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CONTROL MATRIX OF THE SINGULAR VALUE

DECOMPOSITION OF THE RADON TRANSFORM
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Abstract. A formula for inverting the control submatrix of the
singular value decomposition of the Radon transform is obtained.
We prove that the pseudoinverse matrix is expressed in terms of
the submatrix itself and its calculation does not require the use
of linear algebra packages. The formula and proof are given. The
practical value lies in the ability to control the components of
the singular value decomposition of the Radon transform and to
�lter and analyze images. The numerical experiments on real-world
images demonstrate the e�ciency of the techniques proposed.
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1 Introduction

In many problems of linear algebra and its applications the problem arises
of calculating an economical block partition of inverse and generalized inverse
matrices, especially when they are used repeatedly. Of particular interest
are the cases where the inverse matrix is expressed analytically in terms
of the original matrix itself. In the case of a block partition of a matrix,
it is also advantageous to have submatrix inversion formulas. The article
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considers such matrices and their blocks that control the smoothness of
restoration and the direction of projections in the formulas for the singular
value decomposition of the Radon transform. The submatrices of the control
matrix are involved in the task of tomography with a limited range of
transmission angles.

The article is structured as follows. In section 2, we introduce a steering
matrix and for its block we give the form of its generalized inverse. In section
3, we revisited the singular value decomposition of the Radon transform. We
present material for solving the problem with a limited viewing angle (one
projection is not available) and to solve the problem of destriping, that is,
the removal of band noise from the image. Section 4 presents numerical
experiments with an image obtained from a space station with an additively
superimposed stripe structure. Destriping results are illustrated.

2 Control matrix and its properties

Consider a nonsingular block matrix M:

M =

[
A B
C D

]
. (1)

Block partition of matrix M−1 has the form [1]

M−1 =

[
(A−BD−1C)−1 A−1B(CA−1B −D)−1

(CA−1B −D)−1CA−1 (D − CA−1B)−1

]
. (2)

provided that all inverse matrices included here exist. As we can see, blocks
of matrix M−1 depend on all blocks A,B,C,D of matrix M .

In the case when the matrix is Msingular, the block decomposition for its
generalized inverse matrix M+ is also known. However, this representation
is more complex. We refer the reader to the works [2], [3], [4], [5] with a
detailed exposition of formulas block decomposition of the matrix M+.

In this paper, we are interested in the matrix

Λk = (λ
(k)
ij ), i, j = 1, . . . , n, k < n,

where

λ
(k)
ij =

sin
(
k(ωi − ωj)

)
k sin(ωi − ωj)

.

and ωi ∈ [0, 2π) are arbitrary angles. Geometry of parallel beams in each
projection and evenly located projection angles in the interval [0, π) is a
classic case in computed tomography:

ωi =
π

n
(i− 1).

In what follows, we consider only uniformy sampled angles. Then

λ
(k)
ij =

sin
(
k(i− j)πn

)
k sin

(
(i− j)πn

) .
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The matrix Λk is of rank k is circulant and has remarkable properties [6].

Proposition 1. For k < n, we have

Λ2
k =

n

k
Λk. (3)

Proposition 2. For k < n, matrix Λk is singular and its generalized inverse
Λk is

Λ+
k =

k2

n2
Λk. (4)

Let's represent the matrix Λk in block form:

Λk =

[
Ak Bk

Ck Dk

]
, (5)

where matrix Ak = (a
(k)
ij ), i, j = 1, . . . , n− 1 has size (n− 1)× (n− 1) and

a
(k)
ij ≡ λ

(k)
ij

Let's present the matrix Λk in more detail and illustratively.

Λk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
sin
(
k π
n

)
k sin

(
π
n

) . . .
sin
(
k π
n
(n−2)

)
k sin

(
π
n
(n−2)

) | sin
(
k π
n
(n−1)

)
k sin

(
π
n
(n−1)

)
|

sin
(
k π
n

)
k sin

(
π
n

) 1 . . .
sin
(
k π
n
(n−3)

)
k sin

(
π
n
(n−3)

) | sin
(
k π
n
(n−2)

)
k sin

(
π
n
(n−2)

)
|

...
...

. . .
... |

...
|

sin
(
k π
n
(n−2)

)
k sin

(
π
n
(n−2)

) sin
(
k π
n
(n−3)

)
k sin

(
π
n
(n−3)

) . . . 1 | sin
(
k π
n

)
k sin

(
π
n

)
−−−−− −−−−− −− −−−−− | − −−−−
sin
(
k π
n
(n−1)

)
k sin

(
π
n
(n−1)

) sin
(
k π
n
(n−2)

)
k sin

(
π
n
(n−2)

) . . .
sin
(
k π
n

)
k sin

(
π
n

) | 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(6)

where dashed lines separate blocksAk, Bk, Ck, Dk. In the problem of restoring
images from projections in directions (ω1, . . . , ωn−1) the control matrix Ak

and its pseudoinverse A+
k are used. It turns out that in this case, too, an

analytical inversion of this matrix is possible, which has the form:

Theorem 1.

A+
k =

k2

n2
Ak +

k(2n− k)

(n− k)2
Ak −

k3(2n− k)

n2(n− k)2
)A2

k (7)
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Fig. 1. The Radon transform Rα of function f ∈ L2(D)

Proof. The pseudoinverse (generalized inverse) matrix A is uniquely deter-
mined by the Penrose equations [2]:

AA+A = A,
A+AA+ = A+,
(A+A)∗ = A+A,
(AA+)∗ = AA+

(8)

The proof of the relations (8) is carried out by a direct veri�cation of the
equations, that is, by substituting (7) into (8). □

We can hypothetically suggest that the power matrix series (7) can be
extended to the case of a set of angles (ω1, . . . , ωn−2), and further, which
corresponds to the problem of tomography with a limited angle view. This is
the subject of the present search. However, the formulation of the problem
with one inaccessible direction ωn from the full set of angles ω1, . . . , ωn has
practical implications, as will be illustrated in the following sections.

3 Radon transfom and its SVD

The need to calculate the generalized inverse submatrix arises in the
Radon problem when calculating its singular value decomposition in the
case when one projection is not available and the problem is called with a
limited angle. Here we have a soft setting, when the restrictions concern only
one projection.

De�nition 1. The Radon transform R of the function f with a support in
the form of the unit disk D is de�ned as the set of its integrals along a line
with direction α and distance s from the origin

Rα[f ](s) =

∫ √
1−s2

−
√
1−s2

f(s cosα− t sinα, s sinα+ t cosα) dt. (9)

We denote a single projection (9) as p(α, s) = pα(s) and refer to it as a
complete projection if it is known for all points in the interval s ∈ [−1, 1].

The set of projection directions is represented by the n-vector
Ω = (ω1, . . . , ωn), and the corresponding set of �complete� (known for all s)
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projections is denoted as

RΩ[f ] ≡ (p(ω1, s), . . . , p(ωn, s)).

We follow the [7], [8], [9] approach based on the existence and uniqueness of
the approximation fΩ (minimal norm solution) functions f , consistent with
projection data

RΩ[f ] = RΩ[fΩ] (10)

and having the form of a superposition of plane waves in given directions ω:

f(x, y) ≈ fΩ(x, y) =
n∑

i=1

hωi(x cosωi + y sinωi), (11)

Plane waves hωi are back projected versions of functions of one variable.
There is a known constructive algorithm for calculating plane waves that add
up to fΩ , based on the singular value decomposition of the ray transform.
It is shown that the functions h have the form [6]

hωi(s) =
1

π

∞∑
k=1

n∑
j=1

η
(k)
ij Uk−1(s)

∫ 1

−1
pωj (t)Uk−1(t) dt, (12)

where pωj (t) = Rωj [f ](t), Uk−1(t) = sin(k arccos t)
sin(arccos t) , k = 1, 2, . . . are the

Chebyshev polynomials of the second kind, η
(k)
ij are entries of the matrix

Λ+
k (generalized inverse), Λk = (λ

(k)
ij ), i, j = 1, . . . , n, λ

(k)
ij =

sin
(
k(ωi−ωj)

)
k sin(ωi−ωj)

.

Consider the case of reconstruction from projections in directions

Ω \ ωn = (ω1, . . . , ωn−1).

Similar to the (10)-(12) formalism, we have:

RΩ\ωn
[f ] = RΩ\ωn

[fΩ\ωn
] (13)

f(x, y) ≈ fΩ\ωn
(x, y) =

n−1∑
i=1

gωi(x cosωi + y sinωi), (14)

gωi(s) =
1

π

∞∑
k=1

n−1∑
j=1

γ
(k)
ij Uk−1(s)

∫ 1

−1
pωj (t)Uk−1(t) dt, (15)

where γ
(k)
ij are entries of the matrix Γk ≡ A+

k (generalized inverse), Ak =

(λ
(k)
ij ), i, j = 1, . . . , n− 1.

4 Numerical example

When transmitting satellite images of the Earth's surface and space bodies,
interference sometimes occurs in the form of overlays of sinusoidal bands.
These bands together can be modeled as a single plane wave (or ridge
function). Therefore, we can eliminate one plane wave from the singular
decomposition representation (), get an approximation to the true image.
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This restoration will involve the submatrix Ak matrix Λk and its generalized
inverse A+

k .
Let us consider an additive image formation model with distortions des-

cribed as the equation

z(x, y) = u(x, y) + v(x, y) (16)

where z is the observed image; u is the desired useful image, usually with
many details, and v is some interfering structure, which is known to be a
plane wave, or a ridge function in the direction of ωn,

v(x, y) = v(x cosωn + y sinωn).

The problem is to estimate u given z . Due to the additivity of the model
(16) and the linearity of the Radon transform, the expansion of the functions
z, u, v into a superposition of ridge functions in the directions

ω ≡ (ω1, . . . , ωn−1) = Ω \ ωn−1

leads to equality
zω(x, y) = uω(x, y) + vω(x, y) (17)

Here zω, uω, vω are the minimum norm solutions obtained by reconstructing
the images z, u, v from the datasets Rω[z],Rω[u],Rω[v] respectively. Since
it is known that the distorting image (noise) v is a single ridge funztion and
is well approximated by ridge functions in the directions ω = (ω1, . . . , ωn−1)
, we have v ≈ vω . Then, subtracting the equation (17) from (16), we
approximately get

z(x, y)− zω(x, y) ≈ u(x, y)− uω(x, y) (18)

Therefore, the di�erence u(x, y)−uω(x, y) on the right side (18) is approxima-
tely equal to u with a shifted mean. As a result, an image is synthesized that
is substantially free of v noise. Converting the image z(x, y)−zω(x, y) to the
range of the renderer results in an image free of distortion caused by aliasing
sinusoidal noise. To illustrate the problem of calculating SVD reconstruction
for a real problem of removing band noise from an image, we use a test image
from the book [10] as training examples. Example (Fig. 2 (a)) represent the
rings of Saturn, subject to band noise. The image z = u+ v is the result of
observation by the system of registration and transmission of remote sensing
data. The distortions imposed by the bands are unknown. However, their
directions are known in advance, they are parallel horizontal lines, resembling
dark and light stripes, with a sinusoidal pattern of amplitude changes. The
images are 512× 512 pixels.

It's easy to show that a ridge function with a known direction can be
uniquely determined, i.e. reconstructed from its projection taken in the
same direction. This property is used by us to extract the ridge function
from the additive model. To do this, we generate a Radon transform for a
su�ciently large number of projections (n = 512), and then we calculate
the reconstruction based on the singular value decomposition, excluding
the horizontal ridge function, responsible for data corruption. The Radon
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(a) (b) (c) (d)

Fig. 2. Space station Cassini remote sensing image of Saturn
rings. (a) The test image z = u + v is the sum of the
remote sensing image u distorted with parallel stripe v; (b)
The Radon transform, or sinogram; (c) The result of the
SVD-based approximation zΩ\(π/2) of z in the directions Ω
without �ltered out horizontal projection; (e) The di�erence
z − zΩ\(π/2) of images (a) and (c);

transform, or sinogram, is an image of n×n. The projections are line by line
from top to bottom, readings ("detectors with coordinate s") make up the
horizontal axis (Fig. 2 (b)). The reconstruction or solution of the minimum
norm z is shown in (Fig. 2 (c)), and the di�erence between the image z and
its ridge approximation zω can be seen in (Fig. ref�g:Saturn1 (d)).

5 Conclusion

The article considers the problem in the formulation, interesting in tomog-
raphy on projections with a limited transmission angle and multiple inversion
of the matrix that controls the directions of projections and the smoothness
of the singular value decomposition of the Radon transform. Usually, standard
pseudo-reversal programs are used, for example, in the Matlab package. Such
a problem also arises in the processing of images in the Radon space, in order
to remove any one noisy projection from the projection data. An analytical
formula for the generalized inversion of the control matrix is obtained. An
analytical formula for the generalized inversion of the control matrix is
obtained. The generalization of the obtained results of the analytical inversion
to the case of several directions is the subject of research in the future.

References

[1] R.A. Horn, C.R. Johnson, Matrix analysis, Cambridge University Press, Cambridge
etc., 1985. Zbl 0576.15001

[2] R. Penrose, A generalized inverse for matrices, Proc. Camb. Philos. Soc., 51:2 (1955),
406�413. Zbl 0065.24603

[3] C.R. Rao, S.K. Mitra, Generalized inverse of matrices and its applications, John
Wiley & Sons, New York etc., 1971. Zbl 0236.15004



CONTROL MATRIX OF THE SVD OF THE RADON TRANSFORM 251

[4] Y. Tian, The Moore-Penrose inverses of m×n block matrices and their applications,
Linear Algebra Appl., 283:1-3 (1998), 35�60. Zbl 0932.15004

[5] J.-M. Miao, General expression for the Moore-Penrose inverse of a 2×2 block matrix,
Linear Algebra Appl., 151 (1990), 1�15. Zbl 0723.15004

[6] I.G. Kazantsev, Tomographic reconstruction from arbitrary directions using ridge
functions, Inverse Probl., 14:3 (1998), 635�645. Zbl 0910.44002

[7] B.F. Logan, L.A. Shepp, Optimal reconstruction of a function from its projections,
Duke Math. J., 42 (1975), 645�659. Zbl 0343.41020

[8] M.E. Davison, A singular value decomposition for the Radon transform in n-
dimensional Euclidean space, Numer. Funct. Anal. Optimization, 3 (1981), 321�340.
Zbl 0467.65069

[9] A.K. Louis, Optimal sampling in nuclear magnetic resonance (NMR) tomography, J.
Comput. Assist. Tomogr., 6:2 (1982), 334�340.

[10] R.C. Gonzalez, R.E. Woods, Digital image processing, Pearson, NY, 2018. (1977,
Zbl 0441.68097)

[11] Y.-J. Sun, T.-Z. Huang, T.-H. Ma, Y. Chen, Remote sensing image stripe detecting
and destriping using the joint sparsity constraint with iterative support detection,
Remote Sensing, 11:6 (2019), Article ID 608.

[12] B. Li, Y. Zhou, D. Xie, L. Zheng, Y. Wu, J. Yue, S. Jiang, Stripe noise detection of
high-Resolution remote sensing images using deep learning method, Remote Sensing,
14:4 (2022), Article ID 873.

[13] F. Natterer, The mathematics of computerized tomography, John Wiley & Sons,
Chichester etc., 1986. Zbl 0617.92001

[14] A.T. Kadyroldina, A.Zh. Orazova, A.L. Krasavin, I.G. Kazantsev, I.A. Dyomina, D.L.
Alontseva, Development of new control algorithms for a robotic arm equipped with a
3D-scanning or machine vision system, Bulletin of D. Serikbayev EKTU, 2022:1
(2022), 39-59.

Ivan G. Kazantsev

Institute of Computational Mathematics and Mathematical Geophysics,

pr. Lavrentyeva, 6,

630090, Novosibirsk, Russia

Email address: kazantsev.ivan6@gmail.com

Arailym Zh. Orazova

D. Serikbayev East Kazakhstan Technical University,

A.K. Protozanov Street, 69,

Ust-Kamenogorsk, 070004 Kazakhstan

Email address: arailym-vko@mail.ru

Darya L. Alontseva

D. Serikbayev East Kazakhstan Technical University,

A.K. Protozanov Street, 69,

Ust-Kamenogorsk, 070004 Kazakhstan

Email address: dalontseva@mail.ru

Irina A. Dyomina

D. Serikbayev East Kazakhstan Technical University,

A.K. Protozanov Street, 69,

Ust-Kamenogorsk, 070004 Kazakhstan

Email address: irdyomina@mail.ru


	Introduction
	Control matrix and its properties
	Radon transfom and its SVD
	Numerical example
	Conclusion

