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Abstract: For d pairwise commuting automorphisms (flows) of
a probability space, ergodic averages over parallelepipeds are con-
sidered. It is shown that the maximum rate of their convergence
in the L,-norm is O(ﬁ) A spectral criterion is also obtained
for the maximum convergence rate in the Ly-norm.
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1 Introduction

1.1. Let T be a measure-preserving transformation of a probability mea-
sure space (€, ). It is well known that ergodic averages

n—1

ATfw)= - 3" f(T), € L@ ), pe 1, +00)
k=0
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1

n
Namely, if [|ALf — f*|l, = o(1/n) as n — oo, then f = f*. For p > 1 this
result was obtained by Butzer and Westphal [1, Theorem 1|, where a more
general case of power bounded operators in a reflexive Banach space was con-
sidered. Gaposhkin obtained a new proof for the Lo-convergence case in |2,
Corollary 5|, where the spectral representation of stationary sequences was
used. In this case, the fact about the maximum rate immediately followed
from the inequality

converge in norm as n — oo to their limit f* at a rate no faster than O(=).

lim n||AL f|lo > 0
n—oo

for a non-zero function f. Sedalishchev in [3, Lemma 1| obtained a sim-
ple proof of this inequality for all L,, p € [1,400], strengthening it to the
following form:

/1l
5

The purpose of this note is to obtain an analogue of the maximum rate of
convergence statement for ergodic averages

Anf(w) = Al - Al f(w), 7= (n1,...,nq) € N%,

: T
>
Jim Ay fl, >

where Ty, k= 1,...,d, are pairwise commuting automorphisms of the prob-
ability measure space (2, u); and also for ergodic averages with continuous
time

Apf (w) !

- - fTM - Tw) did, = (t,...,tg) € RY,
titz - ta Jio,

where {T}}ier, k=1, ...,d, are pairwise commuting flows of the probability
measure space (€2, u).

We show that for all p € [1,400] the maximum rate of convergence in the
Ly-norm is (’)(m) as ni,...,ng — +oo for discrete time, and (’)(ﬁ)
as tq, ..., tg — +oo for continuous time. This is a consequence of Theorem 1.
Put

m(t) = tity- - -tq, t€RY,
and we will write ¢ > § if only t; > s; for each coordinate.

Theorem 1. Let f € L,(Q, p), p € [1,00]; then
£l

A fllp > Il it e NY,
;gll wfllp = P2 (7) for all 7

oup [fog £21" -+ Tt di |
sup | Asfl, > EoF ’
P g, =
o> S 22dr (¢)

where Ep = {(j’: (L . 4y GeNd, 77> f} c (0,1]¢.

ny’ ’7"Td

for all TeR%,
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1.2. The maximum rate of convergence O(
averages is equivalent to the condition

) or O(ﬁ) of ergodic

ni-ng
ni—1 ng—1

sup Z Z f(lel ...dew) < oo for discrete time,

AENT =0 kg=0
1 d D

sup < oo for continuous time.

feRd
terd

Fy - Tyw) du
[0,1] »
For the case of a single measure-preserving transformation, it is well known
that the last inequality holds only for L,-coboundaries (or functions from L,
cohomological to zero), i.e., f € (I —T)Ly(£2, ). An excellent exposition of
the history of the question can be found in the introduction to Cohen and
Lin’s paper [4]. In general, it follows from Bradley’s paper [5] that f is a
d-multiple L,)-coboundary for all d measure-preserving transformations, i.e.,

Fe =T (I—TyLy(, ).

Cohen and Lin obtained [4], [6, Proposition 3.1] a spectral criterion for two-
fold Ly-coboundaries in the case of two commuting transformations. We
give this assertion (the equivalence of conditions (1) and (2) below) in the
general case d > 1. Note that for a single measure-preserving transformation
the spectral criterion is due to Robinson [7|. In a recent note [8] a similar
criterion for uniform convergence on subspaces was obtained.

Theorem 2. Let Th,..., Ty be pairwise commuting automorphisms of the
probability measure space (Q, ). Then for f € La(Q, u) the following condi-
tions are equivalent:

fed—="1) (I —"Ty)La( p); (1)
d
/ 'O'2f§;f17 '7§'Clz)d < o0; (2)
Sin 5 Sin 5
(—m,m]e
1 n—1 n—1 1
k k .
mZ---Z]”(Tll---Tddw) _O<nd> as n — oo; (3)
ki=0  kg=0 )
1 ni—1 ng—1 i N 1
DY 1 DY d pr—
) Z Z f(Iy T;w) 0] <7r(ﬁ)> as Ny, ...,ng — 00. (4)
k1=0  kg=0 )

Here of(x1,...,24) is the spectral measure constructed from the function
f and the automorphisms 71, ..., Ty (see, for example, [9, 10]). In particular,
using the spectral measure one can express the norms of ergodic means,
namely

1 sin? 2121 . . . gjp?2 Nd%d
A=fl2 = ——— 2 2 dos(xy,...,14).
” nf||2 n%n?j SiHQ%"'SiDQ%i f( 1, 3 d)

(_7r77r]d
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A similar result holds for continuous time. To formulate it, we define an
analogue of L,-coboundaries. Let R; be the generator of the group {Tf}teR,

j=1,...,d, ie., in the strong operator topology R; = tliI(I)l+ %(I — T]t) It is
%

easy to verify that on Dom R = ﬁ;lleom R; the generators commute with
each other, so on this domain the operator R = R; --- Ry is well defined. We
will say that f is a d-multiple L,-coboundary if it lies in the image of the
operator R, i.e., there exists a function g € L,(, ) such that f = Rg.

Theorem 3. Let Tfl, ...,Tsd be pairwise commuting flows of the probability
measure space (2, p). Then for f € Lo(Q, u) the following conditions are
equivalent:

f € RLa (2, p); (1)
d
[t <o @)
x .--:L‘
g 1%
1 (758 Ud = 1 /
i df(Tl - Tw) dul| =0 a) e t — o0; (3"
0. )
2 fae 1) da =o<1> 05 t, oty — 00, (4)
7@ Jog O T | =0\ h5) st

Note that in the case d = 1 the equivalence of (1’) and (4’) was proved
in [11] (see also [12]), and the equivalence of (2') and (3') was considered
in [13].

The problem of transferring known results on convergence rates in ergodic
theorems [14] from the action of the group Z to the groups Z¢ and R (and
further to the widest possible class of groups) was set to the first co-author
of this paper by A.M. Vershik and A.M. Stepin in the mid-1990s; its solution
was started at the same time in [9] and [15]. Theorems 2 and 3, together
with the results of [16], complete the solution of this problem for power rates
of convergence in the norm (with all possible exponents) for the actions of
the groups Z¢ and R%.

2 Proof of Theorem 1

2.1. Consider a mapping £ : N* — N¢ such that
fi < L(7) for all @€ N% and L(7) < L(m) for 7 < m.

We will say that a net {z;};cne of elements of some normed space (X, || - ||)
is (a, £)-recurrent for some a > 0 if for any 7 € N there exists an ele-
ment s(7i) € N? such that 7 < s(ii) < £(7) and ||z > a. The following
theorem holds.

Theorem 4. Let {;}:cna be a (a, L)-recurrent net; then for all i € N4
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sup -
m>a || T (m)

Theorem 4 is proved in [17] for complex-valued nets. The proof of the
general case for nets with values in a normed space is word for word the
same as the original case, since essentially only the triangle inequality for
the norm is used.

Theorem 4 immediately implies Theorem 1 for the group time Z¢. In-
deed, for the function f € L,(Q, n), consider the net zz = f(T7" -+ T w)
and L(77) =7+ (1,...,1). Taking a = || f||p, we obtain that the net is (a, £)-
recurrent: s(7i) =7 and |[z4) |l = a. Therefore, the inequality from Theo-
rem 4 is valid, which after applying the estimate m(ii + (1,...,1)) < 2% (i)
becomes exactly the inequality from Theorem 1.

Now let’s consider the continuous case, i.e., the group time R?, and use
the already proven inequality for discrete time. Fix ¢ and take an arbitrary
vector ¢ € Ep. Put

gg(w) = f( Ty da, S;=T¢, j=1,..,.4d.

[0, !

Let us consider the partition of the interval [0, 7] into unit cubes, i.e.,

—

= U P Pe=10,1"+k k<i
nggn

We denote the coordinate-wise multiplication of vectors in R¢ as
{@ §= (t181, . tde).

It is easy to see that

> / FOS§ - Sjtw)di = > F(Spth . ghathay) gy =
o<k<ii ¥ o<i<n O

_(1*) 2 1f(Tf15fl' TSy w) di = W((AEA&' - Angg(w).
ﬂ

0<k<

From here, taking into account that ¢ = ny ® ¢ for some 1 > t, we obtain
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sup || Azfllp = sup Az flp =
>t F>t,5=n0Oq,reNd
1 / g N g
= - [T THw) di)|| =
i T O Q) | Jomeq ™ d )
1
= sup —— fTP - T di|| =
iz T(7) ||/ j0,7] ,
1 / u u —
= sup — FOST - STw) dul| =
0<k<n »
_ S g% lgalle — _ llgallp
= sup At A > = .
s | w91, 2 T @) = 22n (5

Since ¢ € Ep was arbitrary, we can take the supremum over all such vectors.
Theorem 1 is completely proved.

Remark. V.V. Ryzhikov proposed the following argument to justify the
inequality for the discrete case in Theorem 1. The following statement is
true: for any 7 € N there exists n/ > 7, such that |77 — n/||s < 1 and

S 11
Z Z £ Tkl,,,ngw) > de'
ki=0  kq=0

p

This inequality strengthens Sedalishchev’s inequality from the one-dimen-
sional case. The proof is by induction. We will only show the basis for
d = 1. From the equality

> f(Th) Z f(TFw) = f(T"w)
k=0

it follows that the norms of both sums on the right-hand side cannot be less
than || f||,/2 at the same time.
Now, having the strengthened Sedalishchev’s inequality, we obtain

11l £l
sup [[Aafllp > sup  [|Afllp > 2> .
m>n P ||7/:l_ﬁ||oo§1 'SP 2d7r(n/) 22d7r(n)

2.2. Let us show how the statement about the maximum rate of conver-
gence of ergodic means follows from Theorem 1.

Let [|[Az(f — )|, = o( L ) for nq,...,ng — +00. Then

15— 7| o (0
W < s l4ar = Pl =0 (755 )

whence [|f — f*[l, = o(1), Le., f(w) = f*(w) ae
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For continuous time, also assume that [ AZf— f*)l, =0 (ﬁ)
as ty,...,tqg — +o00. Then

spger, | fio.q T -+ Tiw) dit — 7@ ], * .
i <sup [As(f = f)p=0|—= )
2 w(fﬁ >t W(F)
whence SUPge s, | [[0 f(I - Tw) di — mo(q) £, = o(1) as ty, ..., tq — +oo.
Let t = nty, n — oo, and the vector ¢ be fixed. Since Eg CE, - c (0,1]4,

then SUPges,. I f[07q”] (Ty" - Tyw) did — (@) f*|p = o(1 ) as n —> 00, there-
fore, for any ¢ € Ef.,

Then from the local ergodic theorem |18, §7.2] we obtain a.e. equality

fHw) =

o @ - Tytw) di — m(q) f*
7q

p

(TP -+ Tlw) dii = f(w).
B sqeowq")/(ﬂf a'w)dit = J(w)

3 Functions J;(z) and Ky(x)

3.1. Let us consider an auxiliary problem, interesting in itself and useful
for proving the spectral criterion for the maximum possible rate of conver-
gence, i.e., for Theorems 2 and 3. For x = (1, ..., z4) we define the functions

Ja(z) = lim / Hsin2($k5/2) ds, = € R
0 k=1

T—oo T

Ka(x) = lim —ZHSln (zxn/2), = € (—m,m]*.
n=1k=1
Our goal is to find the set of zeros of these functions and to show that their
set of values is finite. The reader interested in the proof of Theorems 2 and
3 can skip to the next sections and return to §3 later.

To calculate the limits, we use the following construction. Consider in
the space RY the bundle £(a) of all hyperplanes defined by the equalities
x1€1 + X282 + ... + 464 = a, where a € R is fixed, and ¢ € {—1,0,1} and
not all of them are equal to zero simultaneously. It is clear that £(a) = L£(—a)
for each a € R. The index of a hyperplane L from the bundle L£(a) is the
number of all nonzero coefficients in the equation defining it, i.e., the quantity

d
indL = Y |eg] = ||€]|1- In the case a = 0, the hyperplanes from the bunch
k=1
L£(0), defined by the vectors ¢ and —e, will be considered different. Many
different combinatorial problems are associated with such constructions; see,

for example, [19]. We also set
Lq=L0O0)UL2m)U---UL(2m|d/2]).
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Proposition 1. The following equalities are true

d
jd(l') = Z I{CL‘EL} , T € Rd;
=1 LeL(0)
indL=k
d
Kd(x) = Z I{:EEL} , TE (_ﬂ-vﬂ-]d‘
k=1 LeLy

indL=k

Proof. Let us prove both equalities simultaneously. Let v be the Lebes-
gue measure on R or the counting measure on Z. Then both limits in the
definitions of the functions J; and Ky are written in the same way. We have

Using the formula for the product of cosines, we rewrite the product

d d
H (1 —cos(ags)) =1— Zcos xEs) + Z cos(z;s) cos(xs) + ...
k=1 k=1

1<i<j<d
+ (—1)k Z cos(zj, s) - - - cos(wi, ) + ...
1<i1 <...<ip<d

+ (—1)d cos(xy1s) - - cos(zys) =

d k

—1)71

=1+ Z (Qk—)l 9 Z cos((z1e1 + xoea + ... + T4€q)S).
k= lelli=k

The summation Y is over all vectors € = (e1,...,£4), € € {—1,0, 1} with
lelli=F
the norm ||le||; = k. Since the vectors e and —e make the same contribution,
each sum has an additional factor % It remains to calculate the limits of the
: d

form limy o0 7 f(oﬂ cos(ys) dv(s), where y = >y Tkek.

If v is the Lebesgue measure, then the limit is Iy, —qy. Let’s check that for
the counting measure on Z there will be a similar result. Using the known
formulas for the sum of cosines, we get

_ 1 [cos(Ny/2)sin((N +1)y/2 o=
— lim ( (Ny/ S)in(y(/(Q)Jr )y/2) _1> .

k=—o00
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[d/2]
The last sum is in fact finite and equals >, I{y—orky, since for
k=—|d/2]
x € (—m, 7T]d the point y € (—dm, dr]. Putting all the calculations together,
we obtain the required equalities. O

It immediately follows from Proposition 1 that the functions J; and
K4 take a finite number of values. In addition, for all z € (—m,7]? such
that « & L4\ £(0), the equality Jy(z) = K4(z) holds; in particular, for all

T T d
ve (-4

3.2. Let us find the zeros of the function J;, and estimate its minimum
positive value.

Proposition 2. The following statements hold for the function Jy:
d
(i) Ja(x) = % 027r [1 sin®(xys/2) ds for all x € Z°.
k=1

(11) Ja(x) = 0 if and only if ﬁ x, = 0. Moreover, for the minimal value
Ja:= min Jy(z) we have thek;;timate
klizk#o
! <Jd < =
2(2d—|— 1)d(d71)(2d+1) - — 9d’

Proof. Considering that for x € Z? the squares of the sines involved in the
product will be 2mw-periodic, we obtain

Ja(z) = lim / Hsm (xps/2)ds

2N d
= lim N/ sin?(xy5/2) ds

N—oo 2T
k=1
1 N-1 rox(n+1) d )
s 5 e
or d
:]\}gnoom /0 kl—[lsm zp(t+ 2mn)/2) dt
1 N—-1 L ord 1 27
T ) . )
= A}gnoo TN T;) /0 kljlsm (xxt/2) dt = /) kl:Ilsm (xxt/2)dt

The function Jy is a homogeneous function of order zero, i.e., for any
a € R\ {0} the equality Jy(ax) = Jy(z) is true. If the point z € R? does
not lie in any hyperplane of the bunch £(0), then Jy(z) = 27¢. The func-
tion Jy takes the same values on linear subspaces that are intersections of
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hyperplanes of the bunch £(0). Since any such intersection contains inte-
ger points, the values of the function Jy are completely determined by its
values on Z¢. Moreover, it can be argued that it is sufficient to take in-
teger points from some cube. To find the boundary of this cube, we use
the following statement from the theory of Diophantine equations (see |20,
Theorem 6.1], [21, Chapter 1, §2.2], and also [22]). Let m < d, a;; € Z and
d
A; = ) |a;j],i =1,...,m; then the system of linear homogeneous equations
j=1
;171 + a; 222 + ... + a; qTq = 0, 2=1,....m

has a non-trivial integer solution satisfying the condition

max |zg| < TN Ap - A

1<k<d

In our case, all A; <d, and the boundary of the cube is estimated as

max |zg| < dd L
1<k<d

From (i) and the fact that J; is completely determined by the values on
74, it is immediately clear that J; vanishes only if one of the coordinates
xp, = 0. Let us now find the lower bound for jg; the upper bound is obvious.
We will use the representation (i), where for the point x € Z%, z;, # 0 we will
assume that D = max |zx| < d?1. We have

Ja(x) = 1/ Hsm (xrs/2)ds

L 1 [m/@ep) 4 )
/0 Hsm (zgs)ds > 7r/ kl;[lsm (zgs) ds.

0

For s € [0, 53] we have x5 € [0 7] and hence sin?(zys) > (2z5s)%. Thus,

’ 2
/(2D) d,.2 2 /(2D)
>l/” 4xks dszllxl...avd/Tr 2d gg
= q2d+1 )
4dg2. .. g2 2d+1 z3- - 2? 1

= > .
o (2d + 1)(2D)241 — 2(2d + 1)D2d+1 = 2(2d 4 1)d(d—D(d+1)
0

3.3. Let us proceed to finding the zeros of the function KCgy(z).
d
Proposition 3. Ky(x) = 0 if and only if [[ zx = 0.
k=1

Proof. As can be seen from the definition of the function K4, if at least
one coordinate of the point x € (—7[‘,7T]d is equal to zero, then the function
vanishes. Let us show that there are no other zeros. Suppose that there is

d
a point x € (—m, 7%, such that [] 2 # 0, and at the same time Kq(z) = 0.
k=1
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We obtain a contradiction using the density theory for subsets of the set
of natural numbers. And the transition to this theory is realized using the
Koopman—von Neumann lemma (see, for example, [23, lemma 2.41]): for a
bounded sequence of non-negative numbers {a,, },>1 one have the equivalence

1
lim NZan: & ap—0 for n—oo, née¢J
for some set J with zero asymptotic density.

Recall (see, for example, [24]) that the asymptotic density d(J) of some
set J = {41, j2, ...} of natural numbers is the limit (if it exists)

k:jr <
() = tim PXEIRERE
n—oo n n—00 Jp
d
Let a, = [] sin®(zxn/2). Since
k=1
L
= = i T ny
0= Kala) = Jim 5 2

then there exists a set J C N of asymptotic density 1, along which a,, — 0
(since the complement of a set of density 0 always has density 1). We will
show that this cannot happen. To do this, we will find out along which
increasing sequences m,, of natural numbers it will be sin(ym,) — 0 as
my, — oo for a given y € (—7/2,7/2]\ {0}.

If y=mny,a €Z,beN,b>2, then my, = bM,, M, € N, starting from
some number n. The maximally dense set will be the arithmetic progression
my, = bn, n € N; its asymptotic density is %.

If y=ma,a € R\ Q, then {m,},>1 has zero asymptotic density. Indeed,
let us first show that m,+; — m, — +00 as n — oo. Let this not be so; then
there exists a natural number ¢ such that for an infinite number of numbers
we have my,41 — m, = c. For such numbers we obtain

0 = lim sin(ymyp+1) = limsin(ym, + yc) =
n n
= lim sin(ymy,) cos(yc) + lim cos(ym,, ) sin(yc) = £ sin(yc) = +sin(wca).
n n

The sign + depends on the limit of cos(ym,,): isit 1 or —1. Here we conclude
that ¢ = 0; it cannot be. Using Stolz theorem for calculating the limits of
sequences, we obtain

d({mn}) = lim & = lim LT g,

n—00 My, n—00 Mpy41 — My,

d
Let us return to the sequence a,, = [] sin?(xxn/2). The set J along which
k=1
it tends to zero is the union of the sets Jj along each of which sin(zxn/2)
tends to zero. Among the Ji there are either sets of density zero or arithmetic

progressions of the form {byn},>1,br € N, b > 2. A finite union of sets with
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zero asymptotic density will be a set with zero density. And a finite union
of the arithmetic progressions considered cannot have density 1, since there
will always be another arithmetic progression in its complement. Indeed, the
arithmetic progression {1 + by - - - byn}p>1 has no common terms with any of
the progressions {bxn},>1. Since otherwise the Diophantine equation

1+b1---bm=0bm

would have a solution n,m € N; it cannot be.
Thus, the asymptotic density of the set J cannot be equal to 1. ([

4 Proof of Theorem 2

Recall that the equivalence of (1) and (4) follows from [5]. For the re-
maining items, we prove the following chain: (4) = (3) = (2) = (4).

From (4), we can easily obtain (3) by setting ny = --- =ng = n.

We will show the implication (3)= (2). Let for some constant B > 0 for all
natural n we have || A, f||3 < Bn~2%. Taking into account the representation
for the Lo-norm of ergodic means, we rewrite this estimate as

- dO’f(.Z‘l, cee ,xd).

The Fatou lemma, when passing to the lower limit as N — oo, yields the
following inequality:

H sin? MLi
hmmf— E 1 2 dop(wy,...,Tq) >
N—oo sin? &
J =1 2
(—m,m]
R 2
o . nT;
limy o0 > I sin R
n=1
> / T2, sin? & dog(xy,...,2q).
i—1 Sin 5
d Y2
(—7‘(,71’]

Recalling the definition of the function IC4(z), we obtain an estimate close
to the required one:

/ H i daf(xl,...,xd) <B.
i=1

(—m,m]?
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From condition (3), applying the conditional expectation operator E; with
respect to the J—algebra of Tj-invariant sets, we obtain, on the one hand,

(Z 3 st -Tf%))

k1=0 kq=0

n—1 n—1

Z Z f(lel---TC’fda:)

k1=0 kqa=0

< =0(1),

2
and on the other hand, because E;T; = E;,

n—1 n—1
5 (58 satori)

k1=0 kqa=0

n—1 /\

> ZIEfT’“ ST TR

k1=0 kqa=0

=N

2 2
Putting it all together, we find for the ergodic averages generated by d — 1

automorphisms (all except T}), the estimate

1
AL B = o o )

Taking into account Theorem 1, we conclude that E;f =0 for each
j=1,...,d. From this we deduce [10, Corollary 1], that the spectral mea-
sure 07(0) = 0 for

0= {xe Hmz_o}

By Proposition 3, the function Ky4(z) also vanishes on O, therefore

d
fo'o) dof(z1,...,2zq) = minKg(z) os(@1,. . Td)

d 2 @ d 2z
] [[i—;sin® % z¢0 ] [T sin®
(=m,m] (—m,m)

Whence, assuming kg = H;él(g K4(x) and knowing from Propositions 1 and 3
xX

that kg > 0, we obtain
doy .
or(x1,...,2q) < B

< — < oo
i [T, sin? o Kd
We now show the implication (2)=(4). If
dO‘f(iL’l,...,xd> _ A < o0,
. H ", sin?
then for all 77 € N¢
in2 ML qin2 Rd%d
1Az fll5 = 2 1n3 / SH;mQQach. ZEQ %f dog(xi,...,2q) <
(=mm]?
< 1 / dof(xy,...,2q) <4 1
“nioen? sin? Z - -sin® & T ni--ong
(=mm]?

Theorem 2 is completely proved.
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5 Proof of Theorem 3

The equivalence of conditions (2), (3'), and (4') is proved word for word,
just as in Theorem 2 the equivalence of conditions (2), (3), and (4) is proved.

The difference is the use of the function J; (instead of the function Kg),

whose zeros form the set Q' = {:c e R?: H?Zl x; = 0} . We prove the equiv-

alence of (1’) and (4').

Proposition 4. Let T", ..., T' be pairwise commuting flows of a probabil-
ity measure space (2, ). For any function f € Ly(Q,pn), p € [1,+00) the
equivalence holds

f€RL,(Qp) <& sup

sup FITM - Tw) dii
ter?

[0,£]

< 0.

p

Proof. 1t is enough to prove the implication < . Let us reduce the problem
to the already known criterion for discrete time. Let

sup =(C < o0.

reRd
ferR?

[Oﬂf(T{““'T;dw)dﬁ

Fix an arbitrary vector ¢ € R%, and set, as in the proof of Theorem 1,
gz(w) = o F@PT - Tiwyd, S;=T", j=1,..d.
0,q

Then, using the calculations from the proof of Theorem 1, we obtain the
estimate

sup f(ry - Tyiw) dal| > sup f(I - Tyiw) dil| =
ferd ||/10.4] f=iog, aeNd ||/[0,1] »
= sup / f(Iy - Tyiw) di|| = sup Z gtj(Sfl -.-Ssdw)
eN [|J]0,704] neNd 0<E<it

p

Thus, for commuting automorphisms S;j,j = 1,...,d and the function gz,
we obtain

sup Z g(j(Sfl e Ssdw) <C < 0.
neN OSES’H »

It follows from the work of Bradley [5]| that there exists a function
hg € Ly(Q, ) such that ||hg], < C and gz =[]0, (I — Sj)hg, ie.,

d
[ 1f(TI“I---T;dw) di = [[(I - T")hg, §eRE.
0,q i=1
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Let us write this equality for the vector §/k := <,%, s 2—2)7 keN?:

d 4

AT T di = [ [T =Tk .
/{QMM vy dit = [[ (1= 7,7 )h

j=1
Acting on this equality from the left by the operator
d Jj 45 q
= (kj—1) 7= L 2
H<I+Tﬂ+Tk +T; kﬂ): St
=1 0<ni<k
we obtain the equality
d
FT - Tytw) dit = [T = T)h
[0,4] =1

We will now assume that the vector ¢ has binary-rational coordinates. Then
there exists a natural number mgy = mg(q) such that for any m > mg we can
choose a vector k = k(m), for which

Tk = (27,277, 27 = Gy,
Indeed, let 7= (Tl 2Td) a;,b; € N. Then

mo = b1b2 NN bda E — (a12m—b1,a22m—b2’ . ad2m_bd)'

Since the sequence of functions hy,, is bounded, then from the reflexivity of
the space L, (€, p) for p € (1, 00) it follows that that there exists a function

h € Ly(Q, u) which is a weak limit of some subsequence hg,, . Then
d d
H —Ths,,, < [[T - Tk
j=1 7=1
But for m,, > mo(q) there is an equality
d d
) A LA | (Ll
j=1 [0,d] j=1

Here we conclude that for any vector ¢ with binary-rational coordinates

d
F@ - Tytw) di = [ (T - Tk
[0,q] =1

In the case of the space Li(2, 1), we use the Komlos theorem (see, for
example, [25, Theorem 10.10.22|), which states the following. For a sequence
of functions hy,, bounded in Li(, p1), there exists a subsequence hg,, and
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a function h € L1(, 1) such that there is convergence a.e. of Cesaro means
for any of its subsequences hﬁmnk

hﬁmnl + hgmw + ...+ hﬁmnk

hy := A —h as k — oco.

Then a.e. H;l:l(l — Z}gj)ﬁk — H;l:l(l —T}")h as k — oo. We can assume
that my, > mo(q). Then the left-hand side of the last limit relation is equal
to f[o a J(T{" -+ Tyw) du. Here we again conclude that for any vector ¢ with
dyadic rational coordinates

d
F@ - Tytw) di = [ (T - T)h.
[076] j:l

Thus, the resulting equality is true for all p € [1,+00). Since the binary
rational numbers are dense in R, and both sides of the last equality are
L,-continuous, it will be true for all '€ ]Rﬁlr. Then

d qj

1 I1-T7

i fr - TYw) dit = —J
(@ - Tiw)di = [[—

h.
m(q) Jp.g

j=1
Passing to the limit in L, for qi,...,qq — 0, taking into account the local
ergodic theorem, we obtain f = Rh. Which is what was required to be
proved. O
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