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Abstract: For d pairwise commuting automorphisms (�ows) of
a probability space, ergodic averages over parallelepipeds are con-
sidered. It is shown that the maximum rate of their convergence
in the Lp-norm is O( 1

t1t2···td ). A spectral criterion is also obtained
for the maximum convergence rate in the L2-norm.

Keywords: rates of convergence in ergodic theorems, spectral
measure, coboundaries, bundle of hyperplanes.

1 Introduction

1.1. Let T be a measure-preserving transformation of a probability mea-
sure space (Ω, µ). It is well known that ergodic averages

AT
nf(ω) =

1

n

n−1∑
k=0

f(T kω), f ∈ Lp(Ω, µ), p ∈ [1,+∞)
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converge in norm as n → ∞ to their limit f∗ at a rate no faster than O( 1n).

Namely, if ∥AT
nf − f∗∥p = o(1/n) as n → ∞, then f = f∗. For p > 1 this

result was obtained by Butzer and Westphal [1, Theorem 1], where a more
general case of power bounded operators in a re�exive Banach space was con-
sidered. Gaposhkin obtained a new proof for the L2-convergence case in [2,
Corollary 5], where the spectral representation of stationary sequences was
used. In this case, the fact about the maximum rate immediately followed
from the inequality

lim
n→∞

n∥AT
nf∥2 > 0

for a non-zero function f. Sedalishchev in [3, Lemma 1] obtained a sim-
ple proof of this inequality for all Lp, p ∈ [1,+∞], strengthening it to the
following form:

lim
n→∞

n∥AT
nf∥p ≥

∥f∥p
2

.

The purpose of this note is to obtain an analogue of the maximum rate of
convergence statement for ergodic averages

An⃗f(ω) = AT1
n1

· · ·ATd
nd
f(ω), n⃗ = (n1, ..., nd) ∈ Nd,

where Tk, k = 1, ..., d, are pairwise commuting automorphisms of the prob-
ability measure space (Ω, µ); and also for ergodic averages with continuous
time

At⃗f(ω) =
1

t1t2 · · · td

∫
[0,⃗t]

f(T u1
1 · · ·T ud

d ω) du⃗, t⃗ = (t1, ..., td) ∈ Rd,

where {T t
k}t∈R, k = 1, ..., d, are pairwise commuting �ows of the probability

measure space (Ω, µ).
We show that for all p ∈ [1,+∞] the maximum rate of convergence in the

Lp-norm is O( 1
n1n2···nd

) as n1, ..., nd → +∞ for discrete time, and O( 1
t1t2···td )

as t1, ..., td → +∞ for continuous time. This is a consequence of Theorem 1.
Put

π(⃗t) = t1t2 · · · td, t⃗ ∈ Rd,

and we will write t⃗ ≥ s⃗ if only tj ≥ sj for each coordinate.

Theorem 1. Let f ∈ Lp(Ω, µ), p ∈ [1,∞]; then

sup
m⃗≥n⃗

∥Am⃗f∥p ≥
∥f∥p

22dπ(n⃗)
for all n⃗ ∈ Nd,

sup
s⃗≥t⃗

∥As⃗f∥p ≥
sup
q⃗∈Et⃗

∥∥∥∫[0,q⃗] f(T u1
1 · · ·T ud

d ω) du⃗
∥∥∥
p

22dπ(⃗t)
for all t⃗ ∈ Rd

+,

where Et⃗ =
{
q⃗ = ( t1

n1
, ..., td

nd
) : n⃗ ∈ Nd, n⃗ ≥ t⃗

}
⊂ (0, 1]d.
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1.2. The maximum rate of convergence O( 1
n1···nd

) or O( 1
t1···td ) of ergodic

averages is equivalent to the condition

sup
n⃗∈Nd

∥∥∥∥∥∥
n1−1∑
k1=0

· · ·
nd−1∑
kd=0

f(T k1
1 · · ·T kd

d ω)

∥∥∥∥∥∥
p

< ∞ for discrete time,

sup
t⃗∈Rd

+

∥∥∥∥∥
∫
[0,⃗t]

f(T u1
1 · · ·T ud

d ω) du⃗

∥∥∥∥∥
p

< ∞ for continuous time.

For the case of a single measure-preserving transformation, it is well known
that the last inequality holds only for Lp-coboundaries (or functions from Lp

cohomological to zero), i.e., f ∈ (I − T )Lp(Ω, µ). An excellent exposition of
the history of the question can be found in the introduction to Cohen and
Lin's paper [4]. In general, it follows from Bradley's paper [5] that f is a
d-multiple Lp-coboundary for all d measure-preserving transformations, i.e.,

f ∈ (I − T1) · · · (I − Td)Lp(Ω, µ).

Cohen and Lin obtained [4], [6, Proposition 3.1] a spectral criterion for two-
fold L2-coboundaries in the case of two commuting transformations. We
give this assertion (the equivalence of conditions (1) and (2) below) in the
general case d ≥ 1. Note that for a single measure-preserving transformation
the spectral criterion is due to Robinson [7]. In a recent note [8] a similar
criterion for uniform convergence on subspaces was obtained.

Theorem 2. Let T1, ..., Td be pairwise commuting automorphisms of the
probability measure space (Ω, µ). Then for f ∈ L2(Ω, µ) the following condi-
tions are equivalent:

f ∈ (I − T1) · · · (I − Td)L2(Ω, µ); (1)∫
(−π,π]d

dσf (x1, . . . , xd)

sin2 x1
2 · · · sin2 xd

2

< ∞; (2)

∥∥∥∥∥∥ 1

nd

n−1∑
k1=0

· · ·
n−1∑
kd=0

f(T k1
1 · · ·T kd

d ω)

∥∥∥∥∥∥
2

= O

(
1

nd

)
as n → ∞; (3)

∥∥∥∥∥∥ 1

π(n⃗)

n1−1∑
k1=0

· · ·
nd−1∑
kd=0

f(T k1
1 · · ·T kd

d ω)

∥∥∥∥∥∥
2

= O

(
1

π(n⃗)

)
as n1, ..., nd → ∞. (4)

Here σf (x1, ..., xd) is the spectral measure constructed from the function
f and the automorphisms T1, ..., Td (see, for example, [9, 10]). In particular,
using the spectral measure one can express the norms of ergodic means,
namely

∥An⃗f∥22 =
1

n2
1 · · ·n2

d

∫
(−π,π]d

sin2 n1x1
2 · · · sin2 ndxd

2

sin2 x1
2 · · · sin2 xd

2

dσf (x1, . . . , xd).
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A similar result holds for continuous time. To formulate it, we de�ne an
analogue of Lp-coboundaries. Let Rj be the generator of the group {T t

j }t∈R,
j = 1, ..., d, i.e., in the strong operator topology Rj = lim

t→0+

1
t (I − T t

j ). It is

easy to verify that on DomR = ∩d
j=1DomRj the generators commute with

each other, so on this domain the operator R = R1 · · ·Rd is well de�ned. We
will say that f is a d-multiple Lp-coboundary if it lies in the image of the
operator R, i.e., there exists a function g ∈ Lp(Ω, µ) such that f = Rg.

Theorem 3. Let T t1
1 , ..., T td

d be pairwise commuting �ows of the probability
measure space (Ω, µ). Then for f ∈ L2(Ω, µ) the following conditions are
equivalent:

f ∈ RL2(Ω, µ); (1′)∫
Rd

dσf (x1, . . . , xd)

x21 · · ·x2d
< ∞; (2′)

∥∥∥∥∥ 1td
∫
[0,t]d

f(T u1
1 · · ·T ud

d ω) du⃗

∥∥∥∥∥
2

= O

(
1

td

)
as t → ∞; (3′)

∥∥∥∥∥ 1

π(⃗t)

∫
[0,⃗t]

f(T u1
1 · · ·T ud

d ω) du⃗

∥∥∥∥∥
2

= O

(
1

π(⃗t)

)
as t1, ..., td → ∞. (4′)

Note that in the case d = 1 the equivalence of (1′) and (4′) was proved
in [11] (see also [12]), and the equivalence of (2′) and (3′) was considered
in [13].

The problem of transferring known results on convergence rates in ergodic
theorems [14] from the action of the group Z to the groups Zd and Rd (and
further to the widest possible class of groups) was set to the �rst co-author
of this paper by A.M. Vershik and A.M. Stepin in the mid-1990s; its solution
was started at the same time in [9] and [15]. Theorems 2 and 3, together
with the results of [16], complete the solution of this problem for power rates
of convergence in the norm (with all possible exponents) for the actions of
the groups Zd and Rd.

2 Proof of Theorem 1

2.1. Consider a mapping L : Nd → Nd such that

n⃗ < L(n⃗) for all n⃗ ∈ Nd, and L(n⃗) ≤ L(m⃗) for n⃗ ≤ m⃗.

We will say that a net {xn⃗}n⃗∈Nd of elements of some normed space (X, ∥ · ∥)
is (a,L)-recurrent for some a > 0 if for any n⃗ ∈ Nd there exists an ele-
ment s(n⃗) ∈ Nd such that n⃗ ≤ s(n⃗) < L(n⃗) and ∥xs(n⃗)∥ ≥ a. The following
theorem holds.

Theorem 4. Let {xn⃗}n⃗∈Nd be a (a,L)-recurrent net; then for all n⃗ ∈ Nd
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sup
m⃗≥n⃗

∥∥∥∥∥∥ 1

π(m⃗)

∑
0≤k⃗<m⃗

x
k⃗

∥∥∥∥∥∥ ≥ a

2dπ(L(n⃗))
.

Theorem 4 is proved in [17] for complex-valued nets. The proof of the
general case for nets with values in a normed space is word for word the
same as the original case, since essentially only the triangle inequality for
the norm is used.

Theorem 4 immediately implies Theorem 1 for the group time Zd. In-
deed, for the function f ∈ Lp(Ω, µ), consider the net xn⃗ = f(Tn1

1 · · ·Tnd
d ω)

and L(n⃗) = n⃗+ (1, ..., 1). Taking a = ∥f∥p, we obtain that the net is (a,L)-
recurrent: s(n⃗) = n⃗ and ∥xs(n⃗)∥p = a. Therefore, the inequality from Theo-

rem 4 is valid, which after applying the estimate π(n⃗+ (1, ..., 1)) ≤ 2dπ(n⃗)
becomes exactly the inequality from Theorem 1.

Now let's consider the continuous case, i.e., the group time Rd, and use
the already proven inequality for discrete time. Fix t⃗ and take an arbitrary
vector q⃗ ∈ Et⃗. Put

gq⃗(ω) =

∫
[0,q⃗]

f(T u1
1 · · ·T ud

d ω) du⃗, Sj = T
qj
j , j = 1, ..., d.

Let us consider the partition of the interval [0, n⃗] into unit cubes, i.e.,

[0, n⃗] =
⋃

0≤k⃗≤n⃗

P
k⃗
, P

k⃗
= [0, 1]d + k⃗, k⃗ ≤ n⃗.

We denote the coordinate-wise multiplication of vectors in Rd as

t⃗⊙ s⃗ = (t1s1, ..., tdsd).

It is easy to see that

∑
0≤k⃗≤n⃗

∫
P
k⃗

f(Su1
1 · · ·Sud

d ω) du⃗ =
∑

0≤k⃗≤n⃗

∫
[0,1]d

f(Su1+k1
1 · · ·Sud+kd

d ω) du⃗ =

=
1

π(q⃗)

∑
0≤k⃗≤n⃗

∫
[0,q⃗]

f(T t1
1 Sk1

1 · · ·T td
d Skd

d ω) dt⃗ =
π(n⃗)

π(q⃗)
AS1

n1
· · ·ASd

nd
gq⃗(ω).

From here, taking into account that t⃗ = n⃗0 ⊙ q⃗ for some n⃗0 ≥ t⃗, we obtain
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sup
s⃗≥t⃗

∥As⃗f∥p ≥ sup
s⃗≥t⃗,s⃗=n⃗⊙q⃗,n⃗∈Nd

∥As⃗f∥p =

= sup
n⃗≥n⃗0

1

π(n⃗⊙ q⃗)

∥∥∥∥∥
∫
[0,n⃗⊙q⃗]

f(T u1
1 · · ·T ud

d ω) du⃗

∥∥∥∥∥
p

=

= sup
n⃗≥n⃗0

1

π(n⃗)

∥∥∥∥∥
∫
[0,n⃗]

f(T q1u1
1 · · ·T qdud

d ω) du⃗

∥∥∥∥∥
p

=

= sup
n⃗≥n⃗0

1

π(n⃗)

∥∥∥∥∥∥
∑

0≤k⃗≤n⃗

∫
P
k⃗

f(Su1
1 · · ·Sud

d ω) du⃗

∥∥∥∥∥∥
p

=

= sup
n⃗≥n⃗0

1

π(q⃗)

∥∥AS1
n1

· · ·ASd
nd
gq⃗(ω)

∥∥
p
≥

∥gq⃗∥p
22dπ(q⃗)π(n⃗0)

=
∥gq⃗∥p
22dπ(⃗t)

.

Since q⃗ ∈ Et⃗ was arbitrary, we can take the supremum over all such vectors.
Theorem 1 is completely proved.
Remark. V.V. Ryzhikov proposed the following argument to justify the

inequality for the discrete case in Theorem 1. The following statement is

true: for any n⃗ ∈ Nd there exists n⃗′ ≥ n⃗, such that ∥n⃗− n⃗′∥∞ ≤ 1 and∥∥∥∥∥∥
n′
1−1∑

k1=0

· · ·
n′
d−1∑

kd=0

f(T k1
1 · · ·T kd

d ω)

∥∥∥∥∥∥
p

≥ ∥f∥p
2d

.

This inequality strengthens Sedalishchev's inequality from the one-dimen-
sional case. The proof is by induction. We will only show the basis for
d = 1. From the equality

n∑
k=0

f(T kω)−
n−1∑
k=0

f(T kω) = f(Tnω)

it follows that the norms of both sums on the right-hand side cannot be less
than ∥f∥p/2 at the same time.

Now, having the strengthened Sedalishchev's inequality, we obtain

sup
m⃗≥n⃗

∥Am⃗f∥p ≥ sup
∥n⃗′−n⃗∥∞≤1

∥A
n⃗′f∥p ≥

∥f∥p
2dπ(n⃗′)

≥ ∥f∥p
22dπ(n⃗)

.

2.2. Let us show how the statement about the maximum rate of conver-
gence of ergodic means follows from Theorem 1.

Let ∥An⃗(f − f∗)∥p = o
(

1
n1···nd

)
for n1, ..., nd → +∞. Then

∥f − f∗∥p
22dπ(n⃗)

≤ sup
m⃗≥n⃗

∥Am⃗(f − f∗)∥p = o

(
1

π(n⃗)

)
,

whence ∥f − f∗∥p = o(1), i.e., f(ω) = f∗(ω) a.e.



MAXIMUM RATE OF NORM CONVERGENCE 73

For continuous time, also assume that ∥At⃗(f − f∗)∥p = o
(

1
t1···td

)
as t1, ..., td → +∞. Then

supq⃗∈Et⃗
∥
∫
[0,q⃗]

f(Tu1
1 · · ·Tud

d ω) du⃗− π(q⃗)f∗∥p
22dπ(⃗t)

≤ sup
s⃗≥t⃗

∥As⃗(f − f∗)∥p = o

(
1

π(⃗t)

)
,

whence supq⃗∈Et⃗
∥
∫
[0,q⃗]

f(Tu1
1 · · ·Tud

d ω) du⃗− π(q⃗)f∗∥p = o(1) as t1, ..., td → +∞.

Let t⃗ = nt⃗0, n → ∞, and the vector t⃗0 be �xed. SinceEt⃗0
⊂ Ent⃗0

⊂ (0, 1]d,

then supq⃗∈Et⃗0
∥
∫
[0,q⃗] f(T

u1
1 · · ·T ud

d ω) du⃗− π(q⃗)f∗∥p = o(1) as n → ∞, there-

fore, for any q⃗ ∈ Et⃗0
,∥∥∥∥∥
∫
[0,q⃗]

f(T u1
1 · · ·T ud

d ω) du⃗− π(q⃗)f∗

∥∥∥∥∥
p

= 0.

Then from the local ergodic theorem [18, �7.2] we obtain a.e. equality

f∗(ω) = lim
Et⃗0

∋q⃗→0

1

π(q⃗)

∫
[0,q⃗]

f(T u1
1 · · ·T ud

d ω) du⃗ = f(ω).

3 Functions Jd(x) and Kd(x)

3.1. Let us consider an auxiliary problem, interesting in itself and useful
for proving the spectral criterion for the maximum possible rate of conver-
gence, i.e., for Theorems 2 and 3. For x = (x1, ..., xd) we de�ne the functions

Jd(x) = lim
T→∞

1

T

∫ T

0

d∏
k=1

sin2(xks/2) ds, x ∈ Rd;

Kd(x) = lim
N→∞

1

N

N∑
n=1

d∏
k=1

sin2(xkn/2), x ∈ (−π, π]d .

Our goal is to �nd the set of zeros of these functions and to show that their
set of values is �nite. The reader interested in the proof of Theorems 2 and
3 can skip to the next sections and return to �3 later.

To calculate the limits, we use the following construction. Consider in
the space Rd the bundle L(a) of all hyperplanes de�ned by the equalities
x1ε1 + x2ε2 + ...+ xdεd = a, where a ∈ R is �xed, and εk ∈ {−1, 0, 1} and
not all of them are equal to zero simultaneously. It is clear that L(a) = L(−a)
for each a ∈ R. The index of a hyperplane L from the bundle L(a) is the
number of all nonzero coe�cients in the equation de�ning it, i.e., the quantity

indL =
d∑

k=1

|εk| = ∥ε∥1. In the case a = 0, the hyperplanes from the bunch

L(0), de�ned by the vectors ε and −ε, will be considered di�erent. Many
di�erent combinatorial problems are associated with such constructions; see,
for example, [19]. We also set

Ld = L(0) ∪ L(2π) ∪ · · · ∪ L (2π ⌊d/2⌋) .
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Proposition 1. The following equalities are true

Jd(x) =
1

2d

1 +
d∑

k=1

(−1)k

2k

∑
L∈L(0)

indL=k

I{x∈L}

 , x ∈ Rd;

Kd(x) =
1

2d

1 +

d∑
k=1

(−1)k

2k

∑
L∈Ld

indL=k

I{x∈L}

 , x ∈ (−π, π]d.

Proof. Let us prove both equalities simultaneously. Let ν be the Lebes-
gue measure on R or the counting measure on Z. Then both limits in the
de�nitions of the functions Jd and Kd are written in the same way. We have

lim
T→∞

1

T

∫
(0,T ]

d∏
k=1

sin2(xks/2) dν(s) = lim
T→∞

1

2dT

∫
(0,T ]

d∏
k=1

(1− cos(xks)) dν(s).

Using the formula for the product of cosines, we rewrite the product

d∏
k=1

(1− cos(xks)) = 1−
d∑

k=1

cos(xks) +
∑

1≤i<j≤d

cos(xis) cos(xjs) + ...

+ (−1)k
∑

1≤i1<...<ik≤d

cos(xi1s) · · · cos(xiks) + ...

+ (−1)d cos(x1s) · · · cos(xds) =

= 1 +
d∑

k=1

(−1)k

2k−1

1

2

∑
∥ε∥1=k

cos((x1ε1 + x2ε2 + ...+ xdεd)s).

The summation
∑

∥ε∥1=k

is over all vectors ε = (ε1, ..., εd), εk ∈ {−1, 0, 1} with

the norm ∥ε∥1 = k. Since the vectors ε and −ε make the same contribution,
each sum has an additional factor 1

2 . It remains to calculate the limits of the

form limT→∞
1
T

∫
(0,T ] cos(ys) dν(s), where y =

∑d
k=1 xkεk.

If ν is the Lebesgue measure, then the limit is I{y=0}. Let's check that for
the counting measure on Z there will be a similar result. Using the known
formulas for the sum of cosines, we get

lim
N→∞

1

N

N∑
n=1

cos(ny) =

= lim
N→∞

1

N

(
cos(Ny/2) sin((N + 1)y/2)

sin(y/2)
− 1

)
=

+∞∑
k=−∞

I{y=2πk}.



MAXIMUM RATE OF NORM CONVERGENCE 75

The last sum is in fact �nite and equals
⌊d/2⌋∑

k=−⌊d/2⌋
I{y=2πk}, since for

x ∈ (−π, π]d the point y ∈ (−dπ, dπ]. Putting all the calculations together,
we obtain the required equalities. □

It immediately follows from Proposition 1 that the functions Jd and
Kd take a �nite number of values. In addition, for all x ∈ (−π, π]d such
that x ̸∈ Ld \ L(0), the equality Jd(x) = Kd(x) holds; in particular, for all

x ∈
(
−π

d ,
π
d

]d
.

3.2. Let us �nd the zeros of the function Jd, and estimate its minimum
positive value.

Proposition 2. The following statements hold for the function Jd:

(i) Jd(x) =
1
2π

∫ 2π
0

d∏
k=1

sin2(xks/2) ds for all x ∈ Zd.

(ii) Jd(x) = 0 if and only if
d∏

k=1

xk = 0. Moreover, for the minimal value

jd := min
d∏

k=1

xk ̸=0

Jd(x) we have the estimate

1

2(2d+ 1)d(d−1)(2d+1)
≤ jd ≤ 1

2d
.

Proof. Considering that for x ∈ Zd the squares of the sines involved in the
product will be 2π-periodic, we obtain

Jd(x) = lim
T→∞

1

T

∫ T

0

d∏
k=1

sin2(xks/2) ds =

= lim
N→∞

1

2πN

∫ 2πN

0

d∏
k=1

sin2(xks/2) ds =

= lim
N→∞

1

2πN

N−1∑
n=0

∫ 2π(n+1)

2πn

d∏
k=1

sin2(xks/2) ds =

= lim
N→∞

1

2πN

N−1∑
n=0

∫ 2π

0

d∏
k=1

sin2(xk(t+ 2πn)/2) dt =

= lim
N→∞

1

2πN

N−1∑
n=0

∫ 2π

0

d∏
k=1

sin2(xkt/2) dt =
1

2π

∫ 2π

0

d∏
k=1

sin2(xkt/2) dt.

The function Jd is a homogeneous function of order zero, i.e., for any
α ∈ R \ {0} the equality Jd(αx) = Jd(x) is true. If the point x ∈ Rd does
not lie in any hyperplane of the bunch L(0), then Jd(x) = 2−d. The func-
tion Jd takes the same values on linear subspaces that are intersections of
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hyperplanes of the bunch L(0). Since any such intersection contains inte-
ger points, the values of the function Jd are completely determined by its
values on Zd. Moreover, it can be argued that it is su�cient to take in-
teger points from some cube. To �nd the boundary of this cube, we use
the following statement from the theory of Diophantine equations (see [20,
Theorem 6.1], [21, Chapter 1, �2.2], and also [22]). Let m < d, ai,j ∈ Z and

Ai =
d∑

j=1
|ai,j |, i = 1, ...,m; then the system of linear homogeneous equations

ai,1x1 + ai,2x2 + ...+ ai,dxd = 0, i = 1, ...,m

has a non-trivial integer solution satisfying the condition

max
1≤k≤d

|xk| ≤ d−m
√

A1 · · ·Am.

In our case, all Ai ≤ d, and the boundary of the cube is estimated as
max
1≤k≤d

|xk| ≤ dd−1.

From (i) and the fact that Jd is completely determined by the values on
Zd, it is immediately clear that Jd vanishes only if one of the coordinates
xk = 0. Let us now �nd the lower bound for jd; the upper bound is obvious.
We will use the representation (i), where for the point x ∈ Zd, xk ̸= 0 we will
assume that D = max

1≤k≤d
|xk| ≤ dd−1. We have

Jd(x) =
1

2π

∫ 2π

0

d∏
k=1

sin2(xks/2) ds =

=
1

π

∫ π

0

d∏
k=1

sin2(xks) ds ≥
1

π

∫ π/(2D)

0

d∏
k=1

sin2(xks) ds.

For s ∈
[
0, π

2D

]
we have xks ∈

[
0, π2

]
and hence sin2(xks) ≥ ( 2πxks)

2. Thus,

Jd(x) ≥
1

π

∫ π/(2D)

0

d∏
k=1

4x2
ks

2

π2
ds =

4dx2
1 · · ·x2

d

π2d+1

∫ π/(2D)

0

s2d ds =

=
4dx2

1 · · ·x2
d

π2d+1

π2d+1

(2d+ 1)(2D)2d+1
=

x2
1 · · ·x2

d

2(2d+ 1)D2d+1
≥ 1

2(2d+ 1)d(d−1)(2d+1)
.

□

3.3. Let us proceed to �nding the zeros of the function Kd(x).

Proposition 3. Kd(x) = 0 if and only if
d∏

k=1

xk = 0.

Proof. As can be seen from the de�nition of the function Kd, if at least
one coordinate of the point x ∈ (−π, π]d is equal to zero, then the function
vanishes. Let us show that there are no other zeros. Suppose that there is

a point x ∈ (−π, π]d, such that
d∏

k=1

xk ̸= 0, and at the same time Kd(x) = 0.
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We obtain a contradiction using the density theory for subsets of the set
of natural numbers. And the transition to this theory is realized using the
Koopman�von Neumann lemma (see, for example, [23, lemma 2.41]): for a
bounded sequence of non-negative numbers {an}n≥1 one have the equivalence

lim
N→∞

1

N

N∑
n=1

an = 0 ⇔ an → 0 for n → ∞, n /∈ J

for some set J with zero asymptotic density.
Recall (see, for example, [24]) that the asymptotic density d(J) of some

set J = {j1, j2, ...} of natural numbers is the limit (if it exists)

d(J) = lim
n→∞

#{k : jk ≤ n}
n

= lim
n→∞

n

jn
.

Let an =
d∏

k=1

sin2(xkn/2). Since

0 = Kd(x) = lim
N→∞

1

N

N∑
n=1

an,

then there exists a set J ⊂ N of asymptotic density 1, along which an → 0
(since the complement of a set of density 0 always has density 1). We will
show that this cannot happen. To do this, we will �nd out along which
increasing sequences mn of natural numbers it will be sin(ymn) → 0 as
mn → ∞ for a given y ∈ (−π/2, π/2] \ {0}.

If y = π a
b , a ∈ Z, b ∈ N, b ≥ 2, then mn = bMn, Mn ∈ N, starting from

some number n. The maximally dense set will be the arithmetic progression
mn = bn, n ∈ N; its asymptotic density is 1

b .
If y = πα, α ∈ R \Q, then {mn}n≥1 has zero asymptotic density. Indeed,

let us �rst show that mn+1 −mn → +∞ as n → ∞. Let this not be so; then
there exists a natural number c such that for an in�nite number of numbers
we have mn+1 −mn = c. For such numbers we obtain

0 = lim
n

sin(ymn+1) = lim
n

sin(ymn + yc) =

= lim
n

sin(ymn) cos(yc) + lim
n

cos(ymn) sin(yc) = ± sin(yc) = ± sin(πcα).

The sign ± depends on the limit of cos(ymn): is it 1 or −1. Here we conclude
that c = 0; it cannot be. Using Stolz theorem for calculating the limits of
sequences, we obtain

d({mn}) = lim
n→∞

n

mn
= lim

n→∞

n+ 1− n

mn+1 −mn
= 0.

Let us return to the sequence an =
d∏

k=1

sin2(xkn/2). The set J along which

it tends to zero is the union of the sets Jk along each of which sin(xkn/2)
tends to zero. Among the Jk there are either sets of density zero or arithmetic
progressions of the form {bkn}n≥1, bk ∈ N, bk ≥ 2. A �nite union of sets with
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zero asymptotic density will be a set with zero density. And a �nite union
of the arithmetic progressions considered cannot have density 1, since there
will always be another arithmetic progression in its complement. Indeed, the
arithmetic progression {1 + b1 · · · bℓn}n≥1 has no common terms with any of
the progressions {bkn}n≥1. Since otherwise the Diophantine equation

1 + b1 · · · bℓn = bkm

would have a solution n,m ∈ N; it cannot be.
Thus, the asymptotic density of the set J cannot be equal to 1. □

4 Proof of Theorem 2

Recall that the equivalence of (1) and (4) follows from [5]. For the re-
maining items, we prove the following chain: (4) ⇒ (3) ⇒ (2) ⇒ (4).

From (4), we can easily obtain (3) by setting n1 = · · · = nd = n.
We will show the implication (3)⇒ (2). Let for some constant B > 0 for all

natural n we have ∥Anf∥22 ≤ Bn−2d. Taking into account the representation
for the L2-norm of ergodic means, we rewrite this estimate as

B ≥
∫

(−π,π]d

∏d
i=1 sin

2 nxi
2∏d

i=1 sin
2 xi

2

dσf (x1, . . . , xd).

Summing this inequality over n from 1 to N , we obtain

B ≥ 1

N

N∑
n=1

∫
(π,π]d

∏d
i=1 sin

2 nxi
2∏d

i=1 sin
2 xi

2

dσf (x1, . . . , xd).

The Fatou lemma, when passing to the lower limit as N → ∞, yields the
following inequality:

lim inf
N→∞

1

N

N∑
n=1

∫
(−π,π]d

∏d
i=1 sin

2 nxi
2∏d

i=1 sin
2 xi

2

dσf (x1, . . . , xd) ≥

≥
∫

(−π,π]d

limN→∞
1
N

N∑
n=1

∏d
i=1 sin

2 nxi
2∏d

i=1 sin
2 xi

2

dσf (x1, . . . , xd).

Recalling the de�nition of the function Kd(x), we obtain an estimate close
to the required one:∫

(−π,π]d

Kd(x)∏d
i=1 sin

2 xi
2

dσf (x1, . . . , xd) ≤ B.
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From condition (3), applying the conditional expectation operator Ej with
respect to the σ-algebra of Tj-invariant sets, we obtain, on the one hand,∥∥∥∥∥Ej

(
n−1∑
k1=0

· · ·
n−1∑
kd=0

f(T k1
1 · · ·T kd

d x)

)∥∥∥∥∥
2

≤

∥∥∥∥∥
n−1∑
k1=0

· · ·
n−1∑
kd=0

f(T k1
1 · · ·T kd

d x)

∥∥∥∥∥
2

= O(1),

and on the other hand, because EjTj = Ej ,∥∥∥∥∥Ej

(
n−1∑
k1=0

· · ·
n−1∑
kd=0

f(T k1
1 · · ·T kd

d x)

)∥∥∥∥∥
2

= n

∥∥∥∥∥
n−1∑
k1=0

· · ·
n−1∑
kd=0

Ejf(T
k1
1 · · · T̂ kj

j · · ·T kd

d x)

∥∥∥∥∥
2

.

Putting it all together, we �nd for the ergodic averages generated by d − 1
automorphisms (all except Tj), the estimate

∥AT1
n · · ·ATd

n Ejf∥2 = o

(
1

nd−1

)
.

Taking into account Theorem 1, we conclude that Ejf = 0 for each
j = 1, ..., d. From this we deduce [10, Corollary 1], that the spectral mea-
sure σf (O) = 0 for

O =

{
x ∈ (−π, π]d :

d∏
i=1

xi = 0

}
.

By Proposition 3, the function Kd(x) also vanishes on O, therefore∫
(−π,π]d

Kd(x)∏d
i=1 sin

2 xi
2

dσf (x1, . . . , xd) ≥ min
x/∈O

Kd(x)

∫
(−π,π]d

dσf (x1, . . . , xd)∏d
i=1 sin

2 xi
2

.

Whence, assuming κd = min
x/∈O

Kd(x) and knowing from Propositions 1 and 3

that κd > 0, we obtain∫
(π,π]d

dσf (x1, . . . , xd)∏d
i=1 sin

2 xi
2

≤ B

κd
< ∞.

We now show the implication (2)⇒(4). If∫
(−π,π]d

dσf (x1, . . . , xd)∏d
i=1 sin

2 xi
2

= A < ∞,

then for all n⃗ ∈ Nd

∥An⃗f∥22 =
1

n2
1 · · ·n2

d

∫
(−π,π]d

sin2 n1x1
2 · · · sin2 ndxd

2

sin2 x1
2 · · · sin2 xd

2

dσf (x1, . . . , xd) ≤

≤ 1

n2
1 · · ·n2

d

∫
(−π,π]d

dσf (x1, . . . , xd)

sin2 x1
2 · · · sin2 xd

2

≤ A
1

n2
1 · · ·n2

d

.

Theorem 2 is completely proved.
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5 Proof of Theorem 3

The equivalence of conditions (2′), (3′), and (4′) is proved word for word,
just as in Theorem 2 the equivalence of conditions (2), (3), and (4) is proved.
The di�erence is the use of the function Jd (instead of the function Kd),

whose zeros form the set O′ =
{
x ∈ Rd :

∏d
i=1 xi = 0

}
.We prove the equiv-

alence of (1′) and (4′).

Proposition 4. Let T t1 , ..., T td be pairwise commuting �ows of a probabil-
ity measure space (Ω, µ). For any function f ∈ Lp(Ω, µ), p ∈ [1,+∞) the
equivalence holds

f ∈ RLp(Ω, µ) ⇔ sup
t⃗∈Rd

+

∥∥∥∥∥
∫
[0,⃗t]

f(T u1
1 · · ·T ud

d ω) du⃗

∥∥∥∥∥
p

< ∞.

Proof. It is enough to prove the implication ⇐ . Let us reduce the problem
to the already known criterion for discrete time. Let

sup
t⃗∈Rd

+

∥∥∥∥∥
∫
[0,⃗t]

f(T u1
1 · · ·T ud

d ω) du⃗

∥∥∥∥∥
p

= C < ∞.

Fix an arbitrary vector q⃗ ∈ Rd
+, and set, as in the proof of Theorem 1,

gq⃗(ω) =

∫
[0,q⃗]

f(T t1
1 T t2

2 · · ·T td
d ω) dt⃗, Sj = T

qj
j , j = 1, ..., d.

Then, using the calculations from the proof of Theorem 1, we obtain the
estimate

sup
t⃗∈Rd

∥∥∥∥∥
∫
[0,⃗t]

f(Tu1
1 · · ·Tud

d ω) du⃗

∥∥∥∥∥
p

≥ sup
t⃗=n⃗⊙q⃗, n⃗∈Nd

∥∥∥∥∥
∫
[0,⃗t]

f(Tu1
1 · · ·Tud

d ω) du⃗

∥∥∥∥∥
p

=

= sup
n⃗∈Nd

∥∥∥∥∥
∫
[0,n⃗⊙q⃗]

f(Tu1
1 · · ·Tud

d ω) du⃗

∥∥∥∥∥
p

= sup
n⃗∈Nd

∥∥∥∥∥∥
∑

0≤k⃗≤n⃗

gq⃗(S
k1
1 · · ·Skd

d ω)

∥∥∥∥∥∥
p

.

Thus, for commuting automorphisms Sj , j = 1, ..., d and the function gq⃗,
we obtain

sup
n⃗∈Nd

∥∥∥∥∥∥
∑

0≤k⃗≤n⃗

gq⃗(S
k1
1 · · ·Skd

d ω)

∥∥∥∥∥∥
p

≤ C < ∞.

It follows from the work of Bradley [5] that there exists a function

hq⃗ ∈ Lp(Ω, µ) such that ∥hq⃗∥p ≤ C and gq⃗ =
∏d

j=1(I − Sj)hq⃗, i.e.,∫
[0,q⃗]

f(T u1
1 · · ·T ud

d ω) du⃗ =
d∏

i=1

(I − T
qj
j )hq⃗, q⃗ ∈ Rd

+.
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Let us write this equality for the vector q⃗/k⃗ :=
(

q1
k1
, ..., qd

kd

)
, k⃗ ∈ Nd :

∫
[0,q⃗/k⃗]

f(T u1
1 · · ·T ud

d ω) du⃗ =

d∏
j=1

(I − T

qj
kj

j )h
q⃗/k⃗

.

Acting on this equality from the left by the operator

d∏
j=1

(
I + T

qj
kj

j + T
2
qj
kj

j ...+ T
(kj−1)

qj
kj

j

)
=
∑

0≤n⃗≤k⃗

T
n1

q1
k1

1 · · ·T
nd

qd
kd

d ,

we obtain the equality∫
[0,q⃗]

f(T u1
1 · · ·T ud

d ω) du⃗ =
d∏

j=1

(I − T
qj
j )h

q⃗/k⃗
.

We will now assume that the vector q⃗ has binary-rational coordinates. Then
there exists a natural number m0 = m0(q⃗) such that for any m ≥ m0 we can

choose a vector k⃗ = k⃗(m), for which

q⃗/k⃗ = (2−m, 2−m, ..., 2−m) := v⃗m.

Indeed, let q⃗ =
(

a1
2b1

, ..., ad
2bd

)
, aj , bj ∈ N. Then

m0 = b1b2 · · · bd, k⃗ = (a12
m−b1 , a22

m−b2 , ..., ad2
m−bd).

Since the sequence of functions hv⃗m is bounded, then from the re�exivity of
the space Lp(Ω, µ) for p ∈ (1,∞) it follows that that there exists a function
h ∈ Lp(Ω, µ) which is a weak limit of some subsequence hv⃗mn

. Then

d∏
j=1

(I − T
qj
j )hv⃗mn

ω−→
d∏

j=1

(I − T
qj
j )h.

But for mn ≥ m0(q⃗) there is an equality

d∏
j=1

(I − T
qj
j )hv⃗m0

=

∫
[0,q⃗]

f(T u1
1 · · ·T ud

d ω) du⃗ =
d∏

j=1

(I − T
qj
j )hv⃗mn

.

Here we conclude that for any vector q⃗ with binary-rational coordinates∫
[0,q⃗]

f(T u1
1 · · ·T ud

d ω) du⃗ =

d∏
j=1

(I − T
qj
j )h.

In the case of the space L1(Ω, µ), we use the Komlos theorem (see, for
example, [25, Theorem 10.10.22]), which states the following. For a sequence
of functions hv⃗m bounded in L1(Ω, µ), there exists a subsequence hv⃗mn

and
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a function h ∈ L1(Ω, µ) such that there is convergence a.e. of Cesaro means
for any of its subsequences hv⃗mnk

:

h̃k :=
hv⃗mn1

+ hv⃗mn2
+ ...+ hv⃗mnk

k
→ h as k → ∞.

Then a.e.
∏d

j=1(I − T
qj
j )h̃k →

∏d
j=1(I − T

qj
j )h as k → ∞. We can assume

that mn1 ≥ m0(q⃗). Then the left-hand side of the last limit relation is equal
to
∫
[0,q⃗] f(T

u1
1 · · ·T ud

d ω) du⃗. Here we again conclude that for any vector q⃗ with

dyadic rational coordinates∫
[0,q⃗]

f(T u1
1 · · ·T ud

d ω) du⃗ =
d∏

j=1

(I − T
qj
j )h.

Thus, the resulting equality is true for all p ∈ [1,+∞). Since the binary
rational numbers are dense in R, and both sides of the last equality are
Lp-continuous, it will be true for all q⃗ ∈ Rd

+. Then

1

π(q⃗)

∫
[0,q⃗]

f(T u1
1 · · ·T ud

d ω) du⃗ =

d∏
j=1

I − T
qj
j

qj
h.

Passing to the limit in Lp for q1, ..., qd → 0, taking into account the local
ergodic theorem, we obtain f = Rh. Which is what was required to be
proved. □
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