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Abstract: Rings in which the square of each unit lies in 1+∆(R)
are said to be 2-∆U rings, where J(R) ⊆ ∆(R) =: {r ∈ R | r +
U(R) ⊆ U(R)}. The set ∆(R) is the largest Jacobson radical
subring of R which is closed with respect to multiplication by
units of R and is detailed studied in [21]. The class of 2-∆U
rings consists several rings including UJ-rings, 2-UJ rings and
∆U -rings, respectively, and we observe that ∆U -rings are UUC in
terms of [2]. Furthermore, the structure of 2-∆U rings is examined
under various algebraic conditions. Moreover, the 2-∆U property
is explored under some extended constructions.

The established by us achievements substantially improved on
the existing in the literature relevant results.

Keywords: ∆(R), ∆U ring, 2-∆U ring, Matrix ring.

1 Introduction and Basic Concepts

In the current paper, let R denote an associative not necessarily commu-
tative ring with identity element. Typically, for such a ring R, the sets U(R),
Nil(R), C(R), Id(R) and J(R) represent the set of invertible elements in
R, the set of nilpotent elements in R, the set of central elements in R, the
set of idempotent elements in R and the Jacobson radical of R, respectively.
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Additionally, the ring of n× n matrices over R and the ring of n× n upper
triangular matrices over R are, respectively, denoted by Mn(R) and Tn(R).
Traditionally, a ring is termed abelian if each idempotent element is central,
meaning that Id(R) ⊆ C(R).

The key instrument of the present study is the set∆(R) which was handled
by Lam in [20, Exercise 4.24] and recently investigated by Leroy-Matczuk in
[21]. As pointed out by the authors in [21, Theorem 3 and 6], the subring
∆(R) is the largest Jacobson radical of R that is closed with respect to
multiplication by all units (quasi-invertible elements) of R. Also, J(R) ⊆
∆(R), and ∆(R) = J(T ), where T is the subring of R generated by units of
R, and the equality ∆(R) = J(R) holds if, and only if, ∆(R) is an ideal of
R.

It is well known that 1 + J(R) ⊆ U(R). A ring R is said to be an UJ-
ring if the reverse inclusion holds, i.e., U(R) = 1 + J(R) (see [7] and [14]).
Imitating [6], a ring R is said to be 2-UJ if, for each u ∈ U(R), u2 = 1 + j,
where j ∈ J(R). These rings are a common generalization of UJ rings. The
authors showed there that for 2-UJ rings the notions of being semi-regular,
exchange and clean rings are all equivalent.

In the other vein, recall that a ring R is called an UU -ring if U(R) =
1+Nil(R) (see, e.g., [9]). As a natural expansion of UU rings, Sheibani and
Chen introduced in [25] the so-called 2-UU rings � a ring R is called 2-UU
if the square of every unit is the sum of 1R and a nilpotent. They showed
that R is strongly 2-nil-clean if, and only if, R is an exchange 2-UU ring.

Let us also recollect certain classical concepts, needed for our successful
presentation: a ring R is known to be Boolean if every element of R is
idempotent. Also, as a more general setting, a ring R is said to be regular
(resp., unit-regular) in the sense of von Neumann if, for every a ∈ R, there is
an x ∈ R (resp., x ∈ U(R)) such that axa = a and, in addition,R is said to be
strongly regular if, for each a ∈ R, a ∈ a2R. Recall that a ring R is exchange
if, for each a ∈ R, there exists e2 = e ∈ aR such that 1− e ∈ (1− a)R, and
a ring R is clean if every element of R is a sum of an idempotent and an
unit (cf. [23]). Notice that every clean ring is exchange, but the converse is
manifestly not true in general; however, it is true in the abelian case (see, for
more details, [23, Proposition 1.8]). Likewise, a ring R is called semi-regular,
provided R/J(R) is regular and idempotents lift modulo J(R). Note that
semi-regular rings are exchange, but the opposite is generally not valid (see
[23]).

Further, according to Chen ([3]), an element of a ring is called J-clean,
provided that it can be written as the sum of an idempotent and an element
from its Jacobson radical. Accordingly, a ring is termed J-clean in the case
when each of its elements is J-clean or, equivalently, R/J(R) is Boolean
and idempotents lift modulo J(R) (which is also called semi-boolean in the
language of [24]). It was shown in [14] that a ring R is J-clean if, and only
if, R is a clean UJ ring. Later on, in 2019, Karabacak et al. introduced new
rings that are a non-trivial generalization of UJ rings; in fact, they named
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these rings ∆U (see [11]) and R is said to be a ∆U ring if 1+∆(R) = U(R).
Besides, due to Karabacak et al. ([11]), a ring R is called ∆-clean, provided
every element of R is a sum of an idempotent and an element from the
∆(R). Thus, ∆-clean rings are clean, but the reciprocality is not ful�lled in
all generality. They also showed in [11] that a ring R is ∆-clean if, and only
if, R is a clean ∆U ring. Some other interesting results close to this material
can be found in [15] as well.

As a proper expansion of some of the above concepts, we introduce the
new class of 2-∆U rings as follows: a ring R is called 2-∆U if the square of
each unit is a sum of an idempotent and an element from the ∆(R) (or, in
an equivalent form, for each u ∈ U(R), u2 = 1+r, where r ∈ ∆(R)). Clearly,
all ∆U rings, and hence the unit uniquely clean rings from [2] as well as the
rings with only two units are 2-∆U . Also, 2-UJ rings and hence UJ rings are
2-∆U , but the converse does not hold in general. Our motivating tool is to
give a satisfactory description of these 2-∆U rings by comparing their crucial
properties with these of 2-UU and 2-UJ rings, respectively, as well as to �nd
some new exotic properties of 2-∆U rings that are not too characteristically
or frequently seen in the existing literature.

We are now planning to give a brief program of our main material establi-
shed in the sequel: In Section 2, we achieve to exhibit some major properties
and characterizations of∆U rings in various di�erent aspects (see, for instan-
ce, Propositions 1, 2 and 3 and Theorem 1). In Section 3, we establish
some fundamental characterizing properties of 2-∆U rings that are mainly
stated and proved in Theorems 9, 2, 3 and 4 and the other statements
associated with them. In Section 4, we give some extensions of 2-∆U rings;
for instance, polynomial extensions, matrix extensions, trivial extensions and
Morita contexts. We close our work in the �nal Section 5 with challenging
questions, namely Problems 1, 2, 3 and 4.

Now, we have the following diagram which violates the relationships bet-
ween the de�ned above sorts of rings:

UJ 2-UJ

∆U

2-∆U

UUC

2 ∆U rings

In this section, we reinvestigate some major properties of ∆U rings which
were not found in [11], as well as we give a few close relations between ∆U
rings and some related type of rings.
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De�nition 1 ([11]). A ring R is called ∆U if 1 + ∆(R) = U(R).

Mimicking Calugareanu and Zhou (see [2]), a ring R is called UUC if every
unit is uniquely clean.

We start with a series of preliminaries.

Proposition 1. Let R be a ∆U ring. Then, the following three points hold:

(1) U(R) + U(R) ⊆ ∆(R).
(2) R is a UUC ring.
(3) (U(R) + U(R)) ∩ Id(R) = {0}.

Proof. (1) Choose x ∈ U(R) + U(R). So, x = u1 + u2, where u1, u2 ∈
U(R) = 1+∆(R) yielding x = 1+ r1 +1+ r2 = 2+ (r1 + r2), where
r1, r2 ∈ ∆(R). On the other hand, we know that 2 ∈ ∆(R) by [11,
Proposition 2.4]. But, ∆(R) is a subring of R and thus x ∈ ∆(R), as
required.

(2) Assume that u = e+ v, where u, v ∈ U(R) and e ∈ Id(R). It su�ces
to show that e = 0. To this target, as R is∆U , we may write u = 1+r
and v = 1 + r′, where r, r′ ∈ ∆(R). Hence, e = 0 in view [21,
Proposition 15], as needed.

(3) This is clear combining (i) and (ii).
□

Proposition 2. Let R be a ∆U ring and set R̄ := R/J(R). The following
two items hold:

(1) For any u1, u2 ∈ U(R), u1 + u2 ̸= 1.
(2) For any ū1, ū2 ∈ U(R̄), ū1 + ū2 ̸= 1̄.

Proof. (1) This is immediate utilizing Proposition 1 and [2, Example
2.2].

(2) Since R is ∆U, one sees that R̄ is ∆U and hence it is UUC. Now,
the result follows directly from [2, Example 2.2].

□

Remember for completeness of the exposition that a ring R is called semi-
potent if every one-sided ideal not contained in J(R) contains a non-zero
idempotent. Moreover, a semi-potent ring R is called potent, provided all
idempotents lift modulo J(R).

Proposition 3. Let R be a potent ∆U ring and set R̄ := R/J(R). Then,
we have:

(1) For any ē = ē2 ∈ R̄ and any ū1, ū2 ∈ U(ēR̄ē), ū1 + ū2 ̸= ē.
(2) There does not exist ē = ē2 ∈ R̄ such that ēR̄ē ∼= M2(S) for some

ring S.

Proof. (1) Given ē, ū1, ū2 as in (i), we can assume that e2 = e ∈ R,
because idempotents lift modulo J(R). Thus, ēR̄ē ∼= eRe/J(eRe).
Finally, since eRe is ∆U in virtue of [11, Proposition 2.6], (i) follows
automatically from Proposition 2(i).
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(2) Note that, in a 2× 2 matrix ring, it is always valid that(
1 0
0 1

)
=

(
1 1
1 0

)
+

(
0 −1
−1 0

)
∈ U(M2(S)) + U(M2(S)).

Hence, there exist ū1, ū2 ∈ U(ēR̄ē) such that ū1 + ū2 = ē. This,
however, is a contradiction with (i), as expected.

□

A ring R is called reduced if it contains no non-zero nilpotent elements,
that is, Nil(R) = (0).

We now come to the following criterion.

Theorem 1. Let R be a semi-potent ring. Then, the following statements
are equivalent:

(1) R is a ∆U ring.
(2) R/J(R) is Boolean.
(3) R is a UJ ring.
(4) R/J(R) is a UU ring.

Proof. (i) ⇒ (ii). Since R is semi-potent, R/J(R) is too semi-potent (and,
indeed, even potent). Also, R/J(R) is ∆U. So, without loss of generality, it
can be assumed that J(R) = (0). Thus, using [11, Theorem 4.4], R is reduced
and hence abelian.

Now, assume that there exists x ∈ R such that x− x2 ̸= 0 in R. Since R
is a semi-potent ring, there exists e = e2 ∈ R such that e ∈ (x − x2)R. So,
write e = (x− x2)y for some y ∈ R. Since e is central, it must be that

[er(1− e)]2 = 0 = [(1− e)re]2,

whence we have

er(1− e) = 0 = e(1− e)re.

We now can write:

e = ex.e(1− e).ey,

so that both ex, e(1 − x) ∈ U(eRe). But, we know that eRe is a ∆U ring.
However, ex + e(1 − x) = e, which contradicts Proposition 2(i). Therefore,
R is a Boolean ring, as desired.

(ii) ⇒ (iii). Let us assume u ∈ U(R). Then, ū ∈ U(R̄), where R̄ =
R/J(R)). But, since R̄ is a Boolean ring, we obtain ū = 1̄ which implies
u− 1 ∈ J(R), as required.

(iii) ⇒ (i). This is evident, because we know that always J(R) ⊆ ∆(R).
(ii) ⇒ (iv). This is obvious, so we omit the necessary arguments.
(iv) ⇒ (ii). Knowing that R/J(R) is semi-potent, one derives that it

is also strongly nil-clean applying [12, Theorem 2.25]. Hence, R/J(R) is
an exchange UU ring consulting with [9, Theorem 4.3]. In conclusion, it is
Boolean (see [9, Theorem 4.1]), as wanted. □

As �ve consequences, we deduce:
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Corollary 1. A regular ring R is ∆U if, and only if, R is UJ if, and only
if, R is UU if, and only if, R is Boolean.

Proof. Since R is regular, J(R) = (0) and R is semi-potent. So, the result
follows from Theorem 1. □

Corollary 2. Let R be a potent ring. Then, the following are equivalent:

(1) R is a ∆U ring.
(2) R/J(R) is a ∆U ring.
(3) R/J(R) is a Boolean ring.
(4) R is a UJ ring.
(5) R/J(R) is a UJ ring.
(6) R/J(R) is a UU ring.

Proof. We know that every potent ring is semi-potent. Then, issues (i), (iii),
(iv) and (vi) are equivalent invoking Theorem 1. On the other side, issues
(i) and (ii) are equivalent employing [11, Proposition 2.4]. Finally, issues (iv)
and (v) are tantamount in conjunction with [14, Proposition 1.3]. □

Corollary 3. Let R be an Artinian ring. Then, the following are equivalent:

(1) R is a ∆U ring.
(2) R is a UJ ring.
(3) R is a UU ring.

Proof. We know that every Artinian ring is always clean. Also, since R is
Artinian, we have J(R) ⊆ Nil(R). □

Corollary 4. Let R be a �nite ring. Then, the following conditions are
equivalent:

(1) R is a ∆U ring.
(2) R is a UJ ring.
(3) R is a UU ring.

Proof. In fact, any �nite ring is known to be Artinian. □

Corollary 5. For a ring R, the following two conditions are equivalent:

(1) R is a potent ∆U ring.
(2) R is a J-clean ring.

Proof. (ii) ⇒ (i). This is apparent by a combination of [14, Theorem 3.2]
and Corollary 2.

(i) ⇒ (ii). Thanks to Corollary 2, we infer that R/J(R) is Boolean.
Therefore, for each a ∈ R, we receive a − a2 ∈ J(R). Besides, since R is
a potent ring, there exists an idempotent e ∈ R such that a − e ∈ J(R).
Thus, R is a J-clean ring, as promised. □

Let Nil∗(R) denote the prime radical (or, in other terms, the lower nil-
radical) of a ring R, i.e., the intersection of all prime ideals of R. We know
that Nil∗(R) is a nil-ideal of R. It is also long known that a ring R is
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called 2-primal if its lower nil-radical Nil∗(R) consists precisely of all the
nilpotent elements of R. For instance, it is well known that reduced rings
and commutative rings are both 2-primal.

For an endomorphism α of a ring R, R is called α-compatible if, for any
a, b ∈ R,

ab = 0 ⇐⇒ aα(b) = 0,

and in this case α is clearly injective.
Let R be a ring and α : R→ R a ring endomorphism; then, R[x;α] denotes

the skew polynomial ring over R with multiplication de�ned by xr = α(r)x
for all r ∈ R. In particular, R[x] = R[x; 1R] is the ordinary polynomial ring
over R.

Our next result of interest is the following.

Proposition 4. Let R be a 2-primal ring and let α be an endomorphism of
R. If R is α-compatible, then

∆(R[x;α]) = ∆(R) + J(R[x;α]).

Proof. Suppose �rst that R is a reduced ring. As R is α-compatible, [4,
Corollary 2.12] applies to get that U(R[x;α]) = U(R). Also, it is easy to
see that ∆(R) ⊆ ∆(R[x;α]). We claim that this is exactly an equality. In
fact, let r + r0 ∈ ∆(R[x;α]), where r ∈ R[x;α]x and r0 ∈ R. Then, for any
u ∈ U(R), r + r0 + u ∈ U(R). This shows that r = 0 and r0 + u ∈ U(R).
Thus, we conclude that ∆(R[x;α]) ⊆ ∆(R) and hence ∆(R[x;α]) = ∆(R),
as claimed.

Now assume that R is 2-primal. Obviously,

Nil∗(R[x;α]) = Nil∗(R)[x;α] ⊆ J(R[x;α])

consulting with [4, Lemma 2.2]. As R is 2-primal, R/Nil∗(R) is reduced, and
so we arrive at

J(R[x;α]) = Nil∗(R[x;α]) = Nil∗(R)[x;α].

By the �rst part of the proof applied to R/Nil∗(R) and referring to [21,
Proposition 6(3)], we deduce that

∆(R) +Nil∗(R)[x;α] = ∆(
R

Nil∗(R)
[x;α]) = ∆(

R[x;α]

J(R[x;α])
) =

∆(R[x;α])

J(R[x;α])
.

Now, summarizing all the above, we conclude the pursued equality. □

It is principally known that, for any two elements a, b ∈ R, 1 − ab is a
unit if, and only if, 1− ba is a unit. This result is attributed to as Jacobson's
lemma for units. There are several analogous results in the literature as well.

We now have the validity of the following.

Corollary 6. Let R be a ∆U ring and let a, b ∈ R. Then, 1− ab ∈ ∆(R) if,
and only if, 1− ba ∈ ∆(R).
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Proof. Assuming that 1− ab ∈ ∆(R), we can write ab ∈ U(R) = 1 + ∆(R).
Therefore, [11, Proposition 2.4] is applicable to get that a ∈ U(R). Thus,

1− ba = a−1(1− ab)a ∈ ∆(R),

because ∆(R) is closed with respect to multiplication by all units (see [21,
Theorem 3]). The converse implication is similar, concluding the proof. □

3 2-∆U rings

In this section, we introduce the concept of 2-∆U rings and investigate
their elementary properties.

We now give our main de�nition.

De�nition 2. A ring R is called 2-∆U if the square of each unit is a sum
of an idempotent and an element from the ∆(R) (equivalently, for each u ∈
U(R), u2 = 1 + r, where r ∈ ∆(R)).

two more constructions clarify the given de�nition a bit more.

Example 1. Unambiguously, 2-UJ rings are 2-∆U. But, the converse is
de�nitely not true in general. For example, consider the ring R = F2⟨x, y⟩/⟨x2⟩.
Thus, one calculates that J(R) = (0), ∆(R) = F2x + xRx and U(R) =
1 + F2x + xRx. Therefore, R is ∆U by [11, Example 2.2], and hence it is
2-∆U. But, it is readily seen that R is not 2-UJ , as asserted.

Example 2. The ring Z3 is 2-∆U , but is not ∆U .

We are now in a position to explore some critical properties of the newly
de�ned notion.

Proposition 5. A direct product
∏

i∈I Ri of rings is 2-∆U if, and only if,
each direct component Ri is 2-∆U.

Proof. As ∆(
∏

i∈I Ri) =
∏

i∈I ∆(Ri) and U(
∏

i∈I Ri) =
∏

i∈I U(Ri), the
result follows without any di�cult. □

Proposition 6. Let R be a 2-∆U ring. If T is a factor ring of R such that
all units of T lift to units of R, then T is 2-∆U.

Proof. Suppose that f : R → T is a ring epimorphism. Choosing v ∈ U(T ),
there exists u ∈ U(R) such that v = f(u) and u2 = 1+ r ∈ 1+∆(R). Thus,

v2 = (f(u))2 = f(u2) = f(1 + r) = f(1) + f(r) = 1 + f(r) ∈ 1 + ∆(T ),

as required. □

Example 3. A division ring R is 2-∆U if, and only if, either R ∼= Z2 or
R ∼= Z3.

Proof. Since R is a division ring, one has that ∆(R) = 0, and the result
follows from [6, Example 2.1]. □
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Remark 1. The condition "all units of T lift to units of R"in Proposition
6 is necessary and cannot be ignored. Indeed, the ring Z7 is a factor ring of
the 2-∆U ring Z. But, Z7 is not 2-∆U by Example 3. Note that not all of
units of Z7 can lift to units of Z.

Proposition 7. Let R be a 2-∆U ring. For a unital subring S of R, if
S ∩∆(R) ⊆ ∆(S), then S is a 2-∆U ring. In particular, the center of R is
a 2-∆U ring.

Proof. Let v ∈ U(S) ⊆ U(R). Since R is 2-∆U, we have v2−1 ∈ ∆(R)∩S ⊆
∆(S). So, S is a 2-∆U ring. Now, the rest follows from [21, Corollary 8]. □

Proposition 8. Let R be a 2-∆U ring and 2 ∈ ∆(R). Then, the following
two relations are ful�lled:

(1) (U(R))2 + (U(R))2 ⊆ ∆(R).
(2) [(U(R))2 + (U(R))2] ∩ Id(R) = {0}.

Proof. (1) Let t ∈ (U(R))2+(U(R))2, so t = u2+v2, where u, v ∈ U(R).
Since R is 2-∆U, one may write that t = 1 + r + 1 + s, where
r, s ∈ ∆(R). So, we have t = 2+ (r+ s). But, 2 ∈ ∆(R) and ∆(R) is
a subring of R, so that t ∈ ∆(R) follows.

(2) It follows immediately from (i) and [21, Proposition 15].
□

Proposition 9. Let I ⊆ J(R) be an ideal of a ring R. Then, R is 2-∆U if,
and only if, so is R/I.

Proof. Let R be a 2-∆U ring and u + I ∈ U(R/I). Thus, u ∈ U(R) and
hence u2 = 1 + r, where r ∈ ∆(R). Therefore,

(u+ I)2 = u2 + I = (1 + I) + (r + I),

where r + I ∈ ∆(R)/I = ∆(R/I) in view of [21, Proposition 6].
Conversely, let R/I be a 2-∆U ring and u ∈ U(R). Thus, u+ I ∈ U(R/I)

whence (u+ I)2 = (1+ I)+ (r+ I), where r+ I ∈ ∆(R/I). This means that
u2 + I = (1 + r) + I. So,

u2 − (1 + r) ∈ I ⊆ J(R) ⊆ ∆(R).

Consequently, u2 = 1 + r′, where r′ ∈ ∆(R). Hence, R is a 2-∆U ring. □

Corollary 7. A ring R is 2-∆U if, and only if, R/J(R) is 2-∆U.

Proposition 10. Let R be a 2-∆U ring and e an idempotent of R. Then,
eRe is too a 2-∆U ring.

Proof. Letting u ∈ U(eRe), we have u + (1 − e) ∈ U(R). Under validity of
the hypothesis,

(u+ (1− e))2 = u2 + (1− e) = 1 + r ∈ 1 + ∆(R).

Thus, u2 − e ∈ ∆(R).
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Now, we need to show that u2 − e ∈ ∆(eRe). To that end, let v be an
arbitrary unit of eRe. One inspects that v + 1 − e ∈ U(R). Note also that
u2 − e ∈ ∆(R) gives that u2 − e + v + 1 − e ∈ U(R) under presence of the
de�nition of ∆(R). Taking u2 − e + v + 1 − e = t ∈ U(R), one can check
that et = te = ete = u2 − e + v, and so ete ∈ U(eRe). This shows that
u2 − e + U(eRe) ⊆ U(eRe), so that u2 − e ∈ ∆(eRe) and u2 ∈ e +∆(eRe)
implying eRe is a 2-∆U ring, as asked for. □

Proposition 11. For any ring R ̸= 0 and any integer n ≥ 2, the ringMn(R)
is not a 2-∆U ring.

Proof. Since it is well known that M2(R) is isomorphic to a corner ring of
Mn(R) whenever n ≥ 2, it su�ces to show that M2(R) is not a 2-∆U ring
in conjunction with Proposition 10. To this purpose, consider the matrix

A =

(
0 1
1 1

)
∈ U(M2(R)).

Then, one veri�es that

A2 − I2 = A ̸∈ J(M2(R)) = ∆(M2(R)),

as required. □

A set {eij : 1 ≤ i, j ≤ n} of non-zero elements of R is said to be a system
of n2 matrix units if eijest = δjseit, where δjj = 1 and δjs = 0 for j ̸= s. In
this case, e :=

∑n
i=1 eii is an idempotent of R and eRe ∼=Mn(S), where

S = {r ∈ eRe : reij = eijr, for all i, j = 1, 2, ..., n}.
Recall that a ring R is said to be Dedekind �nite if ab = 1 ensures ba = 1
for any a, b ∈ R. In other words, all one-sided inverses in such a ring are
necessarily two-sided.

Proposition 12. Every 2-∆U ring is Dedekind �nite.

Proof. If we assume to the contrary that R is not a Dedekind �nite ring,
then there exist elements a, b ∈ R such that ab = 1 but ba ̸= 1. Assuming
eij = ai(1− ba)bj and e =

∑n
i=1 eii, there exists a non-zero ring S such that

eRe ∼= Mn(S). However, according to Proposition 10, eRe is a 2-∆U ring,
whence Mn(S) must also be a 2-∆U ring, thus contradicting Proposition
11. □

Example 4. A local ring R is 2-∆U if, and only if, either R/J(R) ∼= Z2 or
R/J(R) ∼= Z3.

Proof. Assume one of the possibilities R/J(R) ∼= Z2 or R/J(R) ∼= Z3. We,
however, know that R/J(R) is a division ring, so R/J(R) is 2-∆U viewing
Example 3. Thus, R is 2-∆U in accordance with Corollary 7.

Conversely, letting R be 2-∆U, we directly check that R/J(R) ∼= Z2 or
R/J(R) ∼= Z3 with the aid of Example 3. □

As an obvious consequence, we derive:
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Corollary 8. (i) A semi-simple ring R is 2-∆U if, and only if, R ∼=
⊕n

i=1Ri,
where Ri

∼= Z2 or Ri
∼= Z3 for every index i.

(ii) A semi-local ring R is 2-∆U if, and only if, R/J(R) ∼=
⊕m

i=1Ri, where
Ri

∼= Z2 or Ri
∼= Z3 for every index i.

Example 5. The ring Zm is 2-∆U if, and only if, m = 2k3l for some positive
integers k and l.

Lemma 1. Let R be a 2-∆U ring. If J(R) = (0) and every non-zero right
ideal of R contains a non-zero idempotent, then R is reduced.

Proof. Suppose that the contradiction R is not reduced holds. Then, there
exists a non-zero element a ∈ R such that a2 = 0. With [22, Theorem 2.1]
at hand, there is an idempotent e ∈ RaR such that eRe ∼= M2(T ) for some
non-trivial ring T . Now, Proposition 10 tells us that eRe is a 2-∆U ring, and
hence M2(T ) is a 2-∆U ring. This, however, contradicts Proposition 11. □

A ring R is called π-regular if, for each a ∈ R, an ∈ anRan for some
integer n ≥ 1. Regular rings are always π-regular. Also, a ring R is said to
be strongly π-regular, provided that, for any a ∈ R, there exists n ≥ 1 such
that an ∈ an+1R.

We are now ready to attack the following pivotal result.

Theorem 2. Let R be a ring. Then, the following three assertions are
equivalent:

(1) R is a regular 2-∆U ring.
(2) R is a π-regular reduced 2-∆U ring.
(3) R has the identity x3 = x (i.e., R is a tripotent ring).

Proof. (i) ⇒ (ii). Since R is regular, J(R) = (0), and every non-zero right
ideal contains a non-zero idempotent. In virtue of Lemma 1, R is reduced.
Also, every regular ring is π-regular.

(ii) ⇒ (iii). Notice that reduced rings are abelian, so R is abelian regular
by virtue of [1, Theorem 3], and hence it is strongly regular. Thus, R is unit-
regular, so that ∆(R) = (0) in accordance with [21, Corollary 16]. Therefore,
we have Nil(R) = J(R) = ∆(R) = (0).

On the other hand, one knows that R is strongly π-regular. Choose x ∈ R.
The application of [10, Proposition 2.5] insures that there are an idempotent
e ∈ R and a unit u ∈ R such that x = e + u and ex = xe ∈ Nil(R) = (0).
So, we deduce

x = x− xe = x(1− e) = u(1− e) = (1− e)u.

Since R is a 2-∆U ring, u2 = 1. It now follows that x2 = (1 − e). Hence,
x = x(1− e) = x.x2 = x3.

(iii) ⇒ (i). It is not so hard to verify that R is regular. Choosing u ∈ U(R),
we infer u3 = u, that is, u2 = 1, and thus R is a 2-∆U ring, as asserted. □
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A ring R is termed strongly 2-nil-clean if every element in R is a sum of
two idempotents and a nilpotent that commute (for more account, we refer
to [5]).

Our next chief result is as follows.

Theorem 3. The following four statements are equivalent for a ring R:

(1) R is a regular 2-∆U ring.
(2) R is a strongly regular 2-∆U ring.
(3) R is a unit-regular 2-∆U ring.
(4) R has the identity x3 = x (i.e., R is a tripotent ring).

Proof. (i) ⇒ (ii). Observe that Lemma 1 gives R is reduced and hence
abelian. Then, R is strongly regular.

(ii) ⇒ (iii). This is pretty obvious, so we drop o� the arguments.
(iii) ⇒ (iv). Choose x ∈ R and write x = ue for some u ∈ U(R) and

e ∈ Id(R). We know that every unit-regular ring is regular, so that R is
regular 2-∆U whence R is abelian.

On the other side, [21, Corollary 16] informs us that ∆(R) = 0. Therefore,
for any u ∈ U(R), we have u2 = 1. Then, x2 = u2e2 = e. So, R is a 2-Boolean
ring. Thus, [5, Corollary 3.4] enables us that R is strongly 2-nil-clean, and
hence [5, Theorem 3.3] guarantees that R is tripotent, as formulated.

(iv) ⇒ (i). It is quite elementary looking at Theorem 2. □

Proposition 13. A ring R is ∆U if, and only if,

(1) 2 ∈ ∆(R),
(2) R is a 2-∆U ring,
(3) If x2 ∈ ∆(R), then x ∈ ∆(R) for every x ∈ R.

Proof. ⇒. As R is a ∆U ring, one has that −1 = 1 + r for some r ∈ ∆(R).
This insures −2 ∈ ∆(R) and so 2 ∈ ∆(R). But, every ∆U ring is 2-∆U. The
conclusion now follows from [11, Proposition 2.4].

⇐. Let u ∈ U(R). Then,

(u− 1)2 + 2(u− 1) = (u− 1)(u+ 1) = u2 − 1 ∈ ∆(R),

because R is a 2-∆U ring. It follows from the facts 2 ∈ ∆(R) and ∆(R) is a
subring of R that (u− 1)2 ∈ ∆(R). So, by (iii) it must be that u− 1 ∈ ∆(R)
whence R is a ∆U ring, as stated. □

Following Kosan et al. ([18]), a ring R is called semi-tripotent if, for each
a ∈ R, a = e + j, where e3 = e and j ∈ J(R) (or, equivalently, R/J(R)
satis�es the identity x3 = x and all idempotents lift modulo J(R)).

We now have all the ingredients necessary to prove our next basic result.

Theorem 4. Let R be a ring. Then, the following three conditions are
equivalent:

(1) R is a semi-regular 2-∆U ring.
(2) R is an exchange 2-∆U ring.
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(3) R is a semi-tripotent ring.

Proof. (i) ⇒ (ii). Observe that [23, Proposition 1.6] assures that semi-regular
rings are exchange.

(ii) ⇒ (iii). Monitoring [23, Corollary 2.4], R/J(R) is exchange and
idempotents lift modulo J(R). Moreover, Proposition 9 ensures that R/J(R)
is 2-∆U. So, with no loss of generality, it can be assumed that J(R) = (0).
Since R is an exchange ring, every non-zero one sided ideal contains a non-
zero idempotent. However, Lemma 1 is a guarantor that R is reduced and so
abelian. Thus,R is abelian clean. Hence, [17, Proposition 14] employs to write
that R/J(R) ∼=Mn(D), where 1 ≤ n ≤ 2 and D is a division ring. Therefore,
[21, Theorem 11] helps us to get that ∆(R) = J(R) whence ∆(R) = (0).
But, as R is 2-∆U, we have v2 = 1 for every v ∈ U(R). Consequently, the
conclusion follows now from [6, Theorem 3.3].

(iii) ⇒ (i). Adapting [6, Theorem 3.3], R is semi-regular 2-UJ meaning
that R is semi-regular 2-∆U. □

As four valuable corollaries, we yield:

Corollary 9. Let R be a 2-∆U ring. Then, the following are equivalent:

(1) R is a semi-regular ring.
(2) R is an exchange ring.
(3) R is a clean ring.

Proof. By Theorem 4, (i) ⇔ (ii).
(iii) ⇒ (ii). This is easy, so we leave the arguments to the interested

reader.
(ii) ⇒ (iii). If R is exchange 2-∆U, then R is reduced via Lemma 1, and

hence it is abelian. Therefore, R is abelian exchange, so it is clean, ending
the implication. □

Corollary 10. Let R be a ring. The following are equivalent:

(1) R is a semi-regular 2-∆U ring and J(R) is nil.
(2) R is an exchange 2-∆U ring and J(R) is nil.
(3) R is a strongly 2-nil-clean ring.

Proof. (i) ⇒ (ii). This can easily be deduced, so the detailed argumentation
is leaved.

(ii) ⇒ (iii). Since R is exchange 2-∆U, ∆(R) = J(R). Then, for any
u ∈ U(R), we have

u2 − 1 ∈ ∆(R) = J(R) ⊆ Nil(R).

So, R is 2-UU ring. Therefore, R is exchange 2-UU ring, whence it is strongly
2-nil-clean in regard to [25, Theorem 4.1].

(iii) ⇒ (i). This follows from [6, Corollary 3.5] and knowing that every
2-UJ ring is 2-∆U. □

Corollary 11. Let R be a ring. Then, the following are equivalent:
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(1) R is a regular ∆U ring.
(2) R is a π-regular reduced ∆U ring.
(3) R is a Boolean ring.

Proof. This is an automatic consequence of Theorem 2 and [11, Theorem
4.4]. □

Corollary 12. Let R be a ring. The following are equivalent:

(1) R is a semi-regular ∆U ring.
(2) R is an exchange ∆U ring.
(3) R is a clean ∆U ring.

Proof. The result follows from [11, Theorem 4.2 and Corollary 4.7]. □

4 Some extensions of 2-∆U rings

We say that C is an unital subring of a ring D if ∅ ≠ C ⊆ D and, for any
x, y ∈ C, the relations x− y, xy ∈ C and 1D ∈ C hold. Let D be a ring and
C an unital subring of D, and designate by R[D,C] the set

{(d1, . . . , dn, c, c, . . .) : di ∈ D, c ∈ C, 1 ≤ i ≤ n}.
Then, R[D,C] forms a ring under the usual component-wise addition and
multiplication. The ring R[D,C] is called the tail ring extension.

We are now attacking the following two preliminary claims giving us some
useful necessary and su�cient conditions.

Proposition 14. R[D,C] is a 2-∆U ring if, and only if, D and C are 2-∆U
rings.

Proof. Let R[D,C] be a 2-∆U ring. Firstly, we prove that D is a 2-∆U ring.
Let u ∈ U(D). Then ū = (u, 1, 1, . . .) ∈ U(R[D,C]). By existing hypothesis,
we have (u2 − 1, 0, 0, . . .) ∈ ∆(R[D,C]), so

(u2 − 1, 0, 0, . . .) + U(R[D,C]) ⊆ U(R[D,C]).

Thus, for all v ∈ U(D),

(u2 − 1 + v, 1, 1, . . .) = (u2 − 1, 0, 0, . . .) + (v, 1, 1, . . .) ∈ U(R[D,C]).

Hence, u2 − 1 + v ∈ U(D) forcing that u2 − 1 ∈ ∆(D).
Now, we show that C is a 2-∆U ring. To this aim, let v ∈ U(C). Then,

(1, . . . , 1, 1, v, v, . . . ) ∈ U(R[D,C]). By assumption,

(0, . . . , 0, v2 − 1, v2 − 1, . . . ) ∈ ∆(R[D,C]),

and so

(0, . . . , 0, v2 − 1, v2 − 1, . . . ) + U(R[D,C]) ⊆ U(R[D,C]).

Thus, for all u ∈ U(C),

(1, 1, . . . , v2 − 1 + u, v2 − 1 + u, . . . ) ∈ U(R[D,C]).

But then, we have v2 − 1 + u ∈ U(C) and hence v2 − 1 ∈ ∆(C), as needed.
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For the converse, assume thatD and C are 2-∆U rings. Let ū = (u1, ..., un,
v, v, . . .) ∈ U(R[D,C]), where ui ∈ U(D) and v ∈ U(C) ⊆ U(D). We
must show that ū2 − 1 + U(R[D,C]) ⊆ U(R[D,C]). In fact, for all ā =
(a1, . . . , am, b, b, . . .) ∈ U(R[D,C]) with ai ∈ U(D) and b ∈ U(C) ⊆ U(D),
take z = max{m,n}, and thus we obtain

ū2 − 1 + ā = (u21 − 1 + a1, . . . , u
2
z − 1 + az, v

2 − 1 + b, v2 − 1 + b, . . . ).

Note that u2i − 1 + ai ∈ U(D) for all 1 ≤ i ≤ z and v2 − 1 + b ∈ U(C) ⊆
U(D). We, thereby, deduce that ū2 − 1 + ā ∈ U(R[D,C]). Thus, ū2 − 1 ∈
∆(R[D,C]) and ū2 ∈ 1 + ∆(R[D,C]). This shows that R[D,C] is a 2-∆U
ring, as required. □

Let R be a ring and α : R → R a ring endomorphism. As usual, R[[x;α]]
denotes the ring of skew formal power series over R; that is, all formal power
series in x with coe�cients from R with multiplication de�ned by xr = α(r)x
for all r ∈ R. In particular, R[[x]] = R[[x; 1R]] is the ring of formal power
series over R.

Proposition 15. A ring R is 2-∆U if, and only if, so is R[[x;α]].

Proof. Consider I = R[[x;α]]x. Then, I is an ideal ofR[[x;α]]. A simple check
gives that J(R[[x;α]]) = J(R)+I, so I ⊆ J(R[[x;α]]). Since R[[x;α]]/I ∼= R,
the result follows with the help of Proposition 9. □

Corollary 13. A ring R is 2-∆U if, and only if, so is R[[x]].

Our further main achievement is the following one.

Theorem 5. Let R be a 2-primal ring and let α be an endomorphism of R
such that R is α-compatible. The following two statements are equivalent:

(1) R[x;α] is a 2-∆U ring.
(2) R is a 2-∆U ring.

Proof. (ii) ⇒ (i). Let

u(x) = a0 + a1x+ · · ·+ anx
n =

n∑
i=0

aix
i

be in U(R[x;α]). So, the usage of [4, Corollary 2.14] allows us to infer that
a0 ∈ U(R) and ai ∈ Nil(R) for each i ≥ 1. Then, by assumption, a20 = 1+ r,
where r ∈ ∆(R).

In the other vein, we know that

J(R[x;α]) = Nil∗(R[x;α]) = Nil∗(R)[x;α] = Nil(R)[x;α].

Now, we conclude that

(u(x))2 = a20 + a0a1x+ · · ·+ a0anx
n + a1xa0 + · · · = (1 + r) + a0a1x+ . . .

= 1 + (r + a0a1x+ . . . ) ∈ 1 + ∆(R) + J(R[x;α]).
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On the other side, it must be that ∆(R) + J(R[x;α]) = ∆(R[x;α]) by
Proposition 4. Thus, this means that R[x;α] is a 2-∆U ring, as required.
(i) ⇒ (ii). Let u ∈ U(R) ⊆ U(R[x;α]). Then,

u2 ∈ 1 + ∆(R[x;α]) = 1 +∆(R) + J(R[x;α]).

Thus, one detects that u2 ∈ 1 + ∆(R), and hence R is a 2-∆U ring, as
needed. □

The following consequence is now immediate.

Corollary 14. Let R be a 2-primal ring. Then, the following are equivalent:

(1) R[x] is a 2-∆U ring.
(2) R is a 2-∆U ring.

Let R be a ring and M a bi-module over R. The trivial extension of R
and M is de�ned as

T (R,M) = {(r,m) : r ∈ R and m ∈M},

with addition de�ned componentwise and multiplication de�ned by

(r,m)(s, n) = (rs, rn+ms).

Note that the trivial extension T (R,M) is isomorphic to the subring{(
r m
0 r

)
: r ∈ R and m ∈M

}
of the formal 2 × 2 matrix ring

(
R M
0 R

)
, and also T (R,R) ∼= R[x]/

〈
x2

〉
.

We, likewise, notice that the set of units of the trivial extension T (R,M) is

U(T (R,M)) = T (U(R),M).

Besides, thanks to [11], we can write

∆(T (R,M)) = T (∆(R),M).

We proceed by proving the following.

Proposition 16. Suppose R is a ring and M is a bi-module over R. Then,
the following hold:

(1) The trivial extension T (R,M) is a 2-∆U ring if, and only if, R is a
2-∆U ring.

(2) For n ≥ 2, the quotient-ring
R[x;α]

⟨xn⟩
is a 2-∆U ring if, and only if,

R is a 2-∆U ring.

(3) For n ≥ 2, the quotient-ring
R[[x;α]]

⟨xn⟩
is a 2-∆U ring if, and only if,

R is a 2-∆U ring.
(4) The upper triangular matrix ring Tn(R) is a 2-∆U if, and only if, R

is a 2-∆U ring.
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Proof. (1) Set A := T (R,M) and consider I := T (0,M). It is not so

hard to see that I ⊆ J(A) such that
A

I
∼= R. So, the result follows

directly from Proposition 9.

(2) Put A :=
R[x;α]

⟨xn⟩
. Considering the ideal I :=

⟨x⟩
⟨xn⟩

of A, we routinely

obtain that I ⊆ J(A) with
A

I
∼= R. So, the wanted result follows

automatically from Proposition 9.

(3) Knowing that the isomorphism
R[x;α]

⟨xn⟩
∼=
R[[x;α]]

⟨xn⟩
holds, point (iii)

follows immediately from (ii).
(4) Setting I := {(aij) ∈ Tn(R) | aii = 0}, we then have I ⊆ J(Tn(R))

and Tn(R)/I ∼= Rn. Therefore, the desired result follows from Propo-
sitions 9 and 5.

□

Corollary 15. Let R be a ring. Then, the following are equivalent:

(1) R is a 2-∆U ring.

(2) For n ≥ 2, the quotient-ring
R[x]

⟨xn⟩
is a 2-∆U ring.

(3) For n ≥ 2, the quotient-ring
R[[x]]

⟨xn⟩
is a 2-∆U ring.

Example 6. The upper triangular ring Tn(Z3) for all n ≥ 1 is 2-∆U (see
Proposition 16(4) and Example 2). But, it is not a ∆U ring as Example 2
and [11, Corollary 2.9] show.

Suppose R is a ring and M is a bi-module over R. Putting

DT (R,M) := {(a,m, b, n)|a, b ∈ R,m, n ∈M}

with addition de�ned componentwise and multiplication de�ned by

(a1,m1, b1, n1)(a2,m2, b2, n2) =

= (a1a2, a1m2 +m1a2, a1b2 + b1a2, a1n2 +m1b2 + b1m2 + n1a2),

we then see that DT (R,M) is a ring that is isomorphic to
T (T (R,M), T (R,M)). Moreover, we have

DT (R,M) =



a m b n
0 a 0 b
0 0 a m
0 0 0 a

 |a, b ∈ R,m, n ∈M

 .
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We now establish the following isomorphism as rings: the map
R[x, y]

⟨x2, y2⟩
→

DT (R,R) is de�ned by

a+ bx+ cy + dxy 7→


a b c d
0 a 0 c
0 0 a b
0 0 0 a

 .

We, thereby, arrive at the following.

Corollary 16. Let R be a ring and M a bi-module over R. Then, the
following statements are equivalent:

(1) R is a 2-∆U ring.
(2) DT (R,M) is a 2-∆U ring.
(3) DT (R,R) is a 2-∆U ring.

(4)
R[x, y]

⟨x2, y2⟩
is a 2-∆U ring.

Let A, B be two rings and letM , N be an (A,B)-bi-module and a (B,A)-
bi-module, respectively. Also, we consider the two bi-linear maps ϕ : M ⊗B

N → A and ψ : N ⊗A M → B that apply to the following properties.

IdM ⊗B ψ = ϕ⊗A IdM , IdN ⊗A ϕ = ψ ⊗B IdN .

For m ∈ M and n ∈ N , we de�ne mn := ϕ(m ⊗ n) and nm := ψ(n ⊗m).

Now the 4-tuple R =

(
A M
N B

)
becomes to an associative ring with obvious

matrix operations that is called a Morita context ring. Denote two-sided
ideals Imϕ and Imψ toMN and NM , respectively, that are called the trace
ideals of the Morita context ring.

The following assertion holds.

Proposition 17. Let R =

(
A M
N B

)
be a Morita context ring such that

MN ⊆ J(A) and NM ⊆ J(B). Then, R is a 2-∆U ring if, and only if, both
A and B are 2-∆U .

Proof. One observes that [28, Lemma 3.1] can be applied to argue that

J(R) =

(
J(A) M
N J(B)

)
, and hence

R

J(R)
∼=

A

J(A)
× B

J(B)
. Thus, the result

follows from Corollary 7 and Proposition 5. □

Now, let R, S be two rings and let M be an (R,S)-bi-module such that
the operation (rm)s = r(ms) is valid for all r ∈ R, m ∈M and s ∈ S. Given
such a bi-module M , we can set

T (R,S,M) =

(
R M
0 S

)
=

{(
r m
0 s

)
: r ∈ R,m ∈M, s ∈ S

}
,
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where it obviously forms a ring with the usual matrix operations. The so-
stated formal matrix T (R,S,M) is called a formal triangular matrix ring.

It is worthy of noticing that, if we set N = 0 in Proposition 17, then we
will obtain the following statement.

Corollary 17. Let R,S be rings and let M be an (R,S)-bi-module. Then,
the formal triangular matrix ring T (R,S,M) is a 2-∆U ring if, and only if,
R and S are both 2-∆U .

Given a ring R and a central element s of R, the 4-tuple

(
R R
R R

)
becomes

a ring with addition component-wise and with multiplication de�ned by(
a1 x1
y1 b1

)(
a2 x2
y2 b2

)
=

(
a1a2 + sx1y2 a1x2 + x1b2
y1a2 + b1y2 sy1x2 + b1b2

)
.

This ring is denoted by Ks(R). A Morita context

(
A M
N B

)
with A = B =

M = N = R is called a generalized matrix ring over R. It was observed
by Krylov in [19] that a ring S is generalized matrix over R if, and only if,
S = Ks(R) for some s ∈ C(R). Here MN = NM = sR, so that MN ⊆
J(A) ⇐⇒ s ∈ J(R) and NM ⊆ J(B) ⇐⇒ s ∈ J(R).

We can now extract the following.

Corollary 18. Let R be a ring and s ∈ C(R) ∩ J(R). Then, Ks(R) is a
2-∆U ring if, and only if, R is 2-∆U .

Following Tang and Zhou (cf. [27]), for n ≥ 2 and for s ∈ C(R), the n×n
formal matrix ring over R de�ned by s, and designated by Mn(R; s), is the
set of all n × n matrices over R with usual addition of matrices and with
multiplication de�ned below:

For (aij) and (bij) in Mn(R; s),

(aij)(bij) = (cij), where (cij) =
∑

sδikjaikbkj .

Here, δijk = 1 + δik − δij − δjk, where δjk, δij , δik are the Kronecker delta
symbols.

We now manage to prove the following.

Corollary 19. Let R be a ring and s ∈ C(R) ∩ J(R). Then, Mn(R; s) is a
2-∆U ring if, and only if, R is 2-∆U .

Proof. If n = 1, then Mn(R; s) = R. So, in this situation, there is nothing
to establish. That is why, suppose n = 2. Using the de�nition of Mn(R; s),
we have M2(R; s) ∼= Ks2(R). Evidently, s

2 ∈ J(R) ∩ C(R), so the assertion
is true for n = 2 taking into account Corollary 18.

To proceed by induction, assume now that n > 2 and that the claim holds
for Mn−1(R; s). Set A := Mn−1(R; s). Then, one inspects that Mn(R; s) =
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A M
N R

)
is a Morita context, where

M =

 M1n
...

Mn−1,n

 and N = (Mn1 . . .Mn,n−1)

with Min =Mni = R for all i = 1, . . . , n− 1, and

ψ : N ⊗M → N, n⊗m 7→ snm

ϕ :M ⊗N →M, m⊗ n 7→ smn.

Moreover, for x =

 x1n
...

xn−1,n

 ∈ M and y = (yn1 . . . yn,n−1) ∈ N , we may

write

xy =


s2x1nyn1 sx1nyn2 . . . sx1nyn,n−1

sx2nyn1 s2x2nyn2 . . . sx2nyn,n−1
...

...
. . .

...
sxn−1,nyn1 sxn−1,nyn2 . . . s2xn−1,nyn,n−1

 ∈ sA

as well as

yx = s2yn1x1n + s2yn2x2n + · · ·+ s2yn,n−1xn−1,n ∈ s2R.

Since s ∈ J(R), we observe that MN ⊆ J(A) and NM ⊆ J(A). So, we
receive that

Mn(R; s)

J(Mn(R; s))
∼=

A

J(A)
× R

J(R)
.

Finally, the induction hypothesis along with Proposition 17 yield the desired
conclusion after all. □

A Morita context

(
A M
N B

)
is called trivial, if the context products are

trivial, i.e., MN = 0 and NM = 0. We now see that(
A M
N B

)
∼= T(A×B,M ⊕N),

where

(
A M
N B

)
is a trivial Morita context bearing in mind [13].

We, thus, obtain the following.

Corollary 20. The trivial Morita context

(
A M
N B

)
is a 2-∆U ring if, and

only if, A and B are both 2-∆U .



424 O. HASANZADEH, A. MOUSSAVI, AND P. DANCHEV

Proof. It is plainly seen that the isomorphisms(
A M
N B

)
∼= T(A×B,M ⊕N) ∼=

(
A×B M ⊕N

0 A×B

)
hold. Then, the rest of the proof follows by a combination of Propositions
16(i) and 5. □

We shall now deal with group rings of 2-∆U rings as follows.

As usual, for an arbitrary ring R and an arbitrary group G, the symbol RG
stands for the group ring ofG overR. Standardly, ε(RG) denotes the kernel of

the classical augmentation map ε : RG→ R, de�ned by ε(
∑
g∈G

agg) =
∑
g∈G

ag,

and this ideal is called the augmentation ideal of RG.
Besides, a group G is called a p-group if every element of G has order

which is a power of the prime number p. Moreover, a group G is said to be
locally �nite if every �nitely generated subgroup is �nite.

We begin our work with two preliminary technicalities.

Lemma 2. [28, Lemma 2]. Let p be a prime with p ∈ J(R). If G is a locally
�nite p-group, then ε(RG) ⊆ J(RG).

Proposition 18. (i) If RG is a 2-∆U ring, then R is also a 2-∆U ring.
(ii) If R is a 2-∆U ring and G is a locally �nite p-group, where p is a

prime number such that p ∈ J(R), then RG is a 2-∆U ring.

Proof. (i) Assume u ∈ U(R), then u ∈ U(RG). Thus, u2 = 1 + r, where
r ∈ ∆(RG). Since r = 1 − u2 ∈ R, it su�ces to verify that r ∈ ∆(R),
which is pretty obvious as, for any v ∈ U(R) ⊆ U(RG), we see that v − r ∈
U(RG) ∩R ⊆ U(R). Therefore, r ∈ ∆(R).

(ii) Obviously, Lemma 2 gives us that ε(RG) ⊆ J(RG). However, since
RG/ε(RG) ∼= R, Theorem 9 applies to conclude that RG is a 2-∆U ring. □

The following reversed implication is somewhat slightly curious.

Proposition 19. If RG is a 2-∆U ring with 2 ∈ ∆(RG), then G is a 2-
group.

Proof. We �rst consider two claims:

Claim 1: Every element g ∈ G has a �nite order.

Assume the contrary, namely that there exists g ∈ G with in�nite order.
Since RG is a 2-∆U ring, we have 1 − g2 ∈ ∆(RG). Given 2 ∈ ∆(RG), we
then can write 1 + g2 ∈ ∆(RG), ensuring 1 + g + g2 ∈ U(RG). Therefore,
there exist integers n < m and elements ai with an ̸= 0 ̸= am such that

(1 + g + g2)

m∑
n

aig
i = 1.

This, however, leads to a contradiction, and thus every element g ∈ G must
have �nite order, as expected.



2-∆U RINGS 425

Claim 2: For any g ∈ G and k ∈ N, we have
∑2k

i=0 g
i ∈ U(RG).

We will show this only for k = 1, 2, because the general claim follows in a
way of similarity.

For k = 1 and any g ∈ G, we have 1− g2 ∈ ∆(RG). Since 2 ∈ ∆(RG), we
then can write 1 + g2 ∈ ∆(RG) and hence 1 + g + g2 ∈ U(RG).

For k = 2 and any g ∈ G, observing that g, g2 ∈ U(RG), we get 1 −
g2 ∈ ∆(RG) and hence 1 + g2 ∈ ∆(RG). Thus, g + g3 ∈ ∆(RG). But,
1− g4 ∈ ∆(RG) and, therefore, 1 + g4 ∈ ∆(RG).

Furthermore, since ∆(RG) is closed under addition, it follows that

2 + g + g2 + g3 + g4 ∈ ∆(RG),

assuring that

g + g2 + g3 + g4 ∈ ∆(RG)

and so

1 + g + g2 + g3 + g4 ∈ U(RG).

Continuing this process, we can show that
∑2k

i=0 g
i ∈ U(RG), as claimed.

If now g ∈ G has an order p that does not divide 2, then p has to be odd,

whence p− 1 = 2k. Consequently, by what we have shown above
∑2k

i=0 g
i ∈

U(RG), and since (1 − g)(
∑2k

i=0 g
i) = 0, we deduce 1 − g = 0, which is a

contradiction. Thus, G must be a 2-group, as stated. □

5 Open Questions

We �nish our work with the following four questions which allude us.

A ring R is called UQ if U(R) = 1 +QN(R) (see [8]).

Problem 1. Examine those rings R whose for each u ∈ U(R), u2 = 1 + q
where q ∈ QN(R) (i.e., 2-UQ rings).

Problem 2. Characterize regular (or semi-regular) 2-UQ rings.

A ring R is called UNJ if U(R) = 1 +Nil(R) + J(R) (see [16]).

Problem 3. Examine those rings R whose for each u ∈ U(R), u2 = 1+n+j,
where n ∈ Nil(R) and j ∈ J(R) (i.e., 2-UNJ rings).

Problem 4. Characterize regular (or semi-regular) 2-UNJ rings.
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