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Abstract: An algorithm for finding the best cubature formulas (in
a sense) on the sphere that are invariant under the transformations
of the cyclic rotation groups Cjy is described. This algorithm is
applied for finding the parameters of the best cubature formulas
of 19th and 31st orders of accuracy.
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1 Introduction

Cubature formulas on the sphere that are invariant under various cyclic
and dihedral groups of symmetry were considered in [1] — [9]. In particular,
in [9], we described the general algorithm for constructing the best cubature
formulas (in a sense) on the sphere that are invariant under the dihedral
groups of rotations with inversion. All cubature formulas invariant under
these groups possess central symmetry and hence are accurate for all odd
functions.
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In the present article, we describe an analogous general algorithm for
constructing the best cubature formulas invariant under the cyclic rotation
groups Cyp. We apply this algorithm for finding parameters of the best
cubature formulas of 19th and 31st orders of accuracy. The parameters of
these cubature formulas are given with 16 significant digits.

2 An algorithm for finding the best cubature formulas

Let S be the unit sphere centered at the origin, i. e., the set of the points
(x,9,2) € R3 for which 22 4+ y? + 22 = 1. On S, we consider the integral

Ul = 5= [ 1) ds (1)

where s € S, ds is the surface element of the sphere, U(1) = 1.
For finding integral (1), we construct a numerical cubature formula

N
V(f) = sz‘f(Si), (2)
i=1

where N is the number of the nodes, w; are the weights, and s; are the nodes.

The quantity P(f) = U(f)—V(f) is referred to as the error of the cubature
formula (2) at the function f. If the cubature formula is accurate for the
function f then P(f) = 0.

Let {Zyj(x,y,2); k=0,1,...,n;j =1,2,...,2k + 1} be an orthonormal
system of polynomials of degree at most n for which U(Zy;Zim) = 0riéjm.
Here the index k enumerates the degrees of the basis polynomials and the
index j enumerates the polynomials at the given k; dx; is the Kronecker
symbol. We note that the polynomials Zj; are bound with the usual spherical
harmonics Yj; by the relation Z;; = \/Eij.

We say that the given cubature formula has algebraic accuracy order n
(or simply order n) if it is accurate for all polynomials of degree at most
n and is not accurate at least for one polynomial of degree n + 1. Refer as
the error of the cubature formula (2) at the polynomials of degree k to the
quantity (see [10])

2k+1 1/2

Ee=| Y P*(Zy)
j=1

For a cubature formula of order n, all the quantities Ey = 0 for k < n and
E,+1 > 0. The quantity E,11 characterizes the degree of proximity of the
given cubature formula of order n to the cubature formula of order n + 1.

In the present article, we attempt to construct the best cubature formulas
on the sphere that are invariant under the transformations of the cyclic
rotation groups Cgp. Moreover, as the best among all cubature formulas of
this form having a given order n, we regard cubature formulas satisfying the
following four conditions (see [10]):

1) the nodes belong to the integration domain;
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2) the weights are positive;
3) the number of nodes is minimal;
4) the quantity E, 1 is minimal.
Cubature formulas of the group Cjp, are of the form

2 L k M 2k
V() =40 flag) + D Ai> flag)+> BiY flby),  (3)
j=1 =1 j=1 =1 j=1

where 2 points ag; lie at the poles of the rotation axis z and have coordinates
(0,0,=%1); k points a;; lie in the equator plane z = 0 and are generated by
the point (a;,b;,0) of the group Cy; 2k points b;; are the points of general
position of the group Cyj and are generated by the points (¢;, d;, +e;) of the
group Cj.

We remind that one point (a, b, c) of the group Cj generates k points:

(r1=a,y1 =0, 21 =c¢), (Ti41=ux — VY, Yi41 = VT + UYL, 2141 = C),
where u = cos(2n/k), v =sin(2n/k), 1 =1,2,...,k — 1.

In application to our case, Theorem 1 in [11] sounds as follows:

Theorem 1. For cubature formula (3) to have order n, it is necessary and
sufficient that it be accurate for all polynomials of degree at most n that are
iwvariant under the group Clp,.

It is well known (see, for instance, [8]) that every polynomial invariant
under the cyclic group Ciy, is representable on the unit sphere as a polynomial
of basis invariant forms

uw=sin’0, v =sin®0cos kp, w= sin® @ sin ko,

where 6 and ¢ are the angular coordinates of the spherical coordinate system.
The form u has degree 2, the forms v and w have degree k. Since u* = v2+w?,
the polynomial w occur in the basis at most in degree 1. For the group Cip,

the basis polynomials are of the form u'v/w! where 4,5 = 0,1,...;1=0,1;
2t + kj + kl < n. Note that u = v = w = 0 at the nodes apj; u = 1 at the
nodes a;;.

When constructing the best cubature formulas for a given n, we wish to
get formula (2) with positive weights w; and minimal number of nodes N. To
achieve this purpose for the cyclic groups Cyp, we keep the following rules.

The parameters of cubature formula (3) are the weights Ay, A;, B; and
the coordinates of the nodes a;;, b;;. With account taken of the constraint
equations

a2+b=1, G+d?+el=1,
it is easy to see that the nodes ag; have one free parameter (the weight Ao),
the nodes a;; — two free parameters each, and the nodes b;; — three free
parameters each. As a result, for one free parameter, we have: 2 nodes agj,
k/2 nodes a;;, 2k/3 nodes b;;.

Denote the total number of basis polynomials of degree at most n by m.
Since the total number of free parameters in a cubature formula of order n
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must be m, for obtaining a formula with minimal number of nodes N for
given n, it is the most economic, as a rule, to use first the nodes ag; and a;;,
and only in the last place, the nodes b;;.

However, two essential restrictions are available here. The first restriction
is quite analogous to corresponding restrictions for the groups Dyp and Dy
(see [9]). The matter is in the fact that the basis polynomials of degree
n > 2 contain the polynomials of the form (1 — u)/w! with i > 1. These
polynomials are equal to zero at the nodes a;;, but the integral U((1—u)") >
0. Therefore, correct integration of these polynomials is possible only in the
case when the nodes ag; and b;; are used. For a cubature formula of order
n, the number of basis functions that require to use the nodes ap; and b;; is
the value mg which is equal to the total number of basis functions m for a
cubature of order n — 2. Thus, for value M in (3), the condition 3M > my
must perform when Ag = 0, and the condition 3M + 1 > mg must perform
when Ay > 0.

The second restriction is specific for cyclic groups C. The matter is in the
fact that we should fix the net of nodes relatively to the rotations around the
axis z. Thus, we have in cubature formula (3) 2L + 3M — 1 free parameters
when Ag = 0 and 2L 4+ 3M free parameters when Ay > 0. As a result, the
condition 3M — 1 > mgy must perform when Ay = 0, and the condition
3M > mg must perform when Ay > 0.

Then, we take the value L in (3) by such a way that the total number of
free parameters of the cubature formula is equal to m. Here, if it is necessary,
we can put Ay = 0.

After this, we substitute m basis functions for f in formula (3) and solve
the system of m nonlinear algebraic equations for m unknown free parameters
of the cubature formula. In analogy with the groups D34 and D54 (see [6, 7]),
here we can not be sure that the system of nonlinear equations is solvable.
Moreover, we can not be sure that all the weights of the cubature formula
are positive. Therefore, as a rule, we need perform a number of attempts
with different sets of parameters of the cubature formula to get for given n
the formula with minimal N and with positive weights. As it was written
above, if we have several such formulas with equal NV, then the formula with
minimal quantity E, 41 is regarded as the best of them.

3 Construction of the concrete best cubature formulas

Cubature formulas of the form (3) are of special interest in the case when
the value k is even. In this case, the formula is invariant to operation of
inversion when the point (x,y, z) is changed to point (—z, —y, —z). Hence,
such formula is accurate for all odd functions. Let us construct two specific
formulas invariant under the group Cyy,.

The cubature formula n = 19, N = 130. Here k£ = 4, m = 50, mg =
41. Thus, we put in (3) Ag > 0, L = 4, M = 14. Solving the system of
nonlinear equations numerically, we get Ay = 0.7660304343888119F — 2,
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Tabsuia 1. Parameters of cubature formula for n = 19.

.

w;

L

0~ O Ok W+

I e e S O
O O Uik WNH—HOO©

0.6645295553789985F — 2
0.7940547602282251F — 2
0.7972378890136528E — 2
0.8573377575291844F — 2
0.6510520973163796 F — 2
0.7136235937493791E — 2
0.7255717442273412F — 2
0.7281549870918769F — 2
0.7584573244599878E — 2
0.7604391975980193F — 2
0.7710938137623127F — 2
0.7815627698858543E — 2
0.7816964422838738F — 2
0.7978327624980708F — 2
0.8003983653837969E — 2
0.8082139286016494F — 2
0.8234836915868764F — 2
0.8503316918823482E — 2

0.1000000000000000F + 1
0.7904189241617745E 4+ 0
0.9448501758339844E + 0
0.5355707815845251F + 0
0.4569317630202860F + 0
0.6768475178116094E + 0
0.2550834114536487F — 1
0.3801363982928767F + 0
0.2316546737838826E + 0
0.9565112919395244F + 0
0.2550707877707171E 4+ 0
0.3406958784534529E + 0
0.1265273973753093F + 0
0.6587478998720094F — 1
0.8545200203022775E + 0
0.5560935780500953F + 0
0.8008040968867047F + 0
0.6372961542422668F + 0

.

Yi

Zi

0~ O Tk Wi

0.0000000000000000F + 0
0.6125666692915498F + 0
0.3275028934627734E + 0
0.8444903421075583F + 0
0.8205661456207424F + 0
0.6780381392043270E + 0
0.4221549660163514F + 0
0.7091057139942805F + 0
0.2001058495398148E + 0
0.1057784060118048E + 0
0.9516217161691417F 40
0.4854220420066139E + 0
0.8755565979006869F + 0
0.6833847676185643F + 0
0.4187154839704564E + 0
0.2551482270805925F + 0
0.2057535931812009F + 0
0.5134609294410294F + 0

0.0000000000000000E + 0
0.0000000000000000F + 0
0.0000000000000000E + 0
0.0000000000000000E + 0
0.3433432169190062F + 0
0.2866037672756531E + 0
0.9061647252016296 E 4+ 0
0.5938563842155619F + 0
0.9519946224081478E + 0
0.2718401685067600F + 0
0.1713330164951382F + 0
0.8051656721066536E + 0
0.4662525727392884F + 0
0.7270803060398921F + 0
0.3073644065046921EF + 0
0.7909862923395531F + 0
0.5624751170518516 £ + 0
0.5746403098683307E + 0

other parameters are given in the table 1. The value F, 11 = Foy = 1.836
here.

Note that we apply in our tables the successive numeration of the nodes
a;; and b;j, that is, in the first place, parameters of L nodes a;; are given,
and then, parameters of M nodes b;; are given. For instance, in the table 1,
we have Ay = wi, a1 = z1, by = y1, By = w5, ¢1 = 75, d1 = y5, €1 = 25, and
S0 on.

The cubature formula n = 31, N = 334. Here k =4, m = 128, mo = 113.
Thus, we put in (3) Ag > 0, L = 7, M = 38. Solving the system of nonlinear
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equations, we get Ag = 0.3061270189405236 F'—2, other parameters are given

A.S. POPOV

TabsuiA 2. Parameters of cubature formula for n = 31.

.

w;

L

0~ O Ok W+

R R R R R 0 W W0 D W W 0 W W W NN NN DN RN NN NN e e e e e e
T WINHF O OO Uk WNHFE O OO ULk WN O OO Uk W~ OO

0.2857339278630283F — 2
0.2873537417366394F — 2
0.2925017946201064E — 2
0.3063663254389160F — 2
0.3230945413086455F — 2
0.3240268313587605E — 2
0.3295024947194438E — 2
0.2481078352389441F — 2
0.2544339109601428E — 2
0.2680646437944871F — 2
0.2695623016780501 F — 2
0.2707778655827009E — 2
0.2739392220982742F — 2
0.2875113563849260F — 2
0.2881836718777421E — 2
0.2898792068067391F — 2
0.2912246071018620F — 2
0.2922320956053537E — 2
0.2927474138016341F — 2
0.2937885924814594F — 2
0.2937909913742207E — 2
0.2947113171411905F — 2
0.2961140394583733F — 2
0.2980612397123625E — 2
0.2985412263204448F — 2
0.3005224475267694F — 2
0.3006877310250035E — 2
0.3013188531135578E — 2
0.3022434440257125F — 2
0.3022477703759273E — 2
0.3080688499240702F — 2
0.3090732982201134F — 2
0.3095559039029059E — 2
0.3098263332925083F — 2
0.3099021810902918F — 2
0.3122989485055384E — 2
0.3125974147960563 F — 2
0.3136102663525452F — 2
0.3143631563871559E — 2
0.3170648697498085F — 2
0.3207344069418187F — 2
0.3224542526230039E — 2
0.3261588091925836 F — 2
0.3273197293190835F — 2
0.3274582129587377E — 2

0.1000000000000000F + 1
0.8793751898836127F 4 0
0.9636862144257188E + 0
0.2293385666097021F + 0
0.7663501491578905F + 0
0.4337949015455863E + 0
0.6150137924079744F + 0
0.9287280945604399F + 0
0.8020041742158256E + 0
0.9145470748022536F + 0
0.5109491471577080F + 0
0.8897630855513612E + 0
0.1033741140760991F + 0
0.1146664694579942F + 0
0.8006152334270228E + 0
0.9820285897118167F + 0
0.2438037712016351F + 0
0.6942640490970199E + 0
0.9540215911252631F + 0
0.6710616805188693F + 0
0.7026195834450003E + 0
0.2703390775138423F 4+ 0
0.3787816208007406F + 0
0.5506779631254267E + 0
0.1077936400960356 £ + 0
0.8249966809803215F — 1
0.1326327383084290F + 0
0.2696713895149357F + 0
0.2668525422272480F 4 0
0.27079508620156 74 — 1
0.2302716240599156 F 4+ 0
0.4135492675046034F + 0
0.4166298304027775E + 0
0.5731412043011793E 4+ 0
0.1858722590884954F + 0
0.4266121527846227E + 0
0.5683596527046579F + 0
0.8149439620595171F + 0
0.8364230149298469E + 0
0.3222479827541115E 4+ 0
0.3872788409458259F + 0
0.7140627661750236E + 0
0.5655316727341512F 4+ 0
0.6819330515989615F + 0
0.5153286715336740E + 0

in the table 2. The value F, 1 = F32 = 1.388 here.
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Yi

Zi

0~ O Tk Wi+

R R R R R 0 W0 W0 D W0 W D W W W NN NN DN NN DN NN e e e e e e e
Ui W N O OO WNFHFOOWWNO O WNFHOOWO Uk WwWwNn—=OO©

0.0000000000000000F + 0
0.4761294733758457F + 0
0.2670372261049524E + 0
0.9733467120535248F 4+ 0
0.6424231073721422F 40
0.9010116444270046E + 0
0.7885163505901200F + 0
0.2524388893035526 £ + 0
0.3089789787357818E + 0
0.3730640570039191F 4 0
0.3672637170039674F — 1
0.1805783724560172E + 0
0.4121951192800001F + 0
0.6100073968834808F + 0
0.1161314865069427E + 0
0.1323010537879169F + 0
0.2953903954441597F + 0
0.2719386529720772E + 0
0.3032796901739156 F — 1
0.7477446138978959F — 1
0.4609008916506171E + 0
0.1051450093988163F — 1
0.1640330898865588F + 0
0.2288260302019346E + 0
0.9810609694786695F + 0
0.7630327821974979F + 0
0.1428626447935778E + 0
0.6816402489012675E + 0
0.4992458501266768F + 0
0.8807090467283320E + 0
0.8244043743811370FE 4+ 0
0.7299735423231610F + 0
0.3704449059040935E + 0
0.4270814928179717FE 4+ 0
0.9214461315996310F + 0
0.5635730017497922E + 0
0.6057391472681832F + 0
0.5466231217372238F + 0
0.4159332637279392E + 0
0.9289682155940478F 4 0
0.8451916845516509F + 0
0.5872369596127509F + 0
0.7318359583055115F 4 0
0.7051391216796678E + 0
0.8352707436040760F + 0

0.0000000000000000E + 0
0.0000000000000000F£ + 0
0.0000000000000000E + 0
0.0000000000000000E + 0
0.0000000000000000F + 0
0.0000000000000000E + 0
0.0000000000000000E + 0
0.2715487682559495F + 0
0.5111959460322284E + 0
0.1562909381327583F + 0
0.8588260258285930F + 0
0.4191814678528347E + 0
0.9052121166780348F + 0
0.7840552126792337F + 0
0.5878169152434128E + 0
0.1345967315919189F 4 0
0.9237446808654455F + 0
0.6663683659592064E + 0
0.2981996277028217FE 4+ 0
0.7376211770706274F + 0
0.5421218396589832E + 0
0.9627077585845821F 4 0
0.9108334804813842F + 0
0.8027405738033020E + 0
0.1609344752388981F + 0
0.6410731456360189F + 0
0.9808153860188939E + 0
0.6801793239689824F + 0
0.8243441646776828F + 0
0.4728829402968177E + 0
0.5170419776517715E + 0
0.5441650768421126 F + 0
0.8301747744350343E + 0
0.6993643960229650F + 0
0.3411576319847099F + 0
0.7073807622456229E + 0
0.5568189927115049F + 0
0.1925344163649413F + 0
0.3569258469490403E + 0
0.1821381125050895F + 0
0.3683288146756921F + 0
0.3811392386349718E + 0
0.3802499931171156F + 0
0.1942836385642256 E + 0
0.1917267461113150EF + 0

401

The calculation of parameters of all cubature formulas was carried out
with the use of high-precision arithmetic (more than 30 decimal digits in
the mantissa) on the computers of the Siberian Supercomputer Center. The
systems of nonlinear algebraic equations were solved by Newton-type method.
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4 Conclusion

We have presented an algorithm for finding the best cubature formulas on
the sphere that are invariant under the transformations of the cyclic rotation
groups Cgp. Computations by this algorithm were carried out with the aim
to find the parameters of the best cubature formulas of 19th and 31st orders
of accuracy n. The parameters of these cubature formulas were given with
16 significant digits. We note that both new formulas contain lesser number
of nodes in comparison with any other known today formulas for respective
n.

The numerical method used in the article does not guarantee that all
possible solutions have been found to the system of nonlinear equations from
which the parameters of the cubature formula are determined. Therefore, it
is possible that the results obtained in the article can be improved by the
value F,1 for some n.
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