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Abstract: Fari�nas del Cerro, Herzig and Su proved that the non-
monotonic consequence relation determined by Answer Set Seman-
tics (ASP) for logic programs with negation-as-failure can be em-
bedded into a monotonic modal logic via a variation of G�odel-
Tarski Translation. This article generalizes the mentioned result to
ASP for logic programs with two kinds of negation: negation-as-
failure and strong negation and to PAS, the paraconsistent version
of ASP admitting answer sets that are inconsistent w.r.t. the strong
negation.

Keywords: logic programs, negation-as-failure, strong negation,
equilibrium logic, deductive base, temporal logic, equilibrium mo-
dal theory.

The stable model (answer set) semantics for logic programs with negation-
as-failure ¬ suggested by M. Gelfond and V. Lifschitz [7] gives rise to a
separate paradigm in the setting of Logic Programming, so called Answer
Set Programming (ASP). An important fact was established by D. Pearce
[19], who proved that the intermediate logic HT of �here-and-there�, which
is known also as the G�odel-Smetanich logic and can be determined by a
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Kripke frame with two worlds, can serve as a tool for reasoning about answer
sets. The main property involved is that answer sets can be viewed as a
certain kind of minimal HT -models, which are called equilibrium models.
The same holds for logic programs in the extended language, which includes
not only the negation-as-failure ¬, but also the strong negation ∼ (which
was originally introduced in Logic Programming under the name of classical
negation [8]). In this case [19] answer sets are in one-to one correspondence
with equilibrium N5-models, where N5 can be considered as HT enriched
with the strong negation. More exactly, N5 is a �nite-valued extension of the
explosive Nelson logic N3, which can be determined via a 5-element algebra.
On the other hand,N5 is the least conservative extension ofHT in the lattice
of N3-extensions. The logic N3 is based on the concept of constructible
falsity, which was introduced into logic by D. Nelson [13] via his system of
constructive arithmetic with strong negation. The propositional fragment of
Nelson's arithmetic, which is denoted now as N3, was subsequently axioma-
tised by N. Vorob'ev [24, 25].

A second key property relating non-classical logics with ASP was estab-
lished in [10]: programs are strongly equivalent wrt answer set semantics
if and only if they are equivalent viewed as propositional theories in HT
(in N5 if ∼ occurs in the language). Here, two programs Π1 and Π2 are
called strongly equivalent if for any program Π, Π1 ∪ Π and Π2 ∪ Π have
the same answer sets. This shows that HT and N5 can be used for program
transformation and optimisation.

Paraconsistent version of answer set semantics (PAS) admits answer sets
that are inconsistent w.r.t. the stong negation. PAS was studied as a logic
programming semantics by C. Sakama and K. Inoue [21]. Later, the work [1]
has made some progress towards a logical, declarative style of characterization
for PAS. However, [1] does not axiomatize or otherwise syntactically charac-
terize the underlying (monotonic) logic of PAS. In [16], it was proved that
semantical frames for the substructural logics used in [1] can be reduced to a
simpler Routley frames [20] with additional falsity constant. This provides a
description of paraconsistent answer sets as a special kind of minimal Routley
models. It is proved in [16] that these Routley models determine an extension
of the paraconsistent Nelson logic N4⊥[14]. This extension was denoted N9

due to the reason that it can be determined via a 9-element algebra. Again,
N9 is the least conservative extension of HT in the class of N4⊥-extensions.
Finally, the strong equivalence theorem was proved [16]: two programs are
strongly equivalent i� they are equivalent as N9-theories.

The next step towards the declarative treatment of ASP was done by
L. Fari�nas del Cerro, A. Herzig and E. Su [5]. They proved that the non-
monotonic consequence relation determined by Answer Set Semantics (ASP)
for logic programs with negation-as-failure can be embedded into a monotonic
modal logic MEM via a variation of G�odel-Tarski Translation [9]. This
article generalizes the mentioned result to the ordinary and paraconsistent
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versions of ASP for logic programs with two kinds of negation: negation-as-
failure and strong negation. To this end we need the possibility to embed
the constructive logic with strong negation into a suitable modal logic.

Belnapian version of normal modal logic BS4 [17] relates to S4 in exacly
the same way as the logic N4⊥ relates to intuitionistic logic. Its semantics
can be obtained from that of S4 via replacement of two-valued valuations
by four valued ones. In each of possible worlds a formula may have one
of four truth values True, False, Neither, Both of Belnap-Dunn matrix
BD4 [2], which provide a semantics for First Degree Entailment FDE [4].
In [17] it was proved that N4⊥ is faithfully embedded into the logic BS4 via
the translation TB, a natural modi�cation of G�odel-Tarski translation. This
result shows that modal companions of Nelson's logic extensions de�ned via
TB belong to the lattice of BS4-extensions (see [23] for details). So logics
based on BS4-extensions looks suitable for the goals of this article.

In our reasoning we will essentailly follow the line depicted in [5], but
we make one serious modi�cation. Following [6] we understand a logic as
a structural Tarskian consequence relation de�ned over some propositional
language. According to this de�nition MEM of [5] is rather a theory than
a logic because it is not closed under substitutions. In our work we try
maximally distinguish `logical' and `theoretical' parts of construction. First
we de�ne a kind of Belnapian temporal logic BSKt2 and proof that the
Belnapian version TB of G�odel-Tarski translation faithfully embeds the logic
N9 (the deductive base of PAS) into BSKt2, and the same holds for N5 and
the explosive version of BSKt2. Further, we de�ne theories over BSKt2 and
its explosive extension and prove that equilibrium entailments over N9 and
N5 can be embedded into this theories.

The paper is structured as follows. Section 1 contains neccessary informa-
tion on contsructive logics, Belnapian modal logics and semantics of logic
programs with negations. In Section 2 we de�ne a special temporal logic
BSKt such that future and past modalities of BSKt are de�ned via accessi-
bility relations that are not mutually inverse. We introduce also the logic
BSKt2 that extendsBSKt imposing further restrictions on both accessibility
relations. Section 3 investigates the ■-free fragment of BSKt2 (■ stands for
the necessity in the past). We prove that this fragment of BSKt2 is a modal
companion of the deductive base of the equilibrium entailment. Finally, in
Section 4 we embed the equilibrium entailment into BSKt2.

1 Preliminaries

As usual by a propositional language L we mean a �nite tuple of logical
connectives and constants. The set FormL of L-formulas is constructed in
a usual way from the �xed countable set Prop of propositional variables
and the constants of L with the help of L-connectives. The languages we
consider will include the implication connective →. We will de�ne logics in
di�erent propositional languages via Hilbert style deductive systems. And
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we assume that every deductive system under consideration includes the
standard axioms of intuitionistic logic Int in the list of its axioms and the
rules of modus ponens (MP) and of substitution (SUB)

(MP)
φ,φ→ ψ

ψ
, SUB

φ(p1, . . . , pn)

φ(ψ1, . . . , ψn)

in the set of its inference rules. With every logic L de�ned in the language L
we associate the inference relation ⊢L. For a subset Γ∪{φ} ⊆ FormL, Γ ⊢L φ
means that φ can be obtained from the elements of Γ and the theorems of L
with the help of (MP). Recall that a theorem of L is a formula, which can be
inferred from the axioms of L with the help of all inference rules, not only
(MP). We write φ ∈ L instead of `φ is a theorem of L'.

For a logic L in the language L, we denote by EL the family of all axiomatic
extensions of L in the same language.

If Li is a logic in the language Li, i = 1, 2, L1 ∪ L2 denotes a logic in the
language L1∪L2 de�ned by the union of axioms of L1 and L2 and the union
of rules of these logics.

A proper subset Γ ⊆ FormL is said to be a prime L-theory if (i) Γ contains
all L-theorems; (ii) Γ is closed under (MP) (φ, φ → ψ ∈ Γ implies ψ ∈ Γ);
(iii) Γ satis�es the disjunction property (φ∨ψ ∈ Γ implies φ ∈ Γ or ψ ∈ Γ).
Notice that the axioms of Int and (MP) allow to prove in a standard way
the Extension Lemma for every logic L considered in the article.

Lemma 1. Let Γ ̸⊢L φ. Then there exists a prime L-theory Σ such that
Γ ⊆ Σ and Σ ̸⊢L φ.

1.1. Constructive logics with strong negation. The paraconsistent

versionN4⊥ [14] of Nelson's constructive logic with strong negation is de�ned
in the propositional language L∼ including the absurdity constant ⊥ and
logical connectives ∧, ∨,→,∼, standing respectively for conjunction, disjunc-
tion, weak implication and strong negation. The set Lit∼ of literals is de�ned
as Prop ∪ {∼p | p ∈ Prop}. Arbitrary S ⊆ Lit∼ can be represented as
S = (S+,S−), where

S+ = S ∩ Prop and S− = {p | ∼p ∈ S}
We say that S is consistent if S+ ∩ S− = ∅.

The Hilbert style deductive system for N4⊥ has (SUB) and (MP) as
its only inference rules. The axioms include the standard list of axioms of
intuitionistic logic in the language {∧,∨,→,⊥}:

I1. p→ (q → p) I2. (p ∧ q)→ p
I3. (p→ (q → γ))→ ((p→ q)→ (p→ γ)) I4. (p ∧ q)→ q
I5. (p→ q)→ ((p→ γ)→ (p→ (q ∧ γ))) I6. p→ (p ∨ q)
I7. (p→ γ)→ ((q → γ)→ ((p ∨ q)→ γ)) I8. q → (p ∨ q)
I9. ⊥ → p

plus the following strong negation axioms (where α ↔ β is an abbreviation
for (α→ β) ∧ (β → α)):
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N1. ∼ (p→ q)↔ (p ∧ ∼q) N2. ∼(p ∧ q)↔ (∼p ∨ ∼q)
N3. ∼(p ∨ q)↔ (∼p ∧ ∼q) N4. ∼∼p↔ p
N5. ∼⊥

The explosive logic N3⊥ is obtained via adding (p ∧ ∼p) → q to the list
of N4⊥-axioms, symbolically N3⊥ = N4⊥ + {(p ∧ ∼p) → q}. Notice that
intuitionistic logic Int coincides with the ∼-free fragment of both logics,
N4⊥ and N3⊥.

Kripke style semantics for Nelson's Logics is de�ned as follows. We say
that a pair W = ⟨W,≤⟩ is a frame if ≤ is a preorder on W , i.e., a re�exive
and transitive relation. An N4⊥-model (4-model over frame W) is a tuple
M = ⟨W, v+, v−⟩, where W is a frame and valuations v+, v− : Prop →
⟨W,≤⟩+ are such that for x, y ∈W , p ∈ Prop, and ϵ ∈ {+,−} we have

(x ∈ vϵ(p) and x ≤ y) implies y ∈ vϵ(p). (1)

In other words, both v+(p) and v−(p) are cones w.r.t. ≤.
An N4⊥-model M = ⟨W, v+, v−⟩ is said to be an N3⊥-model (3-model

over W) if
v+(p) ∩ v−(p) = ∅ for all p ∈ Prop. (2)

Now we de�ne two di�erent relations |=+ and |=− for veri�cation and falsi�-
cation of formulas in worlds of the model. Naturally, we use v+ and v− to
de�ne veri�cation and falsi�cation of propositional variables:

M, x |=+ p ⇔ x ∈ v+(p) ; M, x |=− p ⇔ x ∈ v−(p)
Veri�cation and falsi�cation of complex formulas are de�ned as follows:

M, x ⊨+ α ∧ β i� M, x ⊨+ α andM, x ⊨+ β
M, x ⊨− α ∧ β i� M, x ⊨− α orM, x ⊨− β

M, x ⊨+ α ∨ β i� M, x ⊨+ α orM, x ⊨+ β
M, x ⊨− α ∨ β i� M, x ⊨− α andM, x ⊨− β

M, x ⊨+ α→ β i� ∀y ≥ x (M, y ⊭+ α orM, y ⊨+ β)
M, x ⊨− α→ β i� M, x ⊨+ α andM, x ⊨− β

M, x ⊭+ ⊥ and M, x ⊨− ⊥
M, x ⊨+∼ α i� M, x ⊨− α
M, x ⊨−∼ α i� M, x ⊨+ α

The persistence condition (1) can be generalized to arbitrary formulas, i.e.,
for every φ ∈ FormL∼ and ϵ ∈ {+,−} we have

(M, x |=ϵ φ and x ≤ y) impliesM, y |=ϵ φ. (3)

IfM is an N3⊥-model, the consistency condition (2) also can be genera-
lized to arbitrary formulas, i.e., for any φ and x we have

M, x ̸|=+ φ or M, x ̸|=− φ. (4)

We say that φ is true onM and writeM |= φ ifM, x |=+ φ for all x ∈W .
We write W |=4 φ if φ is true on every 4-model over W, and W |=3 φ if
M |= φ for every 3-modelM overW. For Γ ⊆ FormL∼ and a world x ofM,
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we write M |= Γ (M, x |=ϵ Γ, ϵ ∈ {+,−}) if M |= φ (M, x |=ϵ φ) for all
φ ∈ Γ. IfM |= Γ, we say thatM is a model of Γ. In a similar way, we write
W |=ϵ Γ and say that W is an ϵ-model of Γ, where ϵ ∈ {3, 4}, if W |=ϵ φ
for all φ ∈ Γ. Finally, we write Γ |=M φ if for every world x ofM we have
M, x |= φ, wheneverM, x |= Γ.

For L ∈ EN4⊥ and a class of frames K we say that

• L is weakly 3-complete (4-complete) w.r.t. K if for every φ ∈ FormL∼

φ ∈ L i� M |= φ for every 3-model (4-model)M over W ∈ K.

• L is strongly 3-complete (4-complete) w.r.t. K if for every Γ ⊆ FormL∼

and φ ∈ FormL∼ we have

Γ ⊢L φ i� Γ |=M φ for every 3-model (4-model)M over W ∈ K.

Obviously, the strong 4- or 3-completeness implies the weak 4- or 3-
completeness w.r.t. the same class of frames.

The following characterization of N4⊥ [11] and N3⊥ [22] is well known:

• N4⊥ is strongly 4-complete w.r.t. the class of all frames;
• N3⊥ is strongly 3-complete w.r.t. the class of all frames.

Recall that HT = Int+ {p∨ (p→ q)∨¬q}, where ¬q abbreviates q → ⊥,
is the greatest extension of Int di�erent from the classical logic CL. HT is
known as G�odel-Smetanich logic or "hear-and-there" logic. We are interested
in N4⊥- and N3⊥-extensions via the same axiom:

N9 = N4⊥ + {p ∨ (p→ q) ∨ ¬q} and N5 = N3⊥ + {p ∨ (p→ q) ∨ ¬q}.

Both logics N9 and N5 are determined by the same two-element partially
ordered frame WHT = ⟨WHT ,≤⟩, where WHT = {h, t} and h ≤ t. More
exactly, we have:

• N9 is strongly 4-complete w.r.t. the class {WHT };
• N5 is strongly 3-complete w.r.t. the class {WHT }.

The choice of notation N9 and N5 is conditioned by the facts that N9 can
be determined by a 9-element algebra [16], and N5 by a 5-element algebra
[19].

Since we have only two worlds, an N9-modelM (overWHT ) is completely
determined by sets of literals veri�ed in the worlds h and t, so it can be
identi�ed with a pair ⟨H,T⟩, where H,T ⊆ Lit∼ and

H+ = {p | M, h |=+ p}, H− = {p | M, h |=− p},

T+ = {p | M, t |=+ p}, T− = {p | M, t |=− p}.
In view of (1) we have H ⊆ T. IfM is an N5-model, the pair ⟨H,T⟩ satis�es
additionally the condition that H and T are consistent.

Further, we put

B4 = N4⊥ + {p ∨ ¬p} and B3 = N3⊥ + {p ∨ ¬p}.
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These logics can be considered as expansions of four- and three-valued Belnap-
Dunn logics (see [15] and [12] for details) via connectives → and ⊥. They
are characterized by a one-element frame WT = ⟨{t},≤⟩:

• B4 is strongly 4-complete w.r.t. the class {WT };
• B3 is strongly 3-complete w.r.t. the class {WT }.

Naturally, every B4-model M (over WT ) can be identi�ed with the set T
of literals veri�ed at t, i.e.

T+ = {p | M, h |=+ p}, T− = {p | M, h |=− p},

IfM is a B3-model, then T must be consistent.

1.2. Belnapian modal logics. The Belnapian versions BK and BS4
of normal modal logics K and, respectively, S4 were de�ned in [17]. We
de�ne BK in the language L□ = L∼ ∪ {□} as it was done in [18]. The
possibility operator is de�ned as ♢φ := ∼□∼φ. We also need the following
abbreviations: ¬φ := φ→ ⊥, φ⇔ ψ := (φ↔ ψ) ∧ (∼φ↔ ∼ψ). The list of
axioms of BK includes the following groups of axioms:

I. The axioms of classical logic in the language {∧,∨,→,⊥}.
II. The strong negation axioms of N4⊥ plus

¬∼□p↔ □¬∼p

III. The modal axiom of K: □(p→ q)→ (□p→ □q)

The list of inference rules includes (SUB), (MP) and the normalization
rule (NR□):

φ

□φ
The following formulas are BK-theorems:

¬□p↔ ♢¬p, ¬♢p↔ □¬p, ♢(p ∧ q)→ (♢p ∧ ♢q) (5)

Logic BS4 is an extension of BK obtained via adding the modal axioms
of S4, i.e.,

BS4 = BK+ {□p→ p, □p→ □□p}.
The explosive extensions of BK and BS4 are de�ned as follows:

B3K = BK+ {(p ∧ ∼p)→ q}, B3S4 = BS4+ {(p ∧ ∼p)→ q}

To de�ne Kripke style semantics for BK we use the same frames as for
K. Namely, we say that a pair W = ⟨W,R⟩ is an K-frame if R is a binary
relation on W . A BK-model (4-model over W) is a tupleM = ⟨W, v+, v−⟩,
where v+, v− : Prop→ 2W .

An S4-frameW = ⟨W,R⟩ is aK-frame, where R is preorder. ABS4-model
is a BK-model over an S4-frame.

A B3K-modelM = ⟨W, v+, v−⟩ (3-model over W) is a BK-model satis-
fying the consistency condition (2). A B3S4-model M = ⟨W, v+, v−⟩ is a
B3K-model over an S4-frame.
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The veri�cation |=+ and falsi�cation |=− relations between worlds and
formulas are de�ned in exactly the same way as for N4⊥-models in case of
propositional variables, constant ⊥, and connectives ∨, ∧, ∼. For → and □
we have:

M, x ⊨+ α→ β i� M, x ⊭+ α orM, x ⊨+ β
M, x ⊨− α→ β i� M, x ⊨+ α andM, x ⊨− β

M, x ⊨+ □α i� ∀y(xRy impliesM, y ⊨+ α)
M, x ⊨− □α i� ∃y(xRy andM, y ⊨− α)

It is easy to see that for possibility operator we have then:

M, x ⊨+ ♢α i� ∃y(xRy andM, y ⊨+ α)
M, x ⊨− ♢α i� ∀y(xRy impliesM, y ⊨− α)

Again for a B3K-modelM the consistency condition (2) can be generali-
zed to arbitrary formulas, i.e. M, x ̸|=+ φ or M, x ̸|=− φ for any φ and
x.

The truth of a formulas in a BK-model is de�ned via the veri�cation
relation, i.e., M |= φ means that M, x |=+ φ for all x ∈ W . For a K-
frame W we write W |=4 φ if M |= φ for every 4-model M over W, and
W |=3 φ ifM |= φ for every 3-modelM overW. For Γ∪{φ} ⊆ FormL□ , the
relationsM |= Γ, Γ |=M φ, W |=4 Γ, and W |=3 Γ are de�ned in an obvious
way. For L ∈ EBK and a class of BK-frames K, the sense of expressions
`L is weakly 4-complete (3-complete) w.r.t. the class K' and `L is strongly
4-complete (3-complete) w.r.t. the class K' is de�ned in exactly the same way
as for N4⊥-extensions.

If W = ⟨W,R⟩ is an S4-frame, M = ⟨W, v+, v−⟩ is a 4-model over W ,
and K ⊆W is a cone w.r.t. R (x ∈ K and xRy imply y ∈ K), then

WK := ⟨K,R ∩K2⟩, MK = ⟨WK , v+K , v
−
K⟩,

where v+K(p) = v+(p) ∩ K and v−K(p) = v−(p) ∩ K. For any x ∈ K, φ ∈
FormL□ , and ϵ ∈ {+,−} we have

M, x |=ϵ φ i� MK , x |=ϵ φ (6)

In [17] the following results were proved:

• BK is strongly 4-complete w.r.t. the class of all K-frames;
• B3K is strongly 3-complete w.r.t. the class of all K-frames;
• BS4 is strongly 4-complete w.r.t. the class of all S4-frames;
• B3S4 is strongly 3-complete w.r.t. the class of all S4-frames.

Moreover, it was proved in [17] thatN4⊥ andN3⊥ are faithfully embedded
into BS4 and, respectively, into B3S4 via an analog TB of the G�odel-
Tarski translation that embeds Int into S4. The translation TB : FormL∼ →
FormL□ is de�ned as follows:
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TBp = □p

TB(φ ∨ ψ) = TBφ ∨ TBψ
TB(φ ∧ ψ) = TBφ ∧ TBψ
TB(φ→ ψ) = □(TBφ→ TBψ)

TB⊥ = ⊥

TB∼p = □∼p
TB∼(φ ∨ ψ) = TB∼φ ∧ TB∼ψ
TB∼(φ ∧ ψ) = TB∼φ ∨ TB∼ψ
TB∼(φ→ ψ) = TBφ ∧ TB∼ψ

TB∼∼φ = TBφ

TB∼⊥ = ∼⊥

A logic M ∈ EBS4 is said to be a modal companion of L ∈ EN4⊥ if TB
faithfully embeds L into M , i.e.

φ ∈ L i� TBφ ∈M

for all φ ∈ FormL∼ . According to this de�nition BS4 is a modal companion
of N4⊥, and B3S4 is a modal companion of N3⊥.

LetM = ⟨W,R, v+, v−⟩ be a BS4-model. De�ne the new valuations

v′+(p) = {w ∈W | M, w |=+ □p} and v′−(p) = {w ∈W | M, w |=+ □∼p}.

It is obvious thatM′ = ⟨W,R, v′+, v′−⟩ is an N4⊥-model too.

Lemma 2. [17] Let M = ⟨W,R, v+, v−⟩ be a BS4-model, x ∈ W , and
φ ∈ FormL∼ . Then

M′, x |=+ φ ⇔ M, x |=+ TBφ.

This simple fact allows to prove (see [17]) that BS4 is a modal companion
of N4⊥, and B3S4 is a modal companion of N3⊥.

1.3. Logic programming preliminaries. .
By a logic program Π we mean a set of rules of the form

(r) α1 ∨ . . . ∨ αk ← β1 ∧ . . . ∧ βn ∧ ¬βn+1 ∧ . . . ∧ ¬βn+m,

where αi, βj ∈ Lit∼. We say that logic program Π is normal if k = 1 for all
rules in Π, and that Π is positive (w.r.t. ¬) if m = 0 for all rules in Π.

Thus, the programs under consideration may contain two kinds of negation:
the default negation, or negation-as-failure, denoted as ¬ (usually written as
`not') and the strong or explicit negation [8] that may occur in αi and βj . In
what follows we will identify a rule of the form (r) with a formula

(β1 ∧ . . . ∧ βn ∧ ¬βn+1 ∧ . . . ∧ ¬βn+m) → (α1 ∨ . . . ∨ αk) ∈ FormL∼ ,

where ¬βj is understood as βj → ⊥. A set H ⊆ Lit∼ is a model of a logic
program Π if H is a B4-model of the set of all formulas corresponding to
the rules of Π.

Now we recall the de�nition of stable models. Notice that originally Gel-
fond and Lifschitz [7] de�ned stable models for positive normal programs.

Let Π be a logic program and T ⊆ Lit∼. The Gelfond-Lifschitz reduct
(GL-reduct) of Π w.r.t. T is a positive program obtained from Π in two
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steps. First, we exclude from Π all rules containing ¬βi for βi ∈ T. Second,
we delete all conjunctive terms of the form ¬βi from the rest of rules.

We say that T ⊆ Lit∼ is a stable model of Π if T |= ΠT, and H |= ΠT

for H ⊆ T implies H = T. In other words, T is a minimal w.r.t. inclusion
B4-model of ΠT.

Now we de�ne the relation ⊴ among N9-models as follows. Let ⟨H1,T1⟩
and ⟨H2,T2⟩ be N9-models. We set

⟨H1,T1⟩⊴ ⟨H2,T2⟩ i� T1 = T2 and H1 ⊆ H2.

An N9-model of the form ⟨T,T⟩ is called total.
For an arbitrary subset Γ ⊆ FormL∼ , a total model ⟨T,T⟩ is said to be

an equilibrium model of Γ if ⟨T,T⟩ |= Γ and there is no H ⊆ Lit∼ such that
H ̸= T and ⟨H,T⟩ |= Γ. In other words an equilibrium model of Γ is a total
model of Γ, which is ⊴-minimal in the class of N9-models of Γ.

For logic programs, there is a close connection between stable and equilib-
rium models.

Theorem 1. [16] For a logic program Π, a set T ⊆ Lit∼ is a stable model
of Π i� ⟨T,T⟩ is an equilibrium model of Π.

Originally [16] this statement was proved via the reduction to the results
of [1], a short direct proof can be found in [12].

In what follows, El9(Γ) denotes the set of all equilibrium models of Γ, and
El5(Γ) denotes the set of all consistent equilibrium models of Γ, i.e. the set
of those equilibrium models of Γ that are N5-models. We de�ne equilibrium
consequence relations as follows:

Γ |∼9
el φ i� ⟨H,T⟩ ⊨ φ for every⟨H,T⟩ ∈ E l9(Γ).

Γ |∼5
el φ i� ⟨H,T⟩ ⊨ φ for every⟨H,T⟩ ∈ E l5(Γ).

2 Special temporal logic

Similar to [5] we de�ne a special temporal logic, where the future (□, ♢)
and past (■, ♦) modalities are de�ned via accessibility relations that are not
mutually inverse, but however are closely connected. Prior to do it we recall
the de�nition of a fusion of modal logics, and of the temporary version of
BS4 de�ned in [17].

Let L■ := L∼ ∪ {■}, Lt := L□ ∪ {■}, and ♦φ := ∼■∼φ.
For L ∈ EBK, we denote by L■ the logic in the language L■ de�ned

via the same axioms and rules as L but with □ replaced by ■. Clearly,
L■ ∈ EBK■.

For L1, L2 ∈ EBK, we put L1 ∗ L2 := L1 ∪ L2
■. We say that L1 ∗ L2 is a

fusion of logics L1 and L2.
The temporal version BS4t of BS4 was de�ned in [17] as

BS4t = BS4 ∗BS4+ {p→ □♦p, p→ ■♢p}.
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Frames and models are de�ned for BS4t in the same way as for BS4. For
connectives of L□, the veri�cation and falsi�cation also are de�ned as for
S4-frames. For ■ we have:

M, x ⊨+ ■α i� ∀y(yRx impliesM, y ⊨+ α)
M, x ⊨− ■α i� ∃y(yRx andM, y ⊨− α)

As a consequence for ♦ we have:

M, x ⊨+ ♦α i� ∃y(yRx andM, y ⊨+ α)
M, x ⊨− ♦α i� ∀y(yRx impliesM, y ⊨− α)

All related notions are modi�ed for the language Lt in an obvious way.
Naturally, BS4t is strongly 4-complete w.r.t. the class of all S4-frames, and
B3S4t = B3S4t + {(p ∧∼p)→ q} is strongly 3-complete w.r.t. the class of
all S4-frames.

Further, let us consider the fusion

BSK = BS4 ∗BK

and its explosive extension B3SK = BSK+ {(p ∧ ∼p)→ q}.
A BSK-frame is a tuple W = ⟨W,R, S⟩, where R is a preoder on W and

S ⊆ W 2. A BSK-model M = ⟨W, v+, v−⟩ is a BSK-frame W augmented
with two valuations v+, v− : Prop → 2W . One can combine in an obvious
way the completeness results for BS4, BK and their explosive extensions
from [17] to obtain the following

Theorem 2. Logic BSK (B3SK) is strongly 4-complete (3-complete) w.r.t.
the class of BSK-frames.

We denote by idW the diagonal of W , i.e., idW = {(a, a) | a ∈W}.

Proposition 1. Let W = ⟨W,R, S⟩ be a BSK-frame and ϵ ∈ {3, 4}. The
following equivalences hold:

1) W |=ϵ p→ ■♢p i� S ⊆ R−1;
2) W |=ϵ p→ □(p ∨ ♦p) i� R ⊆ S−1 ∪ idW .

Proof. We �x some BSK-frame W = ⟨W,R, S⟩.
1) This is one of standard axioms of temporal logic, and since ∼ does

not occur in this formula the three- or four-valued case should not di�er
from the ordinary one. However we provide this proof to be self contained.
Let S ⊆ R−1, and let M = ⟨W, v+, v−⟩ be a model over W. Assume that
M, x |=+ p and choose some y with xSy. We have then yRx by S ⊆ R−1, and
soM, y |=+ ♢p. Since y is an arbitrary S-successor of x, we haveM, x |=+

■♢p. We have thus proved that S ⊆ R−1 implies W |=4 p → ■♢p and, in
particular, W |=3 p→ ■♢p.

To prove the inverse implication we assume that S ̸⊆ R−1 and x, y ∈W are
such that xSy but ¬(yRx). LetM = ⟨W, v+, v−⟩ be such that v+(p) = {x}
and v−(q) = ∅ for all q ∈ Prop. Obviously, M is a B3SK-model. In this
case we have M, x |=+ p and M, y ̸|=+ ♢p, whence M, x ̸|=+ ■♢p. Thus,
S ̸⊆ R−1 implies W ̸|=3 p→ ■♢p, moreover, W ̸|=4 p→ ■♢p.
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2) First we assume that R ⊆ S−1∪ idW . LetM = ⟨W, v+, v−⟩ be a model
over W and x, y ∈ W be such that M, x |=+ p and xRy. If x = y, then
M, y |=+ p ∨ ♦p. If x ̸= y, then ySx, and we again have M, y |=+ p ∨ ♦p.
Consequently,M, x |=+ □(p ∨ ♦p). We proved thus W |=4 p → □(p ∨ ♦p),
moreover, W |=3 p→ □(p ∨ ♦p).

Now we assume that R ̸⊆ S−1 ∪ idW and choose x, y ∈W such that xRy,
x ̸= y, and ¬(ySx). As in Item 1 we take a B3SK-modelM = ⟨W, v+, v−⟩
such that v+(p) = {x} and v−(q) = ∅ for all q ∈ Prop. We haveM, x |=+ p.
At the same time the conditions x ̸= y and ¬(ySx) implyM, y ̸|=+ p ∨ ♦p,
whence M, x ̸|=+ □(p ∨ ♦p). Thus, W ̸|=3 p → □(p ∨ ♦p) and W ̸|=4 p →
□(p ∨ ♦p).

□

We de�ne a weak version of BS4t as follows:

BSKt := BSK+ {p→ ■♢p, p→ □(p ∨ ♦p)}.

We put also B3SKt := BSKt + {(p ∧ ∼p)→ q}.
To prove the completeness of BSKt and of its axiomatic extensions via

di�erent classes of frames we will use the canonical model method.
First we notice that every prime L-theory Γ over L ∈ EBSKt is complete

and consistent w.r.t. ¬. Indeed, φ ∨ ¬φ ∈ Γ since BSKt contains axioms
of classical logic in the language {∨,∧,→,⊥}. Consequently, the disjunction
property of Γ implies φ ∈ Γ or ¬φ ∈ Γ. In particular, any two prime L-
theories are incomparable w.r.t. set-theoretical inclusion ⊆, i.e. for prime
L-theories Γ and ∆ we have:

Γ ̸= ∆ implies Γ \∆ ̸= ∅. (7)

If φ,¬φ ∈ Γ, then (φ ∧ ¬φ)→ ψ ∈ Γ implies that Γ = FormLt .
For L ∈ EBSKt, the canonical L-frame is de�ned asWL = ⟨WL, RL, SL⟩,

where

• WL is the set of all prime L-theories;
• ΓRL∆ i� Γ□ ⊆ ∆, where Γ□ = {φ | □φ ∈ Γ};
• ΓSL∆ i� Γ■ ⊆ ∆, where Γ■ = {φ | ■φ ∈ Γ};

The canonical L-model has the formML = ⟨W, v+L , v
−
L ⟩, where

v+L (p) = {Γ ∈W
L | p ∈ Γ} and v−L (p) = {Γ ∈W

L |∼ p ∈ Γ}.

The abbreviations ♢φ := ∼□∼φ and ♦φ := ∼♢∼φ easily imply that

ΓRL∆ i� ∆♢ ⊆ Γ; ΓSL∆ i� ∆♦ ⊆ Γ,

where ∆♢ = {♢φ | φ ∈ ∆} and ∆♦ = {♦φ | φ ∈ ∆}. Further, by induction
on the structure of formulas one can easily prove the canonical model lemma:

Lemma 3. Let L ∈ EBSKt. For every prime L-theory Γ and formula φ,
the following equivalences hold:

ML,Γ |=+ φ i� φ ∈ Γ; ML,Γ |=− φ i� ∼ φ ∈ Γ.
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Theorem 3. Logic BSKt (B3SKt) is strongly 4-complete (3-complete)
w.r.t. the class of BSK-frames ⟨W,R, S⟩ such that

R = S−1 ∪ idW . (8)

Proof. We omit the routine correctness proof and check the completeness.
Let Γ ⊬BSKt φ. By Lemma 1 there is a prime BSKt-theory ∆ with Γ ⊆ ∆
and φ ̸∈ ∆. According to Lemma 3, we have

MBSKt ,∆ |=+ ψ for all ψ ∈ Γ andMBK,∆ ̸|=+ φ.

It remains to check that the canonical BSKt-frameWBSKt is a BSK-frame,
i.e., that the relation RBSKt is re�exive and transitive, and that

RBSKt = (SBSKt)−1 ∪ idWBSKt . (9)

As well as in case of normal modal logics (see [3, Theorem 5.16]) we can we
can check that the axiom □p→ p implies that RBSKt is re�exive, and that
□p→ □□p implies that RBSKt is transitive.

Let us check (9). For brevity we will omit the upper index (·)BSKt . Assume
that R ̸⊆ S−1∪ idW . In this case there are Γ,∆ ∈W such that ΓR∆, Γ ̸= ∆,
and ¬(∆SΓ). The latter is equivalent to ∆■ ̸⊆ Γ. Let ■φ ∈ ∆ and φ ̸∈ Γ.
The completeness of Γ implies ¬φ ∈ Γ. By (7) and Γ ̸= ∆ there is ψ ∈ Γ\∆,
so ¬φ ∧ ψ ∈ Γ. The axiom p→ □(p ∨ ♦p) implies

(¬φ ∧ ψ)→ □((¬φ ∧ ψ) ∨ ♦(¬φ ∧ ψ)) ∈ Γ.

By (MP) and ΓR∆ we obtain (¬φ∧ψ)∨♦(¬φ∧ψ) ∈ ∆. Since ψ ̸∈ ∆, we have
¬φ∧ψ ̸∈ ∆, so ♦(¬φ∧ψ) ∈ ∆. From ♦(¬φ∧ψ)→ (♦¬φ∧♦ψ) ∈ BSKt, we
conclude ♦¬φ ∈ ∆. By (5) ¬■φ ∈ ∆, which contradicts to the ¬-consistency
of ∆. We have thus proved R ⊆ S−1 ∪ idW .

Now we prove that S ⊆ R−1. Let Γ,∆ ∈ W be such that ΓS∆, i.e.,
∆♦ ⊆ Γ. If □φ ∈ ∆, then ♦□φ ∈ Γ. By axiom p → ■♢p we have ¬φ →
■♢¬φ ∈ Γ. By (5) ■♢¬φ ↔ ¬♦□φ ∈ Γ. Consequently, ¬φ → ¬♦□φ ∈ Γ,
whence ♦□φ → φ ∈ Γ. Finally, φ ∈ Γ. We have thus proved that ΓS∆
implies ∆RΓ, which completes the proof of 4-completeness for BSKt.

In case of B3SKt we only have to check that the canonical B3SKt-model
is a 3-model, i.e., that {p,∼ p} ⊆ Γ does not hold for any p ∈ Prop and
Γ ∈WB3SKt . This fact readily follows from the B3SKt-axiom (p∧∼p)→ q.

□

Now it is natural to say that W = ⟨W,R, S⟩ is a BSKt-frame, if W is a
BSK-frame and R = S−1 ∪ idW .

We consider some further conditions on the accessibility relations of a
BSKt-frame ⟨W,R, S⟩:
(1R) ∀x, y, z ∈W ((xRy & xRz & x ̸= y & x ̸= z)⇒ y = z);
(2S) ∀x, y(xSy ⇒ ySy);
(3S) ∀x, y, z ∈W ((xSy & ySz ⇒ y = z).

We will need also Lt-formulas:

alt2 : □p ∨□(p→ q) ∨□((p ∧ q)→ r), ■ ·T■ : ■(■p→ p).
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Proposition 2. Let W = ⟨W,R, S⟩ be a BSKt-frame and ϵ ∈ {3, 4}. Then
the following equivalences hold:

(1) W |=ϵ alt2 i� R satis�es (1R);

(2) W |=ϵ ■ ·T■ i� S satis�es (2S);

(3) W |=ϵ ■(p→ ■p) i� S satis�es (3S).

Proof. (1) It is clear that the validity of a formula which does not contain
∼ and ■ on a frame ⟨W,R, S⟩ is equivalent to the validity of this formulas
on a frame ⟨W,R⟩ for normal modal logics. It is also known (see,e.g. [3,
Prop. 3.45]) that the validity of alt2 is equivalent to the condition that
every world has at most 2 di�erent R-successors. In view of re�exivity of
R in BSKt-frames we obtain that the validity of alt2 in a BSKt-frame
⟨W,R, S⟩ is equivalent to the condition that every world has at most one
proper R-successor, i.e., to (1R).

(2) Again, it is known [3, Prop. 3.30] that the validity of ■p → p on
⟨W,R, S⟩ is equivalent to the re�exivity of S. The additional ■ in front of
this formula restricts this condition to worlds that are S-successors. So the
validity of ■ ·T■ is equivalent to (2S).

(3) Assume that W = ⟨W,R, S⟩ satis�es (3S), i.e., every S-successor has
no proper S-successors, and thatM is a 4-model over W. Check thatM |=
■(p → ■p). Let x, y ∈ W and xSy. If M, y |=+ p and ySz, then y = z by
(3S) andM, z |=+ p. SoM, y |=+ p→ ■p andM, x |=+ ■(p→ ■p).

Assume thatW = ⟨W,R, S⟩ is such that xSy, ySz, and y ̸= z. Consider a
3-model cM overW such that v+(p) = {y} and v−(y) = ∅. ThenM, y |=+ p,
M, y ̸|=+ ■p, and soM, x ̸|=+ ■(p→ ■p). □

Now we put

BSKt2 := BSKt+{alt2, ■(p↔ ■p)}, B3SKt2 := BSKt2+{(p∧∼p)→ q}.
A BSKt-frame W = ⟨W,R, S⟩ is said to be a BSKt2-frame if it satis�es

the conditions (1R), (2S), (3S).

Theorem 4. Logic BSKt2 (B3SKt2) is strongly 4-complete (3-complete)
w.r.t. the class of BSKt2-frames.

Proof. Since ■(p↔ ■p) is equivalent to the conjunction of ■·T■ and ■(p→
■p), the correctness part follows from Proposition 2. For the completeness
part, it would be enough to check that the canonical BSKt2-frame, which
we denote for brevity asW2 = ⟨W2, R2, S2⟩ is a BSKt2-frame. ThatW2 is a
BSKt-frame can be checked as in the proof of Theorem 3. The axiom alt2
implies that every Γ ∈W2 has at most two R2-successors. This fact and the
re�exivity of R2 imply the condition (1R).

Now we check that ΓS2∆ implies ∆S2∆ for all Γ,∆ ∈W2. Let ΓS2∆, i.e.,
Γ■ ⊆ ∆. Assume that ■φ ∈ ∆. Since ■(■φ → φ) is a theorem of BSKt2

we have ■(■φ → φ) ∈ Γ, whence ■φ → φ ∈ ∆. Applying (MP) we obtain
φ ∈ ∆. So ∆■ ⊆ ∆, and the condition (2S) holds for W2.
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Finally, we assume that Γ,∆,Σ ∈W2 are such that Γ■ ⊆ ∆ and ∆■ ⊆ Σ.
We have to check that ∆ = Σ. Let φ ∈ ∆. Since ■(φ → ■φ) ∈ Γ, we have
φ → ■φ ∈ ∆. By (MP) ■φ ∈ ∆, and so φ ∈ Σ. We proved ∆ ⊆ Σ. By
(7) we conclude ∆ = Σ. Thus, the condition (3S) holds for the canonical
BSKt2-frame too. □

3 ■-free fragments of BSKt2 and B3SKt2

We de�ne

BS42 = BS4+ {alt2}, B3S42 = BS42 + {(p ∧ ∼p)→ q}

Proposition 3.

(1) Logic BS42 (B3S42) is strongly 4-complete (3-complete) w.r.t. the
class of BS4-frames satisfying (1R).

(2) Logic BS42 (B3S42) is strongly 4-complete (3-complete) w.r.t. the
class {WHT }.

Proof. (1) As above we use [3, Theorem 5.16] to check that the canonical
frames of logicsBS42 andB3S42 areBS4-frames satisfying (1R). According
to this theorem the axiom □p→ p implies the re�exivity of canonical frames.
In a similar way,□p→ □□p and alt2 imply the transitivity and the condition
(1R) respectively.

(2) We consider the case of BS42. It is clear that WHT is a BS4-frame
satisfying (1R), so Γ ⊢BS42 φ implies Γ |=M φ for every 4-model M over
WHT .

Let Γ ⊬BS42 φ. Then M, x |=+ Γ and M, x ̸|=+ φ for some 4-model M
over a BS4-frame W = ⟨W,R⟩ satisfying (1R). By (6) we have

Mx↑, x |=+ Γ and Mx↑, x ̸|=+ φ,

where x ↑= {y ∈ W | xRy}. The condition (1R) implies that |x ↑ | ≤ 2,
i.e., Wx↑ is isomorphic to WHT or WT . Since WT can be identi�ed with
the upper world of WHT , we obtainM′, x |=+ Γ andM′, x ̸|=+ φ for some
4-modelM′ over WHT and x ∈ {h, t}. □

Corollary 1. Logic BS4t2 (B3S4t2) is a conservative extension of BS42
(BS42).

Proof. This statement readily follows from the observation that ⟨W,R, S⟩ is
a BSKt2-frame i� R = S−1 ∪ idW and ⟨W,R⟩ is a BS4-frame satisfying
(1R). □

Theorem 5. The logic BS42 (B3S42) is a modal companion of N9 (N5),
i.e., for every φ ∈ FormL∼ the following two equivalences hold:

φ ∈ N9 i� TBφ ∈ BS42,
φ ∈ N5 i� TBφ ∈ B3S42.
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Proof. We consider the case of N9. If TBφ ̸∈ BS42, then by Item 2 of
Proposition 3M, x ̸|=+ TBφ for some 4-modelM overWHT and x ∈ {h, t}.
By Lemma 2 we haveM′, x ̸|= φ. Moreover,M′ is obviously an N9-model.
Consequently, φ ̸∈ N9.

If φ ̸∈ N9. Then M, x ̸|=+ φ for a suitable N9-model and x ∈ {h, t}.
Obviously,M is a BS4-model over WHT . Since v+(p) and v−(p) are cones
for any p ∈ Prop, we have

x ∈ v+(p) ⇔ M, x |=+ □p and w ∈ v−(p) ⇔ M, w |=+ □∼p,

which impliesM′ =M. We have thenM, w ̸|=+ TBφ by Lemma 2, and so
TBφ ̸∈ BS4.

□

This theorem together with Proposition 1 yields

Corollary 2. The translation TB faithfully embeds the logic N9 (N5) into
the special temporal logic BSKt2 (B3SKt2).

4 Equilibrium theory over BS4t2

We de�ne a theory BKE as the least set of formulas closed under the rules
of BS4t2, containing the axioms of BS4t2 as well as the following formulas:

♢(
∧
α∈A

□α ∧
∧
β∈B

□β ∧
∧
γ∈C

□¬γ)→ ♢♦(
∧

α∈A∪C
¬α ∧

∧
β∈B

β), (10)

where A, B, C are disjoint �nite subsets of Lit∼, and A ̸= ∅.
It is clear that BKE contains all theorems of BS4t2 and is closed under

the rules (NR□) and (NR■), but it need not be closed under (SUB). Substitu-
ting to the axioms (10) we obtain formulas which are not of the form (10).
So BKE is namely a theory over BS4t2, not an axiomatic extension.

The theory B3KE is de�ned in exactly the same way but over B3S4t2.
Now we describe models of theories BKE and B3KE.
First, for a modelM = ⟨W,R, v+, v−⟩ and x ∈ W we denote by Atx the

set of all literals true at x:

Atx = {α | α ∈ Lit∼ andM, x |=+ α}.

We say thatM = ⟨W,R, S, v+, v−⟩ is a BKE-model if ⟨W,R, S⟩ is a BS4t2-
frame, i.e., R and S are related by (8), R is a preoder on W satisfying (1R),
S satis�es (2S), (3S), and for every x ∈ W the following two conditions are
satis�ed:

(1E) if x is an isolated point, i.e., there is no y ∈W such that y ̸= x, and
yRx or xRy, then Atx = ∅.

(2E) if x is a proper R-successor of some y ∈ W and Atx ̸= ∅, then for
every proper subset B ⊊ Atx there is z ∈ W such that xSz and
Atz = B.

B3KE-models are BKE-models satisfying the consistency condition (2).
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Theorem 6. Let φ ∈ FormLt. The following equivalences are true:

(1) φ ∈ BKE i�M |= φ for every BKE-model;

(2) φ ∈ B3KE i�M |= φ for every B3KE-model;

Proof. (1) First we prove that φ ∈ BKE implies the truth of φ on all BKE-
models. Since BKE-models are based on BS4t2-frames, Theorem 4 implies
that it would be enough to check the truth of axioms (10) on BKE-models.
LetM = ⟨W,R, S, v+, v−⟩ be a BKE-model and x ∈W . Assume that

M, x |=+ ♢(
∧
α∈A

□α ∧
∧
β∈B

□β ∧
∧
γ∈C

□¬γ),

where A, B, C are disjoint �nite subsets of Lit∼, and A ̸= ∅. Then there is
y ∈W such that xRy and

M, y |=+
∧
α∈A

□α ∧
∧
β∈B

□β ∧
∧
γ∈C

□¬γ.

Re�exivity of R implies A ∪ B ⊆ Aty. Since M, y |=+ ¬α is equivalent to
M, y ̸|=+ α, we have C ∩ Aty = ∅. If x has no proper R-successors, then
x = y. In this case A ̸= ∅ and (1E) imply that there is z such that x ̸= z
and zRx. By (2E) there is an S-successor u of x such that Atu = B. So we
haveM, x |=+ ♦(

∧
α∈A∪C ¬α ∧

∧
β∈B β) and

M, x |=+ ♢♦(
∧

α∈A∪C
¬α ∧

∧
β∈B

β). (11)

Otherwise we can assume that y is a proper R-successor of x. From (2E)
we again obtain that ♦(

∧
α∈A∪C ¬α∧

∧
β∈B β) is veri�ed at y, and (11) as a

consequence.

To prove the inverse implication we de�ne the canonical frameWE for the
theory BKE in exactly the same way as it was done earlier for axiomatic
extensions of BSKt. We put WE = ⟨WE , RE , SE⟩, where WE is the set of
all prime BSKt2-theories containing BKE,

ΓRE∆ i� Γ□ ⊆ ∆, ΓSE∆ i� Γ■ ⊆ ∆.

If φ ∈ FormLt , we denote the set of its propositional variables as var(φ)
and put

Litφ = {p,∼p | p ∈ var(φ)}.
For φ ̸∈ BKE we de�ne a kind of canonical model ME

φ = ⟨WE , v+E , v
−
E⟩

putting

v+φ (p) = {Γ ∈WL | p ∈ Γ ∩ var(φ)}, v−φ (p) = {Γ ∈WL | ∼p ∈ Γ ∩ Litφ}.

The analog of canonical model lemma (Lemma 3) can also be proved for
ME

φ by induction on the structure of formulas. For every ψ ∈ FormLt and

Γ ∈WE we have

ME
φ ,Γ |=+ ψ i� ψ ∈ Γ; ME

φ ,Γ |=− ψ i� ∼ ψ ∈ Γ. (12)
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That WE is a BSKt2-frame can be proved in exactly the same way as in
Theorem 4. Let us check thatME

φ is a BKE-model.

We take some Γ ∈WE that has no proper RE-successors. If Γ∩Litφ ̸= ∅,
we choose �nite disjoint A, B, C ⊆ Litφ such that

A ∪B = Γ ∩ Litφ, A ̸= ∅, C = Litφ \ Γ.

ThenME
φ ,Γ |=+

∧
α∈A α ∧

∧
β∈B β ∧

∧
γ∈C ¬γ. Since RE is re�exive and Γ

has no other RE-successors, we have

ME
φ ,Γ |=+

∧
α∈A

□α ∧
∧
β∈B

□β ∧
∧
γ∈C

□¬γ.

The re�exivity of RE yieldsME
φ ,Γ |=+ ♢(

∧
α∈A□α∧

∧
β∈B □β∧

∧
γ∈C □¬γ).

Finally, by (12) we obtain ♢(
∧

α∈A□α ∧
∧

β∈B □β ∧
∧

γ∈C □¬γ) ∈ Γ. Since

Γ contains all BKE-axioms, we have ♢♦(
∧

α∈A∪C ¬α ∧
∧

β∈B β) ∈ Γ, which

is equivalent by (12) to

ME
φ ,Γ |=+ ♢♦(

∧
α∈A∪C

¬α ∧
∧
β∈B

β). (13)

The lack of proper RE-successors impliesME
φ ,Γ |=+ ♦(

∧
α∈A∪C ¬α∧

∧
β∈B β).

This fact together with A∪B ∪C = Litφ implies in turn that Γ has an SE-
successor ∆ with At∆ = B. Since AtΓ ̸= At∆, ∆ is a proper SE-successor
or, equivalently, RE-predecessor of Γ. We have thus proved that AtΓ ̸= ∅
implies that Γ is not an isolated point. So (1E) holds forME

φ .

Let Γ,∆ ∈ WE be such that ΓRE∆, Γ ̸= ∆, ∆ ∩ Litφ ̸= ∅, and B ⊊
∆∩ Litφ. In this case ∆ has no proper RE-successors, and arguing as above
we obtain that ∆ has an SE-successor Σ with AtΣ = B. Thus,ME

φ satis�es

(2E) too.
We have proved thatME

φ is a BKE-model. Since φ ̸∈ BKE, by extension

lemma there is Γ ∈WE such that φ ̸∈ Γ, whenceME
φ ,Γ ̸|=+ φ.

(2) That BKE-axioms are true on B3KE-models readily follows from the
previous item. It is obvious too that a canonical model

M3E
φ = ⟨W 3E , R3E , S3E , v+3E , v

−
3E⟩

de�ned as above, but with W 3E consisting of all prime theories extending
B3KE, is a 3-model.

□

Theorem 7. Let φ,ψ ∈ FormL∼ . Then

φ |∼9
el ψ i� (TBφ ∧■¬TBφ)→ TBψ ∈ BKE.

φ |∼5
el ψ i� (TBφ ∧■¬TBφ)→ TBψ ∈ B3KE.

Proof. We consider only the case of paraconsistent equilibrium consequence.
Assume that φ |∼/9el ψ, i.e., there is an equilibrium model ⟨T,T⟩ of φ such
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that ⟨T,T⟩ ̸|= ψ. Recall that an equilibrium model of φ is a total N9-model
⟨T,T⟩ such that

⟨T,T⟩ |= φ and ⟨H,T⟩ ̸|= φ for all H ⊊ T.

Let us consider a BKE-modelMT = ⟨WT, RT, ST, v+T, v
−
T⟩, where

• WT = {H | H ⊆ T};
• RT = {(H,H) | H ∈WT} ∪ {(H,T) | H ⊆ T};
• ST = {(H,H) | H ∈WT \ {T}} ∪ {(T,H) | H ⊊ T};
• v+T(p) = {H | p ∈ H}, v−T(p) = {H | ∼p ∈ H}, p ∈ Prop.

It is clear that RT is a partial order of depth 2 with the greatest element T,
ST satis�es (8) and has the only irre�exive point T. So ⟨WT, RT, ST⟩ is a
BSKt2-frame. The valuations v+T, v

−
T are de�ned so that AtH = H for all

H ∈WT.
Further, for everyH ∈WT withH ̸= T, the generated submodelMH↑ :=

(MT)H↑ is of the form ⟨H,T⟩. Moreover, since H ⊆ T, we can consider
⟨H,T⟩ as an N9-model, i.e. (MH↑)′ = MH↑. If H = T, then MT↑ = T
and it can be identi�ed with the total model ⟨T,T⟩. By Lemma 2 and (6)
we have for every χ ∈ FormL∼ and H ∈WT,

MT,H |=+ TBχ i� ⟨H,T⟩ |= χ. (14)

From this observation we obtain

MT,T |=+ TBφ and MT,H |=+ ¬TBφ for H ⊊ T.

We also have MT,T |=+ ■¬TBφ, since {H | H ⊊ T} is the set of all
ST-successors of T. From ⟨T,T⟩ ̸|= ψ and (14) we have MT,T ̸|=+ TBψ,
whence

MT,T ̸|=+ (TBφ ∧■¬TBφ)→ TBψ.

We have thus proved the right-to-left implication.
Let us assume now that (TBφ ∧■¬TBφ)→ TBψ ̸∈ BKE, i.e., that there

are a BKE-modelM = ⟨W,R, S, v+, v−⟩ and x ∈W such that

M, x ̸|=+ (TBφ ∧■¬TBφ)→ TBψ.

Then we have

M, x |=+ TBφ, M, y ̸|=+ TBφ whenever xSy, M, x ̸|=+ TBψ.

If there is y such that xRy and x ̸= y, then ySx by (8), and xSx by (2S).
So we have simultaneouslyM, x |=+ TBφ andM, x ̸|=+ TBφ. Consequently,
x has no proper R-successors. Assume that Atx = ∅. By Lemma 2 and (6)
we have ∅ |= φ and ∅ ̸|= ψ. Thus, ⟨∅,∅⟩ is an equilibrium model of φ that

refutes φ |∼9
el ψ.

In case Atx ̸= ∅ by (1E) we obtain that x is not an isolated point. Since
x has no proper R-successors there is y such that y ̸= x and yRx. Take some
H ⊊ Atx. By (2E) there is z such that Atz = H and xSz. Applying again
Lemma 2 and (6) we obtain ⟨H, Atx⟩ ̸|= φ. Thus, ⟨Atx, Atx⟩ is an equilibrium

model of φ that refutes ψ. So, φ |∼/9el ψ. □
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