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1 Introduction

Modelling the motion of multi-component media and solving the mathe-
matical problems arising is of great interest to both physics and mathema-
tics. However it is little-studied, and no unified approach to this field has
been developed so far, and no mathematical theory has been constructed
concerning the existence, uniqueness and properties of solutions of the initial-
boundary value problems that arise in the process of modelling. A detailed
survey of this problem area can be obtained from the monographs [1, 2] and
the papers [3, 4]. In this paper we choose to study one of the numerous
versions of modelling the motion of multi-component fluid mixtures, namely,
a homogeneous mixture of viscous compressible fluids with multiple velocities.
This means that all the components (constituents) of the mixture are present
in the same phase at every point of space, but each of them has its own
local velocity of motion; the components interact via momentum exchange
and viscous friction (and also heat exchange in heatconducting models). The
model under consideration is a generalization of the well-known Navier—Sto-
kes system of equations describing the motions of compressible viscous single-
component media and includes the continuity and momentum equations,
and also the energy equation(s) in heatconducting models. The characteristic
feature of these equations, in addition to their nonlinearity, is the presence of
higher order derivatives of the velocities of all components in the momentum
(and energy) conservation laws, due to the composite structure of the viscous
stress tensors [1, 2, 5, 6, 7, 8, 9]. This specificity of multicomponent flows
can be described using the concept of viscosity matrix. Unlike the single-
component case in which the viscosity is scalar-valued, in the multicomponent
case the viscosities form a matrix whose entries describe viscous friction.
Diagonal entries describe viscous friction within each component, and non-
diagonal entries describe friction between the components. In the case of a
diagonal viscosity matrix, the momentum equations are possibly connected
via the lower order terms only. In the paper the more complicated case of
off-diagonal viscosity matrices is under consideration. The aim of the paper
is to analyze the existence and uniqueness of solution to an initial-boundary
value problem for isothermal (non-heatconducting) equations of compressible
viscous multicomponent media in the case of one-dimensional motions in a
bounded domain with non permeable boundaries.

As mentioned above, the multi-velocity model of compressible viscous
multicomponent media dynamics under consideration is a generalization of
the well-known Navier—Stokes system of equations and hence the mathema-
tical results for multicomponent media appeared after the progress achieved
in the Navier—Stokes theory, for which an invaluable contribution has been
made by one-dimensional results [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22,23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]. The unique solvability of
the considered one-dimensional equations of compressible viscous multicom-
ponent media in the polytropic case is investigated in [36, 37]. Similar issues
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for related models of multicomponent media are discussed in [38, 39, 40, 41,
42,43, 43, 44, 45, 46, 47, 48, 49, 50]. Spectral analysis of some linear models
of compressible viscous multicomponent media is carried out in [51, 52].
The structure of the paper is as follows. Section 2 contains the statement
of the initial-boundary value problem and the formulation of the main result
which is Theorem 1 concerning the existence and uniqueness of the solution.
In Section 3, we study the solvability of an approximate initial-boundary
value problem which is obtained from the original one via Galerkin method.
In Section 4, the solutions to the approximate problem are estimated uni-
formly in the approximation parameter. Basing on these estimates, in Sec-
tion 5 the limit transition is made and the local-in-time existence of a solution
to the original initial-boundary value problem is verified. In order to continue
the local solution, in Section 6 we prove a priori estimates, in which the
constants do not depend on the local existence interval. In Section 7, the
uniqueness of the solution to the initial-boundary value problem is proved.

2 Statement of the initial-boundary value problem and
formulation of the existence and uniqueness theorem

We consider the initial boundary value problem for one-dimensional iso-
thermal equations of the dynamics of compressible viscous multicomponent
media. In the closure Q of a domain Q7 = (0,7) x (0,1) (T' > 0) the sought
values are the densities p;(¢,z) > 0 and the velocities u;(¢,z) of each com-
ponent with the number i =1,...,N (N € N, N > 2), which satisfy the
following system of differential equations, initial and boundary conditions:

Opi , d(piv)

=0, i=1,...,N 1
ot oz ! R (1)
ou;  Ouy Op K 9%,
) kd ki ) 7t . J -
pl(@t +v8x>+alK8m_z_:V”8x2’ i=1,...,N, (2)
Pi|t:0 - p(]i(ﬂf)’ ui|t:0 :U()i<l‘), 1= 17"'5N) (3)
Uilp=0 = Uilp=1 =0, i=1,...,N. (4)
N N
Here v is the average velocity, v = Z ajuj, aj = const € (0,1), Zaj =1,
j=1 j=1
N
p is the total density, p = ij, constant viscosity coefficients v;; form
j=1
the matrix N > 0, the coefficient K > 0, the initial data pg;(x), ugi(x),
1=1,...,N are given.

The given model corresponds to the so-called diffusion approximation
appropriate at description of motions in which relative velocities of com-
ponents are small in comparison with the general (average) velocity of the
flow (mixture).
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Definition 1. By a strong solution to problem (1)-(4) we mean 2N
functions (p1,...,pN, U1, ..., uN) such that for alli=1,... N

pi > 07 pi € Loo (07 T? VV21 (07 1))7 %ptl € LOO (07 T7 L2(07 1))7
, (5)
wi € Loo (0,73 W3 (0.1)) (| L2(0. T: W3 (0, 1)), 5 € La(Qr),

equations (1), (2) are satisfied almost everywhere in Qr, the initial condi-
tions (3) are valid for almost all x € (0,1), and the boundary conditions (4)
are accepted for almost all t € (0,T).

Theorem 1. Let the initial data in (3) satisfy the conditions

p0i>07 p0i€W21(071)7 Uo; €W21(071)7 /L:]-qu (6)

Then there exists a unique strong solution to problem (1)—(4) in the sense of
Definition 1.
Proof of Theorem 1 is given in Sections 3-7.

3 Construction of Galerkin approximations

Let us first prove the solvability of an approximate initial-boundary value
problem, obtained from problem (1)—(4) by applying the Galerkin method
(in the spatial variable x) to equations (2).

Theorem 2. On the assumptions of Theorem 1 for all m € N there is a
time-interval (0,t"™) C (0,T"), where there exists a solution to the problem

o5 Ay
5t + o =0, i=1,...,N, (7)
1 N
PO DO SN
/(pi 5t pitv™ 8 B ;Vij 52 )sm(wkw)d =0, )
0 —
7: - 17 ’N? k: = 17 7m7
|t 0_p0’t( ) 1= ) 7N7 (9)

m
T:ZQS )sin (wsx),  w'|i=o = messm (rsx), i=1,...,N, (10)

s=1

1
&ois 1= &5 (0 2/u02 sin (rsz)dx, i=1,...,N, s=1,...,m,
0

N N
where v = g ajuj’, pt = E Py, and we have
=1 j=1

P> 0, P € Lo (0,£™; W5 (0,1)) (Wi (0,£™; Lo(0, 1)),

(11)
m e clo,t™, i=1,...,N, s=1,...,m.
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Proof. We fix t" < T. We omit the upper index m in the notations of
the solutions up to the beginning of Section 5. Consider the set

= {& € (Cl0,t")™| €0) = &, €l icrppmyen < e}

where

62(617"'>€N)7 Ei:(gilw"agim)a izla"wNa
€O = (5017‘°'7£0N)7 EOZ (50217"‘7§0im)5 1= 17"'7N7

max_ sup po;
1<i<N [0, Ep '

2 2
— _— 1_
¢ ¢ min _inf pg; HEOHRmN +
1<i<N [0,1]

We construct the operator A:V — (C[O,tm])mN’ ImA c (Cl[o7tm]>mN7
A(&) =, where ¥ = (..., x), ¥; = (Pits- . thim), i@ = 1,...

by the following algorithm. First, we find the functions
pi >0, pi € Loo(0,6™W5(0,1)) [\ WL (0, L2(0,1)), i=1,...,N

N

as solutions to the Cauchy problems (7), (9), where v = Zajuj, and uj,
j=1

j=1,...,N are given by (10) (see [53]). Moreover, the inequalities

N t

inf po; 6_'721({[501’15
[0,1]

N t
oz

Ouj dr > [sup E;sz dr
< pi(t,x) < | sup poi | =10 0 ' (12)

[0,1]
i=1,...,N

hold, which, in view of the inclusion £ € V, give the estimates

() <ot < (gpm ) oo

Next, we find 9 from the Cauchy problem for the system of mN ordinary
first order differential (linear) equations:

1
8U
/ Pi—— 875 iU B ZVU )sm (rkx)dx =0, (14)
0

¢(0) = £0a (15)

m
where U; = Z Vis(t) sin (wsx), i = 1,..., N. The inequality
s=1

det M(t) # 0,
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where
Mi(t) 0 0
0 My(t 0
0 0 My (#)
1 m
M;(t) = /pi(t, x) sin (wkx) sin (wsx) dx , 1=1,...,N,
0 k,s=1

which is valid due to the positivity of p;, ¢ =1,..., N, admits to solve
system (14) with respect to derivatives, which justifies the existence of ¢ €
(C1[0,#™])™N . Thus, for arbitrary ¢™ € (0,T] we can define the operator
AV — (CHo,tm)™N c (C[o,#™]))™N | A(&) = 1, whose fixed point (if it
exists), together with the corresponding functions p;, u;, i = 1,..., N, is a
solution to problem (7)-(10).

We show that for sufficiently small t"* the operator A satisfies the assump-
tions of the Schauder theorem (see [21, P.31]), i.e

(1) V is a convex closed bounded set (which is obvious in the case under
consideration);

(2) A: V>V,

(3) A is a completely continuous operator.

We first show that A(V') C V. Hereinafter, C;(-), i € N, denote quantities
which accept positive finite values depending on arguments indicated in the
brackets or in comments. Multiplying equations (14) by ;% (t), summarizing
with respect to i, k and integrating with respect to x, we obtain due to (7),

that
N 1
o [ (50) (52) 0o
7] 1 0

:KZai/p<

i=1 0

Nl
2
th /pde +
110

%

oU;
o > dz

and taking into account the inequalities (to obtain them, we use (13) and

the fact N > 0)
1
oU, N
) <8x)dx>C’1(N)Z/
0

ZN:VUO/<

,7=1
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2
K2N3 2rm2eNt™ : :
where Cy = max suppog; | e , we obtain the estimate

201 1<i<N [0,1]
N 1 1 5
d ) 8UZ
o Z/piUi dx +CIZ/<8$) dr < 20,
=1 0 =1 0
which, in its turn, leads to
N 1 N 1
/PiUiQ dz < Z/,OQZ'U& dx + 2C5t™, (16)
=1 0 =1 0
where Uy; = Z 1is(0) sin (7sx) Z &ois sin (msx) 1,...,N.Using (13)

for the seconditime, we obtain from (16) the inequality

max_sup po;

2, nm TSISN [0)1] 4CoemmeNt™
|’¢H?C[0 gy S €7 o — [|€olRm t.
’ min inf pg; min _inf pg;
1<i<N [0,1] 1<G<N [0,1]
Choosing
min _inf pg;
. 1 1<i<N [0,1]
t"™ < min [ T, , 17
mm2eN’ 4eCs (17)
K2N3e? ’
where C'3 = ———— | max sup pg; | , we obtain that Cy < (5, and arrive
201 1<i<N [0,1]

at the required estimate

H'l,b” Otm mN < C.

Thus, if (17) holds, the operator A maps the set V' to itself.
Let us prove the compactness of the operator A. Multiplying (14) by

diir(t)

we get the relation
1 1
2| P ot " P\ o ) ot
=lo 0
U\ & 02U, \ [ 0U;
Failp <8t8x) =2 v (am) <8x> de. (18)

J=1

, summarizing with respect to ¢, k and integrating with respect to z,

Let us estimate the terms on the right-hand side of (18) by using (13), the
Cauchy inequality, and the inequalities [[£[| (o gm)ymn < ¢ [|9]| (oo empymy < €
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0%U;
otox

oU;
ot

,i=1,...,N:
L2(071)

N

< Ca(m)|IUil 140,15
Lz(O,l)

1
_i/ (OUN (U
: P\ ox ot
0

1L rau? N
< GZ/M < 6t1> dz + Cs C’4,{suppoi} S N,e,m, t™ |,
0

01 J i

1 2
/ (oY dzr+
Pi\ "ot
0

N N
+06 045{[1()nlf]p02} 7{5111);001'} ,K,N,c,m,tm ’
) i=1 i—1

B 4

L2(0,1)

N

[0,1]

N

0
N 1 2
1 oU; .
< - i ;4 inf po;
62 /P (815) dx+C7<C4 {[IOI}I]PO}

0
Thus, from (18) we obtain the inequality

1
1 oU; \ 2
QZ/P@((%) dz < Cs + Cs + Cr.
=17

N, N, e,m, t™ | .
i=1

=1

Integrating the last inequality in time and applying (13), we obtain the
estimate
N

D

i=1

where Q¢m = (0,t™) x (0,1). Thus, we have obtained the estimate for ¥ in
(W4(0,t™))™N . Consequently, A is a compact operator.
We establish the continuity of the operator A from V in (C[0,™])™V.
m

Let ¢ e v, 12 = A1), u§1’2) = ng’m sin (wsz), u? —
s=1

oU;
ot

N
< CS <C5,CG,C7,{in POz} 7N7 C7m7tm> ) (19)
L2(Q¢m) [0.1] i=1

)

)

m
ngsm) sin (wsx),i=1,...,N. Let pgm), i=1,..., N be the solutions to
s=1
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N
the Cauchy problems (7), (9), with v instead of v = Zajug-l’m respec-
j=1

tively. Denote p; = ,0(1) — pl@), u; = ugl) — ul@, U; = Ui(l) — U(2), t=1,...., N,

) A

N
v=0v1 —0v®@ p=p1_p? where p(l’z) = ZPELQ)_ Differentiating the

j=1
equations
8p(1’2) ) <p§172)v(172)>

L =0, +=1,...,N 20

ot * ox ! Y (20)
(see Remark 1 below) with respect to x, multiplying by ———, integrating
with respect to x, t, using the initial conditions

1,2 .
PE )’t:OZPOi; Z:L"'vNa (21)

the inequality (see (13))
(inf p0i> g~TmieNt o pl-l’Q) < | sup po; e”mQCNt, i=1,...,N (22)
(0,1] [0,1]
and Gronwall inequality we get

‘ apgl,Z)

Let us note that (20), (21) lead to the equalities

ox
(2)
o a(peV) ()
ot Ox oxr
Multiplying (24) by p;, and integrating with respect to =, we arrive at the
relations

1 1
1d o\ 1, (000 o (o0, [90P
Sdi /Pz’dﬂf —/<2Pi<ax +p; P B + o piv | dx
0 0
1

N
<& ({londhwgon},  Noemtm). i=1 N
L(0,1) B

(23)

pilico=0, i=1,....N. (24

1 2
< 1 sup dv /pf dx + sup pz(z)/ p? + <av> dz+
2 [071] (9x [0’1} ; i
1 2 1
(2)
+supv2/<api ) al:z:—l—/,oz dr | <

[0,1] ; ox ;

N 1 N 1

< CIO C9> {SUPPOZ‘} 7N7 ) mvtm) /pZQ ClZL‘—FZ/u? dz | . (25)

[0.1] i=1 0 J=17
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Here we have used obvious relations

N 1 L Nom N m
Z/u 5225325( ) Sup?_} Z Z |£zl f]s
0 J=1s1=1

j=1 j=1s=1 [0,1]
26
’ v 2 7_[_2 N m ( )
/ <a> de =" 3 cuay Y SEa(1)8().
0 i,j:l s=1

From (25), applying the Gronwall inequality and the initial conditions in (24),
we obtain the inequalities

1 N t 1
/p dz < C11(Cho, t™ Z//ufda;dr i=1,...,N (27)
0 0 0

Jj=1

forall t € (0, ty,]. Further, from the equations for UZ.(l’Q)7 i=1,...,N (see (14))
due to (20) we get

i=1 ij=1
t 1 t o1 e
w3 [ [ (5 )asar 32 [own (%5 Jasar-
=17 0 =19 0
N i1 2 N i1 2
—Z /pgl)vUi<agi)>d:vdT—Z /piv(Q)Ui<ag; )>d.’L‘dT (28)
=19 9 =17 0

for all t € (0,t,,]. The first term on the left-hand side of (28) satisfies the
estimate

_ 2 m
e~ ™ eNt™ min inf P0i N

N 1 1
1 <i
2Z/P51)Ui2 de > 12< =T Z:/Uz2 dx. (29)
=17 =17

For the second term on the left-hand side of (28) we have

Jja

t,j=1

t

)(%Z)mm Cl,ﬁ;/

i>2 dedr.  (30)

1
/ oU,
ox
0
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For the first term on the right-hand side of (28) we obtain the relation

N t 1 o X t 1 oUA 2
KZO@//[)( >d:rd7' 212//<8x1> dxdr+
00 00

=1 =1

N t 1
+012 (C’l,CH,K, N,tm)Z//u? dxdr. 31)
0 0

i=1

For the second term on the right-hand side of (28) the inequality

N t 1 @)
oU;
g t <
//p ( 5 )dach
0 0

=1

N t 1

€
<z sup Uf//
2 S oaxony ) )

holds, and taking

.2
e~ ™ eNE" min inf po;

1<i<N [0,1]
emC?2 =
8 AN ’
we obtain that
. e~ ™ eNt™ min inf py; N !
8U(2)> 1< 0,1
_ piU; dxdr < oy / U do

N N
+ 013 <087 Cll7 {[lonlf] pOi} 3 N7 c,m, fm) Z / / u12 dxdr. (32)
) i=1
0 0

N ou,
_Z//pgl)vUi( J )d:ﬂd7<
; Ox
0 0
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N

where Ciy4 = Cl4<{ sup pol-}. R N,c, m,tm>. Finally, the last term on the
[0,1] =

right-hand side of (28) satisfies the relation

1

1 N ¢
/uf dzdr + Z//UQ dxdr |, (34)
0 0

where 015 == 015 (CH, N, c,m tm).

inequality
N 1 N t 1 N t 1
Z/dex Cis Z//u?dxdT-{-Z//U?dﬂ?dT
=17 =17 Q =17 0

N
follows, where Ci¢ = C16| C1o, ..., Cis, { [mf} pOi} R N,c,m, tm>, which, in
0,1 i=
view of the Gronwall inequality, implies the estimate

N ! N t™ 1
Z/Uzg dr < 017(016,tm)2//u,2 dxdt,
=10 =19 0

and, consequently,

lp™® — H clo,tm])m < C15(Crr, t™)||€M) — €@ l(cro,empym

The last inequality justifies the continuity of the operator A.

Since the operator A satisfies the assumptions of the Schauder theorem
listed above, in V there exists a fixed point £ of the operator A which,
together with the corresponding functions p;, ¢ =1,..., N, is a solution to
problem (7)—(10). Theorem 2 is proved.

4 Uniform estimates of Galerkin approximations

Let us obtain estimates of solutions to the approximate initial-boundary
value problem (7)-(10), which would be uniform with respect to the para-
meter m and would allow us to pass to the limit as m — oo. Let us denote

N t1 5 N2
= 1//( (8“’> @;;) )d:z:dT, Q) =0, (35)
=10 0

Equations (7) imply inequalities (12) which, in turn, imply the estimates

C'fgle_clgo‘(t) < pi(z,t) < Choe®9) i =1 ... N, (36)
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where C1g9 = Chg ({ sup pOi}N { inf pOi}N

, , N, T) . We note that (7) imply
[0,1] i=1 L[0,1] i=1

1=

the equalities

0% (1 * (1 9%
i J— V——= | — = = .:17...,N,
P otox <pz> TG (pz> az2’ " (37)

which yield
d (7 [0/1\\° Fo (1 9?
v
il [ () e ) =2 [ () G ) o
0 0
From (38), the relations
I 2 1 N
[z () o< [m((G5))
oz \ p; Poi
0 0
t 1
o (1\\? 1 [0%)\> ,
00
follow.

Remark 1. In order to obtain (39), we need (in (37), (38)) an additional
smoothness of p;, i =1,..., N in comparison with (11), however the formu-
lation of relations (39) does not require any additional reqularity. This means
that (39) can be obtained via regularization of po;, i = 1,..., N, derivation
of (39) for the solutions of the corresponding problems, and then the limit
via the regularization parameter. The derivation of relations (23) should be
understood in a similar way.

Using (35), (36) and the Gronwall inequality, from (39) we obtain the
estimates

1 1
o (1)) api\ > o
o (1 ) i < CopeCe®, 41,
/<55B<pz)> dx+/<(9x> dx < Cye , 1=1,...,N, (40)
0 0

N N
where  Cgg = Cyo <0197 {||P0i||w21(o,1)}i:1> { [10111% pOi}izl, N, T)~ Further,

multiplying (8) by ¥, + 72k, summarizing with respect to 4, k, and
taking into account (7), (10), we obtain the relation (here, we also use the
symmetry of the matrix IN)

N N 1

1
ﬁui 2 82’&1' 82uj
Z/pi<8t> dx—hZ Vij/<6x2> <6x2>dx+
0

i=1 3,j=1 0
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LSy -5 (S () (5)#)

1
2

0p; ou; ou;
(5) (%) (G2 )=
N

23 e (2) (52
=10

The left-hand side of (41) satisfies the estimate (since N > 0)

> Co1(Cr)d/ () + B'(t), (42)

where

=35 () s S (2) (30

zgl

We separately consider each term on the right-hand side of (41). For the first
term on the right-hand side of (41) we have

< =al (1) + Cop B2(1)e“20), - (43)
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where Cag = Ca2(Chg, Ca1, N). For the second and third terms on the right-
hand side of (41) we obtain

1
8p ov 021 , C. (t )
— - —_ < 24 23C
0
; C
21 Casa(t)
< 221 24
K/< ><8x2>dx\ 2L0(1) + Coae (45)
0

respectively, where 023 = 023(019, CQ(), 0217 K, N), 024 = 024(020, 021, K, N)
For the fourth term on the right-hand side of (41), using the interpolation

estimate
1 1 ) 1/2
ou; ou; 0%u;
<vV2 )
o | 0 f(/(@ > ) (/(M) )
0 0
we deduce

£ () ()

=17
1 2, 1/2
Zsu 6U’L /1 apl le, / . Ou; i dx <
1 0.1] pi \ Oz ot )
9 0
C
< 1201 o/ () + Cas B()e“> M Cy5 = Ca5(Cg, Ca0, Ca1, N).  (46)

Finally, for the last term on the right-hand side of (41) we obtain the relation

1
QEN: / auz 9%u; <
, Ox? TS
0

=1
) /2 , 4 1/2
ou; 2 827112‘ ?
<2 sup |v|sup / < ) dx /( ) dx <
ZOH\ Mw( 52 / o
C
< =2 () + Cog B2 (1)1, Cg = Cig(Chg, Cor, N). (47)

10
Thus, from (43)—(46) it follows that the right-hand side of (41)

o (3) (G2 [ (2) ()

=1
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() (%) ()

+
=
\
A
\_/
/_\

QJ
Hl\’)
\_/
QU
H
HMZ
O\H

C
S %a/(t) + Car(1 4 B2(1))e% W, Cyr = Cy7(Cha, ..., Cag).  (48)

Combining relations (42) and (48), from (41) we obtain the inequality

2
We take any Cag > ((0), for example, Cog = 25(0). Then for

6—0285(0) — ¢~ C280C2
to = min | T, 5 (50)
028

Co1 ' 028 (Czlerﬁ(t))
< alt) + Bt )> Chge 2 ;. Cog = Cog(Ca1,Car).  (49)

we derive from (49) that the estimate

a4/ < (142 ) O Cao= A1 !

sup (« < — , =—1In
0<t<pto Cor) 07 O \eCuBO) — Gty

holds, which together with (7), (36) and (40) yields that

N
; <||pi||Loo (000w} (0,1)) +luall, (0.t0:W4(0,1)) + HuiHLz (0,z€c>;W§((Ll))+
1=

pi
ot

8ui
ot

1

— ) < Cs, (51)
Pi LOO(Qto)

3

| +|
Lo (07t0;L2(071)) L2(Qtg)
where Qy, = (0,%9) % (0,1), C31 = C31 (Chg, Cop, C21,C30, N).

5 Convergence of Galerkin approximations

We have constructed the solutions (p7*, ..., pR, ul", ..., u}) to problems
(7)—(10) for all m € N, and now extend them, if necessary, for (0,tp), and
we can use estimate (51) for them. Based on this estimate, we can extract a
subsequence from the mentioned sequence (keeping the same notation, below
this procedure is implied as necessary) such that

pi" — pi weakly* in Lo (0, t0; W3 (0,1)),

ui" — u; weakly* in Lo (0, to; W3 (0, 1)) and weakly in Ly (0, to; W2(0, 1))
as m — oo for all ¢ = 1,..., N. The other properties listed in (5) are also
satisfied by this sequence in ), uniformly with respect to m. Consequently,
the limit functions belong to the corresponding classes. We show that
(p1,---, PN, UL, ..., un) is & strong solution to problem (1)-(4) on (0, tp).
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By the Arzela—Ascoli theorem (see [54, Theorem1.70, P.58|) and the
op™ ou .
ot ot

uniform estimates for p", u™ in Lo (0, to; W3 (0,1)) and for

La(Qy,) (cf. (51)) we have
pit — pi as m — oo strongly in C([O,to];Lg(O,l)), i=1,...,N, (52)
u" — u; as m — oo strongly in C([0,%0); L2(0,1)), i=1,...,N. (53)

m 2, m
Since 8; are bounded in L2(Qy,), an uniform estimate for 5 a’% in
Lo(0,to; W5 1(0,1)) is valid, which, together with the estimate for —— in

L2(0,t0; W1(0,1)) means via Lions-Aubin’s lemma (see [54, Theoremﬁ.?l,
P.59|) that
oul R Ou;
Ox Ox
Hence (53) leads to the relations

as m — oo strongly in Lo(Qy,), i=1,...,N. (54)

u;® — u; as m — oo strongly in Lg((),tQ;C’[O, 1]), i=1,...,N. (55)

Thus, the limit functions p;, u;, 1 = 1,..., N, satisfy (almost everywhere in
N

Q1,) the continuity equations (1), in which v = Z ajuj, the initial data (3)
j=1

for almost all z € (0,1) and the boundary conditions (4) for almost all
t e (0, to).

The boundedness of gt’ in L2(Qy,) implies the weak convergence of %
t0 24 in L5(@Qu,), whieh, together with (52) and the boundedness of pf" 1

in La(Qy,) implies
ou™ ou;
m ? —
p’L 8t - pl at
Further, from (52) and (54) it follows that
ou" Ou;
mn (RNEEN Z»iz
P o r
and hence (55) yields that the convergences

as m — oo weakly in La(Qy), i=1,...,N.

)

as m — oo strongly in L2(0,t0;L1(0, 1))7 i=1,...,N

(pgn ag; ) ug® — (Pl(?;:cz) uj as m — oo strongly in L1(Qy,)  (56)

are valid for all 4,5 =1,..., N.
By (8), for any functions of the form (: =1,...,N)

M
0 = ka(t) sin(rkzx), ni € Cl0,t0], k=1,...,M, M<m, (57)
k=1
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we have the equalities

N 2 m
m m(?um ap Z 3

i=1,...,N,

passing in which to the limit as m — oo (by the proved convergences), we find

(since the set of functions ¢;, i = 1,..., N of form (57) is everywhere dense

in Ly(Qy,)) that the momentum equations (2) hold for the limit functions
N

pi, Wi, © =1,..., N almost everywhere Qy,, with p = sz-.

Thus, we have proved the existence of a solution tZ) %he initial-boundary
value problem (1)—(4) in small time. In order to continue the local solution
defined on the interval (0,%p) into the entire target interval (0,7), it is
necessary to obtain a priori estimates for this local solution which contain
constants depending on the input data of the problem and on the value T,
but not on the parameter ¢ (see, for example, [21, P.40]).

6 Global a priori estimates

During the further study of the unique solvability of problem (1)—(4),
the use of the Lagrangian mass coordinates is convenient. Let us accept t
x

and y(t,z) = /p(t, s) ds as new independent variables. Then system (1), (2)

0
takes the form
~ . N
op; . 0v ) ~ ~
8tz+p'0i87y:0’ 1=1,...,N, v= g a;ty, (58)

j=1
N

5 0, a5 9 (_0u; &
Ll -Kf—_g i J i =1,....N ——E ;L
ﬁ n (674 ay =~ VZ] 9y < 9?] > 1 ’ ’ ) P p] (59)

The domain Qr is transformed into the rectangular Ip = (0,7) x (0,d),
1

N
where d = / podx >0, pp = Z po;, and the initial and boundary conditions
0 i=1
take the form
5”15:0 :ﬁOi(y)a Hi’tZO :a()i(y)7 y e [O>d]7 i=1,..., N, (60)
Hi\yzozﬂi]y:d:(), tG[O,T], 1=1,...,N. (61)
Let us construct a priori estimates. First of all, we note that the summation
of (58) with respect to i gives
Op | H0v

E +p ay =0, (62)
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and hence

Hence, due to (60) we get the equalities
pl( ) y) pOZ(y) (t, y)

= as

5ty)  poly) €[0,7] x [0,d] (63)

N
for all i« = 1,..., N, where py = Zﬁoj. In the Fulerian coordinates the
j=1
ratios p;/p, i = 1,..., N, satisfy the transport equations, and we only have
the inequalities

e poi _ piltT) - poi
0 <inf == < <sup— <1 for (¢,x) €[0,T] x [0,1]. 64
[0,1] Po p(t,x) 0,1] P0 ( ) [ } [ ] ( )

Let us multiply equations (2) by u;, integrate over x and sum with respect
to i. In view of (1), (4) and the condition N > 0, the following relations hold

1 vl
Ou; ou; 1d
Zl/<piai+p"”5;;>“idx:2ﬁ ;/W?dx ,
0 =17
1 1

1
d
ZaiK/uiapdx:—K/pgvdx:Kdt/(plnp—(lnd—i-l)p—l—d)d:r,
T

and hence we get the inequality

1 N
d
dt/( Zpiu?—l—K(plnp—(lnd—i—l)p—i—d)) dx+
0

: N ou,
+Clzo/< > <0. (66)

=1

Integrating (66) with respect to t, and using (3), we obtain the bound

1

/1< S piud + K (plnp — (Ind + 1)p+d)> da:+01§:/t/<aul> dwdr

0 i=1 0 0
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1

N
1
< / (2 > poiud; + K (poInpg — (Ind + 1)pg +d)>daz,

A i=1
which, due to (64), implies the estimate

N 1 1
Z/pu?d:c—k/ plnp— (Ind+1)p + d)dz+
0

=1 )
T 1
N ou;
+Z//< ) dzdt < Cs2, (67)
00

=1

N N

: i N

where C30 =Cl3o <01, { inf po} ) {SUP POz} s {llwoill 0,1}y » K N, d)- Let
[0,1] po [0,1] i=1

us rewrite (67), using the Lagrangian mass coordinates, in the form

N g M7 (Ind+ 15+ d
Z/afdy+/pnp_(n~+ o+d .
=1 p
0 0
N T d 8
+Z//p< “) dydt < Csa. (68)
=17 0

Let us note that, from estimates (67), in view of (4), the inequality

i=1 [0,1]

N T
ZO/ <Sup\uz|> < Oz (69)

obviously follows.
Let us rewrite equations (2), using (1), in the form

N 2
(pjuj)  O(pjouy) Op 0y
Z < * oz ) Z Vg% 837 02’ (70)

J=1
1=1,...,N,

where v;; are the entries of the symmetric matrix N =N"!> 0. We multi-
ply (70) by «; and sum with respect to i, and we obtain

v o (81}
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N N
where V = Z vijaipiug, K =K Z vijaiory > 0. We denote
ij=1 i,j=1

t T
:/<av—l~{p—vV> dT+/V0ds, (72)
Ox
0 0

N
where Vy(x) =V (0,z) = Z vijoipojuo;. In view of (67), we have
=)

1
sup /
(0,77

0

1

[SUP] /Vdéﬁ < Cyy (032a{HpOini”Ll(O,l)}ij\Ll’ﬁaka N, T, d),
0,7
0

1

@ dr = sup/|V\d:c 035(032,1\1 N d)
al’ [O,T} ,

and hence, using Poincaré’s inequality (see [54, Lemma 1.43, P. 44]), we get

SUP/de C35(C33,C34),
[0,7]

and we arrive at the boundedness of v in Lo (0,7 W7 (0,1)). Using this and
the fact W1 (0,1) < L (0,1), we obtain the estimate

IV Lo (@r) < C36 (C33, C35) -
Let us note that, in view of (1), (71) and (72), the following relations hold

I(pe?) O(pe?) _
o0 VTon T

—I?e”p2 <0,
and hence

1
[ Vol s
p(t, )’ ) < <suppo)e° o
[0,1]

so that the estimate

p(t,z) < Cs7 as (t,x) €[0,T] x [0,1] (73)

is valid, where Cs7 = C37| Cse, SHI? ,00@} {llpoivoill £, 0,1}l N N)

Let us use equations (1), (2) in the form (58), (59). We rewrite equations
(59) as

Nﬁ»ﬁ]a% Zya Oy i=1,...,N, (74)
U ot 1 ay ay "oy ) th




EXISTENCE OF SOLUTION TO MIXTURE DYNAMICS EQUATIONS 375

and then multiply (74) by «; and sum with respect to i. In view of (63), we
obtain
N

~ poj 8u] ~ ap o (._0v
i Ol = K—— — . 75
wz:1yja po Ot " oy — oy \"ay (75)
We extract from (62) that
Ov _ Olnp
Poy =~ ot
and substitute this into (75), then we get

(76)

P2y  ~p N Gy 0w
ROy 0200

— Vi —=
gty oy T T 2L VNS o
t,j=1
: : : Inp : .
We multiply this equality by 5 and integrate with respect to y, then we
Yy

obtain the relation
va (7 /omp2 t om2
np ~ [ _ np
—— d K dy =
2dt/<0y>y+/p<8y)y
0

al " ou dlnp
Poj 95 (9Inp
-= e [ (252) () an @
0

2,j=1

Let us transform the right-hand side of (77) via the integration by parts and
using (76):

Thus, after integration of (77) with respect to t, taking into account (73)
and (78), we get

[ (o1 [T (omp\? ;
/( np) dy+2f<//’p“( azp> dydrg/((lnﬁo)’)%y—
0 0 0 0
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N d
1
2 Y e [ (Z) (20 ) g2 > uwaz/< iy ) (1 o) dy+
0

1,7=1 2,7=1

—0v
Nl

207 Y 1 / 12 loion Voo ars
ij=1 L2(0,d) YLy (0,d)
ou;\ (v
+2 |7 ]sup — ﬁ<j> <> dr.
”Z:I ’ [0,d] dy dy L1(0,d)

Using estimates (68), (69) and (73), we derive from this the inequality

4 T d
9ln dln
0/< p) +0/0/p< p) dydt < Css, (79)

pOz

o

N
where  C3s = Css <032, Csr, { | } N po) Nl 2,0,4): 5, N, N,

W3 (0,d)

{||ﬂ0iHL2(o,d)}£i1

From (60)—(62) it follows obviously that for any ¢ € [0, 7] there exists a
point §(t) € [0, d] such that

p(t,0(t)) = d. (80)

Hence, we can use the representation

y ~
n(t,y) = e, ) + [ ZEEED g
S
3(t)

from which, via Holder’s inequality, and using (79) and (80), we get

~ Olnp
]lnp(t,y)] < |1nd‘—|—\/&H 1P <C39(038,d).
L2(0,d)
This leads immediately to
ﬁ(t)y) > 040(039) as (tvy) S [07T] X [Oad] (81)
From (63), (73) and (81) we obtain that for alli=1,..., N
Cut <piltiy) < Car as (ty) € [0,7] x [0, d), (s2)

N
where Cy1 = Cy1 <C’40, { [ini] @Z} ) Hence, for all i = 1,..., N we have
0,d] Po

Cu1 < pi(t,x) < C37 as (t,z) €[0,7] x [0,1]. (83)
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From (63), (73) and (79) now it follows that

1 a 9
/((g) dr < Cpp, i=1,...,N, (84)
0

N
} ), and hence
=1

where 042 = 042 <0377 0387 { Sup ~
[0,d] po p07

L(0,d)

/I< > z < Cy3(Caz, N). (85)

0
We square equations (2), divide by p; and sum the result with respect to
1, then we get

2
Ou; N1 (& 92, N orou\ [N 9%u
S (5) 4k (S ) 22 (5e) (Swid ] -
=1 7=1 =1 j=
B ou; o K 9p 2
—izlpl( 2 M) - (56)

1 2

N ¢ 2 N 2
8ui 1 8u]
+E // Pi(aT) +E E Uaz dxdr.
0 0

j=1

Then (86) and inequalities (65), (83) and (85) give the estimate (here the
symmetry of the matrix N is used)

1

N
du;\ (0
0'(t) < Caa+ Cas [ D lluylli_ o) Z V”/( . > ( uj) s

j=1 1,7=1

N

< Cua+Cus | Y w7 o) | 600,
j=1

where 044 = 044(041, 043, K, N), 016 = 016(01; 037, N), from WhiCh, via
Gronwall’s lemma (see also (69)), it follows that

0(t) < Cug (Cs2, Cua, Cias, {|ubyll o0y Hiy. N, N, T) (87)
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It follows immediately from (87) that

> 0/(6%) / j(@m) / / (20 ) <

< Cy7(C,C37,Cq1,Cap, N).  (88)

Finally, from the continuity equations (1) and the estimates (83), (84)
and (88) we obtain that

1

dp; .
/( p) x < C18(C37,Cu2,Cy7, N), i=1,...,N.
0

Thereby, we have obtained all estimates which are necessary (and sufficient)
to continue the local solution to the initial-boundary value problem (1)—(4)
from the interval (0,%¢) into the entire target interval (0,7"). In order to
conclude the proof of Theorem 1 we need to justify the uniqueness of the
solution to the initial-boundary value problem (1)—(4).

7 Uniqueness of the solution

We assume that (pgl),...,p%),ugl),...,u%)) and (pgz),...,pg\?),ugm,...,u%))
are two solutions to the initial-boundary value problem (1)—(4), and let

N N
v =3 ajult?, p02 =3 o Weset p; = pi — o, ui = u — uf?
J=1 7=1
i=1,...,N,v=01 —¢p@ p=p0 _ )@,

From (1), (3) we have (see (24))

Ipi
ot

+ O, (piv(1)> + 0y (pgz)v) =0, pilt=o=0, i1=1,...,N. (89)

Multiplying (89) by 2p; and integrating with respect to =, we obtain

i (7 i v o op?
2 v (2) v pz
dt /pldaj /(pz(ﬁac)—i_ i P <6x>+ pv(a:p))da@
0

0
i=1,...,N. (90)

The terms on the right-hand side of (90) can be estimated as follows:

U
<

0

1

/p?dx , t=1,...,N,
L (0,1) 0

8’&]' (1)
o
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1 1
2
—2/p§2)pz- @v) da < ‘pEQ)H /p? dz | +
o )
0

Loo(Qr
1
/(3%) i=1,....N
0

+ N

Mz

I
—

J

1 1 2
8:052) 2 8/)52) 2
— 2/piv ( 9 dr < /pi dx + Ey HUHLOC(O,l) <
] 0 Loo (0.75L2(0,1))
1 2 N | 2

< dr+N v 77 -

/pz T+ ‘ O Z/ ( 8.%’) d y b 1a aN

" Loo (0.T:L2(0,1)) \d=17

By the inclusions

o 8p(2)
p; € Loo(Qr), ‘— € Loo(0,T;L2(0,1)), i=1,...,N,

ox
(9u( )
o € Ly(0,T;Lo(0,1)), i=1,...,N,
we obtain the estimates
p 1 1 N 1 5
2 2 Uj .
% /pzdx <C49(t)/pzdx+c502/< ) z, Zflv"wNv
0 0 J=17
out Y (2) N
where 049 = 049 8; 5 {”,OZ ||LOO(QT)}4_1 , C’49 S L2(07 T)7
L (0,1) ) i=1 =

apt?
Cs0 = C'50<{H Pi

inequality to get inequalities

1 N t 1
/pfdx<05lz//<au3> dedr, i=1,...,N, (91)
0 =10 0

N
} , N > We can apply the Gronwall
Loo (0.73L2(0,1)) J i

Jj=1

where 051 = 051 (050, ||C49HL1(O,T))~
Further, from equations (2) and boundary conditions (4) we obtain (see (28))
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We estimate the terms on the right-hand side of (92) as follows:

1 5 o 1
v 1
K/p(aa})dx h 42/
0 0

1
Ou;
((;;) da + Css (Ch, K, N) Z/p du,
0

=1
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N N 1
- 8u§2) RS (1), 2
+ Cse D o o7 )3 Z p; u; dw,
i HLeo(Qr) 7 i=1 Loo(0,1) 7/ i=1 =1

where Cs3, Cs6 € L1(0,T), Cs4 € L2(0,T). Hence, from (92), using the rela-

tion
1 N t1 9
Z/P?d$<057(017051,N)01 //(8%) dxdr
; 2 - ox
0 00

=1 =

proved above (see (91)), we deduce

L 1 o XN Lol O\ 2
- (1), 2 “1 Uj <
2'z:/pz uzdx—i—QZ /(8 )dde\
=1 0 =1 00
t N 1 T 1 9
1 (1) 2 Cl // 8ul
< _ =
< /C58(0527 , C57) 22//)1 uj dz+ 5 2; 52 dxds |dr,
0 =to =Lo 0

where Csg € L1(0,T), which yields the identities p; = 0, u; =0,i =1,...,N.
Theorem 1 is proved.

References

[1] K.R. Rajagopal, L. Tao, Mechanics of miztures, World Scientific, Singapore, 1995.
Zbl 0941.74500

[2] R.I. Nigmatulin, Dynamics of multiphase media: V. 1-2, Hemisphere, New York, 1990.

[3] A.E. Mamontov, D.A. Prokudin, Viscous compressible homogeneous multi-fluids with
multiple velocities: barotropic existence theory, Sib. Elektron. Mat. Izv., 14 (2017),
388-397. Zbl 1379.35248

[4] A.E. Mamontov, D.A. Prokudin, Viscous compressible multi-fluids: modeling and
multi-D existence, Methods Appl. Anal., 20:2 (2013), 179-196. Zbl 1290.35203

[5] A.D Kirwan, M. Massoudi, The heat fluz vector(s) in a two component fluid mizture,
Fluids, 5:2 (2020), Article ID 77.

[6] R.T. Lee, K.T. Yang, Y.C. Chiou, A novel model for a mized-film lubrication with
oil-in-water emulsions, Tribology Intern., 66 (2013), 241-248.

[7] J. Mdlek, K.R. Rajagopal, A thermodynamic framework for a mizture of two liquids,
Nonlinear Anal., Real World Appl., 9:4 (2008), 1649-1660. Zbl 1154.76311

[8] R.J. Atkin, R.E. Craine, Continuum theories of miztures: Applications, J. Inst. Math.
Appl., 17:2 (1976), 153-207. Zbl 0355.76004

[9] I. Miiller, A thermodynamic theory of miztures of fluids, Arch. Ration. Mech. Anal.,
28 (1968), 1-39. Zbl 0157.56703

[10] I. Stragkraba, A. Zlotnik, Global properties of solutions to 1D-viscous compressible
barotropic fluid equations with density dependent viscosity, Z. Angew. Math. Phys.,
54:4 (2003), 593-607. Zbl 1040.35064
[11] I. Stragkraba, A. Zlotnik, Global behavior of 1d-viscous compressible barotropic fluid

with a free boundary and large data, J. Math. Fluid Mech., 5:2 (2003), 119-143.
Zbl 1042.76050


https://doi.org/10.1142/2197
https://doi.org/10.17377/semi.2017.14.031
https://doi.org/10.17377/semi.2017.14.031
https://dx.doi.org/10.4310/MAA.2013.v20.n2.a5
https://dx.doi.org/10.4310/MAA.2013.v20.n2.a5
https://doi.org/10.3390/fluids5020077
https://doi.org/10.1016/j.triboint.2013.05.013
https://doi.org/10.1016/j.triboint.2013.05.013
https://doi.org/10.1016/j.nonrwa.2007.04.008
https://doi.org/10.1093/imamat/17.2.153
https://doi.org/10.1007/BF00281561
https://doi.org/10.1007/s00033-003-1009-z
https://doi.org/10.1007/s00033-003-1009-z
https://doi.org/10.1007/s00021-003-0081-7
https://doi.org/10.1007/s00021-003-0081-7

382

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]
[20]

[21]

22]

23]

[24]

[25]

[26]

27]

28]

[29]

[30]

31]

A.E. MAMONTOV, D.A. PROKUDIN, D.A. ZAKORA

A.A. Amosov, A.A. Zlotnik, Uniqueness and stability of generalized solutions to
quasiaveraged equations of one-dimensional motion of a viscous barotropic medium,
Differ. Equations, 31:7 (1995), 1056-1066. Zbl 0864.76079

A A. Zlotnik, N.Z. Bao, Properties and asymptotic behavior of solutions of some
problems of one-dimensional motion of a viscous barotropic gas, Math Notes, 55:5
(1994), 471-482. Zbl 0828.76070

S. Jiang, On initial boundary value problems for a viscous heat-conducting, one-
dimensional real gas, J. Differ. Equations, 110:2 (1994), 157-181. Zbl 0805.35074

S. Yanagi, Global ezistence for one-dimensional motion of non-isentropic viscous
fluids, Math. Methods Appl. Sci., 16:9 (1993), 609-624. Zbl 0780.35082

D. Hoff, Global well-posedness of the Cauchy problem for the Navier-Stokes equations
of nonisentropic flow with discontinuous initial data, J. Differ. Equations, 95:1 (1992),
33-74. Zbl 0762.35085

V.A. Vaigant, On the Cauchy problem for the system of equations of a viscous gas,
Din. Splosh. Sredy, 102 (1991), 31-40. Zbl 0805.76065

A.A. Amosov, A.A. Zlotnik, Solvability «in the larges of a system of equations of
the one-dimensional motion of an inhomogeneous viscous heat-conducting gas, Math.
Notes, 52:2 (1992), 753-763. Zbl 0779.76079

A.A. Zlotnik, On equations for one-dimensional motion of a viscous barotropic gas in
the presence of a body force, Sib. Math. J., 33:5 (1992), 798-815. Zbl 0811.76075

D. Hoff, Discontinuous solutions of the Navier-Stokes equations for compressible flow,
Arch. Ration. Mech. Anal., 114:1 (1991), 15-46. Zbl 0732.35071

S.N. Antontsev, A.V. Kazhikhov, V.N. Monakhov, Boundary value problems in
mechanics of nonhomogeneous fluids, Studies in Mathematics and its Applications,
22, North-Holland, Amsterdam etc., 1990. Zbl 0696.76001

V.A. Vaigant, Nonhomogeneous boundary value problems for the equation of a viscous
heat-conducting gas, Din. Splosh. Sredy, 97 (1990), 3-21. Zbl 0743.76063

T. Nagasawa, On the one-dimensional free boundary problem for the heat-conductive
compressible viscous gas, North-Holland Mathematics Studies, 160 (1989), 83-99.
Zbl 0712.35113

A A. Zlotnik, A.A. Amosov, Generalized global solutions of the equations of the one-
dimensional motion of a viscous barotropic gas, Sov. Math., Dokl., 37:2 (1988), 554—
558. Zbl 0682.76061

V.A. Vaigant, A.A. Papin, Solvability of the initial-boundary value problem for
equations of barotropic gas with viscosity depending on density, Din. Splosh. Sredy,
79 (1987), 3-9. Zbl 0684.76085

T. Nagasawa, On the one-dimensional motion of the polytropic ideal gas non-fived on
the boundary, J. Differ. Equations, 65:1 (1986), 49-67. Zbl 0598.34021

B. Kawohl, Global existence of large solutions to initial boundary value problem for a
viscous, heat-conducting, one-dimensional real gas, J. Differ. Equations, 58:1 (1985),
76-103. Zbl 0579.35052

M. Okada, S. Kawashima, On the equations of one-dimensional motion of compressible
viscous fluids, J. Math. Kyoto Univ., 23:1 (1983), 55-71. Zbl 0529.76070

S.Ya. Belov, On the flow problem for the system of equations of the one-dimensional
motion of wiscous heat conducting gas, Din. Splosh. Sredy, 56 (1982), 22-43.
Zbl 0562.76071

A.V. Kazhikhov, Cauchy problem for viscous gas equations, Sib. Math. J., 23 (1982),
44-49. Zbl 0519.35065

S. Kawashima, T. Nishida, Global solutions to the initial value problems for the
equations of one-dimensional motion of viscous polytropic gases, J. Math. Kyoto
Univ., 21:4 (1981), 825-837. Zbl 0478.76097


https://m.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=de&paperid=9453&option_lang=rus
https://m.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=de&paperid=9453&option_lang=rus
https://doi.org/10.1007/BF02110374
https://doi.org/10.1007/BF02110374
https://doi.org/10.1006/jdeq.1994.1064
https://doi.org/10.1006/jdeq.1994.1064
https://doi.org/10.1002/mma.1670160902
https://doi.org/10.1002/mma.1670160902
https://doi.org/10.1016/0022-0396(92)90042-L
https://doi.org/10.1016/0022-0396(92)90042-L
https://doi.org/10.1007/BF01236769
https://doi.org/10.1007/BF01236769
https://doi.org/10.1007/BF00970988
https://doi.org/10.1007/BF00970988
https://doi.org/10.1007/BF00375683
https://doi.org/10.1016/s0168-2024%2808%29x7006-7
https://doi.org/10.1016/s0168-2024%2808%29x7006-7
https://doi.org/10.1016/S0304-0208(08)70507-3
https://doi.org/10.1016/S0304-0208(08)70507-3
https://m.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=7656&option_lang=rus
https://m.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=7656&option_lang=rus
https://doi.org/10.1016/0022-0396(86)90041-0
https://doi.org/10.1016/0022-0396(86)90041-0
https://doi.org/10.1016/0022-0396(85)90023-3
https://doi.org/10.1016/0022-0396(85)90023-3
https://doi.org/10.1215/kjm/1250521610
https://doi.org/10.1215/kjm/1250521610
https://doi.org/10.1007/BF00971419
https://doi.org/10.1215/kjm/1250521915
https://doi.org/10.1215/kjm/1250521915

32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

EXISTENCE OF SOLUTION TO MIXTURE DYNAMICS EQUATIONS 383

A. Matsumura, T. Nishida, The initial value problem for the equations of motion of
compressible viscous and heat-conductive fluids, Proc. Japan Acad. Ser. A; Math. Sci.,
55:9 (1979), 337-342. Zbl 0447.76053

V.V. Shelukhin, Periodic flows of viscous gas, Din. Splosh. Sredy, 42 (1979), 80-102.
MR0602221

A.V. Kazhikhov, The global solvability of one-dimensional boundary value problems
for the equations of a viscous heat-carrying gas, Din. Splosh. Sredy, 24 (1976), 45-61.
MR0459229

A.V. Kazhikhov, Correctness «in generals of mized boundary value problems for a
model system of equations of a viscous gas, Din. Splosh. Sredy, 21 (1975), 18-47.
MR0478984

A.E. Mamontov, D.A. Prokudin, Global unique solvability of the initial-boundary value
problem for the equations of one-dimensional polytropic flows of viscous compressible
multifluids, J. Math. Fluid Mech., 21:1 (2019), Paper No. 9. Zbl 1411.76150

A.E. Mamontov, D.A. Prokudin, Unique solvability of initial-boundary wvalue
problem for one-dimensional equations of polytropic flows of multicomponent viscous
compressible fluids, Sib. Elektron. Mat. Izv., 15 (2018), 631-649. Zbl 1428.35387
A.E. Mamontov, D.A. Prokudin, Asymptotic behavior of the solution to the initial-
boundary wvalue problem for one-dimensional motions of a barotropic compressible
viscous multifluid, Lobachevskii J. Math., 45:4 (2024), 1463-1471. Zbl 7940773
D.A. Prokudin On the stabilization of the solution to the initial-boundary
value problem for one-dimensional isothermal equations of wviscous compressible
multicomponent media dynamics, Mathematics, 11:14 (2023), Article ID 3065.

A.E. Mamontov, D.A. Prokudin, Global unique solvability of an initial-boundary value
problem for the one-dimensional barotropic equations of binary miztures of viscous
compressible fluids, J. Appl. Ind. Math., 15:1 (2021), 50-61. Zbl 1511.35283

D.A. Prokudin, On the stabilization of solutions to the initial-boundary value problem
for the equations of dynamics of wviscous compressible multicomponent media, Sib.
Elektron. Mat. Izv., 18:2 (2021), 1278-1285. Zbl 1479.35693

D.A. Prokudin, Unique solvability of initial-boundary value problem for a model
system of equations for the polytropic motion of a mizture of viscous compressible
fluids, Sib. Elektron. Mat. Izv., 14 (2017), 568-585. Zbl 1375.35007

D.A. Prokudin, Global solvability of the initial boundary value problem for a model
system of one-dimensional equations of polytropic flows of viscous compressible fluid
miztures, J. Phys.: Conf. Ser., 894 (2017), Article ID 012076.

S. Li, On one-dimensional compressible Navier-Stokes equations for a reacting
mizture in unbounded domains, Z. Angew. Math. Phys., 68:5 (2017), Paper No. 106.
Zbl 1378.35220

D. Bresch, X. Huang, J. Li, Global weak solutions to one-dimensional non-conservative
viscous compressible two-phase system, Commun. Math. Phys., 309:3 (2012), 737—
755. Zbl 1235.76182

A.A. Papin, On the uniqueness of the solutions of an initial boundary-value problem
for the system of a heat-conducting two-phase mizture, Math. Notes, 87:4 (2010),
594-598. Zbl 1197.35247

A.A. Zlotnik, Weak solutions to the equations of motion of viscous compressible
reacting binary mixtures: uniqueness and Lipschitz-continuous dependence on data,
Math. Notes, 75:2 (2004), 278-283. Zbl 1122.35118

A A. Zlotnik, Uniform estimates and stabilization of solutions to equations of one-
dimensional motion of a multicomponent barotropic mizture, Math. Notes, 58:2
(1995), 885—889. Zbl 0852.76078

A.N. Petrov, Well-posedness of initial-boundary value problems for one-dimensional
equations of the interpenetrating motion of perfect gases, Din. Splosh. Sredy, 56
(1982), 105-121. MR0706350


https://doi.org/10.3792/pjaa.55.337
https://doi.org/10.3792/pjaa.55.337
https://doi.org/10.1007/s00021-019-0416-7
https://doi.org/10.1007/s00021-019-0416-7
https://doi.org/10.1007/s00021-019-0416-7
https://doi.org/10.17377/semi.2018.15.050
https://doi.org/10.17377/semi.2018.15.050
https://doi.org/10.17377/semi.2018.15.050
https://doi.org/10.1134/S1995080224601218
https://doi.org/10.1134/S1995080224601218
https://doi.org/10.1134/S1995080224601218
https://www.mdpi.com/2227-7390/11/14/3065
https://www.mdpi.com/2227-7390/11/14/3065
https://www.mdpi.com/2227-7390/11/14/3065
https://doi.org/10.1134/S1990478921010051
https://doi.org/10.1134/S1990478921010051
https://doi.org/10.1134/S1990478921010051
https://doi.org/10.33048/semi.2021.18.097
https://doi.org/10.33048/semi.2021.18.097
https://doi.org/10.17377/semi.2017.14.049
https://doi.org/10.17377/semi.2017.14.049
https://doi.org/10.17377/semi.2017.14.049
https://doi.org/10.1088/1742-6596/894/1/012076
https://doi.org/10.1088/1742-6596/894/1/012076
https://doi.org/10.1088/1742-6596/894/1/012076
https://doi.org/10.1007/s00033-017-0851-3
https://doi.org/10.1007/s00033-017-0851-3
https://doi.org/10.1007/s00220-011-1379-6
https://doi.org/10.1007/s00220-011-1379-6
https://doi.org/10.1134/S0001434610030405
https://doi.org/10.1134/S0001434610030405
https://doi.org/10.1023/B:MATN.0000015045.35518.a4
https://doi.org/10.1023/B:MATN.0000015045.35518.a4
https://doi.org/10.1007/BF02304112
https://doi.org/10.1007/BF02304112

384 A.E. MAMONTOV, D.A. PROKUDIN, D.A. ZAKORA

[50] A.V. Kazhikov, A.N. Petrov, Well-posedness of the initial-boundary value problem for
a model system of equations of a multicomponent mizture, Din. Splosh. Sredy, 35
(1978), 61-73. MR0539168

[61] D.A. Zakora, Spectral properties of the operator in the problem of oscillations
in a mizture of viscous compressible fluids, Differ. Equ., 59:4 (2023), 473-490.
Zbl 1530.35236

[62] D.A. Zakora, The problem on small motions of a mizture of viscous compressible
fluids, Sib. Elektron. Mat. Izv., 20:2 (2023), 1552-1589. Zbl 1543.76095

[63] R.J. DiPerna, P.L. Lions, Ordinary differential equations, transport theory and Sobolev
spaces, Invent. Math., 98:3 (1989), 511-547. Zbl 0696.34049

[54] A. Novotny, I. Stragkraba, Introduction to the mathematical theory of compressible
flow, Oxford University Press, Oxford, 2004. Zbl 1088.35051

ALEXANDER EVGENYEVICH MAMONTOV

CHAIR OF FURTHER MATHEMATICS,

FEDERAL STATE INSTITUTION OF HIGHER EDUCATION «SIBERIAN STATE
UNIVERSITY OF TELECOMMUNICATIONS AND INFORMATION SCIENCE»,
86, sT. KIROVA,

630102 NovosIBIRSK, Russia

Email address: aem@hydro.nsc.ru

DMITRY ALEXEYEVICH PROKUDIN

LAVRENTYEV INSTITUTE OF HYDRODYNAMICS OF THE SIBERIAN BRANCH OF THE
RuUSSIAN ACADEMY OF SCIENCES,

15, PR. LAVRENT’EVA,

630090, NovosIBIRSK, Russia

Email address: prokudin@hydro.nsc.ru

DMITRY ALEXANDROVICH ZAKORA

V.I. VERNADSKY CRIMEAN FEDERAL UNIVERSITY,
4, PR. VERNADSKOGO,

295007, SIMFEROPOL, RUSSIA

Email address: dmitry.zkr@gmail.com


https://doi.org/10.1134/S0012266123040043
https://doi.org/10.1134/S0012266123040043
http://semr.math.nsc.ru/v20/n2/p1552-1589.pdf
http://semr.math.nsc.ru/v20/n2/p1552-1589.pdf
https://doi.org/10.1007/BF01393835
https://doi.org/10.1007/BF01393835
https://doi.org/10.1093/oso/9780198530848.001.0001
https://doi.org/10.1093/oso/9780198530848.001.0001

	Introduction
	Statement of the initial-boundary value problem and formulation of the existence and uniqueness theorem
	Construction of Galerkin approximations
	Uniform estimates of Galerkin approximations
	Convergence of Galerkin approximations
	Global a priori estimates
	Uniqueness of the solution

