

Pχ1(t)(w3 − γl) + Pχ2(t)(w4 − γr) ≤ 0 ∀w3 ∈ [γ1a; γ2a],

∀w4 ∈ [γ1b; γ2b] a.e. on (0, T ).
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Inequality (109) provides an analogue of the ¾bang-bang¿ principle. Indeed,

γl =


γ2a, åñëè Pχ1 > 0;

γ1a, åñëè Pχ1 < 0;

γ2a, åñëè Pχ1 > 0;

γ1a, åñëè Pχ1 < 0;

γr =


γ2b, åñëè Pχ2 > 0;

γ1b, åñëè Pχ2 < 0;

γ1b, åñëè Pχ2 < 0;

γ2b, åñëè Pχ2 > 0.

(113)

Equalities (103), (113) together with the direct (5)�(9) and adjoint problem
(73)�(80) are necessary conditions for optimality.

6 PINN method

The method of using neural networks to solve di�erential equations proposed
in [27] consists of training neural networks to minimize a quadratic functional
G, which includes terms for the residuals of equations, initial and boundary
conditions, and additional information.

To solve optimal control problem the functional has the following form:

G = Gr +G0 +G1 +G2 +Gdata, (114)

where Gr is the term for the residual of equations (1)�(5), G0, G1, G2 are
the terms for the initial and boundary conditions (1)�(5), respectively, Gdata

is the term with additional information (1)�(5).
The terms Gr, G0, G1, G2, Gdata have the following form:

Gr =
Kr

Nr

Nr∑
i=1

[
r21(x

r
i , t

r
i ) + r22(x

r
i , t

r
i ) + r23(x

r
i , t

r
i ) + r24(x

r
i , t

r
i )
]
,

G0 =
K0

N0

N0∑
i=1

[(
û(x0i , t

0
i )− u0(x

0
i , t

0
i )
)2

+
(
ρ̂(x0i , t

0
i )− ρ0(x

0
i , t

0
i )
)2

+

+
(
θ̂(x0i , t

0
i )− θ0(x

0
i , t

0
i )
)2]

,

G1 =
K1

N1

N1∑
i=1

[(
û(x1i , t

1
i )− u1(x

1
i , t

1
i )
)2

+
(
ρ̂(x1i , t

1
i )− ρ1(x

1
i , t

1
i )
)2

+

+

(
−α∂φ̂(x

1
i , t

1
i )

∂x
+ γ̂l(φ̂(x

1
i , t

1
i )− θ4b )

)2

+

+

(
−a∂θ̂(x

1
i , t

1
i )

∂x
+ β̂l(θ̂(x

1
i , t

1
i )− θb)

)2
 ,
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G2 =
K2

N2

N2∑
i=2

[(
û(x12, t

2
i )− u2(x

2
i , t

2
i )
)2

+

+

(
a
∂θ̂(x2i , t

2
i )

∂x
+ β̂r(θ̂(x

2
i , t

2
i )− θb)

)2

+

+

(
α
∂φ̂(x2i , t

2
i )

∂x
+ γ̂r(φ̂(x

2
i , t

2
i )− θ4b )

)2
]
,

Gdata = J [a] +

∫ T

0

κl
2

∣∣∣β̂l(t)∣∣∣2 dt+ ∫ T

0

κl
2

∣∣∣β̂r(t)∣∣∣2 dt,
J [a] =

∫ T

0

(∣∣∣θ̂(0, t)− θd(0, t)
∣∣∣2 + ∣∣∣θ̂(L, t)− θd(L, t)

∣∣∣2) dt,
where xri ∈ (0, 1), tri ∈ (0, T ], x0i ∈ [0, L], tir = 0 , xr1 = 0, tr1 ∈ [0, T ],
xr2 = L, tr2 ∈ [0, T ], Nr, N0, N1, N2 � are total numbers of point sets for the
corresponding regions, Kr,K0,K1,K2 � are weighting coe�cients.

Here û, ρ̂, θ̂, φ̂, β̂l, β̂r, γ̂l, γ̂r � are approximations of unknowns by neural
networks, which have the form:

f(X) = Hswish

(
Htanh

(
Htanh

(
XW f

1

)
W f

2

)
W f

3

)
W f

4 , f = û, ρ̂, θ̂,

f(t) = Htanh

(
Htanh

(
tW f

1

)
W f

2

)
W f

3 , f = φ̂, β̂l, β̂r, γ̂l, γ̂r,

where W f
1 ,W

f
2 ,W

f
3 ,W

f
4 � are weight matrices between layers of a neural

network, Htanh(x) = (ex − e−x)/(ex + e−x), Hswish(x) = x/(1 + e−x).
Thus, the optimal control problem is reduced to the problem of minimizing

the functional G:

G→ min. (115)

7 Numerical experiments

The following characteristics were chosen for all numerical experiments:

Kr = 1, K0 = K1 = K2 = 10, kl = kr = 10−2.

When using the PINNmethod, the problem is solved in dimensionless variables.
All graphs will also be presented in dimensionless variables.

In total, Nr = 10000 collocation points were generated, while at the
boundaries and at the initial time, N0 = N1 = N2 = 200 points were
generated.

In the �rst numerical experiment, temperature observations θd are considered
at the boundary. The physical characteristics of the medium correspond to
carbon dioxide and, together with the other parameters of the problem, have
the following form:

X = 50 [m] , T = 30 [s] , (116)
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cv = 700

[
J

kg ·K

]
, R = 8.314

[
J

mole ·K

]
, (117)

µ = 5 · 10−5 [Pa · s] k = 2.2 · 10−2

[
W

m ·K

]
(118)

u0 = 10
[m
s

]
, u1 = u2 = 10 + 2t

[m
s

]
, (119)

θ0(x) = 389.7− 0.866x2 [K] ,

θb(x, t) = 389.7− 0.866x2 − 0.866t [K] , (120)

ρ0 = 1.8

[
kg

m3

]
, ρ1 = 1.8− 0.2t

[
kg

m3

]
, (121)

θd(x) = 346.4 + 0.433x [K] , (122)

During the calculation, the functional G reached the value 10−4, which
the authors consider to be corresponding to the solution of the problem. The
obtained solution is shown in �gures 1.a, 1.b, 1.c, 1.d at di�erent moments
in time.

The pro�les of the predicted boundary coe�cients are shown in Figures
2.a, 2.b. The coe�cients γ1 and γ2 are nonlinear functions, but when calculated
in the equations they passed through a mask function, turning them into
piecewise constant functions:

fmask(γ) =

{
min(γ), γ ≤ min(γ)+max(γ)

2 ,

max(γ), γ > min(γ)+max(γ)
2 .

The temperature pro�le at the observed points is shown in �gures 3.a, 3.b.
In the second numerical experiment, temperature observations θd are considered

inside the domain. The parameters of the problem are:

X = 50 [m] , T = 30 [s] , (123)

cv = 700

[
J

kg ·K

]
, R = 8.314

[
J

mole ·K

]
, (124)

k = 2.2 · 10−2

[
W

m ·K

]
µ = 5 · 10−5 [Ïà · ñ] , (125)

u0 = 10
[m
s

]
, u1 = u2 = 10 + 2t

[m
s

]
, (126)

θ0(x) = 389.7− 0.866x2 [K] ,

θb(x, t) = 389.7− 0.866x2 − 0.866t [K] , (127)

ρ0 = 1.8

[
kg

m3

]
, ρ1 = 1.8− 0.2t

[
kg

m3

]
, (128)

θd(x) = 346.4 + 0.433x [K] , (129)

The obtained solution is shown in �gures 4.a, 4.b, 4.c, 4.d at di�erent moments
in time.

The pro�les of the predicted boundary coe�cients is presented in �gures
5.a, 5.b.
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(a) t = 0 s. (b) t = 7.5 s.

(c) t = 15 s. (d) t = 30 s.

Fig. 1. Solution of the optimal control problem (115) with
parameters (116)-(122) at di�erent moments of time.

The temperature pro�le at the observed points is shown in �gures 6.a, 6.b
and 6.c.

8 Conclusion

The paper presents a numerical and theoretical study of the problem of
controlling one-dimensional viscous gas �ow. The theorem of the existence
of optimal control is proved, and the necessary conditions for the optimality
system are derived. A numerical solution to the problem of optimal control of
the viscous heat-conducting gas �ow in a one-dimensional region is obtained
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(a) γ1, γ2..
(b) β1, β2.

Fig. 2. Boundary coe�cients.

(a) x = 0. s. (b) x = 1. s.

Fig. 3. Temperature pro�le at observed points on the boundaries.

using the PINN method, based on the neural networks usage. The possibility
of solving the inverse problem of controlling one of several unknown functions
describing the state of the system is shown, where the heat transfer coe�cient
and the re�ection coe�cient from the boundary of the region are selected as
the control. The advantage of using the PINN method to solve the inverse
problem of a strongly nonlinear, singularly perturbed system of equations
is the absence of the need to linearize the system and solve the optimality
system, as well as the possibility of solving the problem on a uniform and
not excessively dense grid. It is shown that the use of the method does not
require excessive computing resources for operation.

References

[1] B. L. Rozhdestvensky, N. N. Yanenko, System of quasilinear equations and their

applications to gas dynamics Science, (1978), 688.
[2] M. F. Modest Radiative heat transfer. New York: Academic Press, (2003).



B62 E.V. AMOSOVA AND K.S. KUZNETSOV

(a) t = 0 s. (b) t = 7.5 s.

(c) t = 15 s. (d) t = 30 s.

Fig. 4. Solution of the optimal control problem (115) with
parameters (123)-(129) at di�erent moments of time.

[3] D. A. Boas, Di�use photon probes of structural and dynamical properties of turbid

media: theory and biomedical applications. A Ph.D. Dissertation in Physics, University
of Pennsylvania, (1996).

[4] A. E. Kovtanyuk, A. Yu. Chebotarev , Stationary problem of free convection with

radiative heat transfer, Di�erential equations, (2014) 50:12, 1590 - 1597.
[5] G. V. Grenkin, A. Yu. Chebotarev Non-stationary problem of free convection with

radiative heat transfer, J. Comput. Math. and Math. Phys., (2016), 28:2, 275 - 282.
[6] A. Yu. Chebotarev, G.V. Grenkin, A.E. Kovtanyuk, N.D. Botkin, K.-H. Ho�mann,

Di�usion approximation of the radiative-conductive heat transfer model with Fresnel

matching conditions, Comm. Nonlinear Sci. Num. Simulat., (2018), 57, 290-298.
[7] C. T. Kelley, Existence and uniqueness of solutions of nonlinear systems of conductive-

radiative heat transfer equations, Transport Theory Statist. Phys., (1996) 25:2, 249 -
260.

https://doi.org/10.1134/S0012266114120039
https://doi.org/10.1134/S0012266114120039
https://doi.org/10.1134/S096554251602010X
https://doi.org/10.1134/S096554251602010X
https://doi.org/10.1016/j.cnsns.2017.10.004
https://doi.org/10.1016/j.cnsns.2017.10.004
https://doi.org/10.1080/00411459608204839
https://doi.org/10.1080/00411459608204839


OPTIMAL CONTROL OF GAS FLOW WITH RADIATION HEAT TRANSFER B63

(a) γ1, γ2..
(b) β1, β2..

Fig. 5. Boundary coe�cients.

(a) t = 0 s. (b) t = 15 s.

(c) t = 30 s.

Fig. 6. Temperature pro�le at observed points inside the domain.

[8] R. Pinnau, Analysis of optimal boundary control for radiative heat transfer modelled

by the SP 1 system, Comm. Math. Sci., (2007), 5:4, 951 - 969.
[9] P. E. Druet, Existence of weak solutions to the time dependent MHD equations coupled

to heat transfer with nonlocal radiation boundary conditions, Nonlinear Anal. Real
World Appl., (2009), 5, 2914 - 2936.

[10] B. Ducomet, S. Necasova Global weak solutions to the 1D compressible Navier-Stokes

equations with radiation, Commun. Math. Anal., (2010), 8:3, 23 - 65.

https://doi.org/10.4310/cms.2007.v5.n4.a11
https://doi.org/10.4310/cms.2007.v5.n4.a11
https://doi.org/10.1016/j.nonrwa.2008.09.015
https://doi.org/10.1016/j.nonrwa.2008.09.015


B64 E.V. AMOSOVA AND K.S. KUZNETSOV

[11] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Ho�mann, Solvability of P1
approximation of a conductive-radiative heat transfer problem, Appl. Math. Comput.
, (2014), 249, 247-252.

[12] A. Yu. Chebotarev, G. V. Grenkin, A. E. Kovtanyuk, Inhomogeneous steady-state

problem of complex heat transfer, ESAIM: Math. Model. Num. Anal., (2017), 51, 2511-
2519.

[13] A. Yu. Chebotarev, A.E. Kovtanyuk, G.V. Grenkin, N. D. Botkin, K.-H. Ho�mann,
Nondegeneracy of optimality conditions in control problems for a radiative-conductive

heat transfer model, Appl. Math. Comput., (2016), 289, 371-380.
[14] A. Yu. Chebotarev, G. V. Grenkin, A. E. Kovtanyuk, N. D. Botkin, K.-H. Ho�mann,

Inverse problem with �nite overdetermination for steady-state equations of radiative

heat exchange, J. Math. Anal. Appl., (2018), 460:2, 737-744.
[15] A. E. Kovtanyuk, A. Yu. Chebotarev, Stationary problem of complex heat transfer,

Journal of Computational Mathematics and Mathematical Physics, (2014), 54:4, 711
- 719.

[16] A. Yu. Chebotarev, Optimal control of quasi-stationary equations of complex

heat transfer with re�ection and refraction conditions, Journal of Computational
Mathematics and Mathematical Physics (2023), 63:11, 1829�1838.

[17] A. Yu. Chebotarev, Optimal control problems for complex heat transfer equations

with Fresnel matching conditions, J. Comput. Math. and Math. Phys., (2022), 62:3,
381�390.

[18] A. V. Kazhikhov, Selected Works. Mathematical Hydrodynamics, Novosibirsk:
Publishing House of the M. A. Lavrentiev Institute of Hydrodynamics SB RAS, (2008),
420.

[19] A. A. Amosov, Existence of global generalized solutions of the equations of one-

dimensional motion of a viscous real gas with discontinuous data, Di�erential
Equations, (2000), 36:4, 486�499.

[20] E. V. Amosova, On the global solvability of the boundary value problem for the

equations of a viscous heat-conducting gas under radiative exchange conditions, J.
Comput. Math. and Math. Phys., (2022), 62:7, 1100�1114.

[21] S. Ya. Belov, Optimal control problems for viscous gas �ow, Dynamics of Continuous
Media, (1983), 60, 34-50.

[22] E. V. Amosova, Optimal control of viscous heat-conducting gas �ow, Sib. Zh. Ind.
Mat., (2007), 10:2, 5-22.

[23] E. V. Amosova, Optimal control of conductive gas acceleration, Sib. Zh. Ind. Mat.,
(2007), 11:4, 5-18.

[24] E. V. Amosova, Optimal control of MHD �ow of viscous heat-conducting gas, J.
Comput. Mathematics and Mathematical Phys., (2008), 48:7, 1026�1044.

[25] S. G. Pyatkov, V. A. Baranchuk, Determination of the heat transfer coe�cient in

mathematical models of heat and mass transfer, Mathematical notes, (2023), 113:1,
90-98.

[26] A. V. Kazhikhov, On boundary value problems for the Burgers equation of a

compressible �uid in domains with moving boundaries, Dynamics of a continuous
medium. Collection of scienti�c papers. Institute of Hydrodynamics, Siberian Branch
of the USSR Academy of Sciences, (1976), 26.

[27] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A deep

learning framework for solving forward and inverse problems involving nonlinear partial

di�erential equations, Journal of Computational Physics, (2019), 50:3, 686�707.

https://doi.org/10.1016/j.amc.2014.10.054
https://doi.org/10.1016/j.amc.2014.10.054
https://doi.org/10.1051/m2an/2017042
https://doi.org/10.1051/m2an/2017042
https://doi.org/10.1016/j.amc.2016.05.036
https://doi.org/10.1016/j.amc.2016.05.036
https://doi.org/10.1016/j.jmaa.2017.12.015
https://doi.org/10.1016/j.jmaa.2017.12.015
https://doi.org/10.7868/S0044466914040097
https://doi.org/10.31857/S0044466923110091
https://doi.org/10.31857/S0044466923110091
https://doi.org/10.1134/S0965542522030058
https://doi.org/10.1134/S0965542522030058
https://doi.org/10.1007/BF02754249
https://doi.org/10.1007/BF02754249
https://doi.org/10.1134/S0965542522070028
https://doi.org/10.1134/S0965542522070028
https://doi.org/10.1134/S1990478909010025
https://doi.org/10.1134/S1990478910010023
https://doi.org/10.1134/S0965542508040076
https://doi.org/10.1134/S0001434623010108
https://doi.org/10.1134/S0001434623010108
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045


OPTIMAL CONTROL OF GAS FLOW WITH RADIATION HEAT TRANSFER B65

Elena Vladimirovna Amosova

Far Eastern Federal University,

Ajax Bay 10, Russky Island,

690922, Vladivostok, Russia,

Institute of Applied Mathematics FEB RAS,

Radio str., 7,

690041, Vladivostok, Russia

Email address: el_amosova@mail.ru

Kirill Sergeyevich Kuznetsov

Far Eastern Federal University,

Ajax Bay 10, Russky Island,

690922, Vladivostok, Russia,

Institute of Applied Mathematics FEB RAS,

Radio str., 7,

690041, Vladivostok, Russia

Email address: kuznetsovks17@gmail.com


	Introduction
	Problem formulation
	Solvability of the optimal control problem
	Differential properties of control-state mapping
	Necessary optimality conditions
	PINN method
	Numerical experiments
	Conclusion

