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Abstract: Let G # 1 be a finite group and let P be the set of all
primes. A chain 1 = My < M, < ... < M,,_1 < M,, = G such that
M; is a maximal subgroup of M;; for every i is called a maximal
chain of G. Every chain is associated with a sequence of non-
negative integers ji, jo, - - ., jn, where j; = |M; : M;_1|. A maximal
chain is a P-chain if j; € P for every i. We say that a P-chain is
a P<-chain (P~-chain) if j; < jo < ... < jn (j1 > J2o > ... > ju,
respectively). We investigate finite groups in which some maximal
chains are P-chains. In particular, we obtain the following criteria
for finite groups to be supersolvable: a group G is supersolvable if
and only if there are a P~-chain and P<-chain in G; a group G is
supersolvable if and only if G has a Sylow tower of supersolvable
type and there is a P<-chain in G. The obtained results are used
for characterization of generally supersolvable groups.
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1 Introduction

All groups in this paper are finite. We use the standard notation and
terminology of [1].
Let G # 1 be a group. A subgroup chain

l=My< My<..< Mj< Mip1<...< Mp_1< M,=G (1)

such that M; is a maximal subgroup of M;; for every ¢ is called a maximal
chain of G, and n is the length of this chain. Every chain is associated with

a sequence of non-negative integers ji, jo, ..., jn, where j; = |M; : M;_q|
is the index of M; 1 in M;, i = 1,...,n. We use P to denote the set of all
primes.

In 1941, Iwasawa proved the following result.

Theorem (Iwasawa). A group is supersolvable if and only if its mazimal
chains have the same length, [2].

Huppert proved the following fundamental theorem 13 years later.

Theorem (Huppert). A group is supersolvable if and only if all its mazimal
subgroups are of prime indices, |3, Theorem 9].

It follows from the Huppert Theorem that all indices of every maximal
chain in a supersolvable group are primes. Therefore, the following concepts
are quite natural.

Definition 1. Let G be a group. If j; € P for every i, then a mazimal
chain (1) is called a P-chain of G. We say that a P-chain is a P<-chain (P~ -
chain) if j1 < jo < ... < jn (J1 > Jo > ... > jn, respectively). A maximal
chain of G is said to be a monotone P-chain if it is a P<-chain or a P~ -chain.

In this paper, we investigate groups with P-chains. We enumerate groups in
which all maximal chains of every proper subgroup are monotone P-chains,
Theorem 1. In Theorem 2, we indicate the properties of the class of all
groups with P<-chain. The following supersolvability criteria follow from this
theorem: a group G is supersolvable if and only if there are a P~ -chain and
P<-chain in G; a group G is supersolvable if and only if G has a Sylow tower
of supersolvable type and there is a P<-chain in G. The obtained results are
used for characterization of generally supersolvable groups, Theorems 3, 4.

2 Used notation and concepts.

If X is a subgroup (proper subgroup, maximal subgroup) of a group Y,
then we write X <Y (X <Y, X <Y, respectively). We use A <; B if
A < B and |B: Al =t. We write r = max7(G) (r = minn(G)) to indicate
that r is the greatest prime divisor (the lowest prime divisor, respectively) of
the order of a group G. Here and later, 7(G) is the set of all prime divisors
of |G|. We use P and N to denote the sets of all primes and all non-negative
integers, respectively; A, and S, denotes alternating and symmetric groups
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of degree n, respectively; C), is a cyclic group of order n, and C!, denotes
a direct product of t copies of C,. We use A x B to denote the semidirect
product of a normal subgroup A and a subgroup B.

a1, 2

Let G be a group of order pi"'py*...p5", pi €P, o, €N, i =1,...,n. We
say that G has a Sylow tower if G has a normal series

1=Gp<G1<...<Gp1 <G, =G (2)

such that |G;| = p]*p3? ... pJ" for every i. In that case, G;+1 /G is isomorphic
to a Sylow p;-subgroup of G for every i. If p1 > pa > ... > p,, then we say
that G has a Sylow tower of supersolvable type, and if p; < p2 < ... <
Pn, then G has a Sylow tower of anti-supersolvable type. The classes of all
groups with Sylow towers of supersolvable type and anti-supersolvable type
are denoted by ® and D, respectively. It is easy to check ® and ® are
subgroup-closed hereditary Fitting formations.

Recall a Schmidt group is a non-nilpotent group with all proper subgroups
nilpotent. A group G is a minimal non-supersolvable group if G is not
supersolvable but every proper subgroup of G is supersolvable. The properties
of Schmidt groups and minimal non-supersolvable groups are well known, see,
for example, [4, 5]. A group is primary if it is of prime power order.

3 Groups with monotone P-chains

Since composition factors of a solvable group G # 1 have prime orders,
every composition series of a solvable group is a P-chain.

Example 1. (1) In Ay, there is no subgroup of index 2, hence A4 has no
P>-chains, but in Ay, there is a P<-chain: 1 <5 Cy <5 C2 <3 Aj4.

(2) In G = C% x Cy [6, SmallGroup(36,9)], there is no subgroup of index 3,
hence G has no P<-chains, but G has a P~-chain: 1 <3 C3 <3 Cg <9
Cg X CQ <9 (.

(3) In G = C% x SL(2,3) [6, SmallGroup(216,153)], there is no subgroup
of index 2, hence G has no P~-chain. Among the maximal chains of G, only
three are P-chains:

1 <9 Cy <383 <3C3x853 <o Cg% x Cy <o PSU(3,2) <3 G,
1<3C3 <953 <3C3x53 <o C§ X Cy <9 PSU(3,2) <3 G,
1<3C5 <3 032 <9 C3 x 83 <3 Cg X Cy <o PSU(3,2) <3 G,

but each of them is not monotone. In particular, in G = C% x SL(2, 3), there

is a P-chain, but there are no P~-chain and no P<-chain.

(4) In Ag, there is no maximal subgroup of prime index, hence Ag has no
P-chain.

Lemma 1. Let G be a group. The following statements hold.

(1) G contains a P~ -chain if and only if G has a Sylow tower of super-
solvable type.

(2) If G has a Sylow tower of anti-supersolvable type, then there is
a P<-chain in G.
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(3) In any supersolvable group, there is a P<-chain.

Proof. (1) Assume that in G, there is a P~-chain (1). If n = 1, then G is
a group of prime order and the statement is true. Therefore we can assume
that n > 1. Use induction on n. By induction, M,,_; has a Sylow tower
of supersolvable type. Hence a Sylow r-subgroup R of M,_; is normal in
M, _; for r = j; = maxnw(My,—_1). If r = j,, then G is an r-group, and the
statement is true. Therefore, r > j, and R is normal in G in view of the
Sylow Theorem. By induction, G/R € ©. Consequently, G € ©.

Conversely, let G be a group of order p{*p3?...po", p1 > pa > ... > pp,
with a Sylow tower of supersolvable type. In that case, G has a normal
series (2) such that |G;| = pi*p3?...pJ" for every i. In particular, Gy is a
normal Sylow pj-subgroup of G for p; = max 7(G). We have that G contains
a chain

l<Gl< ... <GP =G, |GG =p,i=12...,.

Since G/G; has a Sylow tower of supersolvable type, in G/G; there is a
maximal P~ -chain

1 :Gl/Gl < Ml/Gl <... < Mm/G1 :G/G1

by induction. Now, 1 <« G <...< G{' <« My < My <...< My, =G is a
P~ -chain of G.

(2) Use induction on |G|. Let G € © and let r = max 7 (G). In that case,
G has a normal Hall r’-subgroup H. By induction, there is a P<-chain in H.
Continuing this chain to G, we obtain a P<-chain.

(3) Use induction on |G|. Let G be supersolvable and let » = max7(G).
Then G contains a subgroup H of index r. By induction, there is a P<-chain
in H. Hence in G, there is a P<-chain. ([

Example 2. In Sy, A5, PSL(2,7), there are P<-chains, but these groups
have no Sylow towers. Therefore, Statement (2) of Lemma 1 is not converse.

Theorem 1. Assume that in all proper subgroups of a group G, every mazi-
mal chain is a monotone P-chain. Then 1 < |7(G)| < 3 and G is a group of
one of the following type.
(1) G is a supersolvable group of order p", pq, p*q or pqr;
(2) G is a p-closed Schmidt group with Frattini subgroup of prime order p;
(3) G is a non-supersolvable Schmidt group with identity Frattini subgroup.
Conwversely, in all proper subgroups of the enumerated groups, every mas-
mal chain is a monotone P-chain.

Proof. Assume that every maximal chain of G is a monotone P-chain. In that
case, all maximal subgroups of G have prime indices, and G is supersolvable
by the Huppert Theorem. If G is not primary, then in G, there is a normal
subgroup C) of prime order p and a subgroup C, of prime order ¢, p # q.
Suppose that H = C,Cy is a proper subgroup of G. If p > ¢, the chain
1<, Cy<, H is a P<-chain and the chain 1 <, C, <, H is a P”-chain. Fix
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a monotone P-chain from H to G: H< Hy < ... < H,,_1 < H, = G. In that
case, one of the chains

l1<4Cy<pH<H <...<H, 1 <H,=G,

1<, Cp<y H< Hi< ...< Hy1< H,=G

are not monotone, a contradiction. Therefore, G = C,C,. Thus, if every
maximal chain of G is monotone P-chain, then either G is primary or GG has
order pq.

In the sequel, we can assume that G contains a maximal chain that is
not a monotone P-chain. By the above, every proper subgroup of G is either
primary or of order pg. Let G be a supersolvable. Then 1 < |7(G)| < 3,
and |G| = pgr if |7(G)| = 3. If |7(G)| = 2, then |G| = p?q. Let G be
non-supersolvable. In that case, G is a minimal non-supersolvable group,
G = P x Q, where @) is a supplement to the normal Sylow p-subgroup P
of G and |P/®(P)| = p™ > p by [7, Lemma 2.1]. If Q; < @, |Q1]| # 1,
then |PQ1| = p"|Q1] # pq, a contradiction. Consequently, |Q| = ¢ € P. If
®(P) =1, then ®(G) =1 and G is a Schmidt group with identity Frattini
subgroup, i.e. G is a group from Statement (3) of the theorem. If &(P) # 1,
then |®(P)Q| = pg and M = ®(P)Q < G. Suppose that M = ®(P) x Q
is not nilpotent. It follows ¢ divides p — 1. In view of Mg = ®(P), we
have G/Mqg = P/Mg x M/M¢ is a Schmidt group with identity Frattini
subgroup. Hence |G : M| = |P/M¢g| = p", where n is the multiplicative
order of p modulo ¢, and n = 1, a contradiction. Hence M is nilpotent, and
G is a p-closed Schmidt group with Frattini subgroup of order p, i.e. G is a
group from Statement (2) of the theorem.

It remains to show that in proper subgroups of the enumerated groups,
every maximal chain is a monotone P-chain. Obviously, the statement is
true for primary groups, groups of order pq, p?q, or pgr. If G is a p-closed
Schmidt group with Frattini subgroup of prime order p, then G = P x @,
|P| = p'™™, |Q| = ¢, where m is the multiplicative order of p modulo ¢,
and maximal subgroups of G have order p'*™ or pq. It is clear that in all
proper subgroups of G, every maximal chain is a monotone P-chain. In a
non-supersolvable Schmidt group with identity Frattini subgroup, all proper
subgroups are primary. Therefore such a group also satisfies the conditions
of the theorem. (|

4 On the class of groups with P<-chains.

Let P< (P~) be the class of all groups in which there is a P<-chain
(respectively, P~-chain). By {{ and & we denote the formations of all super-
solvable and all solvable groups, respectively. In view of Lemma 1, we have
P> =D, D C P< and Y4 C P<. In particular, P> is a subgroup-closed
hereditary Fitting formation. The class P< is more complicated.

Theorem 2. The following statements hold.
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(1) P=< is closed under taking normal subgroups, quotients, and direct
products.

(2) P< NG is a subgroup-closed formation.

(3) P<ND=P<nNP~ =4l

(4) If a simple mnon-abelian group G € P<, then
G e {PSL(2,7), PSL(2,11), PSL(2,2")}, where 2" + 1 is a Fermat prime.

Proof. (1) Let G € P< and let N be a normal subgroup of G. Then in G,
there is a P<-chain (1) with prime indices j; < jo < ... < j,. Put K; =
M; N N and consider a chain

1=Ky<K; <...<Kp_1<K,=N. (

Since N is normal in G, we get K; 1 is normal in M; 1 and M; < K;41M;
Mz‘_;,_l. In view of ‘Mi—&-l : Mi‘ = jz‘_;,_l S IP), either Mi = Ki-i—lMi or Ki+1Mi
M. If M; = Kj1 M;, then K; = Kiq. If KjpiM; = Mg, then jiq =
‘Mi-i-l . Mz’ = ’Ki—&—lMi : Mz| = |K¢+1 : Kz’ In chain (3), we leave only
one of the coincide subgroups in chain (3) and we get a P<-chain of N, i.e.
N € P<. Thus, P=< is closed under taking normal subgroups.

It is clear that there is a chain

N/N = MyN/N < ... < M,_yN/N < M,N/N = G/N. (4)

Note that ’Mi+1N/N : MZN/N’ = ‘Mi—&-lN : MZN’ = ‘Mi—&-l : Ml’/|(MZ+1 N
N): (M; N N)|. In view of |M;4+1 : M;| = jix1 € P, we have either [(M;4+1 N
N) : (MZQN)’ = ’Mi—i-l : Mz’ and ’MH_lN/N : MZN/N’ =1lor Mjz1 NN =
Mi N N and ’MH_lN/N : MZN/N‘ = ‘Mi—‘rl : Mz| = ji+1- In chain (4), we
leave only one of the coincide subgroups in chain (4) and we get a P<-chain
of G/N,i.e. G/N € P<. Thus, P< is closed under taking quotients.

Now, we check that P< is closed under taking direct products. If A, B €
P<, then there are P<-chains

N &

1=Ag< A1 <...<A,_1<A,=A, (5)
a; =1A;: Ai1| €P, a1 <az <... <ay,
1=By<Bi1<...<Bp_1< B, =8, (6)

bi=|Bi:Bi_1’€]P>, b1 <by <...<b,.
Use induction on |A x B|. Let r = max{ay,, b,,}. In that case, in chain (5),
A, is a Hall r’-subgroup of A for some «. Similarly, in chain (6), Bs is a Hall
r’-subgroup of B for some 3. By induction, A, x Bg contains a P<-chain. It
is clear that A, x Bg is a Hall r’-subgroup of A x B, and we can construct
a chain from A, x Bg to A x B with indices equal to r. So, A x B € P<.
(2) Let G € P< and let G be solvable. Then in G, there is a P<-chain

l<My<...<Mp1=M<M,=0G.

Hence |G : M| = r = maxn(G), and by induction, there is a P<-chain in
every subgroup of M. Let H<G. If H and M are conjugate, then H contains
a P<-chain. Assume that H and M are not conjugate. Since G is solvable,
we have G = MH and |G : H| = |H : HN M| =r = max7(G). In view of
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HnNM < M, we deduce that H N M has a P<-chain, and so, H also has
a P<-chain. Thus, there is a P<-chain in every maximal subgroup of G. By
induction, in every subgroup of G, there is a P<-chain, therefore the class
P< NG is closed under taking subgroups, i.e. it is subgroup-closed. From
Statement (1), we deduce that P< N & is a subgroup-closed formation.

(3) By Lemma 1 (2-3), P<ND = D and 4 C P<. Since U C D, we get 4 C
P<ND. Suppose that P<ND ¢ &, and let G be a group of least order such
that G € P<ND\4 In that case, G is a minimal non-supersolvable group and
G has a Sylow tower of supersolvable type. Therefore, |GH*/®(G*)| = p" > p
for p = max 7(QG) by |7, Lemma 2.1] and G has no subgroup of index p. Hence
G has no P<-chain, i.e. G ¢ P<, a contradiction. Consequently, P<ND C i
and P<ND =4l

(4) Simple non-abelian groups with P-chains were enumerated in
[8, Theorem 3.2]. From these groups only PSL(2,7), PSL(2,11) and
PSL(2,2"), where 2" + 1 is a Fermat prime, have P<-chains. O

Corollary 1. A group G is supersolvable if and only if there are a P<-chain
and a P~ -chain in G.

Proof. If G is supersolvable, then G has a Sylow tower of supersolvable
type [1, V1.9.1(c)], and by Lemma 1 (1) (3), there are a P~-chain and a P<-
chain in G. Conversely, assume that in G, there are a P<-chain and a P~-
chain. In that case, G € P< by the definition of the class P<, and G € © by
Lemma 1 (1). Thus, G € DNP< and G is supersolvable by Theorem 2 (3). O

Corollary 2. A group G is supersolvable if and only if G has a Sylow tower
of supersolvable type and there is a P<-chain in G.

Proof. If G is supersolvable, then G has a Sylow tower of supersolvable
type [1, VI.9.1(c)], and there is a P<-chain in G by Lemma 1 (3). Conversely,
if G has a Sylow tower of supersolvable type [1, VI.9.1(c)| and there is
a P<-chain in G, then G € © N P<. According to Theorem 2 (3), G is
supersolvable. [l

Example 3. The group G = C2 x Dg |6, SmallGroup(200,43)| contains
subgroups A and B such that A & B = D?) and |G : A| = |G : B| = 2.
These subgroups are supersolvable, therefore they have P<-chain. In G, there
is no maximal subgroups of index 5, hence G contains no P<-chain. Thus,
the normal subgroup-closed class P< is not a Fitting class.

5 Characterisations of w- and v-supersolvable groups

In [8], the following concept was proposed.

Definition 2. A subgroup H of a group G is P-subnormal in G if either
G = H or there is a chain

H=Hy<H <..<H,1<H,=G (7)
such that |H;11 : H;| € P for every i.
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It follows from the Huppert Theorem that we can define the formation
of all supersolvable groups as the class of all groups in which every subgroup
is P-subnormal. The classes of all groups with P-subnormal Sylow subgroups
and with P-subnormal cyclic primary subgroups are denoted by wil and vil,
respectively. These classes were quit well investigated [7, 8, 9, 10]. In particu-
lar, wil and vil are subgroup-closed hereditary formations, ${ C wil C vl C
®, and all inclusions are proper. Groups from wil is called w-supersolvable,
groups from vil is called v-supersolvable.

In the context of this paper, the following concepts are quite natural.

Definition 3. A subgroup H of a group G is P<-subnormal (P~ -subnormal)
in G, if either G = H or there is a chain (7) such that |H; 1 : H;| € P and
|H; : Hi—1| < |H;y1 : H;| (respectively, |H; : H;_1| > |H;t+1 : H;|) for every i.

It is clear that every P<-subnormal and every P~-subnormal subgroup is
P-subnormal. The converse is not true in general, see Example 1 (3).

In this section, supersolvable, w- and v-supersolvable groups are characte-
rized by the existence or unexistence of P<- or P~-subnormal subgroups in
them.

Lemma 2. Let H be a P<-subnormal subgroup of a group G, let K be
a subgroup of G, and let N be a normal subgroup of G . The following
statements hold.

(1) (HNN) is P<-subnormal in N.

(2) HN is P<-subnormal in G.

(3) HN/N is P<-subnormal in G/N.

Proof. For P-subnormal subgroups, all statements are true, see [9, Lemma 1].
By hypothesis, there is a chain (7) with indices p1 < py < ... < pp.
(1) Tt is clear that there is a chain

HNN=HNN<HNNZL..<H,_ 1 NNZH,NN=N.

Since N is normal in G, we deduce that |[H; " N : H;_1 N N| divides p; =
|H; : H;—1]| for every i. We leave only one of the coincide subgroups in the
chain and we get that H N N is P<-subnormal in N.

(2) Since N is normal in G, there is a chain

HN = HN < H,N < ... < H, N < H,N = GN.
In view of

’Hi+1 : HZ‘
’HZ'_HQN : Hsz|

|Hi+1N : H,LN’ = € {1 U P},

we leave only one of the coincide subgroups in the chain and we get that
HN is P<-subnormal in G.
(3) Since N is normal in G, there is a chain

HN/N = HyN/N < HyN/N < ... < H,_1N/N < H,N/N = GN/N.
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In view of

|Hiy1 @ Hi
’Hl‘+1ﬂN2H¢ﬂN|
we leave only one of the coincide subgroups in the chain and we get that
HN/N is P<-subnormal in G/N. O

‘HZ'_HN/N : HZN/N‘ = € {1 UIP},

We can repeat the proof of Lemma 2 with replacing «P<-subnormality» by
«P~-subnormality» to get the similar properties of P~-subnormal subgroups.

Lemma 3. The following statements hold.
(1) If G € D, then every P-subnormal subgroup of G is P~ -subnormal.
(2) In supersolvable group, every subgroup is P~ -subnormal.
(3) If G € D, then every P-subnormal subgroup of G is P<-subnormal.

Proof. (1) Let H be a P-subnormal subgroup of a group G € ©. Use induction
on |G : H|. Assume that R is a Sylow r-subgroup of G for r = max7(G). In
view of G € ®, R is normal in G by the definition of the class ®. If G = HR,
then H is P~-subnormal in G. Assume that HR is a proper subgroup of G.
In view of |9, Lemma 4|, HR is P-subnormal in G and H is P-subnormal in
HR. By induction, HR is P~-subnormal in G, hence there is a P~-chain

HR <4, Uy <g, U2 <g5 -+~ <gp_y Un—1 <g, U, = G,

12422 ... 2 Gn-1 = Gn-
In a P-chain from H to HR, all indices are equal to r > ¢;. Therefore, H is
P~ -subnormal in G.

(2) It follows from Statement (1) because in a supersolvable group, every
subgroup is P-subnormal.

(3) We repeat the proof of Statement (1) with replacing «r = max7(G)»
by «r = min7(G)» and we get that the statement is true. (]

Theorem 3. Let G be a group. The following statements hold.

(1) If G is supersolvable, then every Hall subgroup of G is P~ -subnormal
and P<-subnormal in G.

(2) G is supersolvable if and only if every Sylow subgroup of G is P<-
subnormal in G.

(3) G is w-supersolvable if and only if every Sylow subgroup of G is P~ -
subnormal in G.

Proof. (1) Let G be supersolvable and let H be a Hall subgroup of G. In
view of Lemma 3 (2), H is P~-subnormal in G. Put

T=7m(G)\7(H) ={q1,q2,---qn}-

Then there is Sylow g;-subgroups @Q; such that HQ1Q> ... Q; is a subgroup
of G for every i. Since G is supersolvable, it follows from the Huppert
Theorem that a chain

H<HQ1<HQ1Q2<...<HQ1Q2...Qn_1<G
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can be compacted so that all indices of new chain are prime. It is true for
any ordering m. For ¢ < ¢2 < ... < @y, a new chain shows that H is
P<-subnormal in G.

(2) If G is supersolvable, then every Sylow subgroup of G is P<-subnormal
in G by Statement (1). Conversely, assume that every Sylow subgroup of G is
P<-subnormal in G. In that case, G € wil C ®. In view of Lemma 2 (3) and
by induction, G/N is supersolvable for every non-trivial normal subgroup N
of G. Therefore G is a primitive group, and G = R x M, where R = F(G) =
Ca(R) is a Sylow r-subgroup of G for r = max7(G) and a unique minimal
normal subgroup, and M < G. Let @ be a Sylow g¢-subgroup of M. Then
q # r and Q is a Sylow g-subgroup of G. By hypothesis, @Q is P<-subnormal
in G. Hence, there is a subgroup H of G such that Q < H and |G : H| =r.
Consequently, M < HI9 < G for some g € G. Since M < G, we have M = HY
and |R| = |G : M| = r. Therefore, M = G/R = Ng(R)/Ca(R) is a cyclic
group of order dividing » — 1, and G is supersolvable.

(3) Since every w-supersolvable group G has a Sylow tower of supersolvable
type, then every Sylow subgroup of G is P~ -subnormal in G by Lemma 3 (1).
Conversely, if every Sylow subgroup of G is P~-subnormal in G, then every
Sylow subgroup of G is P-subnormal in G, and G is w-supersolvable by
definition. O

Theorem 4. Let G be a group. The following statements hold.

(1) If every cyclic primary subgroup of G is P<-subnormal in G, then G
is supersolvable.

(2) G is v-supersolvable if and only if every cyclic primary subgroup of G
is P~ -subnormal in G.

Proof. (1) Let every cyclic primary subgroup of G be P<-subnormal in G.
In that case, G € vl C ®, and by Lemma 1 (1), G contains a P~-chain. Let
¢ = min7(G). By hypothesis, a subgroup of prime order ¢ is P<-subnormal
in G. Therefore G contains a P<-chain. By Corollary 1, G is supersolvable.

(2) If G € vi, then G € ©, and by Lemma 3 (1), every cyclic primary
subgroup is P~-subnormal in G. Conversely, if every cyclic primary subgroup
A of G is P”-subnormal in G, then A is P-subnormal in G, and G € vil. 0O
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