

СИБИРСКИЕ ЭЛЕКТРОННЫЕ MATEMATИЧЕСКИЕ ИЗВЕСТИЯ Siberian Electronic Mathematical Reports

http://semr.math.nsc.ru ISSN 1813-3304

Vol. 22, No. 1, pp. 143-153 (2025) https://doi.org/10.33048/semi.2025.22.011 УДК 512.54 MSC 20D35

TO THE IWASAWA AND HUPPERT THEOREMS ON SUPERSOLVABILITY OF FINITE GROUPS

V.S. MONAKHOV, I.L. SOKHOR

Communicated by I.B. GORSHKOV

Abstract: Let $G \neq 1$ be a finite group and let \mathbb{P} be the set of all primes. A chain $1 = M_0 < M_1 < \ldots < M_{n-1} < M_n = G$ such that M_i is a maximal subgroup of M_{i+1} for every *i* is called a maximal chain of *G*. Every chain is associated with a sequence of nonnegative integers j_1, j_2, \ldots, j_n , where $j_i = |M_i: M_{i-1}|$. A maximal chain is a \mathbb{P} -chain if $j_i \in \mathbb{P}$ for every *i*. We say that a \mathbb{P} -chain is a $\mathbb{P}^<$ -chain ($\mathbb{P}^>$ -chain) if $j_1 \leq j_2 \leq \ldots \leq j_n$ ($j_1 \geq j_2 \geq \ldots \geq j_n$, respectively). We investigate finite groups in which some maximal chains are \mathbb{P} -chains. In particular, we obtain the following criteria for finite groups to be supersolvable: a group *G* is supersolvable if and only if there are a $\mathbb{P}^>$ -chain and $\mathbb{P}^<$ -chain in *G*; a group *G* is supersolvable if and only if *G* has a Sylow tower of supersolvable type and there is a $\mathbb{P}^<$ -chain in *G*. The obtained results are used for characterization of generally supersolvable groups.

Keywords: finite group, maximal subgroup, chain of subgroups, subgroup index, supersolvable group.

MONAKHOV, V.S., SOKHOR, I.L. TO THE THEOREMS OF IWASAWA AND HUPPERT. © 2024 MONAKHOV V.S., SOKHOR I.L..

This work is supported by the Belarusian Republican Foundation for Fundamental Research (Grant $\Phi 23PH\Phi - 237$ and $\Phi 24KH - 021$).

Received November, 13, 2024, Published March, 19, 2025.

1 Introduction

All groups in this paper are finite. We use the standard notation and terminology of [1].

Let $G \neq 1$ be a group. A subgroup chain

$$1 = M_0 \lessdot M_1 \lessdot \ldots \sphericalangle M_i \lessdot M_{i+1} \sphericalangle \ldots \sphericalangle M_{n-1} \sphericalangle M_n = G$$
(1)

such that M_i is a maximal subgroup of M_{i+1} for every *i* is called a maximal chain of *G*, and *n* is the length of this chain. Every chain is associated with a sequence of non-negative integers j_1, j_2, \ldots, j_n , where $j_i = |M_i : M_{i-1}|$ is the index of M_{i-1} in M_i , $i = 1, \ldots, n$. We use \mathbb{P} to denote the set of all primes.

In 1941, Iwasawa proved the following result.

Theorem (Iwasawa). A group is supersolvable if and only if its maximal chains have the same length, [2].

Huppert proved the following fundamental theorem 13 years later.

Theorem (Huppert). A group is supersolvable if and only if all its maximal subgroups are of prime indices, [3, Theorem 9].

It follows from the Huppert Theorem that all indices of every maximal chain in a supersolvable group are primes. Therefore, the following concepts are quite natural.

Definition 1. Let G be a group. If $j_i \in \mathbb{P}$ for every i, then a maximal chain (1) is called a \mathbb{P} -chain of G. We say that a \mathbb{P} -chain is a $\mathbb{P}^{<}$ -chain ($\mathbb{P}^{>}$ -chain) if $j_1 \leq j_2 \leq \ldots \leq j_n$ ($j_1 \geq j_2 \geq \ldots \geq j_n$, respectively). A maximal chain of G is said to be a monotone \mathbb{P} -chain if it is a $\mathbb{P}^{<}$ -chain or a $\mathbb{P}^{>}$ -chain.

In this paper, we investigate groups with \mathbb{P} -chains. We enumerate groups in which all maximal chains of every proper subgroup are monotone \mathbb{P} -chains, Theorem 1. In Theorem 2, we indicate the properties of the class of all groups with \mathbb{P}^{\leq} -chain. The following supersolvability criteria follow from this theorem: a group G is supersolvable if and only if there are a \mathbb{P}^{\geq} -chain and \mathbb{P}^{\leq} -chain in G; a group G is supersolvable if and only if G has a Sylow tower of supersolvable type and there is a \mathbb{P}^{\leq} -chain in G. The obtained results are used for characterization of generally supersolvable groups, Theorems 3, 4.

2 Used notation and concepts.

If X is a subgroup (proper subgroup, maximal subgroup) of a group Y, then we write $X \leq Y$ (X < Y, X < Y, respectively). We use $A \leq_t B$ if $A \leq B$ and |B:A| = t. We write $r = \max \pi(G)$ ($r = \min \pi(G)$) to indicate that r is the greatest prime divisor (the lowest prime divisor, respectively) of the order of a group G. Here and later, $\pi(G)$ is the set of all prime divisors of |G|. We use \mathbb{P} and \mathbb{N} to denote the sets of all primes and all non-negative integers, respectively; A_n and S_n denotes alternating and symmetric groups

of degree n, respectively; C_n is a cyclic group of order n, and C_n^t denotes a direct product of t copies of C_n . We use $A \rtimes B$ to denote the semidirect product of a normal subgroup A and a subgroup B.

Let G be a group of order $p_1^{\alpha_1} p_2^{\alpha_2} \dots p_n^{\alpha_n}$, $p_i \in \mathbb{P}$, $\alpha_i \in \mathbb{N}$, $i = 1, \dots, n$. We say that G has a Sylow tower if G has a normal series

$$1 = G_0 < G_1 < \ldots < G_{n-1} < G_n = G \tag{2}$$

such that $|G_i| = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_i^{\alpha_i}$ for every *i*. In that case, G_{i+1}/G_i is isomorphic to a Sylow p_i -subgroup of G for every i. If $p_1 > p_2 > \ldots > p_n$, then we say that G has a Sylow tower of supersolvable type, and if $p_1 < p_2 < \ldots < p_2$ p_n , then G has a Sylow tower of anti-supersolvable type. The classes of all groups with Sylow towers of supersolvable type and anti-supersolvable type are denoted by \mathfrak{D} and \mathfrak{D} , respectively. It is easy to check \mathfrak{D} and $\overline{\mathfrak{D}}$ are subgroup-closed hereditary Fitting formations.

Recall a Schmidt group is a non-nilpotent group with all proper subgroups nilpotent. A group G is a minimal non-supersolvable group if G is not supersolvable but every proper subgroup of G is supersolvable. The properties of Schmidt groups and minimal non-supersolvable groups are well known, see, for example, [4, 5]. A group is primary if it is of prime power order.

3 Groups with monotone \mathbb{P} -chains

Since composition factors of a solvable group $G \neq 1$ have prime orders, every composition series of a solvable group is a \mathbb{P} -chain.

Example 1. (1) In A_4 , there is no subgroup of index 2, hence A_4 has no $\mathbb{P}^>$ -chains, but in A_4 , there is a $\mathbb{P}^<$ -chain: 1 <₂ C₂ <₂ C₂² <₃ A₄. (2) In $G = C_3^2 \rtimes C_4$ [6, SmallGroup(36,9)], there is no subgroup of index 3,

hence G has no $\mathbb{P}^{<}$ -chains, but G has a $\mathbb{P}^{>}$ -chain: $1 <_3 C_3 <_3 C_3^2 <_2$ $C_3^2 \rtimes C_2 <_2 G.$

(3) In $G = C_3^2 \rtimes SL(2,3)$ [6, SmallGroup(216,153)], there is no subgroup of index 2, hence G has no $\mathbb{P}^{>}$ -chain. Among the maximal chains of G, only three are \mathbb{P} -chains:

$$1 <_2 C_2 <_3 S_3 <_3 C_3 \rtimes S_3 <_2 C_3^2 \rtimes C_4 <_2 PSU(3,2) <_3 G$$

$$1 <_{3} C_{3} <_{2} S_{3} <_{3} C_{3} \rtimes S_{3} <_{2} C_{3}^{2} \rtimes C_{4} <_{2} PSU(3,2) <_{3} G,$$

$$1 <_{3} C_{3} <_{3} C_{3}^{2} <_{2} C_{3} \rtimes S_{3} <_{2} C_{3}^{2} \rtimes C_{4} <_{2} PSU(3,2) <_{3} G,$$

 $1 <_3 C_3 <_3 C_3^2 <_2 C_3 \rtimes S_3 <_2 C_3^2 \rtimes C_4 <_2 PSU(3,2) <_3 G$, but each of them is not monotone. In particular, in $G = C_3^2 \rtimes SL(2,3)$, there is a \mathbb{P} -chain, but there are no $\mathbb{P}^{>}$ -chain and no $\mathbb{P}^{<}$ -chain.

(4) In A_6 , there is no maximal subgroup of prime index, hence A_6 has no P-chain.

Lemma 1. Let G be a group. The following statements hold.

(1) G contains a $\mathbb{P}^{>}$ -chain if and only if G has a Sylow tower of supersolvable type.

(2) If G has a Sylow tower of anti-supersolvable type, then there is a $\mathbb{P}^{<}$ -chain in G.

(3) In any supersolvable group, there is a $\mathbb{P}^{<}$ -chain.

Proof. (1) Assume that in G, there is a $\mathbb{P}^{>}$ -chain (1). If n = 1, then G is a group of prime order and the statement is true. Therefore we can assume that n > 1. Use induction on n. By induction, M_{n-1} has a Sylow tower of supersolvable type. Hence a Sylow r-subgroup R of M_{n-1} is normal in M_{n-1} for $r = j_1 = \max \pi(M_{n-1})$. If $r = j_n$, then G is an r-group, and the statement is true. Therefore, $r > j_n$ and R is normal in G in view of the Sylow Theorem. By induction, $G/R \in \mathfrak{D}$. Consequently, $G \in \mathfrak{D}$.

Conversely, let G be a group of order $p_1^{\alpha_1} p_2^{\alpha_2} \dots p_n^{\alpha_n}$, $p_1 > p_2 > \dots > p_n$, with a Sylow tower of supersolvable type. In that case, G has a normal series (2) such that $|G_i| = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_i^{\alpha_i}$ for every i. In particular, G_1 is a normal Sylow p_1 -subgroup of G for $p_1 = \max \pi(G)$. We have that G_1 contains a chain

$$1 \leqslant G_1^1 \leqslant \ldots \leqslant G_1^{\alpha_1} = G_1, \ |G_1^j : G_1^{j-1}| = p_1, \ j = 1, 2, \ldots, \alpha_1.$$

Since G/G_1 has a Sylow tower of supersolvable type, in G/G_1 there is a maximal $\mathbb{P}^>$ -chain

$$1 = G_1/G_1 \lessdot M_1/G_1 \lessdot \ldots \lessdot M_m/G_1 = G/G_1$$

by induction. Now, $1 \leq G_1^1 \leq \ldots \leq G_1^{\alpha_1} \leq M_1 \leq M_2 \leq \ldots \leq M_m = G$ is a $\mathbb{P}^>$ -chain of G.

(2) Use induction on |G|. Let $G \in \overline{\mathfrak{D}}$ and let $r = \max \pi(G)$. In that case, G has a normal Hall r'-subgroup H. By induction, there is a \mathbb{P}^{\leq} -chain in H. Continuing this chain to G, we obtain a \mathbb{P}^{\leq} -chain.

(3) Use induction on |G|. Let G be supersolvable and let $r = \max \pi(G)$. Then G contains a subgroup H of index r. By induction, there is a \mathbb{P}^{\leq} -chain in H. Hence in G, there is a \mathbb{P}^{\leq} -chain.

Example 2. In S_4 , A_5 , PSL(2,7), there are \mathbb{P}^{\leq} -chains, but these groups have no Sylow towers. Therefore, Statement (2) of Lemma 1 is not converse.

Theorem 1. Assume that in all proper subgroups of a group G, every maximal chain is a monotone \mathbb{P} -chain. Then $1 \leq |\pi(G)| \leq 3$ and G is a group of one of the following type.

(1) G is a supersolvable group of order p^n , pq, p^2q or pqr;

(2) G is a p-closed Schmidt group with Frattini subgroup of prime order p;

(3) G is a non-supersolvable Schmidt group with identity Frattini subgroup.

Conversely, in all proper subgroups of the enumerated groups, every maximal chain is a monotone \mathbb{P} -chain.

Proof. Assume that every maximal chain of G is a monotone \mathbb{P} -chain. In that case, all maximal subgroups of G have prime indices, and G is supersolvable by the Huppert Theorem. If G is not primary, then in G, there is a normal subgroup C_p of prime order p and a subgroup C_q of prime order q, $p \neq q$. Suppose that $H = C_p C_q$ is a proper subgroup of G. If p > q, the chain $1 \leq_q C_q \leq_p H$ is a $\mathbb{P}^<$ -chain and the chain $1 \leq_p C_p \leq_q H$ is a $\mathbb{P}^>$ -chain. Fix

a monotone \mathbb{P} -chain from H to $G: H \leq H_1 \leq \ldots \leq H_{n-1} \leq H_n = G$. In that case, one of the chains

$$1 \lessdot_q C_q \lessdot_p H \lessdot H_1 \lessdot \dots \lessdot H_{n-1} \lt H_n = G,$$

$$1 \lessdot_p C_p \lessdot_q H \lt H_1 \lt \dots \lt H_{n-1} \lt H_n = G$$

are not monotone, a contradiction. Therefore, $G = C_p C_q$. Thus, if every maximal chain of G is monotone \mathbb{P} -chain, then either G is primary or G has order pq.

In the sequel, we can assume that G contains a maximal chain that is not a monotone \mathbb{P} -chain. By the above, every proper subgroup of G is either primary or of order pq. Let G be a supersolvable. Then $1 \leq |\pi(G)| \leq 3$, and |G| = pqr if $|\pi(G)| = 3$. If $|\pi(G)| = 2$, then $|G| = p^2q$. Let G be non-supersolvable. In that case, G is a minimal non-supersolvable group, $G = P \rtimes Q$, where Q is a supplement to the normal Sylow p-subgroup P of G and $|P/\Phi(P)| = p^n > p$ by [7, Lemma 2.1]. If $Q_1 \lt Q$, $|Q_1| \ne 1$, then $|PQ_1| = p^n |Q_1| \neq pq$, a contradiction. Consequently, $|Q| = q \in \mathbb{P}$. If $\Phi(P) = 1$, then $\Phi(G) = 1$ and G is a Schmidt group with identity Frattini subgroup, i.e. G is a group from Statement (3) of the theorem. If $\Phi(P) \neq 1$, then $|\Phi(P)Q| = pq$ and $M = \Phi(P)Q \leq G$. Suppose that $M = \Phi(P) \rtimes Q$ is not nilpotent. It follows q divides p-1. In view of $M_G = \Phi(P)$, we have $G/M_G = P/M_G \rtimes M/M_G$ is a Schmidt group with identity Frattini subgroup. Hence $|G:M| = |P/M_G| = p^n$, where n is the multiplicative order of p modulo q, and n = 1, a contradiction. Hence M is nilpotent, and G is a p-closed Schmidt group with Frattini subgroup of order p, i.e. G is a group from Statement (2) of the theorem.

It remains to show that in proper subgroups of the enumerated groups, every maximal chain is a monotone \mathbb{P} -chain. Obviously, the statement is true for primary groups, groups of order pq, p^2q , or pqr. If G is a p-closed Schmidt group with Frattini subgroup of prime order p, then $G = P \rtimes Q$, $|P| = p^{1+m}$, |Q| = q, where m is the multiplicative order of p modulo q, and maximal subgroups of G have order p^{1+m} or pq. It is clear that in all proper subgroups of G, every maximal chain is a monotone \mathbb{P} -chain. In a non-supersolvable Schmidt group with identity Frattini subgroup, all proper subgroups are primary. Therefore such a group also satisfies the conditions of the theorem.

4 On the class of groups with $\mathbb{P}^{<}$ -chains.

Let $\mathcal{P}^{<}$ ($\mathcal{P}^{>}$) be the class of all groups in which there is a $\mathbb{P}^{<}$ -chain (respectively, $\mathbb{P}^{>}$ -chain). By \mathfrak{U} and \mathfrak{S} we denote the formations of all supersolvable and all solvable groups, respectively. In view of Lemma 1, we have $\mathcal{P}^{>} = \mathfrak{D}, \ \overline{\mathfrak{D}} \subseteq \mathcal{P}^{<}$ and $\mathfrak{U} \subseteq \mathcal{P}^{<}$. In particular, $\mathcal{P}^{>}$ is a subgroup-closed hereditary Fitting formation. The class $\mathcal{P}^{<}$ is more complicated.

Theorem 2. The following statements hold.

(1) $\mathcal{P}^{<}$ is closed under taking normal subgroups, quotients, and direct products.

(2) $\mathcal{P}^{<} \cap \mathfrak{S}$ is a subgroup-closed formation.

(3) $\mathcal{P}^{<} \cap \mathfrak{D} = \mathcal{P}^{<} \cap \mathcal{P}^{>} = \mathfrak{U}.$

(4) If a simple non-abelian group $G \in \mathcal{P}^{<}$, then $G \in \{PSL(2,7), PSL(2,11), PSL(2,2^n)\}$, where $2^n + 1$ is a Fermat prime.

Proof. (1) Let $G \in \mathcal{P}^{<}$ and let N be a normal subgroup of G. Then in G, there is a $\mathbb{P}^{<}$ -chain (1) with prime indices $j_1 \leq j_2 \leq \ldots \leq j_n$. Put $K_i = M_i \cap N$ and consider a chain

$$1 = K_0 \le K_1 \le \dots \le K_{n-1} \le K_n = N.$$
(3)

Since N is normal in G, we get K_{i+1} is normal in M_{i+1} and $M_i \leq K_{i+1}M_i \leq M_{i+1}$. In view of $|M_{i+1}: M_i| = j_{i+1} \in \mathbb{P}$, either $M_i = K_{i+1}M_i$ or $K_{i+1}M_i = M_{i+1}$. If $M_i = K_{i+1}M_i$, then $K_i = K_{i+1}$. If $K_{i+1}M_i = M_{i+1}$, then $j_{i+1} = |M_{i+1}: M_i| = |K_{i+1}M_i: M_i| = |K_{i+1}: K_i|$. In chain (3), we leave only one of the coincide subgroups in chain (3) and we get a $\mathcal{P}^{<}$ -chain of N, i.e. $N \in \mathcal{P}^{<}$. Thus, $\mathcal{P}^{<}$ is closed under taking normal subgroups.

It is clear that there is a chain

$$N/N = M_0 N/N \le \ldots \le M_{n-1} N/N \le M_n N/N = G/N.$$
(4)

Note that $|M_{i+1}N/N : M_iN/N| = |M_{i+1}N : M_iN| = |M_{i+1} : M_i|/|(M_{i+1} \cap N) : (M_i \cap N)|$. In view of $|M_{i+1} : M_i| = j_{i+1} \in \mathbb{P}$, we have either $|(M_{i+1} \cap N) : (M_i \cap N)| = |M_{i+1} : M_i|$ and $|M_{i+1}N/N : M_iN/N| = 1$ or $M_{i+1} \cap N = M_i \cap N$ and $|M_{i+1}N/N : M_iN/N| = |M_{i+1} : M_i| = j_{i+1}$. In chain (4), we leave only one of the coincide subgroups in chain (4) and we get a \mathcal{P}^{\leq} -chain of G/N, i.e. $G/N \in \mathcal{P}^{\leq}$. Thus, \mathcal{P}^{\leq} is closed under taking quotients.

Now, we check that $\mathcal{P}^{<}$ is closed under taking direct products. If $A, B \in \mathcal{P}^{<}$, then there are $\mathbb{P}^{<}$ -chains

$$1 = A_0 < A_1 < \dots < A_{n-1} < A_n = A, \tag{5}$$

$$a_{i} = |A_{i} : A_{i-1}| \in \mathbb{P}, \quad a_{1} \le a_{2} \le \dots \le a_{n}, 1 = B_{0} < B_{1} < \dots < B_{m-1} < B_{m} = B,$$
(6)

$$b_i = |B_i : B_{i-1}| \in \mathbb{P}, \quad b_1 \le b_2 \le \ldots \le b_n.$$

Use induction on $|A \times B|$. Let $r = \max\{a_n, b_m\}$. In that case, in chain (5), A_{α} is a Hall r'-subgroup of A for some α . Similarly, in chain (6), B_{β} is a Hall r'-subgroup of B for some β . By induction, $A_{\alpha} \times B_{\beta}$ contains a $\mathbb{P}^{<}$ -chain. It is clear that $A_{\alpha} \times B_{\beta}$ is a Hall r'-subgroup of $A \times B$, and we can construct a chain from $A_{\alpha} \times B_{\beta}$ to $A \times B$ with indices equal to r. So, $A \times B \in \mathcal{P}^{<}$.

(2) Let $G \in \mathcal{P}^{<}$ and let G be solvable. Then in G, there is a $\mathbb{P}^{<}$ -chain

$$1 \lessdot M_1 \lessdot \ldots \lessdot M_{n-1} = M \lessdot M_n = G.$$

Hence $|G: M| = r = \max \pi(G)$, and by induction, there is a $\mathbb{P}^{<}$ -chain in every subgroup of M. Let $H \leq G$. If H and M are conjugate, then H contains a $\mathbb{P}^{<}$ -chain. Assume that H and M are not conjugate. Since G is solvable, we have G = MH and $|G:H| = |H: H \cap M| = r = \max \pi(G)$. In view of

 $H \cap M \leq M$, we deduce that $H \cap M$ has a $\mathbb{P}^{<}$ -chain, and so, H also has a $\mathbb{P}^{<}$ -chain. Thus, there is a $\mathbb{P}^{<}$ -chain in every maximal subgroup of G. By induction, in every subgroup of G, there is a $\mathbb{P}^{<}$ -chain, therefore the class $\mathcal{P}^{<} \cap \mathfrak{S}$ is closed under taking subgroups, i.e. it is subgroup-closed. From Statement (1), we deduce that $\mathcal{P}^{<} \cap \mathfrak{S}$ is a subgroup-closed formation.

(3) By Lemma 1 (2-3), $\mathcal{P}^{<} \cap \overline{\mathfrak{D}} = \overline{\mathfrak{D}}$ and $\mathfrak{U} \subseteq \mathcal{P}^{<}$. Since $\mathfrak{U} \subseteq \mathfrak{D}$, we get $\mathfrak{U} \subseteq \mathcal{P}^{<} \cap \mathfrak{D}$. Suppose that $\mathcal{P}^{<} \cap \mathfrak{D} \notin \mathfrak{U}$, and let G be a group of least order such that $G \in \mathcal{P}^{<} \cap \mathfrak{D} \setminus \mathfrak{U}$. In that case, G is a minimal non-supersolvable group and G has a Sylow tower of supersolvable type. Therefore, $|G^{\mathfrak{U}}/\Phi(G^{\mathfrak{U}})| = p^{n} > p$ for $p = \max \pi(G)$ by [7, Lemma 2.1] and G has no subgroup of index p. Hence G has no $\mathbb{P}^{<}$ -chain, i. e. $G \notin \mathcal{P}^{<}$, a contradiction. Consequently, $\mathcal{P}^{<} \cap \mathfrak{D} \subseteq \mathfrak{U}$ and $\mathcal{P}^{<} \cap \mathfrak{D} = \mathfrak{U}$.

(4) Simple non-abelian groups with \mathbb{P} -chains were enumerated in [8, Theorem 3.2]. From these groups only PSL(2,7), PSL(2,11) and $PSL(2,2^n)$, where $2^n + 1$ is a Fermat prime, have $\mathbb{P}^{<}$ -chains.

Corollary 1. A group G is supersolvable if and only if there are a $\mathbb{P}^{<}$ -chain and a $\mathbb{P}^{>}$ -chain in G.

Proof. If G is supersolvable, then G has a Sylow tower of supersolvable type [1, VI.9.1(c)], and by Lemma 1 (1) (3), there are a $\mathbb{P}^{>}$ -chain and a $\mathbb{P}^{<}$ -chain in G. Conversely, assume that in G, there are a $\mathbb{P}^{<}$ -chain and a $\mathbb{P}^{>}$ -chain. In that case, $G \in \mathcal{P}^{<}$ by the definition of the class $\mathcal{P}^{<}$, and $G \in \mathfrak{D}$ by Lemma 1 (1). Thus, $G \in \mathfrak{D} \cap \mathcal{P}^{<}$ and G is supersolvable by Theorem 2 (3). \Box

Corollary 2. A group G is supersolvable if and only if G has a Sylow tower of supersolvable type and there is a $\mathbb{P}^{<}$ -chain in G.

Proof. If G is supersolvable, then G has a Sylow tower of supersolvable type [1, VI.9.1(c)], and there is a $\mathbb{P}^{<}$ -chain in G by Lemma 1 (3). Conversely, if G has a Sylow tower of supersolvable type [1, VI.9.1(c)] and there is a $\mathbb{P}^{<}$ -chain in G, then $G \in \mathfrak{D} \cap \mathcal{P}^{<}$. According to Theorem 2 (3), G is supersolvable.

Example 3. The group $G = C_5^2 \rtimes D_8$ [6, SmallGroup(200,43)] contains subgroups A and B such that $A \cong B \cong D_{10}^2$ and |G:A| = |G:B| = 2. These subgroups are supersolvable, therefore they have $\mathbb{P}^<$ -chain. In G, there is no maximal subgroups of index 5, hence G contains no $\mathbb{P}^<$ -chain. Thus, the normal subgroup-closed class $\mathcal{P}^<$ is not a Fitting class.

5 Characterisations of w- and v-supersolvable groups

In [8], the following concept was proposed.

Definition 2. A subgroup H of a group G is \mathbb{P} -subnormal in G if either G = H or there is a chain

$$H = H_0 < H_1 < \dots < H_{n-1} < H_n = G \tag{7}$$

such that $|H_{i+1}: H_i| \in \mathbb{P}$ for every *i*.

It follows from the Huppert Theorem that we can define the formation \mathfrak{U} of all supersolvable groups as the class of all groups in which every subgroup is \mathbb{P} -subnormal. The classes of all groups with \mathbb{P} -subnormal Sylow subgroups and with \mathbb{P} -subnormal cyclic primary subgroups are denoted by $\mathfrak{W}\mathfrak{U}$ and $\mathfrak{V}\mathfrak{U}$, respectively. These classes were quit well investigated [7, 8, 9, 10]. In particular, $\mathfrak{W}\mathfrak{U}$ and $\mathfrak{V}\mathfrak{U}$ are subgroup-closed hereditary formations, $\mathfrak{U} \subset \mathfrak{W}\mathfrak{U} \subset \mathfrak{V}\mathfrak{U} \subset \mathfrak{D}$, and all inclusions are proper. Groups from $\mathfrak{W}\mathfrak{U}$ is called w-supersolvable, groups from $\mathfrak{V}\mathfrak{U}$ is called v-supersolvable.

In the context of this paper, the following concepts are quite natural.

Definition 3. A subgroup H of a group G is $\mathbb{P}^{<}$ -subnormal ($\mathbb{P}^{>}$ -subnormal) in G, if either G = H or there is a chain (7) such that $|H_{i+1} : H_i| \in \mathbb{P}$ and $|H_i : H_{i-1}| \leq |H_{i+1} : H_i|$ (respectively, $|H_i : H_{i-1}| \geq |H_{i+1} : H_i|$) for every i.

It is clear that every $\mathbb{P}^{<}$ -subnormal and every $\mathbb{P}^{>}$ -subnormal subgroup is \mathbb{P} -subnormal. The converse is not true in general, see Example 1(3).

In this section, supersolvable, w- and v-supersolvable groups are characterized by the existence or unexistence of $\mathbb{P}^{<-}$ or $\mathbb{P}^{>-}$ -subnormal subgroups in them.

Lemma 2. Let H be a $\mathbb{P}^{<}$ -subnormal subgroup of a group G, let K be a subgroup of G, and let N be a normal subgroup of G. The following statements hold.

- (1) $(H \cap N)$ is $\mathbb{P}^{<}$ -subnormal in N.
- (2) HN is $\mathbb{P}^{<}$ -subnormal in G.
- (3) HN/N is $\mathbb{P}^{<}$ -subnormal in G/N.

Proof. For \mathbb{P} -subnormal subgroups, all statements are true, see [9, Lemma 1]. By hypothesis, there is a chain (7) with indices $p_1 \leq p_2 \leq \ldots \leq p_n$.

(1) It is clear that there is a chain

$$H \cap N = H_0 \cap N \le H_1 \cap N \le \ldots \le H_{n-1} \cap N \le H_n \cap N = N.$$

Since N is normal in G, we deduce that $|H_i \cap N : H_{i-1} \cap N|$ divides $p_i = |H_i : H_{i-1}|$ for every *i*. We leave only one of the coincide subgroups in the chain and we get that $H \cap N$ is \mathbb{P}^{\leq} -subnormal in N.

(2) Since N is normal in G, there is a chain

$$HN = H_0 N \le H_1 N \le \ldots \le H_{n-1} N \le H_n N = GN.$$

In view of

$$|H_{i+1}N:H_iN| = \frac{|H_{i+1}:H_i|}{|H_{i+1}\cap N:H_i\cap N|} \in \{1 \cup \mathbb{P}\},\$$

we leave only one of the coincide subgroups in the chain and we get that HN is $\mathbb{P}^{<}$ -subnormal in G.

(3) Since N is normal in G, there is a chain

$$HN/N = H_0N/N \le H_1N/N \le \ldots \le H_{n-1}N/N \le H_nN/N = GN/N.$$

In view of

$$|H_{i+1}N/N:H_iN/N| = \frac{|H_{i+1}:H_i|}{|H_{i+1}\cap N:H_i\cap N|} \in \{1 \cup \mathbb{P}\},\$$

we leave only one of the coincide subgroups in the chain and we get that HN/N is $\mathbb{P}^{<}$ -subnormal in G/N.

We can repeat the proof of Lemma 2 with replacing $\mathbb{P}^{<}$ -subnormality» by $\mathbb{P}^{>}$ -subnormality» to get the similar properties of $\mathbb{P}^{>}$ -subnormal subgroups.

Lemma 3. The following statements hold.

- (1) If $G \in \mathfrak{D}$, then every \mathbb{P} -subnormal subgroup of G is $\mathbb{P}^{>}$ -subnormal.
- (2) In supersolvable group, every subgroup is $\mathbb{P}^>$ -subnormal.
- (3) If $G \in \overline{\mathfrak{D}}$, then every \mathbb{P} -subnormal subgroup of G is $\mathbb{P}^{<}$ -subnormal.

Proof. (1) Let H be a \mathbb{P} -subnormal subgroup of a group $G \in \mathfrak{D}$. Use induction on |G:H|. Assume that R is a Sylow r-subgroup of G for $r = \max \pi(G)$. In view of $G \in \mathfrak{D}$, R is normal in G by the definition of the class \mathfrak{D} . If G = HR, then H is $\mathbb{P}^>$ -subnormal in G. Assume that HR is a proper subgroup of G. In view of [9, Lemma 4], HR is \mathbb{P} -subnormal in G and H is \mathbb{P} -subnormal in HR. By induction, HR is $\mathbb{P}^>$ -subnormal in G, hence there is a $\mathbb{P}^>$ -chain

$$HR <_{q_1} U_1 <_{q_2} U_2 <_{q_3} \dots <_{q_{n-1}} U_{n-1} <_{q_n} U_n = G,$$

 $q_1 \ge q_2 \ge \ldots \ge q_{n-1} \ge q_n.$

In a \mathbb{P} -chain from H to HR, all indices are equal to $r > q_1$. Therefore, H is $\mathbb{P}^>$ -subnormal in G.

(2) It follows from Statement (1) because in a supersolvable group, every subgroup is \mathbb{P} -subnormal.

(3) We repeat the proof of Statement (1) with replacing $\langle r = \max \pi(G) \rangle$ by $\langle r = \min \pi(G) \rangle$ and we get that the statement is true.

Theorem 3. Let G be a group. The following statements hold.

(1) If G is supersolvable, then every Hall subgroup of G is $\mathbb{P}^>$ -subnormal and $\mathbb{P}^<$ -subnormal in G.

(2) G is supersolvable if and only if every Sylow subgroup of G is \mathbb{P}^{\leq} -subnormal in G.

(3) G is w-supersolvable if and only if every Sylow subgroup of G is $\mathbb{P}^>$ -subnormal in G.

Proof. (1) Let G be supersolvable and let H be a Hall subgroup of G. In view of Lemma 3 (2), H is $\mathbb{P}^{>}$ -subnormal in G. Put

$$\pi = \pi(G) \setminus \pi(H) = \{q_1, q_2, \dots, q_n\}.$$

Then there is Sylow q_i -subgroups Q_i such that $HQ_1Q_2...Q_i$ is a subgroup of G for every i. Since G is supersolvable, it follows from the Huppert Theorem that a chain

$$H < HQ_1 < HQ_1Q_2 < \ldots < HQ_1Q_2 \ldots Q_{n-1} < G$$

can be compacted so that all indices of new chain are prime. It is true for any ordering π . For $q_1 < q_2 < \ldots < q_n$, a new chain shows that H is $\mathbb{P}^{<}$ -subnormal in G.

(2) If G is supersolvable, then every Sylow subgroup of G is \mathbb{P}^{\leq} -subnormal in G by Statement (1). Conversely, assume that every Sylow subgroup of G is \mathbb{P}^{\leq} -subnormal in G. In that case, $G \in \mathfrak{wl} \subset \mathfrak{D}$. In view of Lemma 2 (3) and by induction, G/N is supersolvable for every non-trivial normal subgroup N of G. Therefore G is a primitive group, and $G = R \rtimes M$, where $R = F(G) = C_G(R)$ is a Sylow r-subgroup of G for $r = \max \pi(G)$ and a unique minimal normal subgroup, and $M \leq G$. Let Q be a Sylow q-subgroup of M. Then $q \neq r$ and Q is a Sylow q-subgroup of G. By hypothesis, Q is \mathbb{P}^{\leq} -subnormal in G. Hence, there is a subgroup H of G such that $Q \leq H$ and |G : H| = r. Consequently, $M \leq H^g \leq G$ for some $g \in G$. Since $M \leq G$, we have $M = H^g$ and |R| = |G : M| = r. Therefore, $M \cong G/R = N_G(R)/C_G(R)$ is a cyclic group of order dividing r - 1, and G is supersolvable.

(3) Since every w-supersolvable group G has a Sylow tower of supersolvable type, then every Sylow subgroup of G is $\mathbb{P}^>$ -subnormal in G by Lemma 3 (1). Conversely, if every Sylow subgroup of G is $\mathbb{P}^>$ -subnormal in G, then every Sylow subgroup of G is \mathbb{P} -subnormal in G, and G is w-supersolvable by definition.

Theorem 4. Let G be a group. The following statements hold.

(1) If every cyclic primary subgroup of G is \mathbb{P}^{\leq} -subnormal in G, then G is supersolvable.

(2) G is v-supersolvable if and only if every cyclic primary subgroup of G is $\mathbb{P}^>$ -subnormal in G.

Proof. (1) Let every cyclic primary subgroup of G be $\mathbb{P}^{<}$ -subnormal in G. In that case, $G \in v\mathfrak{U} \subset \mathfrak{D}$, and by Lemma 1(1), G contains a $\mathbb{P}^{>}$ -chain. Let $q = \min \pi(G)$. By hypothesis, a subgroup of prime order q is $\mathbb{P}^{<}$ -subnormal in G. Therefore G contains a $\mathbb{P}^{<}$ -chain. By Corollary 1, G is supersolvable.

(2) If $G \in v\mathfrak{U}$, then $G \in \mathfrak{D}$, and by Lemma 3 (1), every cyclic primary subgroup is $\mathbb{P}^{>}$ -subnormal in G. Conversely, if every cyclic primary subgroup A of G is $\mathbb{P}^{>}$ -subnormal in G, then A is \mathbb{P} -subnormal in G, and $G \in v\mathfrak{U}$. \Box

References

- B. Huppert, Endliche Gruppen I, Springer, Berlin-Heidelberg-New York, 1967. Zbl 0217.07201
- K. Iwasawa, Über die endlichen Gruppen und die Verbände ihrer Untergruppen, J. Fac. Sci. Imp. Univ. Tokyo. Sect. I, 4 (1941), 171-199. Zbl 0061.02503
- [3] B. Huppert, Normalteiler und maximale Untergruppen endlicher Gruppen, Math. Z., 60 (1954), 409-434. Zbl 0057.25303
- [4] A. Ballester-Bolinches, R. Esteban-Romero, D.J.S. Robinson, On finite minimal nonnilpotent groups, Proc. Am. Math. Soc., 133:12 (2005), 3455-3462. Zbl 1082.20006
- [5] A. Ballester-Bolinches, R. Esteban-Romero, On minimal non-supersoluble groups, Rev. Mat. Iberoam., 23:1 (2007), 127–142. Zbl 1126.20013

- [6] A system for computational discrete algebra GAP 4.12.2.
- [7] V.S. Monakhov, Finite groups with abnormal and U-subnormal subgroups, Sib. Math. J., 57:2 (2016) 352-363. Zbl 1384.20016
- [8] A.F. Vasil'ev, T.I. Vasilyeva, V.N. Tyutyanov, On finite groups similar to supersoluble groups, Probl. Fiz. Mat. Tekh., 2010:2(3) (2010), 21–27. Zbl 1227.20012
- [9] V.S. Monakhov, Three formations over £1, Math. Notes, 110:3 (2021), 339-346. Zbl 1547.20073
- [10] V.S. Monakhov, V.N. Kniahina Finite groups with ℙ-subnormal subgroups, Ric. Mat.,
 62:2 (2013), 307-322. Zbl 1306.20015

VICTOR STEPANOVICH MONAKHOV FRANCISK SKORINA GOMEL STATE UNIVERSITY, KIROVA STR. 119, 246019, GOMEL, BELARUS *Email address:* victor.monakhov@gmail.com

IRINA LEONIDOVNA SOKHOR BREST STATE A. S. PUSHKIN UNIVERSITY, KOSMONAVTOV BOULEVARD 21, 224016, BREST, BELARUS Email address: irina.sokhor@gmail.com