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Abstract: This paper is devoted to a possible approach to aber-
rations correction in ultrasound images in case of heterogeneous
media. Numerical modeling is performed for a direct problem -
obtaining synthetic numerical ultrasound images using known geo-
metry and rheology of the region, as well as transducer parameters.
The numerical images reproduce distortions and artifacts that are
typical for a medium containing areas with signi�cantly di�erent
sound speeds. Convolutional neural networks are used to locate the
interface of acoustically contrasting media. The located interfaces
between areas with signi�cantly di�erent sound speeds are used to
improve the quality of the image. The results of the present work
demonstrate that it is possible to improve the quality of images
using reasonably fast algorithms based solely on information from
the ultrasound sensor. The discussion section of the paper mentions
the problems that should be addressed to allow future hardware
implementation of the proposed approach.
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1 Introduction

This work considers the possibility of correcting aberrations in a medical
ultrasound image obtained in a heterogeneous medium containing areas with
signi�cantly di�erent sound speeds. This formulation is aimed at further
application to the problems of visualizing brain structures through the bones
of the skull. Despite the long-term development of medical technology, this
particular problem is currently still extremely di�cult - existing methods
have many limitations and require extremely high quali�cations of the speci-
alist conducting the study.

In transcranial ultrasound examination of brain tissue through the skull,
the area in which the waves propagate is heterogeneous. The bone tissue of
the skull wall has rheological parameters that di�er signi�cantly from the
parameters of soft tissues. At the same time, typical algorithms of common
commercially available equipment are based on the assumption that the
speed of sound in the examined area changes slightly. This assumption is
appropriate when it comes to soft tissues. However, when examining the
brain through the skull, this basic assumption is not met, causing traditional
approaches to ultrasound imaging to produce a highly distorted pictures,
with artifacts and aberrations appearing in the image [1].

The use of ultrasound for the diagnosis of complex media is an actively
researched but very challenging area. The works [2, 3] study the possibility of
implementing acoustic tomography. This means solving the inverse problem
of reconstructing the density and the speed of sound of the medium. The
problem statement of acoustic tomography is very interesting, but extremely
computationally challenging. Its formulation is more general and more comp-
lex than the one we consider in this paper. We assume to restrict ourselves
to the correction of classical medical ultrasound images for the case when
they are acquired in a highly heterogeneous environment.

Of the related works, the paper [4] should be especially noted. It demonst-
rated the possibility of obtaining ultrasound images of point scatterers by
compensating for aberrations introduced by cranial bones. The same group
studied recently the problem of HIFU focusing through the skull [5]. However,
these works rely on the known geometry of the skull wall. Our approach is
very similar to the one described in these papers, but we aim to determine
the shape of the aberrator from the same ultrasound data that we use for
building the image.

In this paper, we consider aberrations in an ultrasound image in the
presence of an acoustically contrasting layer and the location of the object
of interest beyond the boundary of the media interface. We consider bright
point re�ectors as the objects of interest, since they can be routinely repro-
duced on a medical phantom in natural experiments.

This work aims to propose an image correction method that will be able
to operate in a near-real-time mode. This will ensure the possibility of its
applied use in the future. The approach is based on solving the problem of
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localizing the skull wall and subsequently taking its geometry into account
when constructing the image.

Convolutional neural networks are considered for skull wall localization.
Their choice is due to the rich experience of their use for related biomedical
problems and the fact that it is possible to ensure high speed of their
operation. Convolutional networks were used for ultrasound problems in [6],
the work [7] showed the possibility of their use in elastography problems, and
publications [8, 9, 10] present the experience of using convolutional networks
speci�cally for three-dimensional ultrasound data.

2 Mathematical model and numerical method

This paper uses numerical modeling for the direct problem. We consider
the ultrasonic pulse propagation in the media to obtain synthetic computed
ultrasonic images from the known geometry and rheology of the region, as
well as transducer parameters.

The acoustic approximation is used to describe the medium [11]. This
model is a signi�cant simpli�cation compared to the full system of elasticity
equations, it contains only longitudinal (pressure) waves, there are no trans-
verse (shear) waves in the acoustic approximation. Nevertheless, this app-
roach is widely used to describe ultrasonic pulses in biological tissues, since
the attenuation coe�cient of shear waves for ultrasound is four orders of
magnitude greater than that of longitudinal waves at MHz frequencies [12].

According to the acoustic model, the ultrasound signal propagation is
described by the following equations:

ρ(x)
∂v(x, t)

∂t
+∇p(x, t) = 0 in Ω, (1)

∂p(x, t)

∂t
+ ρ(x)c2(x)∇ · v(x, t) = −α(x)c(x)p(x, t) in Ω, (2)

where Ω is the computational domain, ρ(x) is the material density, v(x, t)
is the velocity vector, p(x, t) is the acoustic pressure, c(x) is the speed of
sound, α(x) is the Maxwell's attenuation coe�cient.

The wavefront construction method is used for the numerical solution.
The implementation uses the modi�cations described in [1]. This numerical
method is focused exclusively on acoustic equations, which is an acceptable
limitation for the present work. The method was demonstrated to provide
numerical ultrasound images that match the experimental data qualitatively
and quantitatively. The method allows one to describe the re�ection from
long boundaries and from point re�ectors. The boundary between the layers
and the boundaries of large pores are described using long boundaries app-
roach. The small re�ectors are considered as point ones. Signal processing
and B-scan image generation follow the algorithms described in [13].

The transducer is a matrix phased array that is located on the border of
the area under examination. It is modeled as a set of border conditions with



ON THE ABERRATIONS CORRECTION IN ULTRASOUND IMAGES A21

a given dependency of pressure versus time. The signal from a single element
of array is described by the following formula:

σborder
zz = P · e−(t−t0)2/2t2pulse · cos(ω(t− t0)), t > t0;

σborder
zz = 0, t < t0,

where t is the current time, t0 is the starting time of the signal (which is used
to model the delay for the phased array), σborder

zz is the corresponding stress
tensor component on the border node, P is the maximum amplitude of the
wavefront, parameter ω is the carrier frequency, parameter tpulse corresponds
to the width of the pulse.

The �rst step of the aberration correction within the framework of this
work is to determine the shape of the interface between acoustically contras-
ting layers. The input data for solving the inverse problem is the response
from the medium registered by the matrix ultrasonic sensor. The output data
of the inverse problem is the position of the interface between two media.
Convolutional neural networks are used to solve this inverse problem.

To train the neural networks, a synthetic data set was formed from the
results of 1024 calculations of the direct problem. The calculations varied the
position and shape of the acoustic contrast layer, the number and position
of large pores in the model skull wall, and the number and position of small
bright re�ectors in the tissues forming the background signal. Separately
prepared examples were used for testing neural networks, these samples were
not included in the training set.

In this paper, 2D and 3D networks are used in order to compare the
results. All convolutional networks follow the common UNet architecture
[14]. The depth of both 2D and 3D networks was 4 blocks. In the case of
2D network, the volume of three-dimensional data is represented as a set
of two-dimensional slices [15]. When processing each slice, three channels
are presented to the network input - the target slice and two neighboring
ones, which to some extent allows the network to obtain information about
the three-dimensional environment of objects on the slice. In the case of 3D
network, 3D data is given as input, and a patch-based approach [16, 17] is
used as it allows �exibility in managing the RAM requirements on the GPU
when processing large size input data. The parameters of 3D network are
presented in the Table 1.

3 Numerical results

First, the convolutional network is trained to detect the boundary between
acoustically contrast layers.

The direct problem for this stage involves the calculation of ultrasonic
signal propagation in a region containing the boundary between acoustically
contrasting layers. The calculation region is a parallelepiped. The upper edge
of the parallelepiped corresponds to the outer boundary of the region, in the
center of which the matrix ultrasonic sensor is located. Outside the area of
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Table 1. Hyperparameters for 3D neural network

Parameter Value
Activation ReLU
Normalization Batch
Convolution kernel size 3
Convolution kernel stride 1
Convolution type same (middle)
Number of blocks 4
Input tensor size 16x16x512
Output tensor size 16x16x512
Input channels 1
Output channels 1

contact with the transducer, the upper edge is modeled as a free surface.
The external pressure pro�le is de�ned in the transducer location region. A
non-re�ective boundary condition is set for the other three boundaries of the
computational domain.

It is assumed that the boundary between the two acoustically contrasting
layers is smooth and can have an arbitrary shape. In addition, the upper
layer contains many small re�ectors that create background noise in the
�nal ultrasound image, as well as a number of large pores, the response from
which is comparable in intensity to the re�ection from the boundary between
the layers.

The speed of sound in both layers is constant. The upper layer is harder
and the speed of sound in it is assumed to be 3.0 km/s. The lower layer is
softer, with a sound velocity of 1.5 km/s. The number of small re�ectors in
the calculations varied from 100 to 2500. The number of large pores varies
from 5 to 50.

When training a neural network, the matrix sensor has a square shape of
24x24 elements. The sensor emits a signal with a frequency of 3 MHz. The
sampling frequency at signal receive is 45 MHz. The �nal dimensionality
of the received data is 24x24x1024. Here 24x24 is the physical dimensions
of the sensor, and 1024 is the number of time samples recorded during the
experiment by each sensor element.

Figure 1 shows the interface pro�le in one of the calculations. Four slices
of full three-dimensional data are shown - the position of the boundary under
the rows of sensor elements from the 5th to the 8th. On the vertical axis are
the 24 matrix sensor elements in a given slice. On the horizontal axis - time
samples. In the �gure the image is cropped to the �rst 400 samples from the
full set of 1024 samples.

Figure 2 shows the unprocessed ultrasound image for this calculation. The
overall noise, which is visually seen as �uctuations in the gray background
intensity, is due to the large number of small re�ectors in the medium. The
interface is visible as a region of intense response of variable amplitude.



ON THE ABERRATIONS CORRECTION IN ULTRASOUND IMAGES A23

Individual bright responses from large pores at depths of 50, 70, 90, 110, 130,
and especially 230 (the last two slices in the �gure) are visible. These bright
responses especially strongly interfere with the automatic image processing,
as they even exceed in intensity the response from the desired boundary.

Fig. 1. Boundary location

Fig. 2. Unprocessed B-scan
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Figures 3 and 4 show the results of the convolutional networks of 2D and
3D structure.

One can see that the boundary is correctly located in both scenarios, but
its blurring is signi�cantly less for the 3D network. It is worth noting that the
3D network is almost una�ected by noise and interference in the input signal,
both random and caused by the presence of large bright re�ectors. The 2D
network results show a signi�cant number of borders identi�ed in the region
before the desired boundary - where the large pores are located. This is not
any random error - the network is solving a segmentation problem to detect
acoustically contrasting boundaries, and pore boundaries also fall into this
category. However, this e�ect is undesirable. With the 3D network, problems
of this nature are virtually eliminated. This is because the 3D structure of
the input data allows the convolutional network to fully utilize the spatial
information about the re�ectors and to learn to ignore geometrically small
objects. The total execution time of all operations on a single 3D image using
the 3D network was about 0.1 seconds on commercially available graphics
cards.

Fig. 3. Prediction of 2D network

It was noted above that a patch-based approach was used for 3D network,
the input was a tensor of dimension 16x16x512. This allows us to expect
that it is possible to transfer the trained network to a sensor of a di�erent
geometry while maintaining the sampling rate and distance between neigh-
boring sensor elements. To test this hypothesis, further experiments on aber-
ration correction were performed for a sensor of 32x32 elements.

Di�erent approaches can be used to correct aberrations. We used the
following sequence of operations.
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Fig. 4. Prediction of 3D network

(1) A preliminary ultrasound image is formed using delay and sum beam-
forming. At this stage, a �xed sound velocity of 1500 m/s is used,
which is typical for soft tissue. This image is fully subject to aberra-
tions in the region behind the acoustically contrast prism.

(2) The preliminary image is used to determine the geometry and position
of the aberrator. The convolutional network is used for this stage as
described above. The input of the neural network is the preliminary
image. The output is the position of the two aberrator boundaries �
front and back.

(3) The resulting aberrator shape is used to form the �nal image. A
simple delay and sum beamforming is applied again, but it is corrected
to take into account that the signal in the medium propagates in two
regions with di�erent sound velocities. This allows compensating the
phase di�erence on the elements of the phased array and restoring
the quality of focusing behind the acoustically contrast prism.

An example of how such an algorithm works is presented below. Figure
5 shows an image of a medium with three bright small re�ectors obtained
without an aberrator. The three model re�ectors are clearly distinguishable.
Figure 6 shows an image obtained for the same medium when scanning
through an aberrator. The sound velocity in the main volume of the medium
is 1500 m/s, in the prism � 3000 m/s. It can be seen that in this case the
di�erence in travel time introduced by the aberrator leads to a signi�cant
blurring of the images of re�ectors. The e�ect is especially pronounced for the
leftmost re�ector, which is closest to the prism. Its image becomes faintly
distinguishable even for this ideal test case. In a real problem statement,
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where background noise is inevitably present, it is likely that this re�ector
would become completely indistinguishable against the overall gray back-
ground of the ultrasound image. Figure 7 shows the result of image correction
using the proposed approach. It can be seen that the image quality of all
re�ectors is signi�cantly improved.

Fig. 5. Results of scanning without aberrator

Fig. 6. Results of scanning with aberrator

4 Discussion and concluding remarks

The results of the present work demonstrate that it is possible to improve
the quality of ultrasound images in the case of heterogeneous medium using
reasonably fast algorithms based solely on information from the ultrasound
transducer.
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Fig. 7. Results of scanning with aberrator and correction applied

It should be noted that the e�ectiveness of the proposed approach depends
on a number of factors.

Preliminary image formation is based on the assumption that the aberrator
boundaries are smooth enough and oriented in such a way that they re�ect
a signi�cant part of the signal energy in the direction of the sensor. This
assumption seems to be acceptable for the target problem, since in reality
the wall of the human skull is exactly like this at any reasonable orientation
of the sensor. Nevertheless, this point must be taken into account if the same
approach is to be transferred to other areas where contrast inclusions may
have a less convenient shape.

Formation of the �nal image strongly depends on the quality of aberrator
shape detection. If its boundaries are poorly de�ned, the correction of the
phase di�erence will not be su�cient. This limitation again seems to be
acceptable, because in case of bad correction the �nal image will not contain
any ¾hallucinations¿, but simply will be blurred, which is easily noticeable
visually. At the same time, a small change in the sensor position will result
in a change in the input data for determining the shape of the aberrator,
which will give a new result for localizing its boundaries. Thus, in a few
movements of the sensor, it is possible to �nd a position in which the quality
of the aberrator identi�cation is su�cient to obtain good focusing.

Generally speaking, using delay and sum beamforming with correction
only for the speed of sound in the medium is not an accurate approach. Such
an algorithm assumes that the shortest path from the phased array element
to the re�ector in the medium is a rectilinear signal propagation. However,
when there is a large di�erence in the sound velocities in the two regions,
and the geometry of the regions is complex, the shortest path may not be
rectilinear. The phase correction in the proposed approach takes into account
the di�erences in sound velocity in the two materials, but does not take into
account the di�erences in the path from a straight line. This explains the
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incomplete compensation of aberrations in �gure 7 compared to �gure 5.
Nevertheless, this approximation allows to obtain a good image correction
using a simple algorithm with low computational costs.

The results of this work can be used to create new algorithms for construc-
ting ultrasound images using methods for compensating distortions caused
by di�erences in sound velocities in tissues. However, it should be noted that
an implementation of the proposed approach may be di�cult in real life.
Typical ultrasound equipment does not provide an access to raw data from
the elements of the phased array. The processing of individual elements data
occurs inside the sensor. Only the formed image is transferred to the host
system and available programmatically. That is, the hardware implementa-
tion of the proposed approach will require signi�cant engineering work in
any case � either it will be necessary to transfer a di�erent set of data to
the host system, or to implement the entire proposed algorithm inside the
sensor. Therefore, practical implementation of the proposed ideas requires
further work.
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