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Abstract: Let G ̸= 1 be a �nite group and let P be the set of all
primes. A chain 1 = M0 < M1 < . . . < Mn−1 < Mn = G such that
Mi is a maximal subgroup of Mi+1 for every i is called a maximal
chain of G. Every chain is associated with a sequence of non-
negative integers j1, j2, . . . , jn, where ji = |Mi : Mi−1|. A maximal
chain is a P-chain if ji ∈ P for every i. We say that a P-chain is
a P<-chain (P>-chain) if j1 ≤ j2 ≤ . . . ≤ jn (j1 ≥ j2 ≥ . . . ≥ jn,
respectively). We investigate �nite groups in which some maximal
chains are P-chains. In particular, we obtain the following criteria
for �nite groups to be supersolvable: a group G is supersolvable if
and only if there are a P>-chain and P<-chain in G; a group G is
supersolvable if and only if G has a Sylow tower of supersolvable
type and there is a P<-chain in G. The obtained results are used
for characterization of generally supersolvable groups.
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1 Introduction

All groups in this paper are �nite. We use the standard notation and
terminology of [1].

Let G ̸= 1 be a group. A subgroup chain

1 = M0 ⋖ M1 ⋖ . . .⋖ Mi ⋖ Mi+1 ⋖ . . .⋖ Mn−1 ⋖ Mn = G (1)

such that Mi is a maximal subgroup of Mi+1 for every i is called a maximal
chain of G, and n is the length of this chain. Every chain is associated with
a sequence of non-negative integers j1, j2, . . . , jn, where ji = |Mi : Mi−1|
is the index of Mi−1 in Mi, i = 1, . . . , n. We use P to denote the set of all
primes.

In 1941, Iwasawa proved the following result.

Theorem (Iwasawa). A group is supersolvable if and only if its maximal
chains have the same length, [2].

Huppert proved the following fundamental theorem 13 years later.

Theorem (Huppert). A group is supersolvable if and only if all its maximal
subgroups are of prime indices, [3, Theorem 9].

It follows from the Huppert Theorem that all indices of every maximal
chain in a supersolvable group are primes. Therefore, the following concepts
are quite natural.

De�nition 1. Let G be a group. If ji ∈ P for every i, then a maximal
chain (1) is called a P-chain of G. We say that a P-chain is a P<-chain (P>-

chain) if j1 ≤ j2 ≤ . . . ≤ jn (j1 ≥ j2 ≥ . . . ≥ jn, respectively). A maximal
chain of G is said to be a monotone P-chain if it is a P<-chain or a P>-chain.

In this paper, we investigate groups with P-chains. We enumerate groups in
which all maximal chains of every proper subgroup are monotone P-chains,
Theorem 1. In Theorem 2, we indicate the properties of the class of all
groups with P<-chain. The following supersolvability criteria follow from this
theorem: a group G is supersolvable if and only if there are a P>-chain and

P<-chain in G; a group G is supersolvable if and only if G has a Sylow tower

of supersolvable type and there is a P<-chain in G. The obtained results are
used for characterization of generally supersolvable groups, Theorems 3, 4.

2 Used notation and concepts.

If X is a subgroup (proper subgroup, maximal subgroup) of a group Y ,
then we write X ≤ Y (X < Y , X ⋖ Y , respectively). We use A ≤t B if
A ≤ B and |B : A| = t. We write r = maxπ(G) (r = minπ(G)) to indicate
that r is the greatest prime divisor (the lowest prime divisor, respectively) of
the order of a group G. Here and later, π(G) is the set of all prime divisors
of |G|. We use P and N to denote the sets of all primes and all non-negative
integers, respectively; An and Sn denotes alternating and symmetric groups
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of degree n, respectively; Cn is a cyclic group of order n, and Ct
n denotes

a direct product of t copies of Cn. We use A ⋊ B to denote the semidirect
product of a normal subgroup A and a subgroup B.

Let G be a group of order pα1
1 pα2

2 . . . pαn
n , pi ∈ P, αi ∈ N, i = 1, . . . , n. We

say that G has a Sylow tower if G has a normal series

1 = G0 < G1 < . . . < Gn−1 < Gn = G (2)

such that |Gi| = pα1
1 pα2

2 . . . pαi
i for every i. In that case,Gi+1/Gi is isomorphic

to a Sylow pi-subgroup of G for every i. If p1 > p2 > . . . > pn, then we say
that G has a Sylow tower of supersolvable type, and if p1 < p2 < . . . <
pn, then G has a Sylow tower of anti-supersolvable type. The classes of all
groups with Sylow towers of supersolvable type and anti-supersolvable type
are denoted by D and D, respectively. It is easy to check D and D are
subgroup-closed hereditary Fitting formations.

Recall a Schmidt group is a non-nilpotent group with all proper subgroups
nilpotent. A group G is a minimal non-supersolvable group if G is not
supersolvable but every proper subgroup ofG is supersolvable. The properties
of Schmidt groups and minimal non-supersolvable groups are well known, see,
for example, [4, 5]. A group is primary if it is of prime power order.

3 Groups with monotone P-chains
Since composition factors of a solvable group G ̸= 1 have prime orders,

every composition series of a solvable group is a P-chain.
Example 1. (1) In A4, there is no subgroup of index 2, hence A4 has no
P>-chains, but in A4, there is a P<-chain: 1 <2 C2 <2 C

2
2 <3 A4.

(2) In G = C2
3⋊C4 [6, SmallGroup(36,9)], there is no subgroup of index 3,

hence G has no P<-chains, but G has a P>-chain: 1 <3 C3 <3 C2
3 <2

C2
3 ⋊ C2 <2 G.
(3) In G = C2

3 ⋊ SL(2, 3) [6, SmallGroup(216,153)], there is no subgroup
of index 2, hence G has no P>-chain. Among the maximal chains of G, only
three are P-chains:

1 <2 C2 <3 S3 <3 C3 ⋊ S3 <2 C
2
3 ⋊ C4 <2 PSU(3, 2) <3 G,

1 <3 C3 <2 S3 <3 C3 ⋊ S3 <2 C
2
3 ⋊ C4 <2 PSU(3, 2) <3 G,

1 <3 C3 <3 C
2
3 <2 C3 ⋊ S3 <2 C

2
3 ⋊ C4 <2 PSU(3, 2) <3 G,

but each of them is not monotone. In particular, in G = C2
3 ⋊SL(2, 3), there

is a P-chain, but there are no P>-chain and no P<-chain.
(4) In A6, there is no maximal subgroup of prime index, hence A6 has no

P-chain.
Lemma 1. Let G be a group. The following statements hold.

(1) G contains a P>-chain if and only if G has a Sylow tower of super-
solvable type.

(2) If G has a Sylow tower of anti-supersolvable type, then there is
a P<-chain in G.
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(3) In any supersolvable group, there is a P<-chain.

Proof. (1) Assume that in G, there is a P>-chain (1). If n = 1, then G is
a group of prime order and the statement is true. Therefore we can assume
that n > 1. Use induction on n. By induction, Mn−1 has a Sylow tower
of supersolvable type. Hence a Sylow r-subgroup R of Mn−1 is normal in
Mn−1 for r = j1 = maxπ(Mn−1). If r = jn, then G is an r-group, and the
statement is true. Therefore, r > jn and R is normal in G in view of the
Sylow Theorem. By induction, G/R ∈ D. Consequently, G ∈ D.

Conversely, let G be a group of order pα1
1 pα2

2 . . . pαn
n , p1 > p2 > . . . > pn,

with a Sylow tower of supersolvable type. In that case, G has a normal
series (2) such that |Gi| = pα1

1 pα2
2 . . . pαi

i for every i. In particular, G1 is a
normal Sylow p1-subgroup ofG for p1 = maxπ(G). We have thatG1 contains
a chain

1⋖ G1
1 ⋖ . . .⋖ Gα1

1 = G1, |Gj
1 : G

j−1
1 | = p1, j = 1, 2, . . . , α1.

Since G/G1 has a Sylow tower of supersolvable type, in G/G1 there is a
maximal P>-chain

1 = G1/G1 ⋖ M1/G1 ⋖ . . .⋖ Mm/G1 = G/G1

by induction. Now, 1 ⋖ G1
1 ⋖ . . . ⋖ Gα1

1 ⋖ M1 ⋖ M2 ⋖ . . . ⋖ Mm = G is a
P>-chain of G.

(2) Use induction on |G|. Let G ∈ D and let r = maxπ(G). In that case,
G has a normal Hall r′-subgroup H. By induction, there is a P<-chain in H.
Continuing this chain to G, we obtain a P<-chain.

(3) Use induction on |G|. Let G be supersolvable and let r = maxπ(G).
Then G contains a subgroup H of index r. By induction, there is a P<-chain
in H. Hence in G, there is a P<-chain. □

Example 2. In S4, A5, PSL(2, 7), there are P<-chains, but these groups
have no Sylow towers. Therefore, Statement (2) of Lemma 1 is not converse.

Theorem 1. Assume that in all proper subgroups of a group G, every maxi-
mal chain is a monotone P-chain. Then 1 ≤ |π(G)| ≤ 3 and G is a group of
one of the following type.

(1) G is a supersolvable group of order pn, pq, p2q or pqr;
(2) G is a p-closed Schmidt group with Frattini subgroup of prime order p;
(3) G is a non-supersolvable Schmidt group with identity Frattini subgroup.
Conversely, in all proper subgroups of the enumerated groups, every maxi-

mal chain is a monotone P-chain.

Proof. Assume that every maximal chain of G is a monotone P-chain. In that
case, all maximal subgroups of G have prime indices, and G is supersolvable
by the Huppert Theorem. If G is not primary, then in G, there is a normal
subgroup Cp of prime order p and a subgroup Cq of prime order q, p ̸= q.
Suppose that H = CpCq is a proper subgroup of G. If p > q, the chain
1⋖q Cq ⋖p H is a P<-chain and the chain 1⋖p Cp⋖q H is a P>-chain. Fix
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a monotone P-chain from H to G: H ⋖H1 ⋖ . . .⋖Hn−1 ⋖Hn = G. In that
case, one of the chains

1⋖q Cq ⋖p H ⋖H1 ⋖ . . .⋖Hn−1 ⋖Hn = G,

1⋖p Cp ⋖q H ⋖ H1 ⋖ . . .⋖ Hn−1 ⋖ Hn = G

are not monotone, a contradiction. Therefore, G = CpCq. Thus, if every
maximal chain of G is monotone P-chain, then either G is primary or G has
order pq.

In the sequel, we can assume that G contains a maximal chain that is
not a monotone P-chain. By the above, every proper subgroup of G is either
primary or of order pq. Let G be a supersolvable. Then 1 ≤ |π(G)| ≤ 3,
and |G| = pqr if |π(G)| = 3. If |π(G)| = 2, then |G| = p2q. Let G be
non-supersolvable. In that case, G is a minimal non-supersolvable group,
G = P ⋊ Q, where Q is a supplement to the normal Sylow p-subgroup P
of G and |P/Φ(P )| = pn > p by [7, Lemma 2.1]. If Q1 ⋖ Q, |Q1| ̸= 1,
then |PQ1| = pn|Q1| ̸= pq, a contradiction. Consequently, |Q| = q ∈ P. If
Φ(P ) = 1, then Φ(G) = 1 and G is a Schmidt group with identity Frattini
subgroup, i. e. G is a group from Statement (3) of the theorem. If Φ(P ) ̸= 1,
then |Φ(P )Q| = pq and M = Φ(P )Q ⋖ G. Suppose that M = Φ(P ) ⋊ Q
is not nilpotent. It follows q divides p − 1. In view of MG = Φ(P ), we
have G/MG = P/MG ⋊ M/MG is a Schmidt group with identity Frattini
subgroup. Hence |G : M | = |P/MG| = pn, where n is the multiplicative
order of p modulo q, and n = 1, a contradiction. Hence M is nilpotent, and
G is a p-closed Schmidt group with Frattini subgroup of order p, i. e. G is a
group from Statement (2) of the theorem.

It remains to show that in proper subgroups of the enumerated groups,
every maximal chain is a monotone P-chain. Obviously, the statement is
true for primary groups, groups of order pq, p2q, or pqr. If G is a p-closed
Schmidt group with Frattini subgroup of prime order p, then G = P ⋊ Q,
|P | = p1+m, |Q| = q, where m is the multiplicative order of p modulo q,
and maximal subgroups of G have order p1+m or pq. It is clear that in all
proper subgroups of G, every maximal chain is a monotone P-chain. In a
non-supersolvable Schmidt group with identity Frattini subgroup, all proper
subgroups are primary. Therefore such a group also satis�es the conditions
of the theorem. □

4 On the class of groups with P<-chains.

Let P< (P>) be the class of all groups in which there is a P<-chain
(respectively, P>-chain). By U and S we denote the formations of all super-
solvable and all solvable groups, respectively. In view of Lemma 1, we have
P> = D, D ⊆ P< and U ⊆ P<. In particular, P> is a subgroup-closed
hereditary Fitting formation. The class P< is more complicated.

Theorem 2. The following statements hold.
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(1) P< is closed under taking normal subgroups, quotients, and direct
products.

(2) P< ∩S is a subgroup-closed formation.
(3) P< ∩D = P< ∩ P> = U.
(4) If a simple non-abelian group G ∈ P<, then

G ∈ {PSL(2, 7), PSL(2, 11), PSL(2, 2n)}, where 2n +1 is a Fermat prime.

Proof. (1) Let G ∈ P< and let N be a normal subgroup of G. Then in G,
there is a P<-chain (1) with prime indices j1 ≤ j2 ≤ . . . ≤ jn. Put Ki =
Mi ∩N and consider a chain

1 = K0 ≤ K1 ≤ . . . ≤ Kn−1 ≤ Kn = N. (3)

Since N is normal in G, we get Ki+1 is normal in Mi+1 and Mi ≤ Ki+1Mi ≤
Mi+1. In view of |Mi+1 : Mi| = ji+1 ∈ P, either Mi = Ki+1Mi or Ki+1Mi =
Mi+1. If Mi = Ki+1Mi, then Ki = Ki+1. If Ki+1Mi = Mi+1, then ji+1 =
|Mi+1 : Mi| = |Ki+1Mi : Mi| = |Ki+1 : Ki|. In chain (3), we leave only
one of the coincide subgroups in chain (3) and we get a P<-chain of N , i. e.
N ∈ P<. Thus, P< is closed under taking normal subgroups.

It is clear that there is a chain

N/N = M0N/N ≤ . . . ≤ Mn−1N/N ≤ MnN/N = G/N. (4)

Note that |Mi+1N/N : MiN/N | = |Mi+1N : MiN | = |Mi+1 : Mi|/|(Mi+1 ∩
N) : (Mi ∩N)|. In view of |Mi+1 : Mi| = ji+1 ∈ P, we have either |(Mi+1 ∩
N) : (Mi ∩N)| = |Mi+1 : Mi| and |Mi+1N/N : MiN/N | = 1 or Mi+1 ∩N =
Mi ∩ N and |Mi+1N/N : MiN/N | = |Mi+1 : Mi| = ji+1. In chain (4), we
leave only one of the coincide subgroups in chain (4) and we get a P<-chain
of G/N , i. e. G/N ∈ P<. Thus, P< is closed under taking quotients.

Now, we check that P< is closed under taking direct products. If A,B ∈
P<, then there are P<-chains

1 = A0 < A1 < . . . < An−1 < An = A, (5)

ai = |Ai : Ai−1| ∈ P, a1 ≤ a2 ≤ . . . ≤ an,

1 = B0 < B1 < . . . < Bm−1 < Bm = B, (6)

bi = |Bi : Bi−1| ∈ P, b1 ≤ b2 ≤ . . . ≤ bn.

Use induction on |A × B|. Let r = max{an, bm}. In that case, in chain (5),
Aα is a Hall r′-subgroup of A for some α. Similarly, in chain (6), Bβ is a Hall
r′-subgroup of B for some β. By induction, Aα ×Bβ contains a P<-chain. It
is clear that Aα ×Bβ is a Hall r′-subgroup of A×B, and we can construct
a chain from Aα ×Bβ to A×B with indices equal to r. So, A×B ∈ P<.

(2) Let G ∈ P< and let G be solvable. Then in G, there is a P<-chain

1⋖M1 ⋖ . . .⋖Mn−1 = M ⋖Mn = G.

Hence |G : M | = r = maxπ(G), and by induction, there is a P<-chain in
every subgroup of M . Let H⋖G. If H and M are conjugate, then H contains
a P<-chain. Assume that H and M are not conjugate. Since G is solvable,
we have G = MH and |G : H| = |H : H ∩M | = r = maxπ(G). In view of
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H ∩ M ≤ M , we deduce that H ∩ M has a P<-chain, and so, H also has
a P<-chain. Thus, there is a P<-chain in every maximal subgroup of G. By
induction, in every subgroup of G, there is a P<-chain, therefore the class
P< ∩ S is closed under taking subgroups, i. e. it is subgroup-closed. From
Statement (1), we deduce that P< ∩S is a subgroup-closed formation.

(3) By Lemma 1 (2-3), P<∩D = D and U ⊆ P<. Since U ⊆ D, we get U ⊆
P< ∩D. Suppose that P< ∩D ⊈ U, and let G be a group of least order such
thatG ∈ P<∩D\U. In that case,G is a minimal non-supersolvable group and
G has a Sylow tower of supersolvable type. Therefore, |GU/Φ(GU)| = pn > p
for p = maxπ(G) by [7, Lemma 2.1] and G has no subgroup of index p. Hence
G has no P<-chain, i. e. G /∈ P<, a contradiction. Consequently, P<∩D ⊆ U
and P< ∩D = U.

(4) Simple non-abelian groups with P-chains were enumerated in
[8, Theorem 3.2]. From these groups only PSL(2, 7), PSL(2, 11) and
PSL(2, 2n), where 2n + 1 is a Fermat prime, have P<-chains. □

Corollary 1. A group G is supersolvable if and only if there are a P<-chain
and a P>-chain in G.

Proof. If G is supersolvable, then G has a Sylow tower of supersolvable
type [1, VI.9.1(c)], and by Lemma 1 (1) (3), there are a P>-chain and a P<-
chain in G. Conversely, assume that in G, there are a P<-chain and a P>-
chain. In that case, G ∈ P< by the de�nition of the class P<, and G ∈ D by
Lemma 1 (1). Thus,G ∈ D∩P< andG is supersolvable by Theorem 2 (3). □

Corollary 2. A group G is supersolvable if and only if G has a Sylow tower
of supersolvable type and there is a P<-chain in G.

Proof. If G is supersolvable, then G has a Sylow tower of supersolvable
type [1, VI.9.1(c)], and there is a P<-chain in G by Lemma 1 (3). Conversely,
if G has a Sylow tower of supersolvable type [1, VI.9.1(c)] and there is
a P<-chain in G, then G ∈ D ∩ P<. According to Theorem 2 (3), G is
supersolvable. □

Example 3. The group G = C2
5 ⋊ D8 [6, SmallGroup(200,43)] contains

subgroups A and B such that A ∼= B ∼= D2
10 and |G : A| = |G : B| = 2.

These subgroups are supersolvable, therefore they have P<-chain. In G, there
is no maximal subgroups of index 5, hence G contains no P<-chain. Thus,
the normal subgroup-closed class P< is not a Fitting class.

5 Characterisations of w- and v-supersolvable groups

In [8], the following concept was proposed.

De�nition 2. A subgroup H of a group G is P-subnormal in G if either
G = H or there is a chain

H = H0 < H1 < . . . < Hn−1 < Hn = G (7)

such that |Hi+1 : Hi| ∈ P for every i.
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It follows from the Huppert Theorem that we can de�ne the formation U
of all supersolvable groups as the class of all groups in which every subgroup
is P-subnormal. The classes of all groups with P-subnormal Sylow subgroups
and with P-subnormal cyclic primary subgroups are denoted by wU and vU,
respectively. These classes were quit well investigated [7, 8, 9, 10]. In particu-
lar, wU and vU are subgroup-closed hereditary formations, U ⊂ wU ⊂ vU ⊂
D, and all inclusions are proper. Groups from wU is called w-supersolvable,
groups from vU is called v-supersolvable.

In the context of this paper, the following concepts are quite natural.

De�nition 3. A subgroup H of a group G is P<-subnormal (P>-subnormal)
in G, if either G = H or there is a chain (7) such that |Hi+1 : Hi| ∈ P and
|Hi : Hi−1| ≤ |Hi+1 : Hi| (respectively, |Hi : Hi−1| ≥ |Hi+1 : Hi|) for every i.

It is clear that every P<-subnormal and every P>-subnormal subgroup is
P-subnormal. The converse is not true in general, see Example 1 (3).

In this section, supersolvable, w- and v-supersolvable groups are characte-
rized by the existence or unexistence of P<- or P>-subnormal subgroups in
them.

Lemma 2. Let H be a P<-subnormal subgroup of a group G, let K be
a subgroup of G, and let N be a normal subgroup of G . The following
statements hold.

(1) (H ∩N) is P<-subnormal in N .
(2) HN is P<-subnormal in G.
(3) HN/N is P<-subnormal in G/N .

Proof. For P-subnormal subgroups, all statements are true, see [9, Lemma 1].
By hypothesis, there is a chain (7) with indices p1 ≤ p2 ≤ . . . ≤ pn.

(1) It is clear that there is a chain

H ∩N = H0 ∩N ≤ H1 ∩N ≤ . . . ≤ Hn−1 ∩N ≤ Hn ∩N = N.

Since N is normal in G, we deduce that |Hi ∩ N : Hi−1 ∩ N | divides pi =
|Hi : Hi−1| for every i. We leave only one of the coincide subgroups in the
chain and we get that H ∩N is P<-subnormal in N .

(2) Since N is normal in G, there is a chain

HN = H0N ≤ H1N ≤ . . . ≤ Hn−1N ≤ HnN = GN.

In view of

|Hi+1N : HiN | = |Hi+1 : Hi|
|Hi+1 ∩N : Hi ∩N |

∈ {1 ∪ P},

we leave only one of the coincide subgroups in the chain and we get that
HN is P<-subnormal in G.

(3) Since N is normal in G, there is a chain

HN/N = H0N/N ≤ H1N/N ≤ . . . ≤ Hn−1N/N ≤ HnN/N = GN/N.



TO THE IWASAWA AND HUPPERT THEOREMS . . . 151

In view of

|Hi+1N/N : HiN/N | = |Hi+1 : Hi|
|Hi+1 ∩N : Hi ∩N |

∈ {1 ∪ P},

we leave only one of the coincide subgroups in the chain and we get that
HN/N is P<-subnormal in G/N . □

We can repeat the proof of Lemma 2 with replacing ¾P<-subnormality¿ by
¾P>-subnormality¿ to get the similar properties of P>-subnormal subgroups.

Lemma 3. The following statements hold.
(1) If G ∈ D, then every P-subnormal subgroup of G is P>-subnormal.
(2) In supersolvable group, every subgroup is P>-subnormal.
(3) If G ∈ D, then every P-subnormal subgroup of G is P<-subnormal.

Proof. (1) LetH be a P-subnormal subgroup of a groupG ∈ D. Use induction
on |G : H|. Assume that R is a Sylow r-subgroup of G for r = maxπ(G). In
view of G ∈ D, R is normal in G by the de�nition of the class D. If G = HR,
then H is P>-subnormal in G. Assume that HR is a proper subgroup of G.
In view of [9, Lemma 4], HR is P-subnormal in G and H is P-subnormal in
HR. By induction, HR is P>-subnormal in G, hence there is a P>-chain

HR <q1 U1 <q2 U2 <q3 . . . <qn−1 Un−1 <qn Un = G,

q1 ≥ q2 ≥ . . . ≥ qn−1 ≥ qn.
In a P-chain from H to HR, all indices are equal to r > q1. Therefore, H is
P>-subnormal in G.

(2) It follows from Statement (1) because in a supersolvable group, every
subgroup is P-subnormal.

(3) We repeat the proof of Statement (1) with replacing ¾r = maxπ(G)¿
by ¾r = minπ(G)¿ and we get that the statement is true. □

Theorem 3. Let G be a group. The following statements hold.
(1) If G is supersolvable, then every Hall subgroup of G is P>-subnormal

and P<-subnormal in G.
(2) G is supersolvable if and only if every Sylow subgroup of G is P<-

subnormal in G.
(3) G is w-supersolvable if and only if every Sylow subgroup of G is P>-

subnormal in G.

Proof. (1) Let G be supersolvable and let H be a Hall subgroup of G. In
view of Lemma 3 (2), H is P>-subnormal in G. Put

π = π(G) \ π(H) = {q1, q2, . . . qn}.

Then there is Sylow qi-subgroups Qi such that HQ1Q2 . . . Qi is a subgroup
of G for every i. Since G is supersolvable, it follows from the Huppert
Theorem that a chain

H < HQ1 < HQ1Q2 < . . . < HQ1Q2 . . . Qn−1 < G
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can be compacted so that all indices of new chain are prime. It is true for
any ordering π. For q1 < q2 < . . . < qn, a new chain shows that H is
P<-subnormal in G.

(2) If G is supersolvable, then every Sylow subgroup of G is P<-subnormal
in G by Statement (1). Conversely, assume that every Sylow subgroup of G is
P<-subnormal in G. In that case, G ∈ wU ⊂ D. In view of Lemma 2 (3) and
by induction, G/N is supersolvable for every non-trivial normal subgroup N
of G. Therefore G is a primitive group, and G = R⋊M , where R = F (G) =
CG(R) is a Sylow r-subgroup of G for r = maxπ(G) and a unique minimal
normal subgroup, and M ⋖ G. Let Q be a Sylow q-subgroup of M . Then
q ̸= r and Q is a Sylow q-subgroup of G. By hypothesis, Q is P<-subnormal
in G. Hence, there is a subgroup H of G such that Q ≤ H and |G : H| = r.
Consequently, M ≤ Hg ≤ G for some g ∈ G. Since M⋖ G, we have M = Hg

and |R| = |G : M | = r. Therefore, M ∼= G/R = NG(R)/CG(R) is a cyclic
group of order dividing r − 1, and G is supersolvable.

(3) Since every w-supersolvable groupG has a Sylow tower of supersolvable
type, then every Sylow subgroup of G is P>-subnormal in G by Lemma 3 (1).
Conversely, if every Sylow subgroup of G is P>-subnormal in G, then every
Sylow subgroup of G is P-subnormal in G, and G is w-supersolvable by
de�nition. □

Theorem 4. Let G be a group. The following statements hold.
(1) If every cyclic primary subgroup of G is P<-subnormal in G, then G

is supersolvable.
(2) G is v-supersolvable if and only if every cyclic primary subgroup of G

is P>-subnormal in G.

Proof. (1) Let every cyclic primary subgroup of G be P<-subnormal in G.
In that case, G ∈ vU ⊂ D, and by Lemma 1 (1), G contains a P>-chain. Let
q = minπ(G). By hypothesis, a subgroup of prime order q is P<-subnormal
in G. Therefore G contains a P<-chain. By Corollary 1, G is supersolvable.

(2) If G ∈ vU, then G ∈ D, and by Lemma 3 (1), every cyclic primary
subgroup is P>-subnormal in G. Conversely, if every cyclic primary subgroup
A of G is P>-subnormal in G, then A is P-subnormal in G, and G ∈ vU. □
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