

СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports

http://semr.math.nsc.ru ISSN 1813-3304

Vol. 22, No. 1, pp. 479-499 (2025) https://doi.org/10.33048/semi.2025.22.032 УДК 510.64 MSC 03B20,03B70

ON MODAL PRESENTATION OF EXPLOSIVE AND PARACONSISTENT EQUILIBRIUM LOGIC

S.P. ODINTSOV

Communicated by S.V. SUDOPLATOV

Abstract: Fariñas del Cerro, Herzig and Su proved that the nonmonotonic consequence relation determined by Answer Set Semantics (ASP) for logic programs with negation-as-failure can be embedded into a monotonic modal logic via a variation of Gödel-Tarski Translation. This article generalizes the mentioned result to ASP for logic programs with two kinds of negation: negation-asfailure and strong negation and to PAS, the paraconsistent version of ASP admitting answer sets that are inconsistent w.r.t. the strong negation.

Keywords: logic programs, negation-as-failure, strong negation, equilibrium logic, deductive base, temporal logic, equilibrium modal theory.

The stable model (answer set) semantics for logic programs with negationas-failure \neg suggested by M. Gelfond and V. Lifschitz [7] gives rise to a separate paradigm in the setting of Logic Programming, so called Answer Set Programming (ASP). An important fact was established by D. Pearce [19], who proved that the intermediate logic HT of "here-and-there", which is known also as the Gödel-Smetanich logic and can be determined by a

Odintsov S.P., On modal presentation of explosive and paraconsistent equilibrium logic.

^{© 2025} Odintsov S.P.

This work was supported by the Russian Science Foundation under grant no. 23-11-00104, https://rscf.ru/en/project/23-11-00104.

Received March 25, 2025, Published May, 31, 2025.

S.P. ODINTSOV

Kripke frame with two worlds, can serve as a tool for reasoning about answer sets. The main property involved is that answer sets can be viewed as a certain kind of minimal HT-models, which are called equilibrium models. The same holds for logic programs in the extended language, which includes not only the negation-as-failure \neg , but also the strong negation \sim (which was originally introduced in Logic Programming under the name of classical negation [8]). In this case [19] answer sets are in one-to one correspondence with equilibrium N_5 -models, where N_5 can be considered as HT enriched with the strong negation. More exactly, N_5 is a finite-valued extension of the explosive Nelson logic N3, which can be determined via a 5-element algebra. On the other hand, N_5 is the least conservative extension of HT in the lattice of N3-extensions. The logic N3 is based on the concept of constructible falsity, which was introduced into logic by D. Nelson [13] via his system of constructive arithmetic with strong negation. The propositional fragment of Nelson's arithmetic, which is denoted now as N3, was subsequently axiomatised by N. Vorob'ev [24, 25].

A second key property relating non-classical logics with ASP was established in [10]: programs are strongly equivalent wrt answer set semantics if and only if they are equivalent viewed as propositional theories in HT(in \mathbf{N}_5 if \sim occurs in the language). Here, two programs Π_1 and Π_2 are called strongly equivalent if for any program Π , $\Pi_1 \cup \Pi$ and $\Pi_2 \cup \Pi$ have the same answer sets. This shows that HT and \mathbf{N}_5 can be used for program transformation and optimisation.

Paraconsistent version of answer set semantics (PAS) admits answer sets that are inconsistent w.r.t. the stong negation. PAS was studied as a logic programming semantics by C. Sakama and K. Inoue [21]. Later, the work [1] has made some progress towards a logical, declarative style of characterization for PAS. However, [1] does not axiomatize or otherwise syntactically characterize the underlying (monotonic) logic of PAS. In [16], it was proved that semantical frames for the substructural logics used in [1] can be reduced to a simpler Routley frames [20] with additional falsity constant. This provides a description of paraconsistent answer sets as a special kind of minimal Routley models. It is proved in [16] that these Routley models determine an extension of the paraconsistent Nelson logic $\mathbf{N4}^{\perp}$ [14]. This extension was denoted $\mathbf{N9}$ due to the reason that it can be determined via a 9-element algebra. Again, $\mathbf{N9}$ is the least conservative extension of HT in the class of $\mathbf{N4}^{\perp}$ -extensions. Finally, the strong equivalence theorem was proved [16]: two programs are strongly equivalent iff they are equivalent as $\mathbf{N9}$ -theories.

The next step towards the declarative treatment of ASP was done by L. Fariñas del Cerro, A. Herzig and E. Su [5]. They proved that the nonmonotonic consequence relation determined by Answer Set Semantics (ASP) for logic programs with negation-as-failure can be embedded into a monotonic modal logic **MEM** via a variation of Gödel-Tarski Translation [9]. This article generalizes the mentioned result to the ordinary and paraconsistent versions of ASP for logic programs with two kinds of negation: negation-asfailure and strong negation. To this end we need the possibility to embed the constructive logic with strong negation into a suitable modal logic.

Belnapian version of normal modal logic **BS4** [17] relates to **S4** in exacly the same way as the logic $\mathbf{N4}^{\perp}$ relates to intuitionistic logic. Its semantics can be obtained from that of **S4** via replacement of two-valued valuations by four valued ones. In each of possible worlds a formula may have one of four truth values *True*, *False*, *Neither*, *Both* of Belnap-Dunn matrix **BD4** [2], which provide a semantics for First Degree Entailment **FDE** [4]. In [17] it was proved that $\mathbf{N4}^{\perp}$ is faithfully embedded into the logic **BS4** via the translation T_B , a natural modification of Gödel-Tarski translation. This result shows that modal companions of Nelson's logic extensions defined via T_B belong to the lattice of **BS4**-extensions (see [23] for details). So logics based on **BS4**-extensions looks suitable for the goals of this article.

In our reasoning we will essentially follow the line depicted in [5], but we make one serious modification. Following [6] we understand a logic as a structural Tarskian consequence relation defined over some propositional language. According to this definition **MEM** of [5] is rather a theory than a logic because it is not closed under substitutions. In our work we try maximally distinguish 'logical' and 'theoretical' parts of construction. First we define a kind of Belnapian temporal logic $\mathbf{BSK_{t2}}$ and proof that the Belnapian version T_B of Gödel-Tarski translation faithfully embeds the logic **N**₉ (the deductive base of PAS) into $\mathbf{BSK_{t2}}$, and the same holds for **N**₅ and the explosive version of $\mathbf{BSK_{t2}}$. Further, we define theories over $\mathbf{BSK_{t2}}$ and its explosive extension and prove that equilibrium entailments over **N**₉ and **N**₅ can be embedded into this theories.

The paper is structured as follows. Section 1 contains neccessary information on contsructive logics, Belnapian modal logics and semantics of logic programs with negations. In Section 2 we define a special temporal logic $\mathbf{BSK_t}$ such that future and past modalities of $\mathbf{BSK_t}$ are defined via accessibility relations that are not mutually inverse. We introduce also the logic $\mathbf{BSK_{t2}}$ that extends $\mathbf{BSK_t}$ imposing further restrictions on both accessibility relations. Section 3 investigates the \blacksquare -free fragment of $\mathbf{BSK_{t2}}$ (\blacksquare stands for the necessity in the past). We prove that this fragment of $\mathbf{BSK_{t2}}$ is a modal companion of the deductive base of the equilibrium entailment. Finally, in Section 4 we embed the equilibrium entailment into $\mathbf{BSK_{t2}}$.

1 Preliminaries

As usual by a propositional language \mathcal{L} we mean a finite tuple of logical connectives and constants. The set $\operatorname{Form}_{\mathcal{L}}$ of \mathcal{L} -formulas is constructed in a usual way from the fixed countable set Prop of propositional variables and the constants of \mathcal{L} with the help of \mathcal{L} -connectives. The languages we consider will include the implication connective \rightarrow . We will define logics in different propositional languages via Hilbert style deductive systems. And we assume that every deductive system under consideration includes the standard axioms of intuitionistic logic **Int** in the list of its axioms and the rules of *modus ponens* (MP) and of substitution (SUB)

(MP)
$$\frac{\varphi, \varphi \to \psi}{\psi}$$
, SUB $\frac{\varphi(p_1, \dots, p_n)}{\varphi(\psi_1, \dots, \psi_n)}$

in the set of its inference rules. With every logic L defined in the language \mathcal{L} we associate the inference relation \vdash_L . For a subset $\Gamma \cup \{\varphi\} \subseteq \operatorname{Form}_{\mathcal{L}}, \Gamma \vdash_L \varphi$ means that φ can be obtained from the elements of Γ and the theorems of Lwith the help of (MP). Recall that a theorem of L is a formula, which can be inferred from the axioms of L with the help of all inference rules, not only (MP). We write $\varphi \in L$ instead of ' φ is a theorem of L'.

For a logic L in the language \mathcal{L} , we denote by $\mathcal{E}L$ the family of all axiomatic extensions of L in the same language.

If L_i is a logic in the language \mathcal{L}_i , $i = 1, 2, L_1 \cup L_2$ denotes a logic in the language $\mathcal{L}_1 \cup \mathcal{L}_2$ defined by the union of axioms of L_1 and L_2 and the union of rules of these logics.

A proper subset $\Gamma \subseteq \operatorname{Form}_{\mathcal{L}}$ is said to be a *prime L*-theory if (i) Γ contains all *L*-theorems; (ii) Γ is closed under (MP) ($\varphi, \varphi \to \psi \in \Gamma$ implies $\psi \in \Gamma$); (iii) Γ satisfies the disjunction property ($\varphi \lor \psi \in \Gamma$ implies $\varphi \in \Gamma$ or $\psi \in \Gamma$). Notice that the axioms of **Int** and (MP) allow to prove in a standard way the Extension Lemma for every logic *L* considered in the article.

Lemma 1. Let $\Gamma \not\vdash_L \varphi$. Then there exists a prime L-theory Σ such that $\Gamma \subseteq \Sigma$ and $\Sigma \not\vdash_L \varphi$.

1.1. Constructive logics with strong negation. The paraconsistent version $\mathbf{N4}^{\perp}$ [14] of Nelson's constructive logic with strong negation is defined in the propositional language \mathcal{L}^{\sim} including the absurdity constant \perp and logical connectives $\wedge, \vee, \rightarrow, \sim$, standing respectively for conjunction, disjunction, weak implication and strong negation. The set Lit[~] of *literals* is defined as Prop $\cup \{\sim p \mid p \in \text{Prop}\}$. Arbitrary $\mathbf{S} \subseteq \text{Lit}^{\sim}$ can be represented as $\mathbf{S} = (\mathbf{S}^+, \mathbf{S}^-)$, where

$$\mathbf{S}^+ = \mathbf{S} \cap \operatorname{Prop} \text{ and } \mathbf{S}^- = \{p \mid \sim p \in \mathbf{S}\}$$

We say that **S** is consistent if $\mathbf{S}^+ \cap \mathbf{S}^- = \emptyset$.

The Hilbert style deductive system for $\mathbf{N4}^{\perp}$ has (SUB) and (MP) as its only inference rules. The axioms include the standard list of axioms of intuitionistic logic in the language $\{\wedge, \lor, \rightarrow, \bot\}$:

plus the following strong negation axioms (where $\alpha \leftrightarrow \beta$ is an abbreviation for $(\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)$):

N1.
$$\sim (p \rightarrow q) \leftrightarrow (p \land \sim q)$$
N2. $\sim (p \land q) \leftrightarrow (\sim p \lor \sim q)$ N3. $\sim (p \lor q) \leftrightarrow (\sim p \land \sim q)$ N4. $\sim \sim p \leftrightarrow p$ N5. $\sim |$

The explosive logic $\mathbf{N3}^{\perp}$ is obtained via adding $(p \wedge \sim p) \rightarrow q$ to the list of $\mathbf{N4}^{\perp}$ -axioms, symbolically $\mathbf{N3}^{\perp} = \mathbf{N4}^{\perp} + \{(p \wedge \sim p) \rightarrow q\}$. Notice that intuitionistic logic **Int** coincides with the \sim -free fragment of both logics, $\mathbf{N4}^{\perp}$ and $\mathbf{N3}^{\perp}$.

Kripke style semantics for Nelson's Logics is defined as follows. We say that a pair $\mathcal{W} = \langle W, \leq \rangle$ is a *frame* if \leq is a preorder on W, i.e., a reflexive and transitive relation. An $\mathbf{N4}^{\perp}$ -model (4-model over frame \mathcal{W}) is a tuple $\mathcal{M} = \langle \mathcal{W}, v^+, v^- \rangle$, where \mathcal{W} is a frame and valuations v^+, v^- : Prop \rightarrow $\langle W, \leq \rangle^+$ are such that for $x, y \in W, p \in \text{Prop}$, and $\epsilon \in \{+, -\}$ we have

$$(x \in v^{\epsilon}(p) \text{ and } x \leq y) \text{ implies } y \in v^{\epsilon}(p).$$
 (1)

In other words, both $v^+(p)$ and $v^-(p)$ are cones w.r.t. \leq .

An $\mathbf{N4}^{\perp}$ -model $\mathcal{M} = \langle \mathcal{W}, v^+, v^- \rangle$ is said to be an $\mathbf{N3}^{\perp}$ -model (3-model over \mathcal{W}) if

$$v^+(p) \cap v^-(p) = \emptyset$$
 for all $p \in \text{Prop.}$ (2)

Now we define two different relations \models^+ and \models^- for verification and falsification of formulas in worlds of the model. Naturally, we use v^+ and v^- to define verification and falsification of propositional variables:

$$\mathcal{M}, x \models^+ p \iff x \in v^+(p); \quad \mathcal{M}, x \models^- p \iff x \in v^-(p)$$

Verification and falsification of complex formulas are defined as follows:

$\mathcal{M}, x \models^+ \alpha \land \beta$	iff	$\mathcal{M}, x \models^+ \alpha \text{ and } \mathcal{M}, x \models^+ \beta$
$\mathcal{M}, x \models^{-} \alpha \land \beta$	iff	$\mathcal{M}, x \models^{-} \alpha \text{ or } \mathcal{M}, x \models^{-} \beta$
$\mathcal{M}, x \vDash^+ \alpha \lor \beta$	iff	$\mathcal{M}, x \models^+ \alpha \text{ or } \mathcal{M}, x \models^+ \beta$
$\mathcal{M}, x \models^{-} \alpha \lor \beta$	iff	$\mathcal{M}, x \models^{-} \alpha \text{ and } \mathcal{M}, x \models^{-} \beta$
$\mathcal{M}, x \models^+ \alpha \to \beta$	iff	$\forall y \ge x \ (\mathcal{M}, y \nvDash^+ \alpha \text{ or } \mathcal{M}, y \vDash^+ \beta)$
$\mathcal{M}, x \models^{-} \alpha \to \beta$	iff	$\mathcal{M}, x \vDash^+ \alpha \text{ and } \mathcal{M}, x \vDash^- \beta$
$\mathcal{M}, x \nvDash^+ \perp$	and	$\mathcal{M}, x \models^{-} \bot$
$\mathcal{M}, x \models^+ \sim \alpha$	iff	$\mathcal{M}, x \models^{-} \alpha$
$\mathcal{M}, x \models^{-} \sim \alpha$	iff	$\mathcal{M}, x \models^+ \alpha$

The persistence condition (1) can be generalized to arbitrary formulas, i.e., for every $\varphi \in \operatorname{Form}_{\mathcal{L}^{\sim}}$ and $\epsilon \in \{+, -\}$ we have

$$(\mathcal{M}, x \models^{\epsilon} \varphi \text{ and } x \leq y) \text{ implies } \mathcal{M}, y \models^{\epsilon} \varphi.$$
 (3)

If \mathcal{M} is an **N3^{\perp}**-model, the consistency condition (2) also can be generalized to arbitrary formulas, i.e., for any φ and x we have

$$\mathcal{M}, x \not\models^+ \varphi \text{ or } \mathcal{M}, x \not\models^- \varphi.$$
 (4)

We say that φ is *true* on \mathcal{M} and write $\mathcal{M} \models \varphi$ if $\mathcal{M}, x \models^+ \varphi$ for all $x \in W$. We write $\mathcal{W} \models_4 \varphi$ if φ is true on every 4-model over \mathcal{W} , and $\mathcal{W} \models_3 \varphi$ if $\mathcal{M} \models \varphi$ for every 3-model \mathcal{M} over \mathcal{W} . For $\Gamma \subseteq \operatorname{Form}_{\mathcal{L}^{\sim}}$ and a world x of \mathcal{M} ,

we write $\mathcal{M} \models \Gamma$ ($\mathcal{M}, x \models^{\epsilon} \Gamma, \epsilon \in \{+, -\}$) if $\mathcal{M} \models \varphi$ ($\mathcal{M}, x \models^{\epsilon} \varphi$) for all $\varphi \in \Gamma$. If $\mathcal{M} \models \Gamma$, we say that \mathcal{M} is a *model* of Γ . In a similar way, we write $\mathcal{W} \models_{\epsilon} \Gamma$ and say that \mathcal{W} is an ϵ -model of Γ , where $\epsilon \in \{3, 4\}$, if $\mathcal{W} \models_{\epsilon} \varphi$ for all $\varphi \in \Gamma$. Finally, we write $\Gamma \models_{\mathcal{M}} \varphi$ if for every world x of \mathcal{M} we have $\mathcal{M}, x \models \varphi$, whenever $\mathcal{M}, x \models \Gamma$.

For $L \in \mathcal{E}\mathbf{N4}^{\perp}$ and a class of frames \mathcal{K} we say that

- L is weakly 3-complete (4-complete) w.r.t. \mathcal{K} if for every $\varphi \in \operatorname{Form}_{\mathcal{L}^{\sim}}$
- $\varphi \in L$ iff $\mathcal{M} \models \varphi$ for every 3-model (4-model) \mathcal{M} over $\mathcal{W} \in \mathcal{K}$.
- L is strongly 3-complete (4-complete) w.r.t. \mathcal{K} if for every $\Gamma \subseteq \operatorname{Form}_{\mathcal{L}^{\sim}}$ and $\varphi \in \operatorname{Form}_{\mathcal{L}^{\sim}}$ we have
- $\Gamma \vdash_L \varphi$ iff $\Gamma \models_{\mathcal{M}} \varphi$ for every 3-model (4-model) \mathcal{M} over $\mathcal{W} \in \mathcal{K}$.

Obviously, the strong 4- or 3-completeness implies the weak 4- or 3-completeness w.r.t. the same class of frames.

The following characterization of $\mathbf{N4}^{\perp}$ [11] and $\mathbf{N3}^{\perp}$ [22] is well known:

- $\mathbf{N4}^{\perp}$ is strongly 4-complete w.r.t. the class of all frames;
- $N3^{\perp}$ is strongly 3-complete w.r.t. the class of all frames.

Recall that $HT = Int + \{p \lor (p \to q) \lor \neg q\}$, where $\neg q$ abbreviates $q \to \bot$, is the greatest extension of **Int** different from the classical logic **CL**. *HT* is known as Gödel-Smetanich logic or "hear-and-there" logic. We are interested in **N4**^{\perp}- and **N3**^{\perp}-extensions via the same axiom:

$$\mathbf{N_9} = \mathbf{N4}^{\perp} + \{ p \lor (p \to q) \lor \neg q \} \text{ and } \mathbf{N_5} = \mathbf{N3}^{\perp} + \{ p \lor (p \to q) \lor \neg q \}.$$

Both logics N_9 and N_5 are determined by the same two-element partially ordered frame $\mathcal{W}^{HT} = \langle W^{HT}, \leq \rangle$, where $W^{HT} = \{h, t\}$ and $h \leq t$. More exactly, we have:

- **N**₉ is strongly 4-complete w.r.t. the class $\{\mathcal{W}^{HT}\}$;
- N_5 is strongly 3-complete w.r.t. the class $\{\mathcal{W}^{HT}\}$.

The choice of notation N_9 and N_5 is conditioned by the facts that N_9 can be determined by a 9-element algebra [16], and N_5 by a 5-element algebra [19].

Since we have only two worlds, an N₉-model \mathcal{M} (over \mathcal{W}^{HT}) is completely determined by sets of literals verified in the worlds h and t, so it can be identified with a pair $\langle \mathbf{H}, \mathbf{T} \rangle$, where $\mathbf{H}, \mathbf{T} \subseteq \text{Lit}^{\sim}$ and

$$\mathbf{H}^{+} = \{p \mid \mathcal{M}, h \models^{+} p\}, \quad \mathbf{H}^{-} = \{p \mid \mathcal{M}, h \models^{-} p\},$$
$$\mathbf{T}^{+} = \{p \mid \mathcal{M}, t \models^{+} p\}, \quad \mathbf{T}^{-} = \{p \mid \mathcal{M}, t \models^{-} p\}.$$

In view of (1) we have $\mathbf{H} \subseteq \mathbf{T}$. If \mathcal{M} is an $\mathbf{N_5}$ -model, the pair $\langle \mathbf{H}, \mathbf{T} \rangle$ satisfies additionally the condition that \mathbf{H} and \mathbf{T} are consistent.

Further, we put

$$\mathbf{B4} = \mathbf{N4}^{\perp} + \{ p \lor \neg p \} \text{ and } \mathbf{B3} = \mathbf{N3}^{\perp} + \{ p \lor \neg p \}.$$

These logics can be considered as expansions of four- and three-valued Belnap-Dunn logics (see [15] and [12] for details) via connectives \rightarrow and \perp . They are characterized by a one-element frame $\mathcal{W}^T = \langle \{t\}, \leq \rangle$:

- **B4** is strongly 4-complete w.r.t. the class $\{\mathcal{W}^T\}$;
- **B3** is strongly 3-complete w.r.t. the class $\{\mathcal{W}^T\}$.

Naturally, every **B4**-model \mathcal{M} (over \mathcal{W}^T) can be identified with the set **T** of literals verified at t, i.e.

$$\mathbf{T}^{+} = \{ p \mid \mathcal{M}, h \models^{+} p \}, \quad \mathbf{T}^{-} = \{ p \mid \mathcal{M}, h \models^{-} p \},$$

If \mathcal{M} is a **B3**-model, then **T** must be consistent.

1.2. Belnapian modal logics. The Belnapian versions **BK** and **BS4** of normal modal logics **K** and, respectively, **S4** were defined in [17]. We define **BK** in the language $\mathcal{L}^{\Box} = \mathcal{L}^{\sim} \cup \{\Box\}$ as it was done in [18]. The possibility operator is defined as $\Diamond \varphi := \sim \Box \sim \varphi$. We also need the following abbreviations: $\neg \varphi := \varphi \rightarrow \bot, \varphi \Leftrightarrow \psi := (\varphi \leftrightarrow \psi) \land (\sim \varphi \leftrightarrow \sim \psi)$. The list of axioms of **BK** includes the following groups of axioms:

- I. The axioms of classical logic in the language $\{\land, \lor, \rightarrow, \bot\}$.
- II. The strong negation axioms of $\mathbf{N4}^{\perp}$ plus

$$\neg \sim \Box p \leftrightarrow \Box \neg \sim p$$

III. The modal axiom of $\mathbf{K} \colon \Box(p \to q) \to (\Box p \to \Box q)$

The list of inference rules includes (SUB), (MP) and the normalization rule (NR_{\Box}) :

$$\frac{\varphi}{\Box\varphi}$$

The following formulas are **BK**-theorems:

$$\neg \Box p \leftrightarrow \Diamond \neg p, \ \neg \Diamond p \leftrightarrow \Box \neg p, \ \Diamond (p \land q) \rightarrow (\Diamond p \land \Diamond q)$$
(5)

Logic **BS4** is an extension of **BK** obtained via adding the modal axioms of **S4**, i.e.,

$$\mathbf{BS4} = \mathbf{BK} + \{\Box p \to p, \ \Box p \to \Box \Box p\}.$$

The explosive extensions of **BK** and **BS4** are defined as follows:

 $\mathbf{B3K} = \mathbf{BK} + \{(p \land \sim p) \to q\}, \quad \mathbf{B3S4} = \mathbf{BS4} + \{(p \land \sim p) \to q\}$

To define Kripke style semantics for **BK** we use the same frames as for **K**. Namely, we say that a pair $\mathcal{W} = \langle W, R \rangle$ is an **K**-frame if R is a binary relation on W. A **BK**-model (4-model over \mathcal{W}) is a tuple $\mathcal{M} = \langle \mathcal{W}, v^+, v^- \rangle$, where v^+, v^- : Prop $\to 2^W$.

An S4-frame $\mathcal{W} = \langle W, R \rangle$ is a K-frame, where R is preorder. A BS4-model is a BK-model over an S4-frame.

A **B3K**-model $\mathcal{M} = \langle \mathcal{W}, v^+, v^- \rangle$ (3-model over \mathcal{W}) is a **BK**-model satisfying the consistency condition (2). A **B3S4**-model $\mathcal{M} = \langle \mathcal{W}, v^+, v^- \rangle$ is a **B3K**-model over an **S4**-frame. The verification \models^+ and falsification \models^- relations between worlds and formulas are defined in exactly the same way as for $\mathbf{N4}^{\perp}$ -models in case of propositional variables, constant \perp , and connectives \lor , \land , \sim . For \rightarrow and \square we have:

$\mathcal{M}, x \models^+ \alpha \to \beta$	iff	$\mathcal{M}, x \nvDash^+ \alpha \text{ or } \mathcal{M}, x \vDash^+ \beta$
$\mathcal{M}, x \models^{-} \alpha \to \beta$	iff	$\mathcal{M}, x \vDash^+ \alpha \text{ and } \mathcal{M}, x \vDash^- \beta$
$\mathcal{M}, x \models^+ \Box \alpha$	iff	$\forall y(xRy \text{ implies } \mathcal{M}, y \models^+ \alpha)$
$\mathcal{M}, x \models^{-} \Box \alpha$	iff	$\exists y(xRy \text{ and } \mathcal{M}, y \models^{-} \alpha)$

It is easy to see that for possibility operator we have then:

$$\mathcal{M}, x \models^+ \Diamond \alpha \quad \text{iff} \quad \exists y (xRy \text{ and } \mathcal{M}, y \models^+ \alpha) \\ \mathcal{M}, x \models^- \Diamond \alpha \quad \text{iff} \quad \forall y (xRy \text{ implies } \mathcal{M}, y \models^- \alpha)$$

Again for a **B3K**-model \mathcal{M} the consistency condition (2) can be generalized to arbitrary formulas, i.e. $\mathcal{M}, x \not\models^+ \varphi$ or $\mathcal{M}, x \not\models^- \varphi$ for any φ and x.

The truth of a formulas in a **BK**-model is defined via the verification relation, i.e., $\mathcal{M} \models \varphi$ means that $\mathcal{M}, x \models^+ \varphi$ for all $x \in W$. For a **K**frame \mathcal{W} we write $\mathcal{W} \models_4 \varphi$ if $\mathcal{M} \models \varphi$ for every 4-model \mathcal{M} over \mathcal{W} , and $\mathcal{W} \models_3 \varphi$ if $\mathcal{M} \models \varphi$ for every 3-model \mathcal{M} over \mathcal{W} . For $\Gamma \cup \{\varphi\} \subseteq \operatorname{Form}_{\mathcal{L}^{\Box}}$, the relations $\mathcal{M} \models \Gamma, \Gamma \models_{\mathcal{M}} \varphi, \mathcal{W} \models_4 \Gamma$, and $\mathcal{W} \models_3 \Gamma$ are defined in an obvious way. For $L \in \mathcal{E}\mathbf{B}\mathbf{K}$ and a class of **BK**-frames \mathcal{K} , the sense of expressions 'L is weakly 4-complete (3-complete) w.r.t. the class \mathcal{K} ' and 'L is strongly 4-complete (3-complete) w.r.t. the class \mathcal{K} ' is defined in exactly the same way as for $\mathbf{N4}^{\perp}$ -extensions.

If $\mathcal{W} = \langle W, R \rangle$ is an **S4**-frame, $\mathcal{M} = \langle \mathcal{W}, v^+, v^- \rangle$ is a 4-model over \mathcal{W} , and $K \subseteq W$ is a cone w.r.t. R ($x \in K$ and xRy imply $y \in K$), then

$$\mathcal{W}^K := \langle K, R \cap K^2 \rangle, \quad \mathcal{M}^K = \langle \mathcal{W}^K, v_K^+, v_K^- \rangle,$$

where $v_K^+(p) = v^+(p) \cap K$ and $v_K^-(p) = v^-(p) \cap K$. For any $x \in K$, $\varphi \in \text{Form}_{\mathcal{L}^{\square}}$, and $\epsilon \in \{+, -\}$ we have

$$\mathcal{M}, x \models^{\epsilon} \varphi \quad \text{iff} \quad \mathcal{M}^{K}, x \models^{\epsilon} \varphi$$

$$\tag{6}$$

In [17] the following results were proved:

- **BK** is strongly 4-complete w.r.t. the class of all **K**-frames;
- **B3K** is strongly 3-complete w.r.t. the class of all **K**-frames;
- **BS4** is strongly 4-complete w.r.t. the class of all **S4**-frames;
- **B3S4** is strongly 3-complete w.r.t. the class of all **S4**-frames.

Moreover, it was proved in [17] that $\mathbf{N4}^{\perp}$ and $\mathbf{N3}^{\perp}$ are faithfully embedded into **BS4** and, respectively, into **B3S4** via an analog T_B of the Gödel-Tarski translation that embeds **Int** into **S4**. The translation $T_B : \operatorname{Form}_{\mathcal{L}^{\sim}} \to$ Form_{\mathcal{L}^{\square}} is defined as follows:

$$T_{B}p = \Box p$$

$$T_{B}(\varphi \lor \psi) = T_{B}\varphi \lor T_{B}\psi$$

$$T_{B}(\varphi \land \psi) = T_{B}\varphi \land T_{B}\psi$$

$$T_{B}(\varphi \land \psi) = T_{B}\varphi \land T_{B}\psi$$

$$T_{B}(\varphi \rightarrow \psi) = \Box(T_{B}\varphi \rightarrow T_{B}\psi)$$

$$T_{B}\bot = \bot$$

$$T_{B}\sim \varphi = T_{B}\varphi$$

$$T_{B}\sim \varphi = T_{B}\varphi$$

$$T_{B}\sim \psi$$

A logic $M \in \mathcal{E}BS4$ is said to be a *modal companion* of $L \in \mathcal{E}N4^{\perp}$ if T_B faithfully embeds L into M, i.e.

$$\varphi \in L$$
 iff $T_B \varphi \in M$

for all $\varphi \in \text{Form}_{\mathcal{L}^{\sim}}$. According to this definition **BS4** is a modal companion of **N4**^{\perp}, and **B3S4** is a modal companion of **N3**^{\perp}. Let $\mathcal{M} = \langle W B u^{\pm} u^{\pm} \rangle$ be a **BS4** model. Define the new valuations

Let
$$\mathcal{M} = \langle W, R, v^+, v^- \rangle$$
 be a **BS4**-model. Define the new valuations
 $v'^+(p) = \{ w \in W \mid \mathcal{M}, w \models^+ \Box p \}$ and $v'^-(p) = \{ w \in W \mid \mathcal{M}, w \models^+ \Box \sim p \}.$

It is obvious that $\mathcal{M}' = \langle W, R, v'^+, v'^- \rangle$ is an $\mathbf{N4}^{\perp}$ -model too.

Lemma 2. [17] Let $\mathcal{M} = \langle W, R, v^+, v^- \rangle$ be a **BS4**-model, $x \in W$, and $\varphi \in \operatorname{Form}_{\mathcal{L}^{\sim}}$. Then

$$\mathcal{M}', x \models^+ \varphi \iff \mathcal{M}, x \models^+ T_B \varphi.$$

This simple fact allows to prove (see [17]) that **BS4** is a modal companion of $\mathbf{N4}^{\perp}$, and **B3S4** is a modal companion of $\mathbf{N3}^{\perp}$.

1.3. Logic programming preliminaries.

By a *logic program* Π we mean a set of rules of the form

$$(r) \quad \alpha_1 \vee \ldots \vee \alpha_k \leftarrow \beta_1 \wedge \ldots \wedge \beta_n \wedge \neg \beta_{n+1} \wedge \ldots \wedge \neg \beta_{n+m},$$

where $\alpha_i, \beta_j \in \text{Lit}^{\sim}$. We say that logic program Π is *normal* if k = 1 for all rules in Π , and that Π is *positive* (w.r.t. \neg) if m = 0 for all rules in Π .

Thus, the programs under consideration may contain two kinds of negation: the default negation, or negation-as-failure, denoted as \neg (usually written as 'not') and the strong or explicit negation [8] that may occur in α_i and β_j . In what follows we will identify a rule of the form (r) with a formula

$$(\beta_1 \wedge \ldots \wedge \beta_n \wedge \neg \beta_{n+1} \wedge \ldots \wedge \neg \beta_{n+m}) \rightarrow (\alpha_1 \vee \ldots \vee \alpha_k) \in \operatorname{Form}_{\mathcal{L}^{\sim}},$$

where $\neg \beta_j$ is understood as $\beta_j \rightarrow \bot$. A set $\mathbf{H} \subseteq \text{Lit}^\sim$ is a model of a logic program Π if \mathbf{H} is a **B4**-model of the set of all formulas corresponding to the rules of Π .

Now we recall the definition of stable models. Notice that originally Gelfond and Lifschitz [7] defined stable models for positive normal programs.

Let Π be a logic program and $\mathbf{T} \subseteq \text{Lit}^{\sim}$. The *Gelfond-Lifschitz reduct* (*GL-reduct*) of Π w.r.t. \mathbf{T} is a positive program obtained from Π in two

steps. First, we exclude from Π all rules containing $\neg \beta_i$ for $\beta_i \in \mathbf{T}$. Second, we delete all conjunctive terms of the form $\neg \beta_i$ from the rest of rules.

We say that $\mathbf{T} \subseteq \text{Lit}^{\sim}$ is a *stable model* of Π if $\mathbf{T} \models \Pi^{\mathbf{T}}$, and $\mathbf{H} \models \Pi^{\mathbf{T}}$ for $\mathbf{H} \subseteq \mathbf{T}$ implies $\mathbf{H} = \mathbf{T}$. In other words, \mathbf{T} is a minimal w.r.t. inclusion **B4**-model of $\Pi^{\mathbf{T}}$.

Now we define the relation \trianglelefteq among N₉-models as follows. Let $\langle \mathbf{H}_1, \mathbf{T}_1 \rangle$ and $\langle \mathbf{H}_2, \mathbf{T}_2 \rangle$ be N₉-models. We set

$$\langle \mathbf{H}_1, \mathbf{T}_1 \rangle \trianglelefteq \langle \mathbf{H}_2, \mathbf{T}_2 \rangle$$
 iff $\mathbf{T}_1 = \mathbf{T}_2$ and $\mathbf{H}_1 \subseteq \mathbf{H}_2$.

An N₉-model of the form $\langle \mathbf{T}, \mathbf{T} \rangle$ is called *total*.

For an arbitrary subset $\Gamma \subseteq \operatorname{Form}_{\mathcal{L}^{\sim}}$, a total model $\langle \mathbf{T}, \mathbf{T} \rangle$ is said to be an *equilibrium model of* Γ if $\langle \mathbf{T}, \mathbf{T} \rangle \models \Gamma$ and there is no $\mathbf{H} \subseteq \operatorname{Lit}^{\sim}$ such that $\mathbf{H} \neq \mathbf{T}$ and $\langle \mathbf{H}, \mathbf{T} \rangle \models \Gamma$. In other words an equilibrium model of Γ is a total model of Γ , which is \trianglelefteq -minimal in the class of \mathbf{N}_{9} -models of Γ .

For logic programs, there is a close connection between stable and equilibrium models.

Theorem 1. [16] For a logic program Π , a set $\mathbf{T} \subseteq \text{Lit}^{\sim}$ is a stable model of Π iff $\langle \mathbf{T}, \mathbf{T} \rangle$ is an equilibrium model of Π .

Originally [16] this statement was proved via the reduction to the results of [1], a short direct proof can be found in [12].

In what follows, $\mathcal{E}l_9(\Gamma)$ denotes the set of all equilibrium models of Γ , and $\mathcal{E}l_5(\Gamma)$ denotes the set of all consistent equilibrium models of Γ , i.e. the set of those equilibrium models of Γ that are \mathbf{N}_5 -models. We define equilibrium consequence relations as follows:

 $\Gamma \models_{el}^{9} \varphi \text{ iff } \langle \mathbf{H}, \mathbf{T} \rangle \vDash \varphi \text{ for every} \langle \mathbf{H}, \mathbf{T} \rangle \in \mathcal{E}l_{9}(\Gamma).$ $\Gamma \models_{el}^{5} \varphi \text{ iff } \langle \mathbf{H}, \mathbf{T} \rangle \vDash \varphi \text{ for every} \langle \mathbf{H}, \mathbf{T} \rangle \in \mathcal{E}l_{5}(\Gamma).$

2 Special temporal logic

Similar to [5] we define a special temporal logic, where the future (\Box, \diamondsuit) and past $(\blacksquare, \blacklozenge)$ modalities are defined via accessibility relations that are not mutually inverse, but however are closely connected. Prior to do it we recall the definition of a fusion of modal logics, and of the temporary version of **BS4** defined in [17].

Let $\mathcal{L}^{\blacksquare} := \mathcal{L}^{\frown} \cup \{\blacksquare\}, \mathcal{L}^t := \mathcal{L}^{\Box} \cup \{\blacksquare\}, \text{ and } \blacklozenge \varphi := \sim \blacksquare \sim \varphi.$

For $L \in \mathcal{E}\mathbf{B}\mathbf{K}$, we denote by L_{\blacksquare} the logic in the language $\mathcal{L}^{\blacksquare}$ defined via the same axioms and rules as L but with \Box replaced by \blacksquare . Clearly, $L_{\blacksquare} \in \mathcal{E}\mathbf{B}\mathbf{K}_{\blacksquare}$.

For $L^1, \overline{L^2} \in \mathcal{E}\mathbf{B}\mathbf{K}$, we put $L^1 * L^2 := L^1 \cup L^2_{\blacksquare}$. We say that $L^1 * L^2$ is a *fusion* of logics L^1 and L^2 .

The temporal version $\mathbf{BS4}_t$ of $\mathbf{BS4}$ was defined in [17] as

$$\mathbf{BS4_t} = \mathbf{BS4} * \mathbf{BS4} + \{p \to \Box \blacklozenge p, \ p \to \blacksquare \Diamond p\}.$$

Frames and models are defined for $\mathbf{BS4}_t$ in the same way as for $\mathbf{BS4}$. For connectives of \mathcal{L}^{\Box} , the verification and falsification also are defined as for **S4**-frames. For \blacksquare we have:

 $\mathcal{M}, x \models^+ \blacksquare \alpha$ iff $\forall y (yRx \text{ implies } \mathcal{M}, y \models^+ \alpha)$ $\mathcal{M}, x \models^{-} \blacksquare \alpha$ iff $\exists y (y R x \text{ and } \mathcal{M}, y \models^{-} \alpha)$

As a consequence for \blacklozenge we have:

$$\mathcal{M}, x \models^+ \blacklozenge \alpha \quad \text{iff} \quad \exists y(yRx \text{ and } \mathcal{M}, y \models^+ \alpha) \\ \mathcal{M}, x \models^- \blacklozenge \alpha \quad \text{iff} \quad \forall y(yRx \text{ implies } \mathcal{M}, y \models^- \alpha)$$

All related notions are modified for the language \mathcal{L}^t in an obvious way. Naturally, $\mathbf{BS4}_{t}$ is strongly 4-complete w.r.t. the class of all $\mathbf{S4}$ -frames, and $B3S4_t = B3S4_t + \{(p \land \sim p) \rightarrow q\}$ is strongly 3-complete w.r.t. the class of all **S4**-frames.

Further, let us consider the fusion

BSK = BS4 * BK

and its explosive extension $\mathbf{B3SK} = \mathbf{BSK} + \{(p \land \sim p) \to q\}.$

A **BSK**-frame is a tuple $\mathcal{W} = \langle W, R, S \rangle$, where R is a preoder on W and $S \subseteq W^2$. A **BSK**-model $\mathcal{M} = \langle \mathcal{W}, v^+, v^- \rangle$ is a **BSK**-frame \mathcal{W} augmented with two valuations v^+, v^- : Prop $\to 2^W$. One can combine in an obvious way the completeness results for **BS4**, **BK** and their explosive extensions from [17] to obtain the following

Theorem 2. Logic **BSK** (**B3SK**) is strongly 4-complete (3-complete) w.r.t. the class of **BSK**-frames.

We denote by id_W the diagonal of W, i.e., $\mathrm{id}_W = \{(a, a) \mid a \in W\}$.

Proposition 1. Let $\mathcal{W} = \langle W, R, S \rangle$ be a **BSK**-frame and $\epsilon \in \{3, 4\}$. The following equivalences hold:

1) $\mathcal{W} \models_{\epsilon} p \to \blacksquare \Diamond p$ iff $S \subseteq R^{-1}$; 2) $\mathcal{W} \models_{\epsilon} p \to \Box (p \lor \blacklozenge p)$ iff $R \subseteq S^{-1} \cup \mathrm{id}_W$.

Proof. We fix some **BSK**-frame $\mathcal{W} = \langle W, R, S \rangle$.

1) This is one of standard axioms of temporal logic, and since \sim does not occur in this formula the three- or four-valued case should not differ from the ordinary one. However we provide this proof to be self contained. Let $S \subseteq \mathbb{R}^{-1}$, and let $\mathcal{M} = \langle \mathcal{W}, v^+, v^- \rangle$ be a model over \mathcal{W} . Assume that $\mathcal{M}, x \models^+ p$ and choose some y with xSy. We have then yRx by $S \subseteq R^{-1}$, and so $\mathcal{M}, y \models^+ \Diamond p$. Since y is an arbitrary S-successor of x, we have $\mathcal{M}, x \models^+$ $\blacksquare \Diamond p$. We have thus proved that $S \subseteq R^{-1}$ implies $\mathcal{W} \models_4 p \to \blacksquare \Diamond p$ and, in particular, $\mathcal{W} \models_3 p \to \blacksquare \Diamond p$.

To prove the inverse implication we assume that $S \not\subseteq R^{-1}$ and $x, y \in W$ are such that xSy but $\neg(yRx)$. Let $\mathcal{M} = \langle \mathcal{W}, v^+, v^- \rangle$ be such that $v^+(p) = \{x\}$ and $v^{-}(q) = \emptyset$ for all $q \in$ Prop. Obviously, \mathcal{M} is a **B3SK**-model. In this case we have $\mathcal{M}, x \models^+ p$ and $\mathcal{M}, y \not\models^+ \Diamond p$, whence $\mathcal{M}, x \not\models^+ \blacksquare \Diamond p$. Thus, $S \not\subseteq R^{-1}$ implies $\mathcal{W} \not\models_3 p \to \blacksquare \Diamond p$, moreover, $\mathcal{W} \not\models_4 p \to \blacksquare \Diamond p$.

2) First we assume that $R \subseteq S^{-1} \cup \operatorname{id}_W$. Let $\mathcal{M} = \langle \mathcal{W}, v^+, v^- \rangle$ be a model over \mathcal{W} and $x, y \in W$ be such that $\mathcal{M}, x \models^+ p$ and xRy. If x = y, then $\mathcal{M}, y \models^+ p \lor \blacklozenge p$. If $x \neq y$, then ySx, and we again have $\mathcal{M}, y \models^+ p \lor \blacklozenge p$. Consequently, $\mathcal{M}, x \models^+ \Box(p \lor \blacklozenge p)$. We proved thus $\mathcal{W} \models_4 p \to \Box(p \lor \blacklozenge p)$, moreover, $\mathcal{W} \models_3 p \to \Box(p \lor \blacklozenge p)$.

Now we assume that $R \not\subseteq S^{-1} \cup \operatorname{id}_W$ and choose $x, y \in W$ such that xRy, $x \neq y$, and $\neg(ySx)$. As in Item 1 we take a **B3SK**-model $\mathcal{M} = \langle \mathcal{W}, v^+, v^- \rangle$ such that $v^+(p) = \{x\}$ and $v^-(q) = \emptyset$ for all $q \in \operatorname{Prop.}$ We have $\mathcal{M}, x \models^+ p$. At the same time the conditions $x \neq y$ and $\neg(ySx)$ imply $\mathcal{M}, y \not\models^+ p \lor \blacklozenge p$, whence $\mathcal{M}, x \not\models^+ \Box(p \lor \blacklozenge p)$. Thus, $\mathcal{W} \not\models_3 p \to \Box(p \lor \blacklozenge p)$ and $\mathcal{W} \not\models_4 p \to \Box(p \lor \blacklozenge p)$.

We define a weak version of $\mathbf{BS4}_{t}$ as follows:

$$\mathbf{BSK}_{\mathbf{t}} := \mathbf{BSK} + \{ p \to \blacksquare \Diamond p, \ p \to \Box (p \lor \blacklozenge p) \}.$$

We put also $\mathbf{B3SK_t} := \mathbf{BSK_t} + \{(p \land \sim p) \to q\}.$

1

To prove the completeness of \mathbf{BSK}_t and of its axiomatic extensions via different classes of frames we will use the canonical model method.

First we notice that every prime L-theory Γ over $L \in \mathcal{E}BSK_t$ is complete and consistent w.r.t. \neg . Indeed, $\varphi \lor \neg \varphi \in \Gamma$ since BSK_t contains axioms of classical logic in the language $\{\lor, \land, \rightarrow, \bot\}$. Consequently, the disjunction property of Γ implies $\varphi \in \Gamma$ or $\neg \varphi \in \Gamma$. In particular, any two prime Ltheories are incomparable w.r.t. set-theoretical inclusion \subseteq , i.e. for prime L-theories Γ and Δ we have:

$$\Gamma \neq \Delta$$
 implies $\Gamma \setminus \Delta \neq \emptyset$. (7)

If $\varphi, \neg \varphi \in \Gamma$, then $(\varphi \land \neg \varphi) \to \psi \in \Gamma$ implies that $\Gamma = \operatorname{Form}_{\mathcal{L}^t}$.

For $L \in \mathcal{E}\mathbf{BSK_t}$, the *canonical L-frame* is defined as $\mathcal{W}^L = \langle W^L, R^L, S^L \rangle$, where

- W^L is the set of all prime *L*-theories;
- $\Gamma R^L \Delta$ iff $\Gamma_{\Box} \subseteq \Delta$, where $\Gamma_{\Box} = \{ \varphi \mid \Box \varphi \in \Gamma \};$
- $\Gamma S^L \Delta$ iff $\Gamma_{\blacksquare} \subseteq \Delta$, where $\Gamma_{\blacksquare} = \{ \varphi \mid \blacksquare \varphi \in \Gamma \};$

The canonical L-model has the form $\mathcal{M}^L = \langle \mathcal{W}, v_L^+, v_L^- \rangle$, where

$$v_L^+(p) = \{\Gamma \in W^L \mid p \in \Gamma\} \text{ and } v_L^-(p) = \{\Gamma \in W^L \mid \sim p \in \Gamma\}.$$

The abbreviations $\Diamond \varphi := \sim \Box \sim \varphi$ and $\blacklozenge \varphi := \sim \Diamond \sim \varphi$ easily imply that

$$\Gamma R^L \Delta \text{ iff } \Delta^{\Diamond} \subseteq \Gamma; \quad \Gamma S^L \Delta \text{ iff } \Delta^{\blacklozenge} \subseteq \Gamma,$$

where $\Delta^{\Diamond} = \{ \Diamond \varphi \mid \varphi \in \Delta \}$ and $\Delta^{\blacklozenge} = \{ \blacklozenge \varphi \mid \varphi \in \Delta \}$. Further, by induction on the structure of formulas one can easily prove the canonical model lemma:

Lemma 3. Let $L \in \mathcal{E}BSK_t$. For every prime L-theory Γ and formula φ , the following equivalences hold:

$$\mathcal{M}^L, \Gamma \models^+ \varphi \quad iff \quad \varphi \in \Gamma; \quad \mathcal{M}^L, \Gamma \models^- \varphi \quad iff \quad \sim \varphi \in \Gamma.$$

490

Theorem 3. Logic $\mathbf{BSK_t}$ ($\mathbf{B3SK_t}$) is strongly 4-complete (3-complete) w.r.t. the class of \mathbf{BSK} -frames $\langle W, R, S \rangle$ such that

$$R = S^{-1} \cup \mathrm{id}_W. \tag{8}$$

Proof. We omit the routine correctness proof and check the completeness. Let $\Gamma \nvDash_{\mathbf{BSK}_{\mathbf{t}}} \varphi$. By Lemma 1 there is a prime $\mathbf{BSK}_{\mathbf{t}}$ -theory Δ with $\Gamma \subseteq \Delta$ and $\varphi \notin \Delta$. According to Lemma 3, we have

$$\mathcal{M}^{\mathbf{BSK}_{\mathbf{t}}}, \Delta \models^{+} \psi \text{ for all } \psi \in \Gamma \text{ and } \mathcal{M}^{\mathbf{BK}}, \Delta \not\models^{+} \varphi.$$

It remains to check that the canonical \mathbf{BSK}_t -frame $\mathcal{W}^{\mathbf{BSK}_t}$ is a \mathbf{BSK} -frame, i.e., that the relation $R^{\mathbf{BSK}_t}$ is reflexive and transitive, and that

$$R^{\mathbf{BSK}_{\mathbf{t}}} = (S^{\mathbf{BSK}_{\mathbf{t}}})^{-1} \cup \mathrm{id}_{W^{\mathbf{BSK}_{\mathbf{t}}}}.$$
(9)

As well as in case of normal modal logics (see [3, Theorem 5.16]) we can we can check that the axiom $\Box p \to p$ implies that $R^{\mathbf{BSK}_{\mathbf{t}}}$ is reflexive, and that $\Box p \to \Box \Box p$ implies that $R^{\mathbf{BSK}_{\mathbf{t}}}$ is transitive.

Let us check (9). For brevity we will omit the upper index $(\cdot)^{\mathbf{BSK_t}}$. Assume that $R \not\subseteq S^{-1} \cup \mathrm{id}_W$. In this case there are $\Gamma, \Delta \in W$ such that $\Gamma R\Delta, \Gamma \neq \Delta$, and $\neg(\Delta S\Gamma)$. The latter is equivalent to $\Delta^{\blacksquare} \not\subseteq \Gamma$. Let $\blacksquare \varphi \in \Delta$ and $\varphi \notin \Gamma$. The completeness of Γ implies $\neg \varphi \in \Gamma$. By (7) and $\Gamma \neq \Delta$ there is $\psi \in \Gamma \setminus \Delta$, so $\neg \varphi \wedge \psi \in \Gamma$. The axiom $p \to \Box (p \lor \blacklozenge p)$ implies

$$(\neg \varphi \land \psi) \to \Box((\neg \varphi \land \psi) \lor \blacklozenge(\neg \varphi \land \psi)) \in \Gamma.$$

By (MP) and $\Gamma R\Delta$ we obtain $(\neg \varphi \land \psi) \lor (\neg \varphi \land \psi) \in \Delta$. Since $\psi \notin \Delta$, we have $\neg \varphi \land \psi \notin \Delta$, so $(\neg \varphi \land \psi) \in \Delta$. From $(\neg \varphi \land \psi) \rightarrow (\langle \neg \varphi \land \psi) \in \mathbf{BSK}_t$, we conclude $\langle \neg \varphi \in \Delta$. By (5) $\neg \blacksquare \varphi \in \Delta$, which contradicts to the \neg -consistency of Δ . We have thus proved $R \subseteq S^{-1} \cup \mathrm{id}_W$.

Now we prove that $S \subseteq \mathbb{R}^{-1}$. Let $\Gamma, \Delta \in W$ be such that $\Gamma S\Delta$, i.e., $\Delta^{\blacklozenge} \subseteq \Gamma$. If $\Box \varphi \in \Delta$, then $\blacklozenge \Box \varphi \in \Gamma$. By axiom $p \to \blacksquare \Diamond p$ we have $\neg \varphi \to \blacksquare \Diamond \neg \varphi \in \Gamma$. By (5) $\blacksquare \Diamond \neg \varphi \leftrightarrow \neg \blacklozenge \Box \varphi \in \Gamma$. Consequently, $\neg \varphi \to \neg \blacklozenge \Box \varphi \in \Gamma$, whence $\blacklozenge \Box \varphi \to \varphi \in \Gamma$. Finally, $\varphi \in \Gamma$. We have thus proved that $\Gamma S\Delta$ implies $\Delta R\Gamma$, which completes the proof of 4-completeness for **BSK**_t.

In case of $\mathbf{B3SK_t}$ we only have to check that the canonical $\mathbf{B3SK_t}$ -model is a 3-model, i.e., that $\{p, \sim p\} \subseteq \Gamma$ does not hold for any $p \in \operatorname{Prop}$ and $\Gamma \in W^{\mathbf{B3SK_t}}$. This fact readily follows from the $\mathbf{B3SK_t}$ -axiom $(p \land \sim p) \to q$.

Now it is natural to say that $\mathcal{W} = \langle W, R, S \rangle$ is a **BSK**_t-frame, if \mathcal{W} is a **BSK**-frame and $R = S^{-1} \cup id_W$.

We consider some further conditions on the accessibility relations of a $\mathbf{BSK_t}$ -frame $\langle W, R, S \rangle$:

- $(1^R) \ \forall x, y, z \in W((xRy \& xRz \& x \neq y \& x \neq z) \Rightarrow y = z);$
- $(2^S) \ \forall x, y(xSy \ \Rightarrow \ ySy);$
- $(3^S) \ \forall x, y, z \in W((xSy \& ySz \Rightarrow y = z)).$

We will need also \mathcal{L}^t -formulas:

$$\operatorname{alt}_2$$
: $\Box p \lor \Box (p \to q) \lor \Box ((p \land q) \to r), \quad \blacksquare \cdot \mathbf{T}_\blacksquare$: $\blacksquare (\blacksquare p \to p).$

Proposition 2. Let $\mathcal{W} = \langle W, R, S \rangle$ be a **BSK_t**-frame and $\epsilon \in \{3, 4\}$. Then the following equivalences hold:

- (1) $\mathcal{W} \models_{\epsilon} \mathbf{alt}_2$ iff $R \text{ satisfies } (1^R);$
- (2) $\mathcal{W} \models_{\epsilon} \blacksquare \cdot \mathbf{T}_{\blacksquare}$ iff S satisfies (2^S) ;
- (3) $\mathcal{W} \models_{\epsilon} \blacksquare (p \to \blacksquare p)$ iff S satisfies (3^S) .

Proof. (1) It is clear that the validity of a formula which does not contain \sim and ■ on a frame $\langle W, R, S \rangle$ is equivalent to the validity of this formulas on a frame $\langle W, R \rangle$ for normal modal logics. It is also known (see,e.g. [3, Prop. 3.45]) that the validity of **alt**₂ is equivalent to the condition that every world has at most 2 different *R*-successors. In view of reflexivity of *R* in **BSK**_t-frames we obtain that the validity of **alt**₂ in a **BSK**_t-frame $\langle W, R, S \rangle$ is equivalent to the condition that every world has at most one proper *R*-successor, i.e., to (1^{*R*}).

(2) Again, it is known [3, Prop. 3.30] that the validity of $\blacksquare p \to p$ on $\langle W, R, S \rangle$ is equivalent to the reflexivity of S. The additional \blacksquare in front of this formula restricts this condition to worlds that are S-successors. So the validity of $\blacksquare \cdot \mathbf{T}_{\blacksquare}$ is equivalent to (2^S) .

(3) Assume that $\mathcal{W} = \langle W, R, S \rangle$ satisfies (3^S) , i.e., every S-successor has no proper S-successors, and that \mathcal{M} is a 4-model over \mathcal{W} . Check that $\mathcal{M} \models \blacksquare (p \to \blacksquare p)$. Let $x, y \in W$ and xSy. If $\mathcal{M}, y \models^+ p$ and ySz, then y = z by (3^S) and $\mathcal{M}, z \models^+ p$. So $\mathcal{M}, y \models^+ p \to \blacksquare p$ and $\mathcal{M}, x \models^+ \blacksquare (p \to \blacksquare p)$.

Assume that $\mathcal{W} = \langle W, R, S \rangle$ is such that xSy, ySz, and $y \neq z$. Consider a 3-model cM over \mathcal{W} such that $v^+(p) = \{y\}$ and $v^-(y) = \emptyset$. Then $\mathcal{M}, y \models^+ p$, $\mathcal{M}, y \not\models^+ \blacksquare p$, and so $\mathcal{M}, x \not\models^+ \blacksquare (p \to \blacksquare p)$.

Now we put

 $\mathbf{BSK_{t2}} := \mathbf{BSK_{t}} + \{\mathbf{alt}_{2}, \blacksquare (p \leftrightarrow \blacksquare p)\}, \ \mathbf{B3SK_{t2}} := \mathbf{BSK_{t2}} + \{(p \land \sim p) \rightarrow q\}.$

A **BSK**_t-frame $\mathcal{W} = \langle W, R, S \rangle$ is said to be a **BSK**_{t2}-frame if it satisfies the conditions $(1^R), (2^S), (3^S)$.

Theorem 4. Logic BSK_{t2} (B3SK_{t2}) is strongly 4-complete (3-complete) w.r.t. the class of BSK_{t2} -frames.

Proof. Since $\blacksquare(p \leftrightarrow \blacksquare p)$ is equivalent to the conjunction of $\blacksquare \cdot \mathbf{T}_{\blacksquare}$ and $\blacksquare(p \rightarrow \blacksquare p)$, the correctness part follows from Proposition 2. For the completeness part, it would be enough to check that the canonical $\mathbf{BSK_{t2}}$ -frame, which we denote for brevity as $\mathcal{W}_2 = \langle W_2, R_2, S_2 \rangle$ is a $\mathbf{BSK_{t2}}$ -frame. That \mathcal{W}_2 is a $\mathbf{BSK_{t2}}$ -frame can be checked as in the proof of Theorem 3. The axiom \mathbf{alt}_2 implies that every $\Gamma \in W_2$ has at most two R_2 -successors. This fact and the reflexivity of R_2 imply the condition (1^R) .

Now we check that $\Gamma S_2 \Delta$ implies $\Delta S_2 \Delta$ for all $\Gamma, \Delta \in W_2$. Let $\Gamma S_2 \Delta$, i.e., $\Gamma_{\blacksquare} \subseteq \Delta$. Assume that $\blacksquare \varphi \in \Delta$. Since $\blacksquare(\blacksquare \varphi \to \varphi)$ is a theorem of $\mathbf{BSK_{t2}}$ we have $\blacksquare(\blacksquare \varphi \to \varphi) \in \Gamma$, whence $\blacksquare \varphi \to \varphi \in \Delta$. Applying (MP) we obtain $\varphi \in \Delta$. So $\Delta_\blacksquare \subseteq \Delta$, and the condition (2^S) holds for \mathcal{W}_2 . Finally, we assume that $\Gamma, \Delta, \Sigma \in W_2$ are such that $\Gamma_{\blacksquare} \subseteq \Delta$ and $\Delta_{\blacksquare} \subseteq \Sigma$. We have to check that $\Delta = \Sigma$. Let $\varphi \in \Delta$. Since $\blacksquare(\varphi \to \blacksquare \varphi) \in \Gamma$, we have $\varphi \to \blacksquare \varphi \in \Delta$. By (MP) $\blacksquare \varphi \in \Delta$, and so $\varphi \in \Sigma$. We proved $\Delta \subseteq \Sigma$. By (7) we conclude $\Delta = \Sigma$. Thus, the condition (3^S) holds for the canonical **BSK**_{t2}-frame too.

3 \blacksquare -free fragments of BSK_{t2} and $B3SK_{t2}$

We define

$$\mathbf{BS4_2} = \mathbf{BS4} + {\mathbf{alt}_2}, \quad \mathbf{B3S4_2} = \mathbf{BS4_2} + {(p \land \sim p) \to q}$$

Proposition 3.

- Logic BS4₂ (B3S4₂) is strongly 4-complete (3-complete) w.r.t. the class of BS4-frames satisfying (1^R).
- (2) Logic **BS4**₂ (**B3S4**₂) is strongly 4-complete (3-complete) w.r.t. the class $\{W^{HT}\}$.

Proof. (1) As above we use [3, Theorem 5.16] to check that the canonical frames of logics **BS4**₂ and **B3S4**₂ are **BS4**-frames satisfying (1^{*R*}). According to this theorem the axiom $\Box p \to p$ implies the reflexivity of canonical frames. In a similar way, $\Box p \to \Box \Box p$ and **alt**₂ imply the transitivity and the condition (1^{*R*}) respectively.

(2) We consider the case of **BS4**₂. It is clear that \mathcal{W}^{HT} is a **BS4**-frame satisfying (1^R) , so $\Gamma \vdash_{\mathbf{BS4}_2} \varphi$ implies $\Gamma \models_{\mathcal{M}} \varphi$ for every 4-model \mathcal{M} over \mathcal{W}^{HT} .

Let $\Gamma \nvDash_{\mathbf{BS4_2}} \varphi$. Then $\mathcal{M}, x \models^+ \Gamma$ and $\mathcal{M}, x \not\models^+ \varphi$ for some 4-model \mathcal{M} over a **BS4**-frame $\mathcal{W} = \langle W, R \rangle$ satisfying (1^R) . By (6) we have

$$\mathcal{M}^{x\uparrow}, x \models^+ \Gamma$$
 and $\mathcal{M}^{x\uparrow}, x \not\models^+ \varphi$,

where $x \uparrow = \{y \in W \mid xRy\}$. The condition (1^R) implies that $|x \uparrow| \leq 2$, i.e., $\mathcal{W}^{x\uparrow}$ is isomorphic to \mathcal{W}^{HT} or \mathcal{W}^T . Since \mathcal{W}^T can be identified with the upper world of \mathcal{W}^{HT} , we obtain $\mathcal{M}', x \models^+ \Gamma$ and $\mathcal{M}', x \not\models^+ \varphi$ for some 4-model \mathcal{M}' over \mathcal{W}^{HT} and $x \in \{h, t\}$. \Box

Corollary 1. Logic $BS4_{t2}$ ($B3S4_{t2}$) is a conservative extension of $BS4_2$ ($BS4_2$).

Proof. This statement readily follows from the observation that $\langle W, R, S \rangle$ is a **BSK**_{t2}-frame iff $R = S^{-1} \cup id_W$ and $\langle W, R \rangle$ is a **BS4**-frame satisfying (1^R) .

Theorem 5. The logic **BS4**₂ (**B3S4**₂) is a modal companion of **N**₉ (**N**₅), *i.e.*, for every $\varphi \in \text{Form}_{\mathcal{L}^{\sim}}$ the following two equivalences hold:

$$\varphi \in \mathbf{N_9} \quad iff \quad T_B \varphi \in \mathbf{BS4_2}, \\ \varphi \in \mathbf{N_5} \quad iff \quad T_B \varphi \in \mathbf{B3S4_2}.$$

Proof. We consider the case of **N**₉. If $T_B \varphi \notin \mathbf{BS4_2}$, then by Item 2 of Proposition 3 $\mathcal{M}, x \not\models^+ T_B \varphi$ for some 4-model \mathcal{M} over \mathcal{W}^{HT} and $x \in \{h, t\}$. By Lemma 2 we have $\mathcal{M}', x \not\models \varphi$. Moreover, \mathcal{M}' is obviously an **N**₉-model. Consequently, $\varphi \notin \mathbf{N}_9$.

If $\varphi \notin \mathbf{N_9}$. Then $\mathcal{M}, x \not\models^+ \varphi$ for a suitable $\mathbf{N_9}$ -model and $x \in \{h, t\}$. Obviously, \mathcal{M} is a **BS4**-model over \mathcal{W}^{HT} . Since $v^+(p)$ and $v^-(p)$ are cones for any $p \in \text{Prop}$, we have

$$x \in v^+(p) \Leftrightarrow \mathcal{M}, x \models^+ \Box p \text{ and } w \in v^-(p) \Leftrightarrow \mathcal{M}, w \models^+ \Box \sim p,$$

which implies $\mathcal{M}' = \mathcal{M}$. We have then $\mathcal{M}, w \not\models^+ T_B \varphi$ by Lemma 2, and so $T_B \varphi \notin \mathbf{BS4}$.

This theorem together with Proposition 1 yields

Corollary 2. The translation T_B faithfully embeds the logic N_9 (N_5) into the special temporal logic BSK_{t2} ($B3SK_{t2}$).

4 Equilibrium theory over $BS4_{t2}$

We define a theory **BKE** as the least set of formulas closed under the rules of $BS4_{t2}$, containing the axioms of $BS4_{t2}$ as well as the following formulas:

$$\Diamond(\bigwedge_{\alpha\in A}\Box\alpha\wedge\bigwedge_{\beta\in B}\Box\beta\wedge\bigwedge_{\gamma\in C}\Box\neg\gamma)\to\Diamond\phi(\bigwedge_{\alpha\in A\cup C}\neg\alpha\wedge\bigwedge_{\beta\in B}\beta),\qquad(10)$$

where A, B, C are disjoint finite subsets of Lit[~], and $A \neq \emptyset$.

It is clear that **BKE** contains all theorems of $\mathbf{BS4_{t2}}$ and is closed under the rules (NR_{\square}) and (NR_{\blacksquare}), but it need not be closed under (SUB). Substituting to the axioms (10) we obtain formulas which are not of the form (10). So **BKE** is namely a theory over $\mathbf{BS4_{t2}}$, not an axiomatic extension.

The theory **B3KE** is defined in exactly the same way but over $B3S4_{t2}$. Now we describe models of theories **BKE** and **B3KE**.

First, for a model $\mathcal{M} = \langle W, R, v^+, v^- \rangle$ and $x \in W$ we denote by At_x the set of all literals true at x:

$$At_x = \{ \alpha \mid \alpha \in \operatorname{Lit}^{\sim} \text{ and } \mathcal{M}, x \models^+ \alpha \}.$$

We say that $\mathcal{M} = \langle W, R, S, v^+, v^- \rangle$ is a **BKE**-model if $\langle W, R, S \rangle$ is a **BS4**_{t2}frame, i.e., R and S are related by (8), R is a preoder on W satisfying (1^R), S satisfies (2^S), (3^S), and for every $x \in W$ the following two conditions are satisfied:

- (1^E) if x is an *isolated point*, i.e., there is no $y \in W$ such that $y \neq x$, and yRx or xRy, then $At_x = \emptyset$.
- (2^E) if x is a proper R-successor of some $y \in W$ and $At_x \neq \emptyset$, then for every proper subset $B \subsetneq At_x$ there is $z \in W$ such that xSz and $At_z = B$.

B3KE-models are **BKE**-models satisfying the consistency condition (2).

Theorem 6. Let $\varphi \in \text{Form}_{\mathcal{L}^t}$. The following equivalences are true:

- (1) $\varphi \in \mathbf{BKE}$ iff $\mathcal{M} \models \varphi$ for every \mathbf{BKE} -model;
- (2) $\varphi \in \mathbf{B3KE}$ iff $\mathcal{M} \models \varphi$ for every $\mathbf{B3KE}$ -model;

Proof. (1) First we prove that $\varphi \in \mathbf{BKE}$ implies the truth of φ on all **BKE**-models. Since **BKE**-models are based on $\mathbf{BS4_{t2}}$ -frames, Theorem 4 implies that it would be enough to check the truth of axioms (10) on **BKE**-models. Let $\mathcal{M} = \langle W, R, S, v^+, v^- \rangle$ be a **BKE**-model and $x \in W$. Assume that

$$\mathcal{M}, x \models^+ \Diamond (\bigwedge_{\alpha \in A} \Box \alpha \land \bigwedge_{\beta \in B} \Box \beta \land \bigwedge_{\gamma \in C} \Box \neg \gamma),$$

where A, B, C are disjoint finite subsets of Lit[~], and $A \neq \emptyset$. Then there is $y \in W$ such that xRy and

$$\mathcal{M}, y \models^+ \bigwedge_{\alpha \in A} \Box \alpha \land \bigwedge_{\beta \in B} \Box \beta \land \bigwedge_{\gamma \in C} \Box \neg \gamma.$$

Reflexivity of R implies $A \cup B \subseteq At_y$. Since $\mathcal{M}, y \models^+ \neg \alpha$ is equivalent to $\mathcal{M}, y \not\models^+ \alpha$, we have $C \cap At_y = \emptyset$. If x has no proper R-successors, then x = y. In this case $A \neq \emptyset$ and (1^E) imply that there is z such that $x \neq z$ and zRx. By (2^E) there is an S-successor u of x such that $At_u = B$. So we have $\mathcal{M}, x \models^+ \blacklozenge(\bigwedge_{\alpha \in A \cup C} \neg \alpha \land \bigwedge_{\beta \in B} \beta)$ and

$$\mathcal{M}, x \models^+ \Diamond \blacklozenge (\bigwedge_{\alpha \in A \cup C} \neg \alpha \land \bigwedge_{\beta \in B} \beta).$$
(11)

Otherwise we can assume that y is a proper R-successor of x. From (2^E) we again obtain that $\oint (\bigwedge_{\alpha \in A \cup C} \neg \alpha \land \bigwedge_{\beta \in B} \beta)$ is verified at y, and (11) as a consequence.

To prove the inverse implication we define the canonical frame \mathcal{W}^E for the theory **BKE** in exactly the same way as it was done earlier for axiomatic extensions of **BSK**_t. We put $\mathcal{W}^E = \langle W^E, R^E, S^E \rangle$, where W^E is the set of all prime **BSK**_{t2}-theories containing **BKE**,

$$\Gamma R^E \Delta$$
 iff $\Gamma_{\Box} \subseteq \Delta$, $\Gamma S^E \Delta$ iff $\Gamma_{\blacksquare} \subseteq \Delta$.

If $\varphi \in \operatorname{Form}_{\mathcal{L}^t}$, we denote the set of its propositional variables as $\operatorname{var}(\varphi)$ and put

$$\operatorname{Lit}_{\varphi} = \{ p, \sim p \mid p \in \operatorname{var}(\varphi) \}.$$

For $\varphi \notin \mathbf{BKE}$ we define a kind of canonical model $\mathcal{M}_{\varphi}^{E} = \langle \mathcal{W}^{E}, v_{E}^{+}, v_{E}^{-} \rangle$ putting

$$v_{\varphi}^{+}(p) = \{ \Gamma \in W^{L} \mid p \in \Gamma \cap \operatorname{var}(\varphi) \}, \quad v_{\varphi}^{-}(p) = \{ \Gamma \in W^{L} \mid \sim p \in \Gamma \cap \operatorname{Lit}_{\varphi} \}.$$

The analog of canonical model lemma (Lemma 3) can also be proved for $\mathcal{M}_{\varphi}^{E}$ by induction on the structure of formulas. For every $\psi \in \operatorname{Form}_{\mathcal{L}^{t}}$ and $\Gamma \in W^{E}$ we have

$$\mathcal{M}_{\varphi}^{E}, \Gamma \models^{+} \psi \text{ iff } \psi \in \Gamma; \quad \mathcal{M}_{\varphi}^{E}, \Gamma \models^{-} \psi \text{ iff } \sim \psi \in \Gamma.$$
 (12)

That \mathcal{W}^E is a **BSK**_{t2}-frame can be proved in exactly the same way as in Theorem 4. Let us check that \mathcal{M}^E_{φ} is a **BKE**-model.

We take some $\Gamma \in W^E$ that has no proper R^E -successors. If $\Gamma \cap \operatorname{Lit}_{\varphi} \neq \emptyset$, we choose finite disjoint $A, B, C \subseteq \operatorname{Lit}_{\varphi}$ such that

$$A \cup B = \Gamma \cap \operatorname{Lit}_{\varphi}, \quad A \neq \emptyset, \quad C = \operatorname{Lit}_{\varphi} \setminus \Gamma.$$

Then $\mathcal{M}^{E}_{\varphi}, \Gamma \models^{+} \bigwedge_{\alpha \in A} \alpha \land \bigwedge_{\beta \in B} \beta \land \bigwedge_{\gamma \in C} \neg \gamma$. Since R^{E} is reflexive and Γ has no other R^{E} -successors, we have

$$\mathcal{M}_{\varphi}^{E}, \Gamma \models^{+} \bigwedge_{\alpha \in A} \Box \alpha \wedge \bigwedge_{\beta \in B} \Box \beta \wedge \bigwedge_{\gamma \in C} \Box \neg \gamma.$$

The reflexivity of R^E yields \mathcal{M}^E_{φ} , $\Gamma \models^+ \Diamond (\bigwedge_{\alpha \in A} \Box \alpha \land \bigwedge_{\beta \in B} \Box \beta \land \bigwedge_{\gamma \in C} \Box \neg \gamma)$. Finally, by (12) we obtain $\Diamond (\bigwedge_{\alpha \in A} \Box \alpha \land \bigwedge_{\beta \in B} \Box \beta \land \bigwedge_{\gamma \in C} \Box \neg \gamma) \in \Gamma$. Since Γ contains all **BKE**-axioms, we have $\Diamond \blacklozenge (\bigwedge_{\alpha \in A \cup C} \neg \alpha \land \bigwedge_{\beta \in B} \beta) \in \Gamma$, which is equivalent by (12) to

$$\mathcal{M}_{\varphi}^{E}, \Gamma \models^{+} \Diamond \blacklozenge (\bigwedge_{\alpha \in A \cup C} \neg \alpha \land \bigwedge_{\beta \in B} \beta).$$
(13)

The lack of proper R^E -successors implies $\mathcal{M}^E_{\varphi}, \Gamma \models^+ \phi(\bigwedge_{\alpha \in A \cup C} \neg \alpha \land \bigwedge_{\beta \in B} \beta)$. This fact together with $A \cup B \cup C = \operatorname{Lit}_{\varphi}$ implies in turn that Γ has an S^E -successor Δ with $At_{\Delta} = B$. Since $At_{\Gamma} \neq At_{\Delta}, \Delta$ is a proper S^E -successor or, equivalently, R^E -predecessor of Γ . We have thus proved that $At_{\Gamma} \neq \emptyset$ implies that Γ is not an isolated point. So (1^E) holds for \mathcal{M}^E_{φ} .

Let $\Gamma, \Delta \in W^E$ be such that $\Gamma R^E \Delta$, $\Gamma \neq \Delta$, $\Delta \cap \operatorname{Lit}_{\varphi} \neq \emptyset$, and $B \subsetneq \Delta \cap \operatorname{Lit}_{\varphi}$. In this case Δ has no proper R^E -successors, and arguing as above we obtain that Δ has an S^E -successor Σ with $At_{\Sigma} = B$. Thus, \mathcal{M}_{φ}^E satisfies (2^E) too.

We have proved that $\mathcal{M}_{\varphi}^{E}$ is a **BKE**-model. Since $\varphi \notin \mathbf{BKE}$, by extension lemma there is $\Gamma \in W^{E}$ such that $\varphi \notin \Gamma$, whence $\mathcal{M}_{\varphi}^{E}, \Gamma \not\models^{+} \varphi$.

(2) That **BKE**-axioms are true on **B3KE**-models readily follows from the previous item. It is obvious too that a canonical model

$$\mathcal{M}_{\varphi}^{3E} = \langle W^{3E}, R^{3E}, S^{3E}, v_{3E}^+, v_{3E}^- \rangle$$

defined as above, but with W^{3E} consisting of all prime theories extending **B3KE**, is a 3-model.

Theorem 7. Let $\varphi, \psi \in \operatorname{Form}_{\mathcal{L}^{\sim}}$. Then

$$\varphi \succ_{el}^{9} \psi \quad iff \quad (T_B \varphi \land \blacksquare \neg T_B \varphi) \to T_B \psi \in \mathbf{BKE}.$$
$$\varphi \succ_{el}^{5} \psi \quad iff \quad (T_B \varphi \land \blacksquare \neg T_B \varphi) \to T_B \psi \in \mathbf{B3KE}.$$

Proof. We consider only the case of paraconsistent equilibrium consequence. Assume that $\varphi \not\models_{el}^{\mathcal{G}} \psi$, i.e., there is an equilibrium model $\langle \mathbf{T}, \mathbf{T} \rangle$ of φ such

that $\langle \mathbf{T}, \mathbf{T} \rangle \not\models \psi$. Recall that an equilibrium model of φ is a total Ng-model $\langle \mathbf{T}, \mathbf{T} \rangle$ such that

$$\langle \mathbf{T}, \mathbf{T} \rangle \models \varphi$$
 and $\langle \mathbf{H}, \mathbf{T} \rangle \not\models \varphi$ for all $\mathbf{H} \subsetneq \mathbf{T}$.

Let us consider a **BKE**-model $\mathcal{M}^{\mathbf{T}} = \langle W^{\mathbf{T}}, R^{\mathbf{T}}, S^{\mathbf{T}}, v_{\mathbf{T}}^{+}, v_{\mathbf{T}}^{-} \rangle$, where

- $W^{\mathbf{T}} = \{ \mathbf{H} \mid \mathbf{H} \subseteq \mathbf{T} \};$

- $W^{-} \{\mathbf{H} \mid \mathbf{H} \subseteq \mathbf{I}\},\$ $R^{\mathbf{T}} = \{(\mathbf{H}, \mathbf{H}) \mid \mathbf{H} \in W^{\mathbf{T}}\} \cup \{(\mathbf{H}, \mathbf{T}) \mid \mathbf{H} \subseteq \mathbf{T}\};\$ $S^{\mathbf{T}} = \{(\mathbf{H}, \mathbf{H}) \mid \mathbf{H} \in W^{\mathbf{T}} \setminus \{\mathbf{T}\}\} \cup \{(\mathbf{T}, \mathbf{H}) \mid \mathbf{H} \subsetneq \mathbf{T}\};\$ $v_{\mathbf{T}}^{+}(p) = \{\mathbf{H} \mid p \in \mathbf{H}\}, v_{\mathbf{T}}^{-}(p) = \{\mathbf{H} \mid \sim p \in \mathbf{H}\}, p \in \text{Prop.}$

It is clear that $R^{\mathbf{T}}$ is a partial order of depth 2 with the greatest element \mathbf{T} , $S^{\mathbf{T}}$ satisfies (8) and has the only irreflexive point **T**. So $\langle W^{\mathbf{T}}, R^{\mathbf{T}}, S^{\mathbf{T}} \rangle$ is a **BSK**_{t2}-frame. The valuations $v_{\mathbf{T}}^+$, $v_{\mathbf{T}}^-$ are defined so that $At_{\mathbf{H}} = \mathbf{H}$ for all $\mathbf{H} \in W^{\mathbf{T}}$.

Further, for every $\mathbf{H} \in W^{\mathbf{T}}$ with $\mathbf{H} \neq \mathbf{T}$, the generated submodel $\mathcal{M}^{\mathbf{H}\uparrow} :=$ $(\mathcal{M}^{\mathbf{T}})^{\mathbf{H}\uparrow}$ is of the form $\langle \mathbf{H}, \mathbf{T} \rangle$. Moreover, since $\mathbf{H} \subseteq \mathbf{T}$, we can consider $\langle \mathbf{H}, \mathbf{T} \rangle$ as an N₉-model, i.e. $(\mathcal{M}^{\mathbf{H}\uparrow})' = \mathcal{M}^{\mathbf{H}\uparrow}$. If $\mathbf{H} = \mathbf{T}$, then $\mathcal{M}^{\mathbf{T}\uparrow} = \mathbf{T}$ and it can be identified with the total model $\langle \mathbf{T}, \mathbf{T} \rangle$. By Lemma 2 and (6) we have for every $\chi \in \operatorname{Form}_{\mathcal{L}^{\sim}}$ and $\mathbf{H} \in W^{\mathbf{T}}$,

$$\mathcal{M}^{\mathbf{T}}, \mathbf{H} \models^{+} T_{B} \chi \text{ iff } \langle \mathbf{H}, \mathbf{T} \rangle \models \chi.$$
 (14)

From this observation we obtain

$$\mathcal{M}^{\mathbf{T}}, \mathbf{T} \models^{+} T_{B} \varphi$$
 and $\mathcal{M}^{\mathbf{T}}, \mathbf{H} \models^{+} \neg T_{B} \varphi$ for $\mathbf{H} \subsetneq \mathbf{T}$.

We also have $\mathcal{M}^{\mathbf{T}}, \mathbf{T} \models^+ \blacksquare \neg T_B \varphi$, since $\{\mathbf{H} \mid \mathbf{H} \subsetneq \mathbf{T}\}$ is the set of all $S^{\mathbf{T}}$ -successors of \mathbf{T} . From $\langle \mathbf{T}, \mathbf{T} \rangle \not\models \psi$ and (14) we have $\mathcal{M}^{\mathbf{T}}, \mathbf{T} \not\models^+ T_B \psi$, whence

$$\mathcal{M}^{\mathbf{T}}, \mathbf{T} \not\models^+ (T_B \varphi \land \blacksquare \neg T_B \varphi) \to T_B \psi.$$

We have thus proved the right-to-left implication.

Let us assume now that $(T_B \varphi \land \blacksquare \neg T_B \varphi) \to T_B \psi \notin \mathbf{BKE}$, i.e., that there are a **BKE**-model $\mathcal{M} = \langle W, R, S, v^+, v^- \rangle$ and $x \in W$ such that

$$\mathcal{M}, x \not\models^+ (T_B \varphi \land \blacksquare \neg T_B \varphi) \to T_B \psi.$$

Then we have

$$\mathcal{M}, x \models^+ T_B \varphi, \ \mathcal{M}, y \not\models^+ T_B \varphi \text{ whenever } xSy, \ \mathcal{M}, x \not\models^+ T_B \psi.$$

If there is y such that xRy and $x \neq y$, then ySx by (8), and xSx by (2^S). So we have simultaneously $\mathcal{M}, x \models^+ T_B \varphi$ and $\mathcal{M}, x \not\models^+ T_B \varphi$. Consequently, x has no proper R-successors. Assume that $At_x = \emptyset$. By Lemma 2 and (6) we have $\emptyset \models \varphi$ and $\emptyset \not\models \psi$. Thus, $\langle \emptyset, \emptyset \rangle$ is an equilibrium model of φ that refutes $\varphi \sim_{el}^{9} \psi$.

In case $At_x \neq \emptyset$ by (1^E) we obtain that x is not an isolated point. Since x has no proper R-successors there is y such that $y \neq x$ and yRx. Take some $\mathbf{H} \subsetneq At_x$. By (2^E) there is z such that $At_z = \mathbf{H}$ and xSz. Applying again Lemma 2 and (6) we obtain $\langle \mathbf{H}, At_x \rangle \not\models \varphi$. Thus, $\langle At_x, At_x \rangle$ is an equilibrium model of φ that refutes ψ . So, $\varphi \not\models_{el}^9 \psi$.

S.P. ODINTSOV

References

- J. Alcântara, C. Demásio, L.M. Pereira, A declarative characterisation of disjunctive paraconsistent answer sets, in R. López de Mántaras, L. Saitta (eds.), Proc. of ECAI 2004, IOS Press, 2004, 951-957.
- [2] N. Belnap, A useful four-valued logic, In J.M. Dunn, G. Epstein (eds), Modern uses of multiple-valued logic, 5th int. Symp., Bloomington 1975, D. Reidel, Dordrecht-Boston, 1977, 5-37. Zbl 0417.03009
- [3] A. Chagrov, M. Zakhariaschev, Modal logic, Clarendon Press, Oxford, 1997. Zbl 0871.03007
- [4] J.M. Dunn, Intuitive semantics for first-degree entailments and 'coupled trees', Philos. Stud., 29:3 (1976), 149–168. Zbl 1435.03043
- [5] L. Fariñas del Cerro, A. Herzig, E.I. Su, *Capturing equilibrium models in modal logic*, J. Appl. Log., **12**:2 (2014), 192-207. Zbl 1328.03018
- [6] J. Font, Abstract algebraic logic. An introductory textbook, College Publications, London, 2016. Zbl 1375.03001
- [7] M. Gelfond, V. Lifschitz, *The stable model semantics for logic programming*, Proc. of ICLP'88, The MIT Press, 1988, 1070–1080.
- [8] M. Gelfond, V. Lifschitz, Classical negation in logic programs and disjunctive databases, New Gener. Comput., 9:3-4 (1991), 365–385. Zbl 0735.68012
- K. Gödel, Eine Interpretation des intuitionistischen Aussagenkalküls, Erg. Math. Kolloqu., 4 (1933), 39-40. Zbl 0007.19303
- [10] V. Lifschitz, D. Pearce, A. Valverde, Strongly equivalent logic programs, ACM Trans. Comput. Log., 2:4 (2001), 526-541. Zbl 1365.68149
- [11] E.G.K. López-Escobar, *Refutability and elementary number theory*, Indagationes Mathematicae, (Proceedings), **75**:4 (1972), 362–374. Zbl 0262.02027
- [12] N.V. Mayatskiy, S.P. Odintsov, On deductive bases for paraconsistent answer set semantics, J. Appl. Non-Class. Log., 23:1-2 (2013), 131-146. Zbl 1400.68050
- [13] D. Nelson, *Constructible falsity*, J. Symb. Log., **14** (1949), 16–26. Zbl 0033.24304
- S.P. Odintsov, The class of extensions of Nelson's paraconsistent logic, Stud. Log., 80:2-3 (2005), 291-320. Zbl 1097.03019
- [15] S.P. Odintsov Constructive negations and paraconsistency, Trends in Logic-Studia Logica Library, 26, Springer, Dordrecht, 2008. Zbl 1161.03014
- [16] S. Odintsov, D. Pearce, *Routley semantics for answer sets*, in Baral, Chitta (ed.) et al., *Logic programming and nonmonotonic reasoning*, *LPNMR 2005*, Lecture Notes in Computer Science, **3662**, Springer, Berlin, Heidelberg, 2005, 343-355. Zbl 1152.68416
- [17] S.P. Odintsov, H. Wansing, Modal logics with Belnapian truth values, J. Appl. Non-Class. Log., 20:3 (2010), 279-301. Zbl 1242.03050
- [18] S.P. Odintsov, H. Wansing, Disentangling FDE-based paraconsistent modal logics, Stud. Log., 105:6 (2017), 1221–1254. Zbl 1417.03160
- [19] D. Pearce, A new logical characterization of stable models and answer sets, In Dix, Jürgen (ed.) et al., Non-monotonic extensions of logic programming, (NMELP 1996), Lect. Notes Comput. Sci., **1216**, Springer, Berlin, Heidelberg, 1997, 57-70. Zbl 1547.68090
- [20] R. Routley. Semantical analyses of propositional systems of Fitch and Nelson, Stud. Log., 33:3 (1974), 283-298. Zbl 0356.02022
- [21] C. Sakama, K. Inoue, Paraconsistent stable semantics for extended disjunctive programs, J. Log. Comput., 5:3 (1995), 265-285. Zbl 0827.68070
- [22] R.H. Thomason, A semantical study of constructible falsity, Z. Math. Logik Grundlagen Math., 15 (1969), 247-257. Zbl 0181.00901
- [23] A.G. Vishneva, S.P. Odintsov Modal companions for the special extensions of Nelson's constructive logic, Matematicheskie Zametki, 117:3 (2025), 344–364.

- [24] N.N. Vorob'ev, A constructive calculus of propositions with strong negation, Doklady Akad. Nauk SSSR (N.S.), 85 (1952), 465-468. MR0049836
- [25] N.N. Vorob'ev, The decision problem in the constructive calculus of propositions with strong negation, Doklady Akad. Nauk SSSR (N.S.), 85 (1952), 689-692. MR0049837

SERGEI PAVLOVICH ODINTSOV STEKLOV MATHEMATICAL INSTITUTE OF RUSSIAN ACADEMY OF SCIENCES, 8 GUBKINA ST., 119991, MOSKVA, RUSSIA Email address: odintsov.sergey2013@yandex.ru