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Abstract: In the theory of Hilbert C∗-modules over a C∗-algebra
A (in contrast with the theory of Hilbert spaces) not each bounded
operator (A-homomorphism) admits an adjoint. The interplay be-
tween the sets of adjointable and non-adjointable operators plays a
very important role in the theory. We study an intermediate notion
of locally adjointable operator F : M → N , i.e. such an operator
that F ◦ γ is adjointable for any adjointable γ : A → M. We
have introduced this notion recently and it has demonstrated its
usefulness in the context of theory of uniform structures on Hilbert
C∗-modules. In the present paper we obtain an explicit description
of locally adjointable operators in important cases.

Keywords: Hilbert C∗-module, dual module, multiplier, adjoint-
able operator, locally adjointable operator.

De�nition 1. A (right) pre-Hilbert C∗-module over a C∗-algebra A is an
A-module equipped with a sesquilinear form on the underlying linear space
⟨., .⟩ : M×M → A such that

(1) ⟨x, x⟩ ≥ 0 for any x ∈ M;
(2) ⟨x, x⟩ = 0 if and only if x = 0;
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(3) ⟨y, x⟩ = ⟨x, y⟩∗ for any x, y ∈ M;
(4) ⟨x, y · a⟩ = ⟨x, y⟩a for any x, y ∈ M, a ∈ A.

A complete pre-Hilbert C∗-module w.r.t. its norm ∥x∥ = ∥⟨x, x⟩∥1/2 is called
a Hilbert C∗-module.

Any C∗-algebra A can be considered as a module over itself with a ses-
quilinear form ⟨a, b⟩A = a∗b.

If a Hilbert C∗-module M has a countable subset which C∗-linear span is
dense in M, then it is called countably generated.

By ⊕ we will denote the orthogonal direct sum of Hilbert C∗-modules.

We refer to [8, 11, 10] for the theory of Hilbert C∗-modules.

De�nition 2. The standard Hilbert C∗-module ℓ2(A) is a Hilbert sum of
countably many copies of A with the inner product ⟨a, b⟩ =

∑
i a

∗
i bi, where

a = (a1, a2, . . . ), b = (b1, b2, . . . ) and the series is norm-convergent. Denote
by πk, k ∈ N, the projection πk : ℓ2(A) → A, a 7→ ak.

If A is unital, then ℓ2(A) is countably generated.

This example of Hilbert C∗-modules is especially important due to the
Kasparov stabilization theorem: for any countably generated Hilbert C∗-
module M over any algebra A, there exists an isomorphism of Hilbert C∗-
modules (preserving the inner product) M ⊕ ℓ2(A) ∼= ℓ2(A) [7] (see [11,
Theorem 1.4.2]).

De�nition 3. A bounded A-homomorphism F : M → N of Hilbert C∗-
modules is called operator.

De�nition 4. For an operator F : M → N on Hilbert C∗-modules over
A, we say that F is adjointable with (evidently unique) adjoint operator
F ∗ : N → M if ⟨Fx, y⟩N = ⟨x, F ∗y⟩M for any x ∈ M and y ∈ N .

The following notion was introduced in a particular case of functionals
in [6] and turned out very useful in the description of A-compact operators
in terms of uniform structures there (see also [14] and [15] for the previous
research).

De�nition 5. A bounded A-morphism F : M → N of Hilbert C∗-modules
is called locally adjointable if, for any adjointable morphism γ : A → M, the
composition F ◦ γ : A → N is adjointable.

All these de�nitions are applicable in the case N = A. In this case
bounded A-operators are called (A)-functionals, adjointable operators are
called adjointable functionals and locally adjointable operators are called
locally adjointable functionals. These sets are denoted byM′,M∗ andM′

LA,
respectively. Evidently

M∗ ⊆ M′
LA ⊆ M′.

They are right Banach modules (for the last set see Theorem 1 below) with
respect to the action (fa)(x) = a∗f(x), where f ∈ M′, x ∈ M, a ∈ A.
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Typically M′ is not a Hilbert C∗-module (see [9, 12] for a recent progress in
the �eld).

The following notion was introduced and studied in [3] and applied to the
frame theory in [1] (with developments in [4] and [5]). In [2] explicit results
for ℓ2(A) were obtained. Denote by LM(A), RM(A), and M(A) left, right,
and (two-sided) multipliers of algebra A, respectively (the usual reference
is [13], see also [11]). For any Hilbert A-module N a Hilbert M(A)-module
M(N ) (which is called the multiplier module of N ) containing N as an ideal
submodule associated with A, i.e. N = M(N )A was de�ned in [3]. Namely,
M(N ) is the space of all adjointable maps from A to N being a Hilbert
C∗-module over M(A) with the inner product ⟨r1, r2⟩ = r∗1r2. This is really
a multiplier because ⟨r1, r2⟩a = r∗1r2(a) ∈ A. This is an essential extension
of N in sense of [3].

Any (modular) multiplier m ∈ M(N ) represents an A-functional m̂ on
N by the formula m̂(x) = ⟨m,x⟩. This functional is adjointable and its
adjoint is given by the formula m̂∗(a) = ma. In fact this map gives rise to
an identi�cation of M(N ) and the module N ∗ of adjointable functionals on
N (see, [3, 2]), in particular,

(ℓ2(A))∗ ∼= M(ℓ2(A)). (1)

In [2, Theorem 2.3] the following isomorphism was obtained (we write it
keeping in mind the di�erence between left and right modules):

(ℓ2(A))′ ∼= ℓ2strong(RM(A)), (2)

where the last module is formed by all sequences Γi ∈ RM(A) such that the
series

∑
i Γ

∗
iΓi is strongly convergent in B(H) (assuming that A is faithfully

and non-degenerately represented on Hilbert space H).
Below in Lemma 2 we will prove some �intermediate variant� of these

isomorphisms (1) and (2):

(ℓ2(A))′LA
∼= (M(ℓ2(A)))′. (3)

Now we pass to results of the present paper.

Lemma 1. A bounded A-morphism F : K → N of Hilbert C∗-modules
is adjointable if and only if, for any y ∈ N , the morphism Fy : K → A,
Fy(x) = ⟨y, F (x)⟩ is adjointable.

Proof. Suppose that F is adjointable. Then, for any x ∈ K, a ∈ A

⟨Fy(x), a⟩A = ⟨y, F (x)⟩∗a = ⟨F ∗(y), x⟩∗a = ⟨x, F ∗(y)a⟩, (Fy)
∗(a) = F ∗(y)a,

and Fy(x) is adjointable.
Conversely, suppose that each Fy is adjointable. Then, for an approximate

unit {uλ} in A, one has

⟨F (x), y⟩uλ = ⟨y, F (x)⟩∗uλ = Fy(x)
∗uλ = ⟨Fy(x), uλ⟩A = ⟨x, (Fy)

∗uλ⟩K.
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Since

∥(Fy)
∗(uλ − uµ)∥ = sup

z∈K, ∥z∥≤1
||⟨z, (Fy)

∗(uλ − uµ)⟩|| =

= sup
z∈K, ∥z∥≤1

||⟨Fy(z), uλ − uµ⟩A|| = sup
z∈K, ∥z∥≤1

||⟨y, F (z)⟩∗(uλ − uµ)|| =

= sup
z∈K, ∥z∥≤1

||⟨F (z), y(uλ − uµ)⟩N || ≤ ∥F∥ · ∥y(uλ − uµ)∥,

we obtain (see [11, Lemma 1.3.8]) that the net {(Fy)
∗uλ} is a Cauchy net.

So we can de�ne an operator G by G(y) = lim
λ
(Fy)

∗uλ. The operator G is

evidently bounded by its de�ning formula. Since the above limit is in norm
topology, for any x ∈ K, y ∈ N , we have

⟨F (x), y⟩ = lim
λ
⟨F (x), y⟩uλ = lim

λ
(⟨y, F (x)⟩)∗uλ = lim

λ
⟨Fy(x), uλ⟩A =

= lim
λ
⟨x, (Fy)

∗uλ⟩ =
〈
x, lim

λ
(Fy)

∗uλ

〉
= ⟨x,G(y)⟩,

so, F is adjointable. □

Corollary 1. A bounded A-morphism F : M → N of Hilbert C∗-modules
is locally adjointable if and only if, for any adjointable morphism γ : A → N
and any y ∈ N , the morphism Fγ,y : A → A, Fγ,y(a) = ⟨y, F ◦ γ(a)⟩ is
adjointable.

Theorem 1. Locally adjointable operators from M to N form a Banach
subspace of the Banach space of all bounded A-morphisms from M to N .

In particular, locally adjointable endomorphisms of M form a Banach
subalgebra of the algebra EndA(M) of all bounded A-endomorphisms.

Proof. Indeed, if {Fn} is a sequence of locally adjointable morphisms and
Fn → F in norm, then for any adjointable morphism γ we have that ∥Fn ◦
γ − F ◦ γ∥ ≤ ∥Fn − F∥ · ∥γ∥, so Fn ◦ γ → F ◦ γ in norm too and F ◦ γ is
adjointable. □

Proposition 1. The dual module (M(ℓ2(A)))′ of M(ℓ2(A)) consists of all
sequences αi ∈ M(A) such that

1) the partial sums of
∑

i α
∗
iαi are bounded, i.e. this series is strong

convergent in B(H);
2) the series

∑
i α

∗
i βi is left strict convergent for any β = {βi} ∈

M(ℓ2(A));
3) its limit belongs to M(A) ⊆ LM(A).

Proof. Suppose, α ∈ (M(ℓ2(A)))′, α : M(ℓ2(A)) → M(A). Then its restric-
tion on the submodule ℓ2(M(A)) de�nes (by [2, Theorem 2.3]) a sequence
αi ∈ M(A) which has to satisfy the property 1). It also can be restricted to
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ℓ2(A) = M(ℓ2(A))A, and also by [2, Theorem 2.3] the action is given by

∞∑
i=1

α∗
i βia, {βi} ∈ M(ℓ2(A)), a ∈ A, the series is norm-convergent.

(4)
This gives 2).

Two left multipliers u and v coincide, if ua = va for any a ∈ A. Thus, the
equality

α(β)a = α(βa) =

∞∑
i=1

α∗
i βia =

( ∞∑
i=1

α∗
i βi

)
a

implies

α(β) =
∞∑
i=1

α∗
i βi (5)

and hence 3).
Also, (5) implies that the linear mapping α 7→ {αi} is injective.
Conversely, if {αi} satis�es 1)-3), then (5) de�nes an element of the module

(M(ℓ2(A)))′. Indeed, everything is evident, one needs only to verify that this
α is bounded. For any m < n and a ∈ A we have by the Cauchy inequality
([11, 1.2.4])∥∥∥∥∥

n∑
i=m

α∗
i βi

∥∥∥∥∥
2

=

∥∥∥∥∥
(

n∑
i=m

α∗
i βi

)∗ n∑
i=m

α∗
i βi

∥∥∥∥∥ ≤

∥∥∥∥∥
n∑

i=m

α∗
iαi

∥∥∥∥∥ ·
∥∥∥∥∥

n∑
i=m

β∗
i βi

∥∥∥∥∥ .
Hence, α is bounded, and the mapping is surjective. □

Recall that an A-functional Γ : ℓ2(A) → A is de�ned by a sequence
{Γi}i∈N, Γi ∈ RM(A), such that∑

i

Γ∗
iΓi strongly converges in B(H) (6)

(see [2] and (2) above). The action on α = (α1, α2, . . . ) ∈ ℓ2(A) is de�ned
by Γ(α) =

∑
i Γ

∗
iαi and the series is norm-convergent.

Lemma 2. An A-functional Γ : ℓ2(A) → A is locally adjointable if and
only if its above de�ned collection of coe�cients Γi determines an element
of (M(ℓ2(A)))′.

Proof. Suppose that Γ is locally adjointable. Consider an arbitrary adjoin-
table morphism γ : A → ℓ2(A). The set of these morphisms is isomorphic, on
the one hand, to the space (ℓ2(A))∗ of adjointable A-functionals, and on the
other hand, to the module M(ℓ2(A)) (see [3, 2]). Namely there exist (by [3,
Theorems 1.8 and 2.1]) γi ∈ M(A) such that

∑
i γ

∗
i γi is strictly convergent

and

γ(a) = (γ1a, γ2a, . . . ), a ∈ A. (7)
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Then

Γ ◦ γ(a) =
∑
i

Γ∗
i γia,

where the series
∑

i Γ
∗
i γi = µ is convergent in left strict topology and de�nes

an element µ ∈ LM(A). This gives property 2) of Proposition 1. This
morphism A → A has to be adjointable and hence we have

∑
i Γ

∗
i γi ∈ M(A).

This gives 3) of Proposition 1. In particular, for γ = (0, . . . , 0, 1M(A), 0, . . . ),
we have that Γ∗

i is an adjointable left multiplier, i.e. Γi ∈ M(A). Together
with (6) this gives 1) of Proposition 1.

The converse is similar. Indeed, from 1) it follows that the sequence {Γi}
de�nes an element of (ℓ2(A))′ which acts by formula Γ(x) =

∞∑
i=1

Γ∗
ixi, where

series is norm-convergent. In particular, for any adjointable γ : A → ℓ2(A)

and any a ∈ A we have Γ(γ(a)) =
∞∑
i=1

Γ∗
i γia. From 2) it follows that( ∞∑

i=1
Γ∗
i γi

)
a =

∞∑
i=1

Γ∗
i γia = Γ(γ(a)), and from 3) it follows that

( ∞∑
i=1

Γ∗
i γi

)
∈

M(ℓ2(A)), i.e.
∞∑
i=1

Γ∗
i γi = Γ ◦ γ is adjointable. □

The following statement will be used below and also seems to be of
independent interest.

Theorem 2. A bounded A-morphism F : M → ℓ2(A) is adjointable if and
only if all projections πk ◦ F , k ∈ N, are adjointable.

Proof. If F is adjointable then πk ◦F is adjointable since the projections πk
are adjointable.

Suppose that for any projection πk we have that πk ◦ F is adjointable.
Then, for any y = (y1, y2, . . . ) ∈ ℓ2(A),∥∥∥∥∥∥

q∑
k=p

(πk ◦ F )∗(πk(y))

∥∥∥∥∥∥ = sup
z∈M, ∥z∥≤1

∣∣∣∣∣∣
∣∣∣∣∣∣
〈
z,

q∑
k=p

(πk ◦ F )∗(πk(y))

〉
M

∣∣∣∣∣∣
∣∣∣∣∣∣ =

= sup
z∈M, ∥z∥≤1

∣∣∣∣∣∣
∣∣∣∣∣∣
〈

q∑
k=p

(πk ◦ F )(z), πk(y)

〉
A

∣∣∣∣∣∣
∣∣∣∣∣∣ =

= sup
z∈M, ∥z∥≤1

∣∣∣∣∣∣
∣∣∣∣∣∣
〈
F (z),

q∑
k=p

π∗
kπk(y)

〉∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

≤ ∥F∥ ·

∥∥∥∥∥∥
q∑

k=p

π∗
kπk(y)

∥∥∥∥∥∥ = ∥F∥ ·

∥∥∥∥∥∥
√√√√ q∑

k=p

y∗kyk

∥∥∥∥∥∥ .
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Since the series
∞∑
k=1

y∗kyk is norm-convergent, this implies that, for every

y ∈ ℓ2(A), the series
∞∑
k=1

(πk ◦ F )∗(πk(y)) is also norm-convergent in M

and the equality S(y) =
∞∑
k=1

(πk ◦ F )∗(πk(y)) de�nes a bounded A-operator,

S : ℓ2(A) → M. Also, for any x ∈ M, y ∈ ℓ2(A),

⟨F (x), y⟩ℓ2(A) =
∞∑
k=1

⟨πk ◦ F (x), πk(y)⟩A =

=
∞∑
k=1

⟨x, (πk ◦ F )∗(πk(y))⟩ = ⟨x, S(y)⟩,

so F is adjointable with S being the adjoint operator. □

Corollary 2. 1). A bounded A-morphism F : M → ℓ2(A) is locally
adjointable if and only if all of its projections πk ◦ F , k ∈ N, are
locally adjointable.

2). An endomorphism F of the module ℓ2(A) is locally adjointable if and
only if its matrix rows belong to M(ℓ2(A))′ (�i-th matrix row�, i ∈ N,
is the functional πi ◦F de�ned by the sequence {πi ◦F ◦ πj}j∈N if we
consider the operator F as an in�nite matrix {Fi,j = πi◦F ◦πj}i,j∈N).

Corollary 3. M(ℓ2(A)) ⊂ (ℓ2(A))′LA.

Proof. Indeed, M(ℓ2(A)) = (ℓ2(A))∗ ⊂ (ℓ2(A))′LA. □

Corollary 4. For a countably generated Hilbert A-module M (for example,
for an orthogonal direct summand of An or ℓ2(A) when A is σ-unital) we
have that M(M) ⊂ (ℓ2(A))′LA.

Proof. Indeed, by using Kasparov's stabiilization theorem and the fact that
any adjointable functional can be extended from the summand to the sum
we have that M(M) = M∗ ↪→ (ℓ2(A))∗ ⊂ (ℓ2(A))′LA.

Extension of F ∈ M∗ to F̂ ∈ (M⊕N )∗ is de�ned by formula F̂ (m,n) =

F (m); its adjoint is de�ned by formula F̂ ∗(a) = (F ∗(a), 0) since for any
a ∈ A, m ∈ M, n ∈ N

⟨F̂ ∗(a), (m,n)⟩M⊕N = ⟨F ∗(a),m⟩M + 0 = ⟨a, F (m)⟩A = ⟨a, F̂ (m,n)⟩.

□

Acknowledgment: we thank the referee for helpful comments and an
interesting suggestion that leaded to an extension of the paper by Corollary
4.
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