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Abstract: In this paper, we derive a multicontinuum time-frac-
tional di�usion equations based on Caputo fractional derivative
using a multicontinuum homogenization approach. For this purpo-
se, we formulate cell problems with constraints considering various
e�ects. As a result, we obtain a decomposition of the solution
into macroscopic variables (continua). Assuming the smoothness of
these macroscopic variables, we derive multicontinuum equations
for the general case. Then, we consider a particular case of a dual-
continuum model in an isotropic medium. We present numerical
experiments for two-dimensional model problems with di�erent
fractional derivative orders, demonstrating the high e�ciency of
the proposed approach.
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1 Introduction

Time-fractional di�usion equations have developed as an e�ective mathe-
matical tool for describing anomalous di�usion processes in which the rate
of di�usion di�ers from the traditional Fickian behavior. In contrast to
conventional di�usion equations that utilize integer-order derivatives, time-
fractional di�usion equations integrate derivatives of non-integer order, thus
encapsulating the memory and heredity characteristics of the system. In this
context, we employ the Caputo derivative, which is especially appropriate
for starting value issues and facilitates the integration of initial conditions
in a physically signi�cant manner [1]. These equations are widely used to
describe transport phenomena in various complex media, including porous
materials and fractured reservoirs, where di�usive behavior exhibits long-
term dependence and non-local e�ects [2, 3]. The fractional derivative, gene-
rally of order 0 < α < 1, incorporates a time-dependent kernel that considers
the history of the di�usive process, resulting in enhanced explanations of
anomalous transport [4].

It should be noted that many real applications are complicated by hetero-
geneous multiscale media. For accurate modeling in such cases, it is necessary
to use detailed computational grids, which signi�cantly increase the compu-
tational cost of the problem. Moreover, the resulting huge matrices may
be ill-conditioned and require special treatment. The presence of fractional
derivatives in time additionally complicates the calculations. An alternative
approach is to apply various homogenization methods that allow computati-
ons on coarse computational grids, reducing the computational costs [5, 6,
7]. The main idea of the homogenization methods is to compute e�ective
properties at macroscopic points by solving cell problems.

However, standard homogenization approaches can lead to inaccurate solu-
tions in cases with high contrast. This is because having only one homoge-
nized coe�cient per macroscopic point may be not su�cient. Multicontinuum
modeling approaches identify several continua in the medium and introduce
separate e�ective properties [8, 9, 10, 11, 12]. Thus, both low-conductivity
and high-conductivity regions are taken into account. One of the new methods
in this approach is the multicontinuum homogenization method [13, 14, 15].
This method provides a rigorous and, at the same time, �exible methodology
for deriving multicontinuum models. The main idea of this method is to
construct special cell problems to account for di�erent solution e�ects. As
a result, we obtain a function decomposition over continua. Using this decom-
position, we can rigorously derive the multicontinuum equations. This method
has already been applied to the derivation of various multicontinuum models
[16, 17, 18, 19].

Note that one can also use multiscale �nite element approaches to solve
the problems with high-contrast coe�cients and fractional derivatives in time
on a coarse grid [20, 21, 22, 23]. These methods provide accurate solutions
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and can handle complex high-contrast heterogeneous media. However, they
result in discrete coarse-grid models and not in the form of macroscopic laws.

In this paper, we apply the multicontinuum homogenization method to
derive a multicontinuum time-fractional di�usion model based on Caputo
fractional derivative. We construct cell problems to account for gradient
e�ects and averages. After solving these problems, we obtain the expansion
of the solution over continua. We then derive a general multicontinuum
model for an arbitrary number of continua. As a particular case, we present
a dual-continuum model with isotropic e�ective properties. To verify the
proposed approach, we consider two-dimensional model problems with a
high-contrast di�usion coe�cient. We consider di�erent orders of fractional
derivatives. We compute the relative L2 errors to evaluate the accuracy
of the multicontinuum model. Numerical results show that the proposed
multicontinual model provides high accuracy for di�erent orders of the frac-
tional derivative, signi�cantly reducing the computational cost.

The paper has the following structure. In Section 2, we present the deriva-
tion of a multicontinuum time-fractional di�usion model in general form
using a multicontinuum homogenization approach. Section 3 presents a dual-
continuum model with isotropic coe�cients. In Section 4, we conduct numeri-
cal experiments to check the proposed multicontinuum model. Finally, we
present conclusions in Section 5.

2 Multicontinuum time-fractional di�usion model

derivation

This section presents the derivation of a multicontinuum time-fractional
di�usion model in general form using a multicontinuum homogenization
approach. First, let us consider the following time-fractional di�usion equa-
tion in the domain Ω ⊂ Rd (d = 2, 3)

∂αu

∂tα
−∇ · (κ∇u) = f, x ∈ Ω, t ∈ (0, tmax]. (1)

Here, u := u(x, t) is a sought �eld, κ := κ(x) is a heterogeneous coe�cient,
and f := f(x) is a source/sink term. Note that κ possesses high contrast
such that maxx∈Ωκ(x)/minx∈Ωκ(x) ≫ 1. In �uid �ltration applications, u
can be a pressure �eld, and κ can be a permeability coe�cient of the porous
medium with highly conductive channels.

For the time derivative term, ∂α

∂tα denotes the Caputo derivative that can
be expressed as

∂αu(t)

∂tα
=

1

Γ(1− α)

∫ t

0
(t− s)−α∂u

∂s
(s)ds, 0 < α ≤ 1, (2)

where Γ is the gamma function.
The multicontinuum homogenization procedure starts with the variational

formulation of the original �ne-scale model. Let us complement (1) with zero
Dirichlet boundary conditions and set some appropriate initial conditions.
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Fig. 1. Illustration of Ω, ω, R+
ω , and Rω

Then, we can obtain the following variational formulation∫
Ω

∂αu

∂tα
v +

∫
Ω
κ∇u · ∇v =

∫
Ω
fv, ∀v ∈ H1

0 (Ω). (3)

Next, let us make the following assumptions. First, let us assume that
the computational domain Ω is partitioned into coarse blocks ω. We suppose
that we can de�ne Representative Volume Elements Rp

ω (RVEs) inside each
coarse block ω. Each RVE can approximate the whole coarse block in terms of
heterogeneity. Moreover, we can de�ne an oversampled RVE R+

ω by extending
a target (central) RVE Rω = Rp0

ω with other RVEs Rp
ω around it (see Figure

1). We assume that, within each RVE, there are N distinct average states,
which we call continua. For each continuum j, we de�ne a characteristic
function ψj such that

ψj =

{
1, in continuum j,

0, otherwise.

Multicontinuum expansion. Inside each RVE, we de�ne N macrosopic
variables, representing the averages of the solution in the corresponding
subregions (continua) as follows

Ui(xω, t) =

∫
Rω
u(x, t)ψi∫
Rω
ψi

,

where xω is a point in Rω. We assume that Ui are smooth functions, if we
take them over all RVEs.

Then, we can de�ne the following expansion of the solution u into these
macroscopic variables in each Rω [14]

u = ϕiUi + ϕmi ∇mUi + ϕmn
i ∇2

mnUi + ...,

where ϕ function are solutions of cell problems. Note that we suppose Einstein
summation convention over repeated indices.

However, in our work, we consider the following expansion

u ≈ ϕiUi + ϕmi ∇mUi. (4)

Therefore, we consider only the averages and gradients.
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Cell problems. We formulate the cell problems in the oversampled RVEs
R+

ω with contstraints to consider various homogenized e�ects of the solution.
The �rst cell problem considers the averages of the solution∫

R+
ω

κ∇ϕi · ∇v −
∑
j,p

Bp
ij∫

Rp
ω
ψp
j

∫
Rp

ω

ψp
j v = 0,∫

Rp
ω

ϕiψ
p
j = δij

∫
Rp

ω

ψp
j .

(5)

The second cell problem imposes constraints to consider gradient e�ects∫
R+

ω

κ∇ϕmi · ∇v −
∑
j,p

Bmp
ij∫

Rp
ω
ψp
j

∫
Rp

ω

ψp
j v = 0,∫

Rp
ω

ϕmi ψ
p
j = δij

∫
Rp

ω

(xm − cmj)ψ
p
j ,∫

R
p0
ω

(xm − cmj)ψ
p0
j = 0 condition for c.

(6)

Note that we can obtain the following estimates of the cell problems'
solutions [13]

∥ϕi∥ = O(1), ∥∇ϕi∥ = O(
1

ϵ
)

∥ϕmi ∥ = O(ϵ), ∥∇ϕmi ∥ = O(1),
(7)

where ϵ is a diameter of RVE.

Derivation. By de�nition, Rω can represent the whole coarse block ω in
terms of heterogeneity. In this way, one can obtain the following approxima-
tion of the variational formulation (3)∫

Ω
fv =

∫
Ω

∂αu

∂tα
v +

∫
Ω
κ∇u · ∇v =

∑
ω

∫
ω

∂αu

∂tα
v +

∑
ω

∫
ω
κ∇u · ∇v ≈

∑
ω

|ω|
|Rω|

∫
Rω

∂αu

∂tα
v +

∑
ω

|ω|
|Rω|

∫
Rω

κ∇u · ∇v.
(8)

Let us substitute the multicontinuum expansion (4) into the di�usion term∫
Rω

κ∇u · ∇v ≈
∫
Rω

κ∇(ϕiUi) · ∇v +
∫
Rω

κ∇(ϕmi ∇mUi) · ∇v. (9)

According to our assumptions, macroscopic variables Ui are smooth func-
tions. Hence, the variations of Ui and ∇mUi are minor compared to the
variations of ϕi and ϕ

m
i . That is why we assume that the following approxima-

tions hold
∫
Rω
κ∇(ϕiUi)·∇v ≈

∫
Rω
κUi∇ϕi ·∇v and

∫
Rω
κ∇(ϕmi ∇mUi)·∇v ≈∫

Rω
κ∇mUi∇ϕmi · ∇v.

Moreover, let us introduce the expansion of v

v ≈ ϕsVs + ϕks∇kVs. (10)
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Next, let us consider each term of the right-hand side of (9) separately.
If we consider the �rst term and apply our assumptions above and the
expansion (10), we obtain the following approximation∫

Rω

κ∇(ϕiUi) · ∇v ≈ Ui(xω)

∫
Rω

κ∇ϕi · ∇v ≈

Ui(xω)Vs(xω)

∫
Rω

κ∇ϕi · ∇ϕs + Ui(xω)∇mVs(xω)

∫
Rω

κ∇ϕi · ∇ϕms =

Ui(xω)BisVs(xω) +Bm
isUi(xω)∇Vs(xω),

(11)

where

Bm
ik =

∫
Rω

κ∇ϕmi · ∇ϕk, Bik =

∫
Rω

κ∇ϕi · ∇ϕk. (12)

Note that we use midpoint approximations of macroscopic variables in (11),
according to our assumptions about their smoothness.

We can appropriate the second term of (9) in a similar way.∫
Rω

κ∇(ϕmi ∇mUi) · ∇v ≈ ∇mUi(xω)

∫
R+

ω

κ∇ϕmi · ∇v ≈

∇mUi(xω)∇kVs(xω)

∫
Rω

κ∇ϕmi · ∇ϕks +∇mUi(xω)Vs(xω)

∫
Rω

κ∇ϕmi · ∇ϕs =

∇mUi(xω)∇kVs(xω)A
km
is +∇mUi(xω)Vs(xω)B

m
is ,

(13)

where

Akm
is =

∫
Rω

κ∇ϕmi · ∇ϕks . (14)

Then, we apply continuous approximations for Ui and Vj and obtain the
following approximation of the di�usion term∫

Rω

κ∇u · ∇v ≈ UiB
n
ij∇nVj + UiBijVj +∇mUiA

mn
ij ∇nVj +∇mUiB

m
ij Vj .

(15)

Before we proceed to the time-fractional derivative term, let us make some
remarks. First, as one can see from the cell problems (5) and (6), ϕj and
ϕmj do not depend on time, since we suppose that ψj does not change in
time. Next, the following approximations hold u ≈ ϕiUi + ϕmi ∇mUi ≈ ϕiUi

and v ≈ ϕjVj + ϕnj∇nVj ≈ ϕjVj due to the estimates (7). Then, we can
approximate the time-fractional derivative term as follows∫

Rω

∂αu

∂tα
v ≈

∫
Rω

∂α(ϕiUi + ϕmi ∇mUi)

∂tα
(ϕjVj + ϕnj∇nVj) ≈∫

Rω

∂α(ϕiUi)

∂tα
ϕjVj ≈

∂αUi(xω)

∂tα
Vj(xω)

∫
Rω

ϕiϕj =
∂αUi(xω)

∂tα
Vj(xω)Cij ,(16)

where

Cij =

∫
Rω

ϕiϕj . (17)
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Again, we apply continuous approximations for Ui and Vj and obtain the
following approximation of the time-fractional derivative term∫

Rω

∂αu

∂tα
v ≈ ∂αUi

∂tα
CijVj (18)

Next, let us estimate Bij , B
m
ij , A

mn
ij , and Cij using their de�nitions (12),

(14), and (17) and the estimates of ϕi and ϕ
m
i (7)

Bij = O(
|Rω|
ϵ2

), Bm
ij = O(

|Rω|
ϵ

), Amn
ij = O(|Rω|), Cij = O(|Rω|).

Using these estimates, we introduce the scaled e�ective properties B̂ij ,

B̂m
ij , Â

mn
ij , and Ĉij in the following way

B̂ij =
ϵ2

|Rω|
Bij , B̂m

ij =
ϵ

|Rω|
Bm

ij , Â
mn
ij =

1

|Rω|
Amn

ij , Ĉij =
1

|Rω|
Cij . (19)

Then, with these e�ective properties, we obtain the following approxima-
tion of the variational formulation (3)∫

Ω

∂αu

∂tα
v +

∫
Ω
κ∇u · ∇v ≈

∫
Ω
Ĉij

∂αUi

∂tα
Vj +

∫
Ω
Âmn

ij ∇mUi∇nVj+

1

ϵ

∫
Ω
B̂m

ij∇mUiVj +
1

ϵ

∫
Ω
B̂m

ijUi∇mVj +
1

ϵ2

∫
Ω
B̂ijUiVj .

(20)

Using integration by parts, one can show that the sum of the third and
fourth terms is negligible [13]. Thus, we obtain the following multicontinuum
time-fractional model in a strong form

Ĉij
∂αUj

∂tα
−∇n(Âmn

ij ∇mUj) +
1

ϵ2
B̂ijUj = fi. (21)

As one can see, the reaction terms will dominant unless we have high
e�ective di�usivity.

3 Dual-continuum time-fractional di�usion model

Suppose that we have two continua in our medium. Let the �rst continuum
be low conductive, and the second continuum be highly conductive. Next,
we expand the general model (21)

Ĉ11
∂αU1

∂tα
+ Ĉ12

∂αU2

∂tα
−∇n(Âmn

11 ∇mU1)−∇n(Âmn
12 ∇mU2)+

1

ϵ2
B̂11U1 +

1

ϵ2
B̂12U2 = f1,

Ĉ21
∂αU1

∂tα
+ Ĉ22

∂αU2

∂tα
−∇n(Âmn

21 ∇mU1)−∇n(Âmn
22 ∇mU2)+

1

ϵ2
B̂21U1 +

1

ϵ2
B̂22U2 = f2.
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Let us assume that the microstructure of the medium results in isotropic
e�ective properties. Therefore, we can approximate the di�usion terms as

Âmn
ij ≈ Dijδmn. Next, note that we have the following properties of B̂ij [18]

B̂12 ≈ −B̂11, B̂21 ≈ −B̂22, B̂12 = B̂21, B̂11 ≈ B̂22 ≈ B̂ > 0. (22)

Therefore, we obtain the following dual-continuum time-fractional di�usion
model in the isotropic case

Ĉ11
∂αU1

∂tα
+ Ĉ12

∂αU2

∂tα
−∇ · (D̂11∇U1)−∇ · (D̂12∇U2) +

1

ϵ2
B̂(U1 − U2) = f1,

Ĉ21
∂αU1

∂tα
+ Ĉ22

∂αU2

∂tα
−∇ · (D̂21∇U1)−∇ · (D̂22∇U2) +

1

ϵ2
B̂(U2 − U1) = f2.(23)

Approximation of the time-fractional derivatives. We approximate
the time-fractional derivatives of the macroscopic functions Ui by a numerical
scheme based on a �nite-di�erence approach, which captures the non-local
and memory e�ects inherent in fractional derivatives. One can �nd the
stability and convergence of the time-fractional derivative di�erence scheme
in [24, 25].

Let Nt be a count of time steps, and τ = tmax/Nt be a time step size. The
time-fractional derivative di�erence scheme for has the following form

∂αUk
i

∂tα
≈ ξ(α)τ

Uk
i − Uk−1

i +
k∑

q=2

ξ
(α)
q−1(U

k−q+1
i − Uk−q

i )

 ,

where Uk
i ≈ Ui(tk), tk = kτ , and the coe�cients ξ

(α)
τ and ξ

(α)
q−1 are de�ned

as follows

ξ(α)τ =
1

ταΓ(2− α)
, ξ

(α)
q−1 = q1−α − (q − 1)1−α.

In the next section, we present numerical results for the obtained dual-
continuum model.

4 Numerical results

Let us consider a computational domain Ω = Ω1 ∪Ω2 = [0, 1]× [0, 1] (see
Figure 2). We construct a �ne grid by partitioning Ω into 400× 400 square
and then dividing each square into two triangles. We consider two coarse
grids constructed similarly but using 20 × 20 and 40 × 40 squares (coarse
blocks).

We take each coarse block as an RVE, while the oversampled RVE is an
extension of the coarse block by l layers of other coarse blocks. For choosing
the number of layes, we use the formula l = ⌈−2 log(H)⌉, where H is a
coarse grid size [13]. Therefore, we have l = 6 for the coarse grid 20×20 and
l = 8 for the coarse grid 40× 40.
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Fig. 2. Computational domain (Ω1 is blue, Ω2 is red)

We take the following high-contrast heterogeneous coe�cient κ

κ =

{
10−4, x ∈ Ω1,

1, x ∈ Ω2.

For boundary conditions, we set zero Dirichlet boundary conditions on all
the boundaries. We set the duration of the simulated process as tmax = 1
with Nt = 50 time steps. For the initial condition, we set u0 = 0. We set the
following source term

f = exp(−40[(x1 − 0.5)2 + (x2 − 0.5)2]).

To check the e�ectivenes of the proposed multicontinuum approach, we
de�ne the following relative L2 errors

e
(i)
2 =

√√√√∑
K | 1

|K|
∫
K Uidx− 1

|K∩Ωi|
∫
K∩Ωi

udx|2∑
K | 1

|K∩Ωi|
∫
K∩Ωi

udx|2
· 100%,

where i = 1, 2, and K is the RVE (taken to be ω).
For spatial approximation, we use a �nite element method with standard

piecewise linear basis functions. The numerical implementation is based on
the FEniCS computational package [26]. Visualization of the obtained results
are performed using the ParaView software [27].

Figure 3 depicts distributions of the �ne-grid solution at di�erent time
steps for the fractional order derivative α = 0.8. We observe an essential
in�uence of the heterogeneous coe�cient κ on the solution. The solution
�eld di�uses signi�cantly faster in the high-conductivity regions (Ω2) than
in the low-conductivity regions (Ω1). In general, we observe that the solution
�eld gradually increases due to the source and di�uses over the domain.

We present the e�ective properties computed for di�erent coarse grids in
Table 1. One can see that the e�ective di�usion properties are isotropic.

Hence, in our dual-continuum model (23), we can take D̂ij = Â11
ij = Â22

ij .

Note that the reaction terms are consistent with the properties (22). Thus,

we can take B̂ = B̂11 = B̂22.
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Fig. 3. Distributions of the �ne-grid solution at di�erent
time steps tk, k = 1, 25, 50 (from left to right) for the
fractional order derivative α = 0.8.

Coarse grid 20× 20
A11

11/|Rω| A12
11/|Rω| A22

11/|Rω|
0.000925 ≈ 0 0.000925
A11

12/|Rω| A12
12/|Rω| A22

12/|Rω|
-0.000759 ≈ 0 -0.000759
A11

22/|Rω| A12
22/|Rω| A22

22/|Rω|
0.21946 ≈ 0 0.21946
B11/|Rω| B12/|Rω| B22/|Rω|
4.78677 -4.78677 4.78677
C11/|Rω| C12/|Rω| C22/|Rω|
0.900799 -0.260799 0.620799

Coarse grid 40× 40
A11

11/|Rω| A12
11/|Rω| A22

11/|Rω|
0.000463 ≈ 0 0.000463
A11

12/|Rω| A12
12/|Rω| A22

12/|Rω|
-0.000297 ≈ 0 -0.000297
A11

22/|Rω| A12
22/|Rω| A22

22/|Rω|
0.219039 ≈ 0 0.219039
B11/|Rω| B12/|Rω| B22/|Rω|
4.78677 -4.78677 4.78677
C11/|Rω| C12/|Rω| C22/|Rω|
0.900799 -0.260799 0.620799

Table 1. E�ective properties computed for di�erent coarse grids.

Figures 4-5 present distributions of the numerical solution with the fracti-
onal order derivative α = 0.8 at di�erent time steps for the �rst and second
continua, respectively. From top to bottom, we depict the reference averaged
and multiscale averaged solutions, respectively. One can see that the results
are very similar, indicating that our multicontinuum approach can provide
high accuracy.

In terms of the simulated process, it generally coincides with the dynamics
of the �ne-grid solution. We observe how the solution �elds gradually increase
due to the source in the middle and di�use over the domain. As expected,
the solution of the second continuum spreads faster than the �rst one. In
terms of physical meaning, the solution of the �rst continuum represents the
average in the low conductive region (Ω1), and the solution of the second
continuum represents the average in the highly conductive region (Ω2).

Tables 2-3 present relative L2 errors (%) for coarse grids 20×20 and 40×40,
respectively. In both tables, we consider three cases of α (0.8, 0.9, and 1.0).
Let us consider the errors of the coarse grid 20 × 20. We can see that the
errors gradually decrease with time for all the fractional order derivatives. At
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Fig. 4. Distributions of the solution for the �rst continuum
at di�erent time steps tk, k = 1, 25, 50 (from left to right) for
the fractional order derivative α = 0.8. First row: reference
averaged solution. Second row: multiscale averaged solution.
Coarse grid 40×40, relative L2 errors: 2.1231%, 1.8163% and
1.8509%.

the initial time steps, the higher order derivatives have slightly larger errors.
However, after some time, the di�erence between di�erent α cases becomes
very small. At the �nal time, in all α cases, the relative L2 errors for the
�rst continuum are less than 1.86% and the relative errors for the second
continuum are less than 1.17%.

Let us consider the relative L2 errors (%) for the coarse grid 40× 40. One
can see that the errors are signi�cantly smaller than in the coarse grid 20×20.
Again, we see that at the initial time steps, the higher order derivatives
possesses larger errors. However, with more time steps, the di�erence becomes
less noticeable. We observe the gradual decrease of the errors with time for
all the cases of α. At the �nal time, we have the relative L2 errors for the
�rst continuum less than 0.95% and the relative L2 errors for the second
continuum less than 0.55%.

The obtained numerical results demonstrate that our proposed multicon-
tinuum approach provides high accuracy with the signi�cant reduction of
the computational cost for di�erent orders of time-fractional derivatives.
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Fig. 5. Distributions of the solution for the second
continuum at di�erent time steps tk, k = 1, 25, 50 (from left
to right) for the fractional order derivative α = 0.8. First row:
reference averaged solution. Second row: multiscale averaged
solution. Coarse grid 40 × 40, relative L2 errors: 1.2931%,
1.1787% and 1.1654%.

α = 0.8 α = 0.9 α = 1.0

k e
(1)
2 e

(2)
2 e

(1)
2 e

(2)
2 e

(1)
2 e

(2)
2

1 2.1231 1.2931 2.3511 1.3342 2.6531 1.3651
10 1.8385 1.2524 1.8694 1.2995 1.9599 1.3611
15 1.7997 1.2157 1.772 1.2504 1.7564 1.3001
20 1.8046 1.1923 1.769 1.2127 1.7241 1.248
25 1.8163 1.1787 1.787 1.1877 1.7428 1.2073
30 1.8271 1.1713 1.8064 1.173 1.7727 1.1797
35 1.8355 1.1674 1.8225 1.165 1.8006 1.1633
40 1.8421 1.1657 1.8347 1.1613 1.8228 1.155
45 1.8471 1.1652 1.8437 1.1601 1.8392 1.1518
50 1.8509 1.1654 1.8502 1.1604 1.8508 1.1517

Table 2. Relative L2 errors (%) for the coarse grid 20× 20.
The index k denotes the time step's number.
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α = 0.8 α = 0.9 α = 1.0

k e
(1)
2 e

(2)
2 e

(1)
2 e

(2)
2 e

(1)
2 e

(2)
2

1 1.337 0.7067 1.5689 0.7838 1.876 0.9016
10 1.0533 0.6466 1.1047 0.6844 1.203 0.7377
15 0.9882 0.6131 0.9944 0.6435 1.0132 0.6851
20 0.9651 0.5888 0.9589 0.6091 0.9556 0.6425
25 0.9547 0.5724 0.9451 0.5834 0.9344 0.6042
30 0.9492 0.5614 0.9396 0.5658 0.9272 0.5755
35 0.9461 0.5538 0.9374 0.5540 0.9261 0.5562
40 0.9439 0.5485 0.9365 0.5462 0.9272 0.5436
45 0.9423 0.5446 0.9361 0.5408 0.9289 0.5357
50 0.9411 0.5418 0.9357 0.5372 0.9304 0.5307

Table 3. Relative L2 errors (%) for the coarse grid 40× 40.
The index k denotes the time step's number.

5 Conclusion

In this paper, we have considered a time-fractional di�usion model based
on Caputo fractional derivative. Using the multicontinuum homogenization
approach, we have derived a multicontinuum time-fractional di�usion model.
We have formulated special cell problems that account for the di�erent
homogenized e�ects of the solution. As a result, we have obtained a general
multicontinuum model. Based on it, we have derived a particular case of a
dual-continuum model in an isotropic medium.

To verify the proposed multicontinuum approach, we have performed
numerical experiments. For this purpose, we have solved two-dimensional
model problems for di�erent fractional derivative order cases. The results
demonstrate the high accuracy of the multicontinuummodel with a signi�cant
reduction in computational costs. The proposed multicontinuum approach
allows us to consider di�erent cases of fractional derivative orders.
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