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Abstract: We consider mean �eld game equations with an under-
lying jump-di�usion process Xt for the case of a quadratic cost
function and show that the expectation and variance of Xt obey
second-order ordinary di�erential equations with coe�cients depen-
ding on the parameters of the cost function. Moreover, for the
case of pure di�usion, the characteristic function and the funda-
mental solution of the equation for the probability density can be
expressed in terms of the expectation E and the variance V of the
process Xt, so that the moments of any order depend only on E
and V.
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1 Introduction

Mean �eld game theory (MFG) has been intensively developed in the last
decade in terms of various mathematical disciplines such as partial di�eren-
tial equations, control theory, probability theory and numerical methods. It
also has numerous practical applications in all areas where the behavior of a
large number of agents is critical, e.g. in economics, mobile network design,
logistics, etc. [11], [10], [6], [3].

In this paper we consider the forward-backward MFG problem, which an-
alytically reduces to the solution of the initial-terminal problem for coupled
nonlocal Hamilton-Jacobi-Bellman (HJB) and Kolmogorov-Feller-Fokker-
Planck (KFFP) equations for the density m(t, x) and the value function
Φ(t, x) [11], [12], [13]:

−∂tΦ+ 1
2(|∇Φ|)2 − δ2

2 ∆Φ− (1)

λ

(∫
R
Φ(t, x+ z)p(z)dz − Φ(t, x)

)
= g(t, x,m),

∂tm− div(m∇Φ)− δ2

2 ∆m− λ

(∫
R
m(t, x− z)p(z)dz −m(t, x)

)
= 0, (2)

m(0, x) = m0(x), Φ(x, T ) = K(x). (3)

Here x ∈ Rn, t ∈ [0, T ], 0 < T <∞. Let us stress that we do not discuss here
the existence and smoothness of the solution and only assume that the initial
and terminal conditions, as well as the right-hand side g are compatible with
the existence of moments of density of any order.

In our consideration m(t, x) ≥ 0 is the density of a stochastic process X
with dynamics given by

dXs = αs ds+ δ dWs + λdΓs, X0 = x0, (4)

x0 ∈ Rn is a point in the space of states, 0 ≤ s ≤ T , Ws is a standard
vectorial Brownian motion, Γs is is the compound Poisson process with the
generator Lf =

∫
R
(f(x+y)−f(x))p(y)dy, where p(z) is a probability density

of jumps,
∫
Rn

p(z)dz = 1 δ ≥ 0, λ ≥ 0 are constants,
∫
Rn

m(t, x) = 1. We

assume M1 =
∫
Rn

zp(z)dz <∞, M2 =
∫
Rn

|z|2p(z)dz <∞.

Heuristically, the problem is to minimize over all the progressively measu-
rable admissible controls αs ∈ L2

F (0, T ;Rn) the cost function

E

[∫ T

0

(
|αs|2

2
+ g(s,Xs,m)

)
ds+K(XT )

]
,

g : R+ × Rn × R+ → R and K : Rn → R are prescribed continuous func-
tions, the process Xs obeys (4), the expectation is taken with respect to the
�ltration F generating by the jump-di�usion process.
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The main interest is the study of density evolution in the process of control.
We are going to show that despite the impossibility of obtaining an explicit
form of the density, for a particular case the behavior of its moments is
relatively simple and often amenable to analytical study.

2 Properties of solutions

2.1. Assumptions. The main assumption that allows us to prove our
main result is as follows:

g = a(t)|x|2 + b(t) · x+ c(t), (5)

where a, b = (b1, . . . , bn), c are smooth bounded on [0, T ] functions (b is a
vector) that can depend on the expectation E(Xs) and variance V(Xs), and
in this sense the control depends on the density, and

K(x) = AT |x|2 +BT · x+ CT , (6)

with constant AT , BT , CT .
Similar assumptions about the cost function were made, for example, in

[9], [2], [17], [5] for the case of pure di�usion, where it was shown that the
solution can be found by solving the matrix Riccati equation. Our results
are also based on the fact that the solution can be partially expressed in
terms of the solution of the Riccati equation.

We are going to show that, with this special choice of control, the �rst two
density moments can be found as solutions to second-order ODEs, and the
characteristic function and fundamental solution are expressed in terms of
them (and, perhaps, in terms of other parameters of the problem). Therefore,
for any initial density, its full behavior can be restored.

At this stage, we will not explicitly prescribe the possible dependence of
the coe�cients of function g on the distribution moments. Our main goal
is to �nd the structure of the equations that determine the expectation and
dispersion of the distribution in the case of any quadratic dependence on
spatial coordinates (Theorem 2).

When the equations (18) and (19) are obtained, we can see that adding a
dependence on the mathematical expectation and dispersion to the coe�ci-
ents a and b complicates the equations or even couples them, forcing us to
study a separate boundary value problem for the resulting system. This
problem, generally speaking, is nonlinear and there are no general methods
for its analysis. Studying such problems in the general case is not the purpose
of this paper. By way of illustration, we deliberately choose a type of depen-
dency for which there is an explicit solution.

2.2. The HJB equation. First we �nd the solution to the HJB equation.

Lemma 1. Assume that g has the form (5). Then (1) has a solution of the
form

Φ = A(t)|x|2 +B(t) · x+ C(t). (7)
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If A(t) is uniquely de�ned by the terminal condition A(T ) = AT , then the
coe�cients B(t), C(t) are uniquely de�ned by the terminal conditions (9).

Proof. We substitute (7) to (1) and get a polynomial of the second order
with respect to x. Then we combine the coe�cients at x2, x and 1 and
obtain a system of ODEs for A,B,C, subject to the terminal conditions,

Ȧ = 2A2 − a, Ḃ − 2AB = 2λM1A− b, (8)

Ċ = −1

2
B2 + δ2A+ λ(M2A+M1B)− c,

A(T ) = AT , B(T ) = BT , C(T ) = CT . (9)

The equation for A splits from the rest of system and de�nes the entire
dynamics. The equation for B is linear and contain A in coe�cients. In
turn, the equation for C is also linear, since A and B have already been
found. □

It what follows we assume that a(t) and b(t) are such that

e
−2

T∫
0

A(τ)dτ
<∞,

∫ T

0
e
−2

T∫
η
A(τ)dτ

B(η) dη <∞. (10)

Remark 1. Note that the equation de�ning A is the Riccati equation, there-
fore its solution, generally speaking, does not extend over the entire interval
(0, T ) and goes to in�nity in a �nite time 0 < T∗ < T (see the example of
Sec.3.1 for the simplest case of a = const). However, this is not an obstacle,
since for further reasoning it is only necessary to satisfy condition (10), and
it can also be ful�lled when A turns to in�nity. If there is an analytical
expression for A(t) on (T ∗, T ], then we assume that the same expression
de�nes the solution on [0, T ]. If such an expression is unknown, then we
solve the Cauchy problem on the interval (T1, T ], T1 = T ∗ + ε, where ε > 0,
su�ciently small, make a change of variable A1 =

1
A , (A1 is also subordinated

to some Riccati equation). The blow-up point for A is already the regular one
for A1. Then we solve the Cauchy problem for A1 with the initial condition
A1(T1) =

1
A(T1)

on the interval (T ∗
1 , T1], T∗ ∈ (T ∗

1 , T1], where T
∗
1 is a blow-up

point for A1 (if any). If T ∗
1 > 0, we repeat this procedure as many times as

necessary to attain t = 0.
Another way to extend the solution through the blow-up point is to reduce

the Riccati equation for A to the linear second-order equation ü − 2au = 0,
A = −u̇/u, with the terminal conditions u(T ), u̇(T ) such that −u̇(T )/u(T ) =
AT . The solution u(t) is unique and exists for all t ∈ [0, T ]; the zeros of u(t)
are the blow-up points for A(t). Since there is no accumulation of zeros for u,
there is no accumulation of blow-up points for A. This remark, in particular,
explains why, using the procedure described above, we can always construct a
solution on the whole [0, T ].

Thus, a numerical implementation of the solution can be arranged if a(t)
is known in advance. If a(t) is assumed to be a function of expectation and
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dispersion, then at this stage we will not be able to �nd A and all problems
with solvability are transferred to problems (18) and (19).

Remark 2. Note also that since (2) includes only the gradient of Φ, the
results do not depend on the function C(t), and therefore on the coe�cient
c(t).

2.3. The KFFP equation. Now we �nd the fundamental solution of the
KFFP equation. If Φ(t, x) is known, (2) takes a more speci�c form,

∂tm− (2Ax+B) · ∇m− 2Am− δ2

2 ∆m− (11)

λ
(∫∞

−∞m(t, x− z)p(z)dz −m
)
= 0,

with initial condition

m0(x) = δ(x− y). (12)

We denote the solution to (11), (12) as G(t, x, y).
Applying the normalized inverse Fourier transform x→ ω, we obtain the

Cauchy problem for the characteristic function ψ = ψ(t, ω, y):

∂tm̂+ 2A(t)ω∂ωm̂+

(
δ2

2
ω2 + iB(t)ω − (p̂(ω)− 1)λ

)
m̂ = 0, (13)

m̂(0, ω) = eiy·w,

where it is assumed that A and B are known from the previous step. The
solution to (13) can be explicitly found, namely,

ψ(t, ω, y) = (14)

exp
[
−
∫ t
0

(
δ2

2 R
2 + iB(η)R− (p̂(R)− 1)λ

)
dη + iyR(t, 0, ω)

]
,

R = R(t, η, ω) = ωe2R(t,η), R(t, η) = −
t∫
η
A(τ)dτ.

2.4. The expectation and variance. We �nd the expectation and vari-
ance in terms of A and B.

Lemma 2. Let Xt be a random process with an initial probability density
m0(x), x

k
i m0(x) ∈ L1(R), k = 1, 2, i = 1, . . . , n. The expectation and

variance of Xt can be found as

E(Xt) =

∫ t

0
e
−2

t∫
η
A(τ)dτ

(B(η) + λM1) dη + E(X0) e
−2

t∫
0

A(τ)dτ
, (15)

V(Xt) = (δ2 + λM2)

∫ t

0
e
−4

t∫
η
A(τ)dτ

dη + V(X0) e
−4

t∫
0

A(τ)dτ
, (16)

where A(t), B(t) is a solution to (8), t ∈ [0, T ].
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Proof. We denote as m(t, x) the solution of (11) subject to the initial data
m0(x). By means of standard computations we get from (14)

E(Xt) = −i∂m̂(t, w)

∂ω

∣∣∣
w=0

= −i
∫
Rn

∂ψ(t, w, y)

∂ω

∣∣∣
w=0

m0(y) dy =

e
−2

t∫
0

A(τ)dτ
∫
Rn

ym0(y) dy +

∫ t

0
e2R(t,η) (B(η) + λM1) dη,

V(Xt) = E(X2
t )− (E(Xt))

2 = −
∫
Rn

∂2ψ(t, w, y)

∂ω2

∣∣∣
w=0

m0(y) dy − (E(Xt))
2 =

e
−4

t∫
0

A(τ)dτ
(

∫
Rn

y2m0(y) dy − (E(Xt))
2) + (δ2 + λM2)

∫ t

0

e
−4

t∫
η

A(τ)dτ

dη.

Here we take into account that

m(t, x) =

∫
Rn

G(t, x, y)m0(y) dy

and ∫
Rn

m0(y) dy = 1.

□

2.5. The characteristic function in terms of the expectation and

variance. Now we express ψ in terms of E and V.

Theorem 1. Assume that condition (10) holds. Then the characteristic
function ψ(t, w, y) can be expressed in terms of E, V and A as follows:

ψ(t, w, y) = e−
1
2
|w|2(V(Xt)−V(X0)K2(t))+iw·(E(Xt)−E(X0)K(t))+λQ(t,w)+iy·wK(t),

where

K(t) = e
−2

t∫
0

A(τ)dτ
, Q(t, w) =

t∫
0

(p̂(R)− 1− iM1 · R)dη,

R(t, η, ω) = ωe
−2

t∫
η
A(τ)dτ

,

(R and M1 are vectors).
Moreover, K is a solution of the boundary problem

K̈+ 2aK = 0, K(0) = 1, K(T ) = e
−2

T∫
0

A(τ)dτ
. (17)
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For λ = 0 and y = 0 the characteristic function depends on E, V only,
therefore every moment of Xt can be expressed in terms of its expectation
and variance.

Proof. The result follows from (14) and Lemma 2 directly, since

ψ(t, w, y) = exp
[
− 1

2
|w|2V̄(Xt) + iw · Ē(Xt) + λQ(t, w) + iy · w e

−2
t∫
0

A(τ)dτ ]
,

Ē and V̄ are the expectation and variance of the process Xt, given as (4),
such that E(X0) = V(X0) = y = 0. Note that A is de�ned by a and the
terminal condition, see (8). Property (17) follows from the �rst equation of
(8). □

Corollary 1. In the case λ = 0 the fundamental solution is

G(t, x, y) = 1

(
√

2πV̄(Xt))n
exp

[
− |x− y e

−2
t∫
0

A(τ)dτ
− Ē(Xt)|2

2V̄(Xt)

]
.

3 Equations for the expectation and variance

Now we derive equations for the expectation and variance.

Theorem 2. Assume that condition (10) holds. The expectation of E(t) =
E(Xt) satis�es the following boundary value problems:

E
′′
(t) + 2a(t)E(t) = −b(t), (18)

E(0) = E(X0),

E(T ) =
∫ T

0
e
−2

T∫
η
A(τ)dτ

(B(η) + λM1) dη + E(X0) e
−2

T∫
0

A(τ)dτ
.

In turn, the variance V(t) = V(Xt) satis�es the following boundary value
problems:

V
′′
(t) + 4a(t)V(t)− (V′

(t))2 −K2

2V(t)
= 0, K = δ2 + λM2, (19)

V(0) = V(X0),

V(T ) = (δ2 + λM2)

∫ T

0
e
−4

T∫
η
A(τ)dτ

dη + V(X0) e
−4

T∫
0

A(τ)dτ
,

t ∈ [0, T ].

Proof. The statement follows from (15) and (16) by direct computation. □

Note that equation (18) was obtained in [14].

So far, we have not indicated the dependence of a and b on E and V. We
can use di�erent hypotheses about this relationship and obtain a nonlinear
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system (18), (19) in combination with (8) at the boundary conditions. Gene-
rally speaking, this problem cannot be solved analytically, and even a numeri-
cal solution is di�cult. However, in several cases, the solution can be found
explicitly. Corollary 2 [14] gives one of these possibilities.

3.1. Particular case.

Corollary 2. If a(t) = const and b(t) = b0 + b1E(t) + b2E′(t), b0, b1, b2 =
const, then (18) transforms into a linear second order ODE

E
′′
+ b2E′ + (2a+ b1)E = −b0,

which can be explicitly solved.

Example. The simplest case of an explicit solution is the case of constant
a and b. Namely,

i) For a > 0

E(t) = C1 sin
√
2t+ C2 cos

√
2at− b

2a , (20)

V(t) = ± 1
a

√
a
(
(C2

1 + C2
2 )a+

K2

8

)
+ C1 sin(2

√
2at) + C2 cos(2

√
2at),(21)

the sign was chosen for reasons of non-negativity of V.
In this case

A(t) =

√
a

2
tan θ(t, T ), θ(t, T ) = arctan

√
2

a
AT +

√
2a(T − t),

B(t) = − b√
2a

tan θ(t, T ) +
bAT + aBT√

a(a+ 2A2
T ) cos θ(t, T )

.

Note that the solution of (8) may have singularities inside (0, T ), neverthe-
less condition (10) holds, so the singularities of A do not interfere with the
calculation of the boundary conditions.

It is possible to show (see [15]), that E(t) is di�erentiable in the points t,
where A and B fail to exist. In turn, V(t) is continuous but not di�erentiable
when V(t) = 0.

ii) For a < 0

E(t) = C1 sinh
√
2t+ C2 cosh

√
2at− b

2a , (22)

V(t) = C1 +
8aC2

1+K2

32aC2
exp

(
2
√
−2at

)
+ C2 exp

(
−2

√
−2at

)
. (23)

Functions A and B, necessary for boundary conditions, can be found from
(8), the problem of singularities does not arise.

iii) For a = 0 both E(t) and V(t) are polynomials of the second order with
respect to t.
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Remark 3. The case considered in the example above seems almost trivial,
since the equation (2) does not depend on m. Undoubtedly, much more
interesting is the case of the dependence of g on m. However, the presence
of m in the utility function of agents is not critical. Indeed, if g(m) increases
then this means that it is bene�cial for agents to stay closer to the maximum

of m. However, the presence of the term −α2

2 already means that agents
tend to resemble each other, this creates movement in the same direction.
Numerical computations show that g(m) only forces agents to concentrate
faster near the maximum of the distribution, but the result does not change
qualitatively in comparison with the dependence of g only on x and t.

4 Discussion

Choosing g in the form (5) seems arti�cial. However, it appears naturally
in a number of problems related to behavioral economics, e.g. [4], [15], [16].
Note that in [4] a second-order equation was obtained for the expectation
under di�erent assumptions. The MPG equations with nonlocal terms were
considered in [7].

It is well known that in the case of pure di�usion and a quadratic cost
function, one can �nd an explicit solution for the density in the form of a
Gaussian function [9]. In [15] an equation for the position of the maximum of
density was obtained, which coincides for this case with the expectation. For
the case of a jump di�usion, these two characteristics of the density function
do not coincide.

Since E(t) and V(t) are observable for real processes and can be estimated
by statistical methods, we can propose a procedure for restoring the parame-
ters of the cost functional under the assumption that the penalty term g is
quadratic. For example, assuming constant a and b, one can use the formulas
(20), (21) or (22), (23) depending on the oscillatory or non-oscillatory charac-
ter of E(t) and V(t) in time. We can refer to [8], [1] and their references to
show that both types of behavior are possible.
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