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Abstract: The spectrum of a �nite group is the set of orders of
its elements. We are concerned with �nite groups having the same
spectrum as a direct product of nonabelian simple groups with
abelian Sylow 2-subgroups. For every positive integer k, we �nd
k nonabelian simple groups with abelian Sylow 2-subgroups such
that their direct product is uniquely determined by its spectrum
in the class of all �nite groups. On the other hand, we prove that
there are in�nitely many �nite groups having the same spectrum
as the direct cube of the small Ree group 2G2(q), q > 3, or the
direct fourth power of the sporadic group J1.

Keywords: simple group, recognition by spectrum, small Ree
group, sporadic Janko group.

Introduction

Given a �nite group G, the spectrum ω(G) is the set of the orders of
elements ofG. A groupH is isospectral toG if ω(H) = ω(G). We say thatG is
recognizable (by spectrum) if every �nite group isospectral to G is isomorphic
to G, almost recognizable if there are �nitely many pairwise nonisomorphic
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�nite groups isospectral to G, and unrecognizable if there are in�nitely many
such groups. Determining whether G is recognizable, or almost recognizable,
or unrecognizable, or, more generally, describing groups isospectral to G, is
known as the recognition of G by spectrum. The problem of recognition by
spectrum has become quite popular in recent decades, see the state of the
art in the recent survey [5].

By the celebrated theorem of V. D. Mazurov and W. Shi in [9], a �nite
group G is unrecognizable if and only if G is isospectral to a group having
a nontrivial normal abelian subgroup. In particular, every group with non-
trivial solvable radical is unrecognizable, and so the recognition problem is
of interest only for groups having the following structure:

L1 × L2 × · · · × Lk = Soc(G) ≤ G ≤ Aut(L1 × L2 × · · · × Lk) (1)

for some nonabelian simple groups Li, 1 ⩽ i ⩽ k. Here, as usual, the socle
Soc(G) is the subgroup generated by all minimal normal subgroups of G.

In the present paper, continuing investigations of [2, 8], we consider the
problem of recognition by spectrum for �nite groups with abelian Sylow
2-subgroups. These groups were described by J. H. Walter in [12]. In particu-
lar, if such a group G satis�es (1), then |G : Soc(G)| is odd and every Li

is either a 2-dimensional linear group L2(q) = PSL2(q), or a small Ree
group 2G2(q), or the sporadic Janko group J1. Observe that there are further
restrictions on q for L2(q), see Lemma 1.3 below. Also recall that the group
2G2(q) is de�ned only for q = 3α, α odd, and simple exactly when q > 3.

It is known that a recognizable group can have arbitrarily many nonabelian
composition factors [5, Theorem 4.6]. More surprisingly, such a group can
have arbitrarily many pairwise isomorphic nonabelian composition factors
[13]. So the �rst question we address here is how many nonabelian composition
factors a recognizable group with abelian Sylow 2-subgroups can have, and
the answer is `arbitrarily many'.

Theorem 1. There is an in�nite increasing sequence of odd primes pi, i ∈ N,
such that for every k ∈ N and

Pk =
k∏

i=1

2G2(3
pi),

the equality ω(G) = ω(Pk) yields G ≃ Pk.

Despite its `positivity', Theorem 1 shows that it is quite hard to expect the
solution of the recognition problem for all �nite groups with abelian Sylow
2-subgroups (cf. [8, Problem 1.4]). It seems that the reasonable goal here is
to solve this problem for the direct powers of simple groups.

Suppose that L is a nonabelian simple group with abelian Sylow 2-sub-
groups. The group L itself is always recognizable [2]. The group L × L is
recognizable if and only if L is either 2G2(q) or J1 [8]. In fact, L2(q)×L2(q)
is unrecognizable for all q, regardless of whether Sylow 2-subgroups of L2(q)
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are abelian or not [8, Proposition 1.3]. We prove that the direct cube of
2G2(q) and the fourth direct power of J1 are unrecognizable.

Theorem 2. Let L and k satisfy one of the following:

(a) L = 2G2(q) and k = 3;
(b) L = J1 and k = 4.

Then there are in�nitely many �nite pairwise nonisomorphic groups G with
ω(G) = ω(Lk).

Since unrecognizability of Lk implies unrecognizability of Lm for allm > k,
to solve the recognition problem for all direct powers of simple groups with
abelian Sylow 2-subgroups, it remains to answer the following question (note
that J1 × J1 × J1 is almost recognizable if and only if it is recognizable, see
Proposition 3.1 below).

Problem 3. Is the group J1 × J1 × J1 recognizable by spectrum?

In conclusion, we observe that there are no results on recognition of groups
G that have abelian Sylow 2-subgroups and satisfy (1) with G > Soc(G).
In particular, nothing is known even in the case k = 1, that is, when G is
almost simple but not simple.

1 Preliminaries

As usual, π(G) denotes the set of prime divisors of |G|. The set ω(G) is
closed under taking divisors, and so uniquely determined by the subset µ(G)
consisting of numbers maximal under divisibility. The prime graph GK(G)
is the graph whose vertex set is equal to π(G) and two di�erent vertices
p, q ∈ π(G) are adjacent if and only if pq ∈ ω(G). A coclique of GK(G) is
a set of pairwise nonadjacent vertices.

Let r be a prime. If G is a �nite group, we write Or(G) and Or′(G) for the

largest normal r-subgroup and r′-subgroup of G, respectively. Also Or′(G)
denotes the smallest normal subgroup of G for which the quotient is an
r′-group. If a is a positive integer, then (a)r is the highest power of r dividing
a and (a)r′ = a/(a)r. Given positive integers a1, . . . , ak, we write (a1, . . . , ak)
and [a1, . . . , ak] for their greatest common divisor and least common multiple,
respectively.

Lemma 1.1 (Bang [1], Zsigmondy [15]). For every positive integers a, i > 1,
one of the following holds:

(a) there is a prime r that divides ai − 1 but does not divide aj − 1 for
all 1 ≤ j < i;

(b) either i = 6, a = 2, or i = 2, a = 2t − 1 for some t.

A prime r satisfying (a) of Lemma 1.1 is called a primitive prime divisor
of ai − 1.

The following lemma is well known.
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Lemma 1.2. Let a, i, j be integers, |a| > 1 and i, j > 0. Then the following
hold:

(a) (ai − 1, aj − 1) = a(i,j) − 1;

(b) (ai − 1, aj + 1) is equal to (2, a − 1) if (i)2 ≤ (j)2 and a(i,j) + 1
otherwise;

(c) If an odd prime r divides a− 1, then (ai − 1)r = (i)r(a− 1)r.

As mentioned in Introduction, the structure of �nite groups with abelian
Sylow 2-subgroups were established (up to some details covered only by the
classi�cation of �nite simple groups) in [12].

Lemma 1.3. If G is a nonabelian simple group with an abelian Sylow 2-sub-
group S, then S is elementary abelian and G is one of the following groups:

(a) the linear groups L2(q), q > 3, q ≡ 3, 5 (mod 8) or q = 2α;
(b) the small Ree groups 2G2(q), q = 3α, α ≥ 3 is odd;
(c) the sporadic Janko group J1.

Lemma 1.4. [12, Theorem I] If G is a �nite group with abelian Sylow

2-subgroups, then O2′(G/O2′(G)) is a direct product of an abelian 2-group
and some nonabelian simple groups listed in Lemma 1.3.

We will need some information about simple groups with abelian Sylow
2-subgroups.

Lemma 1.5. Let G = 2G(q), q = 3α > 3. Then the following hold:

(a) |G| = q3(q − 1)(q3 + 1);
(b) |OutG| = α;
(c) µ(G) = {6, 9, q − 1, (q + 1)/2, q −

√
3q + 1, q +

√
3q + 1}.

Proof. See [10] for (a) and (b) and [2, Lemma 4] for (c). □

Lemma 1.6. [8, Lemma 3.8] Let G = 2G2(q), where q > 3, and let g ∈ G be
an r-element for a prime r ̸= 3. If G acts faithfully on a p-group V for some
prime p, then the coset V g of the natural semidirect product V ⋊G contains
an element of order p|g|.

Lemma 1.7. Let G = L2(q), where q > 3 is power of a prime p. Then the
following hold:

(a) µ(G) = {p, (q − 1)/d, (q + 1)/d}, where d = (q − 1, 2);
(b) if G ≤ T ≤ AutG, then t(T ) ≤ 3.

Proof. (a) See, for example, [6, Haupsatz 8.27].
(b) Suppose that σ is a coclique of size 4 in GK(T ). Since OutG is abelian,

it follows that |σ∩π(G)| ≥ 3. Then (a) implies that |σ∩π(G)| = 3 and p ∈ σ.
If r ∈ π(G) \ σ, then r is the order of a �eld automorphism of G. But every
�eld automorphism of G centralizes an element of order p, and so pr ∈ ω(T ),
a contradiction. □

Lemma 1.8. µ(J1) = {6, 7, 10, 11, 15, 19}.
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Proof. See, for example, [3]. □

We conclude with a series of lemmas concerning element orders in group
extensions.

Lemma 1.9. [11, Lemma 1.1] Suppose that a �nite group G have a normal
series of subgroups 1 ≤ K ≤ M ≤ G, and distinct primes p, q and r are such
that p divides |K|, q divides |M/K|, and r divides |G/M |. Then at least one
of the numbers pq, pr, and qr belongs to ω(G).

Lemma 1.10. Let G be a semidirect product of a t-group T and a group ⟨x⟩
of order r, where t and r are di�erent odd primes, and let [T, x] ̸= 1. If G
acts faithfully on a p-group V , where p does not divide |G|, then CV (x) ̸= 1.

Proof. We may assume that V is elementary abelian and regard V as G-mo-
dule over a �eld of order p. Since [T, x] ̸= 1, it follows that Or(G) = 1. Now
we apply [7, Theorem IX.6.2]. □

Lemma 1.11. Let G be a quasisimple �nite group acting on a p-group V for
some prime p not dividing |G|. Suppose that σ ⊆ π(G) \ {2} and for every
r ∈ σ, a Sylow r-subgroup of G acts �xed-point-freely on V . Then |σ| ≤ 2.

Proof. We may assume that V is a faithful irreducible FG-module for some
�eld F of characteristic p. Furthermore, we may assume that F is a splitting
�eld for G. By [4, Theorem 3.3.3], a Sylow r-subgroup of G is cyclic. Now
the conclusion follows from [14, Theorem 1.1]. □

Lemma 1.12. Suppose that G is a �nite group, V is a vector space over
a �eld of positive characteristic p and and φ : G → GL(V ) is a representation
of G. Then the coset V g of the semidirect product V ⋊φG contains an element
of order p|g| if and only if the Jordan form of φ(g) has a unipotent block of
size (|g|)p.

Proof. Let v ∈ V and k = |g|. Then (gv)k = v + vφ(g) + · · · + vφ(g)
k−1

, and
hence V g contains an element of order pk if and only if xk−1 + · · ·+ 1 does
not annihilate φ(g). This is equivalent to saying that the minimal polynomial
f(x) of φ(g) does not divide (xk − 1)/(x− 1). Since f(x) divides xk − 1 and
1 is a root of xk − 1 of multiplicity (k)p, the result follows. □

2 Recognizable direct products

In this section we will prove Theorem 1. De�ne primes pi as follows.

Let p1 = 5. For i > 1, de�ne pi to be the smallest prime larger than
pi−1 and not dividing |2G2(3

pj )| for any 1 ≤ j < i.
(2)

We claim that this sequence {pi}i∈N is as required. Set qi = 3pi and

Ri =
2G2(qi). Given k a positive integer k, let Pk =

∏k
i=1Ri and suppose

that G is a �nite group such that ω(G) = ω(Pk). We need to prove that
G ≃ Pk.
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Let K = O2′(G) and let H be the preimage of O2′(G/K) in G. Set H =
H/K. By Lemma 1.4, it follows that H = S×A, where S is a direct product
of nonabelian simple groups listed in Lemma 1.3 and A is an abelian 2-group.

Lemma 2.1. Let i ≥ 1.

(a) π(Ri) ∩ π(Rj) = {2, 3, 7} for all j ̸= i.
(b) pi ̸∈ π(Rj) for all j, and in particular, 5 ̸∈ π(Rj) for all j.
(c) π(qi±1) ̸= {2}, 7 divides one of qi±

√
3qi+1, π(qi±

√
3qi+1) ̸= {7}.

(d) If π(2G2(3
m)) ⊆ π(Pk) for m > 3, then m is one of {p1, . . . , pk}.

Proof. (a) Let 3 ̸= r ∈ π(Ri)∩π(Rj) for j ̸= i. It follows from Lemma 1.5(a)
that r divides ((qi − 1)(q3i + 1), (qj − 1)(q3j + 1)). Applying Lemma 1.2, we

see that (qi − 1, qj − 1) = (qi − 1, q3j + 1) = 2 and (q3i + 1, q3j + 1) = 33 + 1.

(b) If i > j, then the claim is a part of the de�nition in (2). Suppose
that i ≤ j. Then pi ≤ pj , and so (pi − 1, pj) = 1. In particular, 3pi−1 − 1
and 3pj − 1 are coprime, while (3pi−1 − 1, 33pj + 1) is a divisor of 33 + 1.
Thus if pi ∈ π(Rj), then applying Fermat Little Theorem and the preceding
observations, we see that pi = 7. But pi ̸= 7 by construction.

(c) Since 7 divides q3i + 1 and is coprime to qi + 1, it divides one of
qi ±

√
3qi + 1.

Note that (qi − 1)2 = 2, (qi + 1)2 = 4 and qi ≥ 35, so (qi ± 1) > (qi ± 1)2.
Similarly, using Lemma 1.2 and the fact that pi ̸= 3, 7, we calculate that
(q3i + 1)7 = (33pi + 1)7 = (33 + 1)7 = 7, and since qi ±

√
3qi + 1 > 7, the last

claim follows.
(d) Let r be a primitive prime divisor of 33m + 1. Arguing as in (a), we

see that r does not divide qi − 1 for all i. If r divides q3i + 1, then m divides
pi and so m = pi. □

Let i ∈ {1, . . . , k}. By Lemma 2.1(c), we can take odd ri1 ∈ π(qi − 1),
ri2 ∈ π(qi + 1), ri3 ∈ π(qi −

√
3qi + 1), and ri4 ∈ π(qi +

√
3qi + 1) with

ri3, ri4 ̸= 7. By Lemma 1.5(c), the set σi = {ri1, ri2, ri3, ri4} is a coclique of
size 4 in GK(Ri). Applying Lemma 2.1(a), we see that σi remains to be a
coclique in GK(Pk).

Lemma 2.2. There is a unique direct factor Si of S such that |σi∩π(Si)| ≥ 3.
The group G normalizes Si and if Ti = G/CG(Si), then σi ⊆ π(Ti).

Proof. Form a chief series of G by re�ning 1 ≤ K ≤ H ≤ G. By Lemma 1.9,
there are at most two factors of this chief series that are not disjoint from
σi. Since factors between 1 and K and also between H and G are primary
groups and |σ1| = 4, it follows that |π(K) ∩ σi| · |π(G/H) ∩ σi| ≤ 1 and
there is a unique direct factor Si of S such that |π(Si) ∩ σi| ≥ 3. In view of
uniqueness, Si is normal in G.

Suppose that p ∈ σi \ π(Si). If p ∈ π(G/H), then p ̸∈ CG(Si), and so
p ∈ π(Ti), as required.

Assume that p ∈ π(K). Let P be a Sylow p-subgroup of K and let Hi

be the preimage of Si in G. We derive a contradiction by showing that pr ∈
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ω(Hi) for some r ∈ σi ∩ π(Si). By the Frattini argument, NHi(P )/NK(P ) ≃
Si, so without loss of generality we may assume that P is normal in Hi.
Also we may assume that P is elementary abelian. By the Schur�Zassenhaus
theorem, Hi = P ⋊M , where M ≃ Hi/P . If CHi(P ) ̸≤ P , then CHi(P ) =
P × Q, where Q is a normal σ′

i-subgroup of Hi. Factoring it out, we may
assume that M acts on P faithfully.

Let N = M ∩K. Suppose that CM (N) ≤ N . If r ∈ σi ∩ π(Si) and x ∈ M
an element of order r, then CN (x) < N . So there is t ∈ π(N) and a Sylow
t-subgroup T of N such that x normalizes but not centralizes T . Observe
that t is odd, so applying Lemma 1.10 to the action of T ⋊ ⟨x⟩ on P , we see
that pr ∈ ω(Hi).

Thus CM (N)N/N = Si. Then C = CM (N)∞ is a perfect central extension
of Si. Applying Lemma 1.11, we conclude that there is r ∈ σi ∩ π(Si) such
that a Sylow r-subgroup of C acts on P with �xed points, and so pr ∈ ω(Hi),
a contradiction. □

Let Si be as in Lemma 2.2. Observe that Ti is an almost simple group with
socle Si. As we noted above, 5 ̸∈ π(Pk), and so Si ̸≃ J1. Also Si ̸≃ L2(u)
by Lemma 1.7(b). Thus Si ≃ 2G2(3

mi) for some mi. We can take ri2 to be
a primitive prime divisor of 32pi − 1 and one of ri3 or ri4 to be a primitive
prime divisor of 36pi−1, and since π(Si) contains at least two of the numbers
ri2, ri3, ri4, it follows that pi divides mi. But then mi = pi by Lemma 2.1(d).
Thus Si ≃ Ri for all i = 1, . . . , k and we identify them.

It follows that H ≃ Pk since otherwise 2
∏k

i=1 ri3 ∈ ω(G) \ ω(Pk). In
particular,K is the solvable radical ofG. SoG/H is isomorphic to a subgroup
of Out(R1) × · · · × Out(Rk), and Lemma 1.5(b) and Lemma 2.1(b) yield
G = H.

Proving that K = 1, we may assume, without loss of generality, that K is
an elementary abelian p-group for some odd prime p ∈ π(Pk). So G acts on
K.

Assume �rst that p ̸= 3, 7. Then there is a unique i ∈ {1, . . . , k} such
that p ∈ π(Ri). Set r = ri1 if p ̸∈ π(qi − 1) and r = ri2 otherwise. Applying
Lemma 1.6, we see that that pr ∈ ω(G) \ ω(Pk), a contradiction.

Let p = 3 or 7. Then p
∏k

i=1 ri1 ̸∈ ω(Pk). For i = 1, . . . , k, take an element

xi ∈ Ri of order ri1. We claim that the element x =
∏k

i=1 xi has a nontrivial
�xed point in K, so G contains an element of forbidden order. Indeed, by
Lemma 1.6, it follows that K1 = CK(x1) ̸= 1. Since R2×· · ·×Rk centralizes

x1, the element x′1 =
∏k

i=2 xi acts on K1. By induction on k, CK1(x
′
1) ̸= 1,

and we are done.
Thus, K = 1, so Theorem 1 is proved.

3 Unrecognizable direct powers

In this section, we will prove Theorem 2. The proof relies on the following
easy lemma.
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Lemma 3.1. If G and H are �nite groups such that µ(H) ⊆ µ(G) and
|µ(G) \ µ(H)| < k, then ω(Gk) = ω(Gk−1 ×H).

Proof. It su�ces to show that µ(Gk) ⊆ ω(Gk−1 ×H). Every a ∈ µ(Gk) can
be written as [m1, . . . ,ml] for l ≤ k and some pairwise distinct m1, . . . ,ml ∈
µ(G). If l < k, then a ∈ ω(Gk−1). If l = k, then at least one of mi lies in
µ(H), so a ∈ ω(Gk−1 ×H). □

We begin with the proof of Item (b). By Lemma 1.8, we have µ(J1) =
{6, 7, 10, 11, 15, 19}. Set H = D6 ×D10, where D2n is the dihedral group of
order 2n. Then µ(H) = {6, 10, 15} ⊆ µ(J1) and |µ(J1) \ µ(H)| = 3, and
hence J4

1 is isospectral to J3
1 × H by Lemma 3.1. Since H is solvable, the

Mazurov�Shi theorem [9] implies that Jk
1 is unrecognizable.

Proving Item (a), we follow the same lines. Recall that

µ(2G2(q)) = {6, 9, q − 1, (q + 1)/2, q +
√
3q + 1, q −

√
3q + 1}.

To show that the cube of 2G2(q) is unrecognizable, it is su�cient to prove
the following lemma.

Lemma 3.2. If q = 3α, α ≥ 3 is odd, then there is a group H such that
O3(H) ̸= 1 and µ(H) = {6, 9, q − 1, (q + 1)/2}.

Proof. As usual, In denotes the identity n × n matrix. We denote by Jk(λ)
the k×k Jordan block with eigenvalue λ. If g is a matrix, then J(g) denotes
the Jordan form of g.

Let L = L2(q), let V be the natural 2-dimensional module of SL2(q)

and set W = V ⊗ V (3), where (aij) ∈ SL2(q) acts on V (3) as (a3ij) acts

on V . Then −I2 ∈ SL2(q) acts trivially on W , and so W is an L-module.
Denote by φ the corresponding homomorphism from L to GL4(q). It is easy
to see that −I4 ̸∈ φ(L), and we set M = φ(L) × ⟨−I4⟩. We claim that
µ(W ⋊M) = {6, 9, q− 1, (q+ 1)/2}, and so W ⋊M is the desired group H.

By Lemma 1.7, we have µ(L) = {3, (q − 1)/2, (q + 1)/2}. Let g ∈ L.
If |g| = 3, then g is conjugate to the image of J2(1), and so J(φ(g)) =
J(J2(1)⊗J2(1)) = J3(1)⊕J1(1). If |g| ≠ 3, then the characteristic roots of g
are λ, λ−1, where λq−1 = 1 or λq+1 = 1. In this case, the characteristic roots
of φ(g) are λ4, λ2, λ−2, and λ−4.

Observe that (q − 1)/2 is odd while (q + 1)/2 is even, and so µ(M) =
{6, q − 1, (q + 1)/2}. Let g ∈ M and g ̸= 1. If |g| = 3, then g ∈ φ(L) and
J(g) = J3(1) ⊕ J1(1) by the preceding paragraph. Hence ω(Wg) = {3, 9}
by Lemma 1.12. Similarly, if |g| = 6, then J(g) = J3(−1) ⊕ J1(−1), and
therefore ω(Wg) = {6}.

If |g| divides q−1 or (q+1)/2, then the characteristic roots of g are either
λ4, λ2, λ−2, λ−4 or the negatives of these elements. Since q ≡ 3 (mod 8),
it follows that 8 divides neither q − 1 nor q + 1, so λ4 ̸= −1. If λ4 = 1,
then |g| divides 2, so every element of ω(Wg) divides 6. If λ4 ̸= 1, then
ω(Wg) = {|g|}.



GROUPS ISOSPECTRAL TO GROUPS WITH ABELIAN SYLOW 2-SUBGROUPS 177

Thus µ(W ⋊M) = µ(M) ∪ {9} = {6, 9, q − 1, (q + 1)/2}. This completes
the proof of the lemma, and so the proof of Theorem 2 as well. □

We conclude with an observation supplementing Problem 3.

Proposition 3.1. If J1×J1×J1 is almost recognizable, then it is recognizable.

Proof. Let G be a group isospectral to J3
1 . By the Mazurov�Shi theorem, the

hypothesis of the proposition means that G satis�es (1).
Let L be one of the nonabelian simple groups Li in (1). Then L is among

groups listed in Lemma 1.3. Also π(L) ⊆ {2, 3, 5, 7, 11, 19} and 9 ̸∈ ω(L).
This implies that L is isomorphic to J1, L2(11), or Alt5. Note that µ(Alt5) =
{2, 3, 5} and µ(L2(11)) = {5, 6, 11}.

Thus Soc(G) = Lk
1×Ll

2×Lm
3 , where L1 ≃ J1, L2 ≃ L2(11) and L3 ≃ Alt5.

Since |G/Soc(G)| is odd and |Out(Li)|2′ = 1 for all 1 ≤ i ≤ 3, it follows
that G = H1 × H2 × H3, where Lk

1 ≤ H1 ≤ L1 ≀ Sk, L
l
2 ≤ H2 ≤ L2 ≀ Sl,

and Lm
3 ≤ H3 ≤ L3 ≀ Sm. Set M = H2 × H3 and let Bi be a complement

of Soc(Hi) in Hi. Observe that |Bi| is odd and for every r ∈ π(Bi) and
a ∈ ω(Li), we have ra ∈ ω(Hi).

It is clear that k ≤ 3. If k = 3 then M = 1. Also B1 = 1 since otherwise
|B1| = 3 and 9 ∈ ω(G). Therefore, in this case G ≃ J3

1 .
Suppose that k = 2. Then l ≤ 1, and so M = Ll

2×H3. Since 19, 7 ̸∈ π(M),
it follows that ω(M) contains 11 but not a proper multiple of 11. This is
possible only if l = 1 and m = 0. But then ω(G) ̸= ω(J3

1 ).
Suppose that k = 1. Then l ≤ 2, and again M = Ll

2 × H3. This time
ω(M) contains 11r for some r ∈ {7, 19} but not a proper multiple of 11r.
It follows that r divides |B3|. Now we see that 22r ∈ ω(M), regardless of
whether l > 1 or 11 ∈ π(B3).

Finally, let k = 0. Then ω(B2 × B3) contains 7 · 19 but not 7 · 19 · 11,
and so l > 1. It follows that m = 0 because otherwise 22 · 7 · 19 ∈ ω(G). If
7 · 19 · 5 ∈ ω(B2), then 7 · 19 · 5 · 6 ∈ ω(G), which is not the case. Hence
an element x ∈ B2 of order 7 · 19 must centralize an element of order 10 in
Soc(H2). The centralizer CSoc(H2)(x) is isomorphic to some direct power of
L2(11), so if it contains an element of order 10, then it contains an element
of order 22 as well. This contradiction completes the proof. □
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