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Abstract: This paper considers the time of fractional derivatives
thermoporoelasticity in a fracture and heterogeneous media. The
mathematical model is formulated as a related system of equations
that regulate the pressure of the �uid, temperature and mechanical
displacement. We use the �nite element method (FEM) with a �ne
mesh for spatial sampling integrated with a discrete fracture model
(DFM) to capture the complexity of fractures in the heterogeneous
media. Temporary sampling is achieved using an implicit scheme
of �nal di�erences. To increase the e�ectiveness of computing tech-
nology, we use the Generalized Multiscale Finite Element Method

Tyrylgin A.A., Kalachikova U.S., Bai H., Alikhanov A.A., Yakobovskiy

M.V. Numerical simulation of the time fractional thermoporoelasticity

problem using online generalized multiscale finite element method.

© Tyrylgin A.A., Kalachikova U.S., Bai H., Alikhanov A.A., Yakobovskiy

M.V.

The work is supported by the grant of Russian Science Foundation no.
23-41-00037(https://rscf.ru/project/23-41-00037/) and North-Caucasus Center for
Mathematical Research under agreement no. 075-02-2025-1770 with the Ministry of
Science and Higher Education of the Russian Federation. The research of HB is supported
by the Postgraduate Scienti�c Research Innovation Project of Xiangtan University
(XDCX2024Y160) and the Chinese Government Scholarship (CSC No. 202408430165).

Received February, 27, 2025, Published August, 30, 2025.
A44

https://orcid.org/0000-0002-2157-0921
https://orcid.org/0000-0002-1561-449X
https://orcid.org/0009-0001-5048-5339
https://orcid.org/0000-0003-0684-6667


ONLINE GMSFEM FOR THERMOPOROELASTICITY PR. A45

(GMSFEM) for coarse grid approximation, e�ectively reducing the
dimension of the problem while maintaining accuracy. A multiscale
approach uses precalculated o�ine functions and dynamically up-
dated online functions to process local residues, ensuring a rapid
decrease in errors. Numerical experiments demonstrate the ability
of the method to accurately imitate the temporal processes in
a fractured porous media, reaching signi�cant computing savings
without lowering the accuracy of the solution.

Keywords: thermoporoelasticity, fractional derivatives, multiscale
methods, discrete fracture model, heterogeneous media, �nite dif-
ference scheme.

1 Introduction

Thermoporoelasticity, a �eld that blends thermal, hydraulic, and mecha-
nical interactions within porous materials, plays a key role in understanding
subsurface environments like geothermal systems, hydrocarbon reservoirs,
and sites used for environmental purposes [1, 2, 3, 4]. It focuses on the
intricate dynamics between �uid movement, heat conduction, and mechanical
shifts within porous networks, which are frequently characterized by hetero-
geneity and the presence of fractures.

The inclusion of fractional derivatives in the mathematical models of these
processes has garnered considerable attention because of their ability to
represent memory e�ects and long-term temporal dependencies, which are
frequently observed in geological formations [5, 6, 7]. Compared to traditional
integer-order derivatives, fractional derivatives provide a more re�ned descrip-
tion of history-dependent behaviors [8, 9, 10]. This feature is especially useful
for modeling phenomena like anomalous di�usion and stress relaxation, which
are crucial in many engineering and geophysical contexts.

In media characterized by heterogeneity and the presence of fractures,
these complexities occur across multiple scales. Traditional numerical mode-
ling approaches often require highly detailed discretization, leading to heavy
computational demands, especially in large-scale simulations. To address
these issues, the Generalized Multiscale Finite Element Method (GMsFEM)
has emerged as a robust technique [11, 12, 13, 14, 15, 16]. GMsFEM enables
e�cient modeling of both macroscopic behaviors and small-scale heteroge-
neities by utilizing coarse grid approximations enhanced by locally computed
basis functions that capture the essential system features. This method
is especially well-suited for fractured porous media, where it is critical to
accurately model the interactions between the porous matrix and fractures
[17, 18, 19].

A signi�cant advancement in this study is the integration of online multi-
scale methods within the GMsFEM framework [20, 21, 22]. The online multi-
scale approach allows for the dynamic updating of basis functions based on
residual information during the simulation. This adaptive strategy enhances
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the accuracy and e�ciency of the model by re�ning the multiscale basis
functions as the simulation progresses, focusing computational resources on
areas where they are most needed.

In this study, we develop and apply a multiscale model reduction technique
for the time fractional thermoporoelasticity problem in fractured and hetero-
geneous media. By integrating fractional time derivatives and online multi-
scale methods into the GMsFEM framework, we aim to capture the memory
e�ects and complex interactions between �uid �ow, heat transfer, and mecha-
nical deformations in a computationally e�cient manner. Additionally, the
use of a Discrete Fracture Model (DFM) within this framework enhances the
ability to explicitly model fractures, providing a more accurate and detailed
simulation of thermoporoelastic processes in fractured media.

The structure of this paper is as follows: Section 2 outlines the mathemati-
cal formulation of the thermoporoelasticity problem, incorporating fractional
derivatives. Section 3 discusses the �ne grid approximation using the �nite
element method, while Section 4 details the coarse grid approximation and
the construction of multiscale basis functions using GMsFEM, including the
implementation of online multiscale methods. Numerical results demonstra-
ting the e�ectiveness of the proposed method are presented in Section 5.
Finally, the study concludes with a summary in the concluding section.

2 Problem formulation

For the mechanics of the thermoporoelastic multicontinuum media, we
have the following coupled system of equations

cm
∂αmpm
∂tαm

+ γm
∂βm divu

∂tβm
−∇ · (km∇pm) + ηmf (pm − pf ) = 0, Ω× (0, T ),

cf
∂αf pf
∂tαf

+ γf
∂βf divu

∂tβf
−∇ · (kf∇pf ) + ηmf (pf − pm) = 0, γ × (0, T ),

sm
∂ζmTm

∂tζm
+ δm

∂βm divu

∂tβm
+ CwVm · ∇Tm −∇ · (χm∇Tm)+

+Υmf (Tm − Tf ) = 0, Ω× (0, T ),

sf
∂ζfTf

∂tζf
+ δf

∂βf divu

∂tβf
+ CwVf · ∇Tf −∇ · (χf∇Tf )+

+Υmf (Tf − Tm) = 0, γ × (0, T ),

− divσ(u) + γm∇pm + γf∇pf + δm∇Tm + δf∇Tf = 0, Ω× (0, T ),
(1)

where σ denotes the stress tensor, u the displacement, γi the Biot coe�cient,
Mi the Biot modulus (ci =

1
Mi

) for the i-th component. In the case of a linear
elastic stress-strain constitutive relation, we have

σ(u) = 2µε(u) + λ divuI, ε(u) =
1

2
(∇u+∇uT ),
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where ε is the strain tensor, λ and µ are the Lame's coe�cients. Here we
have a volume force source that is proportional to the sum of the pressure
gradients for each continuum. The �rst continuum describes a �ow in the
matrix of the porous media and the second continuum relates to the �ow in
low dimensional fracture networks.

3 Fine grid approximation using FEM

This section presents a �ne grid �nite element approximation for the two-
dimensional time fractional thermoporoelasticity problem. For the temporal
approximation, we use uniform temporal grid with nodes tn = nτ(n =
0, 1, 2, . . . , NT ), where T denotes the �nal time for simulation and τ =
T
NT

denotes temporal grid size. The values of pressures, temperature and

displacement at the temporal notes tn = nτ(n = 0, 1, 2, . . . , NT ) are denoted
by (pni , T

n
i ,u

n) = (pi(t
n), Ti(t

n),u(tn)), where pi and Ti denote the pressure
and temperature of the ith continuum respectively. We begin with a variati-
onal form of the system (1). Then we exhibit the discrete system in matrix
form. The stability and convergence of the time derivative di�erence scheme
can be seen in this paper [23].
Variational form. For the spatial approximation, we use the continuous

Galerkin �nite element method with linear basis functions. Let us de�ne
functional spaces

W =
[
H1 (Ω)

]d
, Vm = H1 (Ω) , Vf = H1 (γ) ,

and pm ∈ Vm, pf ∈ Vf , Tm ∈ Vm, Tf ∈ Vf ,u ∈ W.
We multiply the system (1) by test functions vm ∈ Vm, vf ∈ Vf , zm ∈

Vm, zf ∈ Vf , w ∈ W, respectively. The variational form of the time fractional
thermoporoelasticity problem in multicontinuum media can be written as
follows: given (p0m, p0f , T

0
m, T 0

f ,u
0) ∈ Vm × Vf × Vm × Vf ×W iteratively �nd

(pnm, pnf , T
n
m, Tn

f ,u
n) ∈ Vm × Vf × Vm × Vf ×W such that

ξ(αi)
τ mp

i (p
n
i − pn−1

i , vi) + ξ(αi)
τ

n∑
j=2

ξ
(αi)
j−1m

p
i (p

n−j+1
i − pn−j

i , vi)+

+ξ(βi)
τ dpi (u

n − un−1, vi) + ξ(βi)
τ

n∑
j=2

ξ
(βi)
j−1d

p
i (u

n−j+1 − un−j , vi)+

+bpi (p
n
i , vi) +

∑
j ̸=i

qpij(p
n
i − pnj , vi) = 0, ∀vi ∈ Vi, i = m, f,

ξ(ζi)τ mT
i (T

n
i − Tn−1

i , zi) + ξ(ζi)τ

n∑
j=2

ξ
(ζi)
j−1m

T
i (T

n−j+1
i − Tn−j

i , zi)+

+ξ(βi)
τ dTi (u

n − un−1, zi) + ξ(βi)
τ

n∑
j=2

ξ
(βi)
j−1d

T
i (u

n−j+1 − un−j , zi)+
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+bTi (T
n
i , zi) +

∑
j ̸=i

qTij(T
n
i − Tn

j , zi) = 0, ∀zi ∈ Vi, i = m, f,

a(un,w) +
∑
j

gpi (p
n
i ,w) +

∑
j

gTi (T
n
i ,w) = 0, ∀w ∈ W,

For the bilinear forms, we have

bpi (pi, vi) =

∫
Ωi

ki∇pi · ∇vidx, mp
i (pi, vi) =

∫
Ωi

cipividx,

qpij(pi − pj , vi) =

∫
Ωi

ηij(pi − pj)vidx, dpi (u, vi) =

∫
Ωi

γi divuvidx,

bTi (Ti, zi) =

∫
Ωi

χi∇Ti · ∇zidx+

∫
Ωi

Cw(Vi · ∇Ti)zidx, mT
i (Ti, zi) =

∫
Ωi

siTizidx,

qTij(Ti − Tj , zi) =

∫
Ωi

Υij(Ti − Tj)zidx, dTi (u, zi) =

∫
Ωi

δi divuzidx,

a(u,w) =

∫
Ω

σ(u) · ε(w)dx,

gpi (pi,w) =

∫
Ωi

γi∇piwdx,

gTi (Ti,w) =

∫
Ωi

δi∇Tiwdx,

for i, j = m, f , with Ωm = Ω,Ωf = γ.

4 Coarse grid approximation using GMsFEM

We use the Generalized Multiscale Finite Element Method (GMsFEM) to
construct the coarse grid approximation of the time fractional thermoporo-
elasticity problem in a fractured and heterogeneous medium. In this computa-
tional algorithm, the �rst four steps are o�ine (preprocessing) steps for a
given fracture geometry and heterogeneity.

O�ine stage

• Coarse grid and local domains construction.
• The solution of the local problems with di�erent boundary conditions
to construct a snapshot space in each local domain.

• An o�ine space construction via the solution of the local spectral
problems on the snapshot space.

• Generation of the projection matrix.

Next, we move on to the online stage that includes the construction of
the coarse grid system using the precalculated projection matrix with o�ine
multiscale basis functions.

Online stage

• Construction of the coarse grid system using projection matrix.
• Solving the problem on the coarse grid at the current time step.
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• The multiscale space enrichment by calculation of the online basis
functions, where we solve a coupled problem in each local domain
using local residual information. We enrich the o�ine space and
update the projection matrix using the obtained online basis func-
tions. After that, we repeatedly solve the current time step problem
on the coarse grid to update the solution.

• Moving to the next time step.

Let T H be the partition of the domain on the coarse grid and Kj be the
jth cell of T H , we have

T H =
⋃
j

Kj .

Let NH
v denote the number of nodes of T H . For each coarse grid node,

we can de�ne local domain ωl(l = 1, . . . , NH
v ), which can be regarded as a

combination of the several coarse grid cells that each of them contains a lth
node.

We start with the construction of the o�ine space, where the generation
of the o�ine basis functions for pressure, temperature and displacements
are given separately. For more detailed construction of multiscale bases, see
[24]. The o�ine basis construction contains two steps: (1) snapshot space
construction and (2) solution of the local spectral problem on snapshot space.
Coarse grid system. With the multiscale basis functions for pressures,

temperatures, and displacements constructed as described above, we de�ne
the projection matrix:

R =

Rp 0 0
0 RT 0
0 0 Ru

 . (2)

Then we obtain the following reduced order model:
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ξ(αi)
τ MH,p

i pH,n
i + ξ(βi)

τ DH,p
i uH,n +BH,p

i pH,n
i +

∑
j ̸=i

QH,p
ij (pH,n

i − pH,n
j )

= ξ(αi)
τ MH,p

i pH,n−1
i − ξ(αi)

τ

n∑
j=2

ξ
(αi)
j−1M

H,p
i (pH,n−j+1

i − pH,n−j
i )

+ξ(βi)
τ DH,p

i uH,n−1 − ξ(βi)
τ

n∑
j=2

ξ
(βi)
j−1D

H,p
i (uH,n−j+1 − uH,n−j),

ξ(ζi)τ MH,T
i TH,n

i + ξ(βi)
τ DH,T

i uH,n +BH,T
i TH,n

i +
∑
j ̸=i

QH,T
ij (TH,n

i − TH,n
j )

= ξ(ζi)τ MH,T
i TH,n−1

i − ξ(ζi)τ

n∑
j=2

ξ
(ζi)
j−1M

H,T
i (TH,n−j+1

i − TH,n−j
i )

+ξ(βi)
τ DH,T

i uH,n−1 − ξ(βi)
τ

n∑
j=2

ξ
(βi)
j−1D

H,T
i (uH,n−j+1 − uH,n−j),

∑
j

GH,p
j pH,n

j +
∑
j

GH,T
j TH,n

j +AH
u uH,n = 0,

(3)

where

MH,p
i = RMp

i R
T , BH,p

i = RBp
i R

T , QH,p
ij = RQp

ijR
T ,

DH,p
i = RDp

iR
T , MH,T

i = RMT
i R

T , BH,T
i = RBT

i R
T ,

QH,T
ij = RQT

ijR
T , DH,T

i = RDT
i R

T , GH,p
j = RGp

jR
T ,

GH,T
j = RGT

j R
T , AH

u = RAuR
T .

(4)

Following the acquisition of solutions at the coarse scale, we proceed to
reconstruct the solutions at the �ne scale:

pms,n
i = RT pH,n

i , Tms,n
i = RTTH,n

i , ums,n = RTuH,n.

In the method outlined above, it's worth noting that we exclusively store and
utilize information pertaining to the coarse-grid solutions from the preceding
time step.
Online enrichment of multiscale space To enhance the accuracy of

the proposed multiscale approximation, we introduce the development of
online residual-based multiscale basis functions. These coupled online basis
functions are computed after solving the coarse-scale system in the o�ine
space, utilizing residual information during the online stage. To construct the
local residual-based online multiscale basis functions, we solve the following

local problems in each ωl. Find (Υl,p
k ,Υl,u

k ,Υl,T
k ) ∈ W h(ωl)×V h(ωl)×V h(ωl)
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such that

ξ
(αωl

)
τ mp

ωl
(Υl,p,n

k , v) + ξ
(αωl

)
τ

n∑
j=2

ξ
(αωl

)

j−1 mp
ωl
(Υl,p,n−j+1

k , v) + ξ
(βωl

)
τ dpωl

(Υl,u,n
k , v)+

+ξ
(βωl

)
τ

n∑
j=2

ξ
(βωl

)

j−1 dpωl
(Υl,u,n−j+1

k , v) + bpωl
(Υl,p,n

k , v) = rp,k−1
ωl

, ∀v ∈ V,

ξ
(ζωl

)
τ mT

ωl
(Υl,T,n

k , z) + ξ
(ζωl

)
τ

n∑
j=2

ξ
(ζωl

)

j−1 mT
ωl
(Υl,T,n−j+1

k , z) + ξ
(βωl

)
τ dTωl

(Υl,u,n
k , z)+

+ξ
(βωl

)
τ

n∑
j=2

ξ
(βωl

)

j−1 dTi (Υ
l,u,n−j+1
k , z) + bTωl

(Υl,T,n
k , z) = rT,k−1

ωl
, ∀z ∈ V,

a(Υl,u,n
k ,w) +

∑
j

gpωl
(Υl,p,n

k ,w) +
∑
j

gTωl
(Υl,T,n

k ,w) = ru,k−1
ωl

, ∀w ∈ W,

with

V h(ωl) = {v ∈ [H1(ωl)]
d : v = 0 on ∂ωl}, Wh(ωl) = {w ∈ H1(ωl) : w = 0 on ∂ωl}.

Here, we have the following bilinear forms

bpωl
(p, v) =

∫
ωl

km∇pm · ∇vdx+

∫
γωl

kf∇pf · ∇vfdx,

mp
ωl
(p, v) =

∫
ωl

cmpmvdx+

∫
γωl

cfpfvfdx,

dpωl
(u, v) =

∫
ωl

γm divuvdx+

∫
γωl

γf divuvfdx, aωl
(u,w) =

∫
ωl

σ(u) · ε(w)dx,

bTωl
(T, z) =

∫
ωl

χm∇Tm · ∇zdx+

∫
ωl

Cw(Vm · ∇Tm)zdx+

+

∫
γωl

χf∇Tf · ∇zfdx+

∫
γωl

Cw(Vf · ∇Tf )zfdx,

dTωl
(u, z) =

∫
ωl

δm divuzdx+

∫
γωl

δf divuzfdx,

gpωl
(p,w) =

∫
Ωi

γm∇pmwdx+

∫
γωl

γf∇pfwfdx,

gTωl
(T,w) =

∫
ωl

δm∇Tmwdx+

∫
γωl

δf∇Tfwfdx, mT
ωl
(T, z) =

∫
ωl

smTmzdx+

for i, j = m, f , with Ωm = Ω,Ωf = γ. and the right-hand side is based on
the local residual information

rp,kωl
= −ξ

(αωl
)

τ mp
ωl
(pk,n−1

ms − p̂n−1
ms , v)− ξ

(αωl
)

τ

n∑
j=2

ξ
(αωl

)

j−1 mp
ωl
(pk,n−j

ms − p̂n−j
ms , v)

−ξ
(βωl

)
τ dpωl

(uk,n−1
ms − ûn−1

ms , v)− ξ
(βωl

)
τ

n∑
j=2

ξ
(βωl

)

j−1 dpωl
(uk,n−j

ms − ûn−j
ms , v)− bpωl

(pk,nms , v),
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rT,k
ωl

= −ξ
(αωl

)
τ mT

ωl
(T k,n−1

ms − T̂n−1
ms , z)− ξ

(αωl
)

τ

n∑
j=2

ξ
(αωl

)

j−1 mT
ωl
(T k,n−j

ms − T̂n−j
ms , z)

−ξ
(βωl

)
τ dTωl

(uk,n−1
ms − ûn−1

ms , z)− ξ
(βωl

)
τ

n∑
j=2

ξ
(βωl

)

j−1 dTωl
(uk,n−j

ms − ûn−j
ms , z)− bTωl

(T k,n
ms , z),

ru,k = −a(uk,n
ms ,w)−

∑
j

gpωl
(pk,nms ,w)−

∑
j

gTωl
(T k,n

ms ,w),

Using the constructed coupled online basis functions, we enrich the o�ine spaces

Vms, Vms and Wms by adding Υl,p
k , Υl,T

k and Υl,u
k

Vms = span{ϕl,j , Υl,p
k , l = 1, ..., NH

v , j = 1, ...,M l,p, k = 1, 2, ..., },

Vms = span{ϕl,j , Υl,T
k , l = 1, ..., NH

v , j = 1, ...,M l,T , k = 1, 2, ..., },

Wms = span{Φl,j , Υl,u
k , l = 1, ..., NH

v , j = 1, ...,M l,u, k = 1, 2, ...},

(5)

where k is the number of online iteration for the current time step. We will update
online basis functions for some time steps.

Next, we present an algorithm for the multiscale method with the online residual-
based multiscale basis functions. Let Roff be the projection matrix constructed
using o�ine multiscale basis functions

Roff =

Roff
p 0 0

0 Roff
T 0

0 0 Roff
u

 ,

Roff
p = (ϕ1,1, ..., ϕNH

v ,MNH
v ,p

)T .

Roff
T = (ϕ1,1, ..., ϕNH

v ,MNH
v ,T

)T .

Roff
u = (Φ1,1, ...,ΦNH

v ,MNH
v ,u

)T ,

Multiscale algorithm with online enrichment

• De�ne projection matrix R = Ř for the current time step n with R = Roff

for n = 0 (Ř is the projection matrix from the previous time step).
• Construct and solve the coarse-scale problem at the current time step.
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� If we want to add/update online basis functions for the current time
step, we solve

ξ(αi)
τ MH,k−1,p

i pH,k,n
i + ξ(βi)

τ DH,k−1,p
i uH,k,n +BH,k−1,p

i pH,k,n
i

+
∑
j ̸=i

QH,k−1,p
ij (pH,k,n

i − pH,k−1,n
j )

= ξ(αi)
τ MH,k−1,p

i pH,k,n−1
i − ξ(αi)

τ

n∑
j=2

ξ
(αi)
j−1M

H,k−1,p
i (pH,k,n−j+1

i − pH,k−1,n−j
i )

+ ξ(βi)
τ DH,k−1,p

i uH,k,n−1 − ξ(βi)
τ

n∑
j=2

ξ
(βi)
j−1D

H,k−1,p
i (uH,k,n−j+1 − uH,k−1,n−j),

ξ(ζi)τ MH,k−1,T
i TH,k,n

i + ξ(βi)
τ DH,k−1,T

i uH,k,n +BH,k−1,T
i TH,k,n

i +

+
∑
j ̸=i

QH,k−1,T
ij (TH,k,n

i − TH,k−1,n
j )

= ξ(ζi)τ MH,k−1,T
i TH,k,n−1

i − ξ(ζi)τ

n∑
j=2

ξ
(ζi)
j−1M

H,k−1,T
i (TH,k,n−j+1

i − TH,k−1,n−j
i )

+ ξ(βi)
τ DH,k−1,T

i uH,k,n−1 − ξ(βi)
τ

n∑
j=2

ξ
(βi)
j−1D

H,k−1,T
i (uH,k,n−j+1 − uH,k−1,n−j),

∑
j

GH,k−1,p
j pH,k,n

j +
∑
j

GH,k−1,T
j TH,k,n

j +AH,k−1
u uH,k,n = 0,

for k = 1, 2, ... with

MH,p
i = RMp

i R
T , BH,p

i = RBp
i R

T , QH,p
ij = RQp

ijR
T , DH,p

i = RDp
iR

T ,

MH,T
i = RMT

i RT , BH,T
i = RBT

i R
T , QH,T

ij = RQT
ijR

T , DH,T
i = RDT

i R
T ,

GH,p
j = RGp

jR
T , GH,T

j = RGT
j R

T , AH
u = RAuR

T ,

and

pms,n
i = RT pH,n

i , Tms,n
i = RTTH,n

i , ums,n = RTuH,n.

For the projection matrix, we have Rk = Roff for k = 0 and

Rk =

Rk
p 0 0

0 Rk
T 0

0 0 Rk
u

 ,

Rk
p = (ϕ1,1, ..., ϕNH

v ,MNH
v ,p

,Υ1,p
1 , ...,Υ

NH
v ,p

1 , ...,Υ1,p
k , ...,Υ

NH
v ,p

k )T .

Rk
T = (ϕ1,1, ..., ϕNH

v ,MNH
v ,T

,Υ1,T
1 , ...,Υ

NH
v ,T

1 , ...,Υ1,T
k , ...,Υ

NH
v ,T

k )T .

Rk
u = (Φ1,1, ...,ΦNH

v ,MNH
v ,u

,Υ1,u
1 , ...,Υ

NH
v ,u

1 , ...,Υ1,u
k , ...,Υ

NH
v ,u

k )T ,

for k = 1, 2, ....

Here, online basis functions (Υl,p
k ,Υl,T

k ,Υl,u
k ) are calculated using

the solution from previous iteration (pk−1
ms , T k−1

ms , uk−1
ms ).

� Else, we solve equation 3 with 4.
• Move to the next time step.
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Fig. 1. Computation domain and grids. Coarse grid (blue
color), �ne grid (green), and fractures (red).

In general, online basis functions can be adaptively added only in certain local
domains with a signi�cant residual [20, 21]. Next, we provide numerical results for
heterogeneous and fractured poroelastic media.

5 Numerical results

Fig. 2. Elasticity coe�cient E(left), heterogeneous
permeability km(center) and thermal conductivity χm(right).

In this section, we present the numerical results related to thermoporoelasticity
problems in heterogeneous and fractured media that incorporate fractional derivati-
ves. The coarse grid is characterized by uniform rectangular cells. Figure 1 illustrates
both the coarse and �ne computational grids. The �ne grid consists of 25, 846 cells
and 12, 944 vertices, whereas the coarse grid has 121 vertices and 100 cells. Our
analysis centers on the time-fractional di�usion equation relevant to the thermoporo-
elasticity issue within Ω = (0, 50)2, speci�cally focusing on thermoporoelasticity in
fractured media. For the coe�cients that represent the properties of the matrix and
fractures, we set γm = 0.1, γf = 0, δm = 0.1, δf = 0.1, sm = 102, sf = 102, kf =
1.0,Mm = 10,Mf = 103, ν = 0.3, χm = 400, and χf = 1.0. The computations are
performed with Tmax = 86, 400, using a time step of τ = 8, 640, ηmf = kf , and
Υmf = χf . The heterogeneous coe�cients for Young's modulus, permeability, and
thermal conductivity are depicted in Fig. 2. A numerical solution is provided under
the boundary conditions ux = 0,σy = 0, x ∈ ΓL ∪ ΓR,uy = 0,σx = 0, x ∈ ΓT ∪ ΓB
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for displacement, along with the initial conditions p0 = 1 and T 0 = 40 for pressure
and temperature, respectively.

M DOFH euL2
(%) euH1

(%) epL2
(%) epH1

(%) eTL2
(%) eTH1

(%)

O�ine Basis
1 484 9.191 32.819 5.121 79.421 0.258 57.072
2 968 5.078 18.778 3.880 66.501 0.203 47.761
4 1936 2.109 11.579 2.142 46.316 0.098 30.354
8 3872 0.978 7.360 1.185 33.598 0.046 19.767
12 5808 0.716 5.877 0.824 27.569 0.032 15.951
16 7744 0.614 5.221 0.695 25.133 0.028 14.716

Online basis
1+1 968 6.328 26.291 2.525 46.063 0.144 30.067
2+1 1452 3.101 13.439 2.166 40.867 0.138 30.273
4+1 2420 1.114 7.071 1.007 25.237 0.053 16.027
8+1 4356 0.343 3.063 0.451 15.412 0.017 7.620
12+1 6292 0.190 2.027 0.281 11.627 0.007 4.134
16+1 8228 0.149 1.518 0.238 10.346 0.007 3.978

Òàáëèöà 1. Relative errors for displacement, pressure and
temperature with fractional order derivative α = 0.8.

M DOFH euL2
(%) euH1

(%) epL2
(%) epH1

(%) eTL2
(%) eTH1

(%)

O�ine Basis
1 484 8.390 27.900 7.463 69.941 0.570 51.236
2 968 4.376 15.820 3.880 56.429 0.388 40.967
4 1936 1.854 9.029 2.274 36.302 0.170 25.355
8 3872 0.813 5.387 1.054 24.103 0.070 15.639
12 5808 0.572 4.304 0.700 19.316 0.047 12.614
16 7744 0.484 3.809 0.604 17.792 0.041 11.699

Online basis
1+1 968 4.858 21.841 3.762 44.260 0.290 29.900
2+1 1452 2.674 11.409 2.818 38.431 0.250 27.642
4+1 2420 0.807 5.493 1.286 22.869 0.085 14.166
8+1 4356 0.228 2.193 0.446 12.219 0.025 6.334
12+1 6292 0.117 1.492 0.245 8.382 0.009 3.341
16+1 8228 0.084 1.068 0.221 7.701 0.009 3.210

Òàáëèöà 2. Relative errors for displacement, pressure and
temperature with fractional order derivative α = 0.9.

Tables 1-3 enhance our analysis by displaying the relative ??2 and energy H1

errors associated with the use of o�ine and online basis functions. The comparative
evaluation of errors between �ne-scale and multiscale solutions, considering the
di�erent types of basis functions, reveals a signi�cant trend: a notable reduction in
error as the number of basis functions increases for each fractional order derivative.
This demonstrates the e�ectiveness of both o�ine and online approaches in impro-
ving solution accuracy.
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M DOFH euL2
(%) euH1

(%) epL2
(%) epH1

(%) eTL2
(%) eTH1

(%)

O�ine Basis
1 484 9.060 25.4 8.677 63.328 1.300 48.331
2 968 4.502 14.211 4.900 48.362 0.772 37.176
4 1936 1.616 7.248 1.931 28.852 0.284 21.761
8 3872 0.773 4.037 0.792 17.814 0.116 13.437
12 5808 0.596 3.255 0.517 14.176 0.082 11.060
16 7744 0.514 2.901 0.457 13.169 0.073 10.310

Online basis
1+1 968 4.007 18.806 4.550 43.186 0.613 30.385
2+1 1452 2.730 10.299 3.001 34.879 0.512 27.055
4+1 2420 0.584 4.341 1.154 19.103 0.131 12.230
8+1 4356 0.147 1.614 0.321 8.991 0.036 5.465
12+1 6292 0.075 1.125 0.162 5.832 0.014 2.937
16+1 8228 0.050 0.826 0.148 5.388 0.012 2.586

Òàáëèöà 3. Relative errors for displacement, pressure and
temperature with fractional order derivative α = 1.0.

Fig. 3. Thermoporoelasticity problem in fractured and
heterogeneous media: Distribution of pressure, temperature
and displacement along X and Y at �nal time for fractional
order derivative α = 0.8 (from left to right).
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Fig. 4. Thermoporoelasticity problem in fractured and
heterogeneous media: Distribution of pressure, temperature
and displacement along X and Y at �nal time for fractional
order derivative α = 0.9 (from left to right).

Figures 3�5 provide a comprehensive view of the spatial distribution of pressure,
temperature, and displacement at the �nal time step. The �rst row presents the �ne-
scale solution obtained through the �nite element method, serving as a benchmark
for accuracy. The second row displays multiscale solutions using eight basis functions
within the GMsFEM framework, showcasing the method's e�ectiveness in capturing
complex patterns along theX and Y directions. Additionally, the third row introdu-
ces the multiscale solution incorporating eight multiscale basis functions one online
residual-based multiscale basis function. This enhancement further re�nes the solu-
tion, illustrating the method's adaptability and improved precision. This visual
comparison not only validates the accuracy and robustness of the proposed approach
but also highlights its applicability in real-world scenarios where understanding the
detailed spatial distribution of pressure, temperature, and displacement is crucial.

The analysis focused on evaluating how the number of multiscale basis functions
a�ects the accuracy of the solution. The results indicate that as the number of basis
functions increases, there is a signi�cant reduction in relative L2 and energy H1

errors for displacement, pressure, and temperature. For example, with the fractional
order derivative set at α = 0.8, increasing the number of o�ine basis functions led
to a marked decrease in errors, with the relative error for displacement reducing
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from approximately 9.1% to less than 0.6%, and similar trends observed for pressure
and temperature.

The use of online basis functions, which were updated dynamically based on
residual information, further improved accuracy. The introduction of even a single
online basis function per local domain substantially reduced errors compared to the
o�ine basis function approach alone. For instance, the relative error for displacement
was reduced to approximately 0.3% when four online basis functions were used in
conjunction with the o�ine basis set. This highlights the e�ciency of the online
enrichment approach in capturing local solution features more e�ectively. Finally,
the computational e�ciency of the method was assessed by comparing the o�ine
and online approaches. The results showed that while the o�ine method required
less computational e�ort, the online enrichment approach provided superior accuracy
with only a moderate increase in computational cost. This balance between accuracy
and e�ciency makes the proposed method well-suited for large-scale simulations of
thermoporoelasticity in fractured media.

Fig. 5. Thermoporoelasticity problem in fractured and
heterogeneous media: Distribution of pressure, temperature
and displacement along X and Y at �nal time for fractional
order derivative α = 1.0 (from left to right).

6 Conclusions

In this study, we developed and applied a multiscale model reduction technique
for the time fractional thermoporoelasticity problem in heterogeneous and fractured
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media. By integrating fractional derivatives with the Generalized Multiscale Finite
Element Method (GMsFEM) and implementing online residual-based basis function
enrichment, we were able to achieve a highly accurate and computationally e�cient
simulation approach.

Our numerical experiments demonstrated that the use of multiscale basis func-
tions signi�cantly improves the accuracy of the solution, particularly when enhanced
by online updates that adaptively target areas with high residuals. The results
showed that increasing the number of basis functions e�ectively reduces errors, and
that the incorporation of online basis functions yields even greater improvements in
accuracy, especially in capturing the complex interactions within fractured porous
media.

Overall, the proposed method o�ers a robust and �exible framework for modeling
complex thermoporoelastic processes in fractured and heterogeneous media. Its
ability to balance computational e�ciency with high accuracy makes it an attractive
tool for large-scale simulations in geomechanics, geothermal energy, and related
�elds.
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