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Abstract: The notion of conservative algebras appeared in a pa-
per of Kantor in 1972. Later, he defined the conservative algebra
W (n) of all algebras (i.e., bilinear maps) on the n-dimensional vec-
tor space. If n > 1, then the algebra W (n) does not belong to any
well-known class of algebras (such as associative, Lie, Jordan, or
Leibniz algebras). It looks like that W(n) in the theory of con-
servative algebras plays a similar role with the role of gl,, in the
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to the study of the algebra W (2) and its principal subalgebras.
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Introduction

We will use the notation R for a (commutative) ring with unit. Also if M is
an R-module and n > 2 an integer, we write Tor, (M) := {x € M : nz = 0}.
The algebras under consideration in this work are not necessarily unital
or associative. A multiplication on a vector space W is a bilinear mapping
W xW — W. We denote by (W, P) the algebra with underlying space W and
multiplication P. Given a vector space W, a linear mapping 4 : W — W,
and a bilinear mapping B : W x W — W, we can define a multiplication
[A,B] : W x W — W by the formula

[A, Bl(z,y) = A(B(z,y)) — B(A(x),y) — Bz, A(y)),

for z,y € W. For an algebra A with a multiplication P and x € A, we
denote by LI the operator of left multiplication by x. If the multiplication
P is fixed, we write L, instead of LL.

In 1990 Kantor [15] defined the multiplication - on the set of all algebras
(i.e. all multiplications) on the n-dimensional vector space V;, as follows:

A-B = [L},B],

where A and B are multiplications and e € V}, is some fixed vector. Let W (n)
denote the algebra of all algebra structures on V,, with multiplication defined
above. If n > 1, then the algebra W (n) does not belong to any well-known
class of algebras (such as associative, Lie, Jordan, or Leibniz algebras). The
algebra W (n) turns out to be a conservative algebra (see below).

In 1972, Kantor [10] introduced conservative algebras as a generalization of
Jordan algebras (also, see surveys about the study of conservative algebras
and superalgebras [17, 26]). Namely, an algebra A = (W, P) is called a
conservative algebra if there is a new multiplication F' : W x W — W such
that

Ly L, Pll = —[L%

F(a,b)’ P]’

for all a,b € W. In other words, the following identity holds:

bla(zy) — (ax)y — x(ay)) — a((bx)y) + (a(bx))y + (bx)(ay) — a(z(by))
+(az)(by) + z(a(by)) = —F(a,b)(zy) + (F(a,b)x)y + z(F(a, b)y).

The algebra (W, F) is called an algebra associated to A. The main subclass
of conservative algebras is the variety of terminal algebras, which is defined
by the conservative identity with

F(a,b) = 3£(2ab+ ba).

It includes the varieties of Leibniz and Jordan algebras as subvarieties.
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Let us recall some well-known results about conservative algebras. In [10]
Kantor classified all simple conservative algebras and triple systems of second-
order and defined the class of terminal algebras as algebras satisfying a cer-
tain identity. He proved that every terminal algebra is a conservative algebra
and classified all simple finite-dimensional terminal algebras with left quasi-
unit over an algebraically closed field of characteristic zero [12]. Terminal
trilinear operations were studied in [13], and some questions concerning the
classification of simple conservative algebras were considered in [14]. Af-
ter that, Cantarini and Kac classified simple finite-dimensional (and linearly
compact) super-commutative and super-anticommutative conservative su-
peralgebras and some generalizations of these algebras (also known as “rigid”
or quasi-conservative superalgebras) over an algebraically closed field of char-
acteristic zero [3]. The classification of all 2-dimensional conservative and
rigid (in sense of Kac-Cantarini) algebras is given in [2]; and also, the al-
gebraic and geometric classification of nilpotent low dimensional terminal
algebras is given in |18, 19].

The algebra W(n) plays a similar role in the theory of conservative al-
gebras as the Lie algebra of all n x m matrices gl,, plays in the theory of
Lie algebras. Namely, in [11, 15] Kantor considered the category S, whose
objects are conservative algebras of non-Jacobi dimension n. It was proven
that the algebra W(n) is the universal attracting object in this category,
i.e., for every M € S, there exists a canonical homomorphism from M into
the algebra W(n). In particular, all Jordan algebras of dimension n with
unity are contained in the algebra W (n). The same statement also holds
for all noncommutative Jordan algebras of dimension n with unity. Some
properties of the product in the algebra W (n) were studied in [4, 16]. The
universal conservative superalgebra was constructed in [21]. The study of low
dimensional conservative algebras was started in [20]. The study of proper-
ties of 2-dimensional algebras is also one of popular topic in non-associative
algebras (see, for example, [7, 23, 25]) and as we can see the study of prop-
erties of the algebra W(2) could give some applications on the theory of
2-dimensional algebras. So, from the description of idempotents of the al-
gebra W(2) it was received an algebraic classification of all 2-dimensional
algebras with left quasi-unit [22]. Derivations and subalgebras of codimen-
sion 1 of the algebra W (2) and of its principal subalgebras W5 and S were
described [20]. Later, the automorphisms, one-sided ideals, idempotents and
local (and 2-local) derivations and automorphisms of W (2) and its principal
subalgebras were described in [1, 5, 22]. Note that Wy and Sy are simple
terminal algebras with left quasi-unit from the classification of Kantor [12].

The present paper is devoted to continuing the study of properties of W (2)
and its principal subalgebras. We pay also some attention to the description
of the affine group scheme of automorphisms of the algebras under scope,
with an eye on the classification of gradings of these algebras (over arbitrary
fields).
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1 The graph of an algebra basis

In this section, the ground field F will not be assumed to have character-
istic zero. For an arbitrary F-algebra A we will denote by M(A) (or simply
M if there is no possible ambiguity), the multiplication algebra of A, that
is, the subalgebra of Endr(A) (where A is considered as a vector space) gen-
erated by left and right multiplication operators. We will denote by M (A)
the subalgebra of Endp(A) generated by 1 and M(A). Observe that if A
is an algebra whose multiplication algebra is M, and S C A a subset, the
ideal of A generated by S agrees with M.S (defined as the linear span of the
elements T'(z) where T € M and x € S).

Assume A is an algebra over a field F. Fix a basis (u;);e; of A. Then
we can construct a graph whose vertices are the bagic elements u; and for
any two vertices we draw an arrow from w; to u; if u; = T'(u;) for some T
in My (A). This relation T'(u;) = u; will be denoted u; > u;. The relation
> is reflexive and transitive. However, to simplify the resulting graph, (1)
we will not draw an arrow from each u; to itself (as we should); and (2) if
u; > uj > u we will draw an arrow from w; to u; and another from u; to uy
but there will be no need to draw the arrow from wu; to ug. So there are many
choices to draw the simplified graph, but they all give the same information.

For instance

es
7 lQ%

€1

is the graph associated to the algebra Ss whose multiplication table (for a
ground field of characteristic other than 3) is given below:

el € €3 €4
(&) —e1 —362 €3 364
€9 362 0 261 €3
€3 —263 —€1 —364 0
eq 0 0 0 0

We can see that the graph is strongly connected in the sense that for
any two vertices there is a path connecting them. This means that the
ideal generated by any e; is the whole algebra. In case the ground field has
characteristic 3 the graph is given in the figure below,

N
<

Graph of Sy in case ch(F) = 3.

€9 €4
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which is not strongly connected. As we will see, strong connection is a
necessary condition for simplicity. If E is any graph with set of vertices E°
and S C E°, we will denote by tree(S) the set of all v € EY such that there
is a path from S to v. We can also construct a map tree: E° — E° such
that S +— tree(S). If E is the graph of an F-algebra B relative to a basis
B = {b;};, the fixed points of tree induce ideals of B: assume tree(S) =S5,
then @, csFu is a right ideal of B because for any e; € B and any v € S C B,
one has ue; = 0 or ue; =}, ; 2le; (with 27 € FX) so that u > e; (for any
j € J) implying e; € S. Thus (®uesFu)B C ®yesFu. Similarly one can
prove that ®,csFu is a left ideal of B. So we claim:

Lemma 1. Let E be the graph of an F-algebra B relative to o given basis
B = (b;);. If S is a fived point of tree: EY — E° then ®ucsFu is an ideal
of B.

When ch(F) = 3, considering the graph of Sy in figure above, we see
immediately that the unique fixed points of the map tree are the subsets
of vertices 0, {e1,es}, {e1,e2,e3}, {e1,e3,e4} and EC. So at a first glace
we detect three nontrivial proper ideals: Fe; @ Fes, Fe; ® Fes & Fes and
Fey @ Fesg @ Fey. If I is the 3-dimensional ideal generated by e1, es and ey,
we have A = [ @Feg and A/ is a zero-product algebra. Similarly if J is the
ideal generated by {ej,ea,e3} then A =J @ Feyq and A/J is a zero product
algebra. With these ideas in mind, an easy criterium for simplicity is

Lemma 2. Let A be any algebra with A% # 0 and let M = M(A) be its
multiplication algebra. Then A is simple if and only if

(1) Its graph relative to a basis (u;)ier s strongly connected, and
(2) For any nonzero x € A there is some u; in Muz.

For instance to check the simplicity of the four-dimensional algebra S
whose multiplication table is given above (in the case of characteristic other
than 3), since its graph is strongly connected we only need to realize that
for a nonzero x = ) x;e; € Sy we have:

(1) If z3 # 0, (zez)ea = 3xzez hence ey € M(S2)z.
(2) If x3 =0, x1 # 0, xeg = —3x1€2, S0 €2 € M(S7)x.
(3) If xz3 =21 =0 x4 # 0, egx = x4e3 implying e3 € M(S3)z.
(4) If z; = 0 except for i = 2 then ey € M(S2)z.
Thus, in any case there is a basis element in M(S3)z.

For an algebra A, the condition that M(A) = Endr(A) implies simplicity
of A: indeed, if this coincidence happens, for any nonzero = € A and any
y € A, there is a linear map f: A — A such that y = f(z). Since f € M(A)
then y is in the ideal generated by x. Thus A is simple. In [8, Corollary
of Theorem 3| it is proved that in the finite-dimensional case, an algebra U
over a field F is simple if and only if its multiplication algebra is simple.

Lemma 3. Let U be a finite-dimensional algebra over a field F. If U is
simple then M(U) = Endp(U).
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Proof. Assume first that the ground field F is algebraically closed. If U is
simple, by [8] we know that M := M(U) is simple. Let n := dim(U), since
U is an M-module (irreducible and faithful) then M = Endp(U). If the
ground field F is not algebraically closed we consider the algebraic closure (2
of F and the Q-algebra Ug := U ®p Q2. Then M(Uqg) = Endq(Uq) and by
[6, (2.5)Lemmal we have M (Uq) = M(U) ® Q. Since

dim(Endp(U)) = dimg(Endg(Ug)) = dimg (M (Ug)) = dim(M(U))
we conclude Endp(U) = M(U). O

If U is simple but fails to be finite-dimensional we can say that M(U) is a
dense subalgebra of Endp(U) in the sense of Jacobson density. To clarify this,
the M-module U is simple (or irreducible in the terminology of [9]). Since the
action of M on U is the natural one, we can say that U is an irreducible and
faithful M-module. Hence M is a primitive F-algebra. The irreducibility of
U as an M-module implies that the F-algebra I' := Endy(U) is a division
algebra. This consists of all F-linear maps 7': U — U such that

T(zy) = 2T (y) = T(x)y for any x,y € U.

So I' is the centroid of U which is known to be a field (extesion of F) given
the simplicity of U. Now U is an ['-algebra in a natural way and we have
a monomorphism M < Endr(U) which is dense in the sense that for any
I'-linearly independent x1,...,x, € U and arbitrary y1,...,y, € U, there is
some T' € M such that T'(z;) = y; fori = 1,...n (see |9, Density Theorem for
Irreducible Modules, I1, §2, p.28]). Observe that when U is finite-dimensional
the extension field I has (' : IF) finite. Thus if IF is algebraically closed we
have I' = IF and M being dense in Endp(U) = Endp(U) gives M = Endp(U).
If F is not algebraically closed we can argue as in the last part of the proof
of Lemma 3. So we recover Lemma 3 from the general result:

Proposition 4. If U is a simple F-algebra then M := M(U) is a primitive
algebra, more precisely there is:
(1) A monomorphism M — Endr(U) where I' is the centroid of U
(which is a field extension of IF).
(2) For any collection of I'-linearly independent elements x1,...,x, € U
and any collection y1,...,yn € U, there is an element T € M such
that T'(z;) = y; for any 1.

As a consequence of Lemma 3, for a finite-dimensional algebra A over a
field F, proving that Endp(A) agrees with M(A) is equivalent to proving
that A is simple. The characterization of the coincidence M(A) = Endp(A)
in terms of the graph of A is:

Proposition 5. Let A% # 0 be a finite-dimensional algebra and M = M(A)
its multiplication algebra. Then M = Endp(A) if and only if:

(1) The graph of A relative to a basis (u;)}_, is strongly connected.
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(2) For every i € {1,...,n} there is some j € {1,...,n} and T € M
such that T'(uy) = d;pu; for any k.

Proof. If M = Endp(A) the algebra A is simple whence the graph is strongly
connected. The other assertion in the statement is straightforward. So
assume that both conditions in the statement hold. If we define the linear
maps Ej;j: A — A such that Ejj(ui) = diru; we know that Endp(A) =
@7 ;-1 FEij. Now, condition 2) says that for any ¢ there is some Ej; € M.
But the graph relative to (u;) is strongly connected so for any wj, uy, there
exists T' € M such that u, = T'(u;). Thus TE;; = Ej, and we have E;, € M
for every k and . O

Remark 6. If the graph of an F-algebra A relative to a basis (u;)}; is
strongly connected and some E;; € M = M(A) (identifying M with an
subalgebra of Endg(A)), then E;;, € M for any k. Indeed: given u; and wuy,
by the strong connectedness of the graph, there is some T € M such that
T(uj) = ug. Then E;, = TEij e M.

Theorem 7. If F is a field of characteristic other than 3 and Sy the four-
dimensional algebra whose multiplication algebra is given above, we have
M = M(S2) = Endp(S2). Consequently Sz is simple. If the characteristic
of F is 3 there is a 3-dimensional ideal I which is the subspace generated by
e1, eg and eq. Moreover So = I ®Fey and Sy/I is a zero-product algebra. In
this case M has dimension 8 and a 4-dimensional radical rad(M) such that

rad(M) =0 and M/ rad(M) = My (F).
Proof. Since the graph relative to the basis (e;)i; is strongly connected we
need to check (2) in Proposition 5.

(A) First, we will consider the case in which the characteristic of F is
other than 2 or 3. Under this hypothesis, the element REQ € M acts

in the way
R2 (e1) = (e1e2)ea = —3e3 = 0, R2 (e2) = (e2e2)e2 = 0,
R2 (e3) = (eze2)ea = —eres = 3ea, RZ (e4) = (ese)es = 0.

Thus E35 = %Rgz € M and we can also prove that F3, € M for
any k:

E31 = 3Re;E32 € M, Es3 = Re,E32 € M, Esq = —3Re;E33 € M.

So far Fs;, € M for any k. Furthermore, it can be checked that
Re, = —E11 +3E2y — 2E33, Ley = —E11 — 3E + E33 + 3E4.

On the other hand we have:

Eyy = —R52R64 e M,

Rez = —3Fi9 — E31, hence E19 € M
Elg, Ey € ./\/l, hence E11, Ey € M
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L., = —Ei1 —3FE2» + E33+3E4, hence Eyq € M.

Summarizing E;; € M for ¢ = 1,2,3,4. Thus (2) of Proposition 5
is satisfied.
(B) Second, we analyze the case in which F has characteristic 2. The
multiplication table of Sy adopts the form in figure:

€1 | €2]|€3]| €4
€1 | €1 |€2|€3]|¢€4
€2 | €9 0 0 €3
€3 0 €1 | e4 0
eq | 0101010

Multiplication table of So when char(F) = 2.
Then the matrix whose (i, j) entry is R, Re; is shown in

Enn+Es Eio+Es;n 0 0
E E E E
4 12 32 11 Eoy
(ReiRej)i,jZI = E13 Ess Fiy Eoy |
Eyy+Fy Eyz+FEyy 0 0
hence Fy; € M for any i. From this, Ey; € M also for any i.
Consequently Fs3; € M for any i. The matrix whose (7,7) entry is

LeiLej is
Eii+FEo+ Eszs+FEyy Fio+ Ey3 FEor+E3q 0
(LoLo )t = Erg + Eus 0 Ey + E33 0
iy ig=1 Es1 + E34 Eii+ Eyy 0 0]’
0 0 0 0

which implies Fy3, F4q € M. E41, B4 € M follows from the multi-
plication table.

(C) Third, assume that char(F) = 3. Denoting as before by E;; the basis
of Endp(A) such that F;j(ex) = dixe;, we have

Ley = Rey = —FE11 + B33, Le, = —E31 + Ey3, Re, = —FE31,
Ley = Rey = Fi3 — Eo1,  Re, = Eag.

The subalgebra of Endp(A) generated by these operators is M
and coincides with the F-linear span of
{E1, Es3, Es1, Eng, Eo1, Eog, B, Eas}.

If we compute the radical of the symmetric bilinear form (-,-): M x
M — T given by (f,g) := trace(fg) we find that

Mt = rad((-,-)) = FE3 ® FE9 @& FEy3 @ FEy.

For the reader’s convenience, we recall that the radical of a bilinear
symmetric form in a vector space is the subspace of elements which
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are orthogonal to the whole space. For a finite-dimensional associa-
tive algebra of endomorphisms, the bilinear form (f, g) := trace(fg)
is associative in the sense that (fg,h) = (f, gh). Then, it is easy to
realize that M is an ideal of the algebra. Now, one can see that

(M2 =0and M/M*+ =2FE|, ®FE 3 ® FE3 ® FEs3 2 My(F).
Thus M+ is a maximal ideal and since it is nilpotent we conclude
that M is the radical of M.

O

2 Automorphisms and multiplication algebras

2.1. Conservative algebra S>. In this subsection, we compute the auto-
morphism group scheme of S5 over a field F of arbitrary characteristic. In
order to do that we consider an associative, commutative and unital ring R
and define in the free R-module B with basis {e; le the product as in table
of multiplication of Sy (extended by R-bilinearity to the whole B). When
R = T the algebra B is precisely S2. So by considering B we are thinking
about A defined over an arbitrary ring R (associative, commutative and uni-
tal). If we are able to determine autr(B), then we have walked a long way
towards the knowledge of the affine group scheme of A over arbitrary fields.
So consider f € aut(B), and write f(e;) = f/e; (using Einstein Criterium).
Then f(e2) = f(e1)?, hence

—fler) = (fley)? = —(f])%er = 3(fP)2ea — 3f1 fRea + [1 fPes + 311 fleat
3ftfles +2f7 fier + fifles — 27 fles — fi fier =
(D)2 + fRfler + L = fi fRles + [=3(f7)% + 311 filea,

so we deduce
{f% =2 =0
=R A=301)72-3ff
Furthermore, since Rey is the left annihilator of B (and this is preserved un-
der automorphism), we have f(e4) = f{es, which implies f§ € R* (invertible
elements of R). Now applying f to ejeq = 3e4 we get
(fie1 + fies + fiea)es = ey, that is, 3fles = 3eq.
Assume now that Torz(R) = 0, then fi = 1 so that 4f} = 3(f})2.
Then we discuss cases:
(A) 3,5 € R. Then f = 3(f2)? (besides fl =1, f# = 0). Since ezeq =0
we have f(es)eqs = 0 hence fiejeq+ faeses = 0. So 3fies+ fie3 =0
implying fi = f2 = 0. So far the matrix of f relative to the R-basis

{e;} is

1 0 * =%
1 2 3 4
R W

0 0 0 ff
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whose determinant is f%fgff and must be in R*. Hence f/ € R* for
any 4. Also e3 = —3e4 and applying f we have

(fies + f3e4)® = =3 fea.
Thus —3(f3)%es = —3fies which gives fi = (f3)?. Take now into
account that eges = —eq hence
(fies + fiea)(foei) = —(e1 + fes + fiea)
or equivalently fies(fie;) = —(e1 + fies + fies). So
~2fifres — fifier = 3fifies = —e1 — fies — fiea
and we get
Now €3 = 0 hence (fie;)? = 0. Thus
—(f2)%e1 = 3(f3)%ea — 3fs fiea + fa f3es + 3f3 faeat
3f3faea+ 2135 f3er + f3 faes — 23 faes — f5 fier = 0.
We get
—(2)+ 50 =0, [3fs = f5f5 =0, =3(f3)* +3f3f3 = 0.
Also eje3 = ez so that (e + fies + fied) fie; = fie;. Equivalently
(ex + fles)(fies + fiea) = fies + fiea.
Then fies+3fies—3f; fiea = fies+ fies and we get 2f5—3f3f3 =0
so that f§ = %fffg Thus if we put f3 = X and f; = u we have
3= % and

=31

“4 3,2 )\/L 3 )\)LQ
1 4 }l' ) 2 2 2 4
)\’U, 3[14

1 0 pu %
Aoy o
whw=| 2 AT E | NeRucR (2)
0 0 < 20
0 0 0 52

and we can check that any f whose matrix is w(A, ¢) is an automor-
phism of B. Also the formula

w(A, pw(N, 1) = wAN, @' + p/N)
gives that

aut(B) = {w(A\,u): A€ R, u € R} = <(1) éi)

being the isomorphism w(A, p) — (é A‘il). So aut(B) is isomorphic
to the group Affy(R) of all invertible affine transformations of the
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affine plane Ay(R). In [22] it is proved this result in the particular
case that R is a field F of characteristic zero.

1 € Rbut 2R = 0. We have f{ =1, f£ =0 and (f{)? = 0. Recall
also that fi = 0 for ¢ # 4. Taking into account the multiplication
table, which is the same that the multiplication of Sy when char(F) =
2, we deduce (from egey = 0) that fies + fies = 0so fi = f3 =0.
Consequently we have the same pattern (1) for the matrix of the
automorphism. So fz, fg’, fi are invertible. Then we deduce fi =
(f3)? as in the previous case. Also following the argument in the
previous case we get

=1 =0, fl=£f7

Now, from €3 = 0 we get:
(R + =0, fifs = fif2 =0, ()’ + fafa =0.

If we put A = f2, = f} we have f3 = (f})?/f2 = 4/ implying
fi= u?//\2. Then f§ = 1/A. On the other hand, since esey = e3 we
have fie;fies = f3es + fies which gives

fafilea+ f3fies = fies + fiea, that s, fo fi = fi and f3f} = f3.
So f3 = p/A? and f{ = 1/A?. The matrix of f is

2

10 0 4

N
whm=| * A% % | NeR‘ueR, (3)

00 x %

00 0 %

and reciprocally: if the matrix of f relative to the basis {e;} is as
above, then f is an automorphism of B. We also have the formula
wa (A, p)w(N, 1) = w(AN, p + Au') which gives an isomorphism

1

being the isomorphism the given by wa (A, p) — (0 /\). So again
aut(B) is isomorphic to the group Affa(R) of all invertible affine
transformations of the affine plane As(R).

3R = 0. As in previous cases f(e4) = fies so fi = 0 except for
i = 4. Tmposing the condition f(e}) = f(e1)? we get f2 = fl =
0. Imposing f(eie3) = f(el)f(eg) we get f:,? = f¢ = 0 and from
flezeq) = f(ea)f(es) we get fa = 0 and f3 = f2f{. Taking into
account these values, from f(ese;) = f(eg) (e1) we get fi = 1.
Aplying now f(€362) = f(e3)f(e2) gives f} = —lef:? and ff =
1/(f3)?. Using again Jlerea) = fler)f(ea) we get 5= (fé) /J}
Finally, equation f(e2)? = 0 gives fo = fifs/f2 = (f1)3/(f3)%
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—

we do A = f2, u = f1 we have the matrix

wp = |4 AT 8
00 5 O
00 0
so that the equality ws(\, p)ws (N, 1) = w3 (AN, p+Ap’) holds. Then

aut(B) = {ws(\,pu): N € R*,u € R} & ((1) RRg), the isomorphism
being ws(A, u) +— < oo ) So again aut(B) is isomorphic to the
group Affy(R) of all invertible affine transformations of the affine
plane Ay (R).

Thus we claim:

Proposition 8. Let R be a commutative associative unital ring and B the
free R-module with basis {e;}}; endowed with an R-algebra structure whose
multiplication algebra is that of table of multiplication of So. Then if %, % € R;
or £ € R, 2R =0; or 3R = 0, we have aut(B) = Affr(R) the affine group of
As(R). The precise description of aut(B) is given in formulae (2), (3), (4).

Now fix an arbitrary field F and let Sy be the F-algebra introduced in
the table of multiplication of Ss. We can describe the affine group scheme
aut(Ss2). Denote by Algp the category of associative, commutative and unital
F-algebras and by Grp the category of groups. Then aut(Ss) is the group
functor aut(S2): Algy — Grp such that R — aut((S2)g) (where (S2)g :=
Sy ®p R is the scalar extension algebra). If ch(F) # 2,3 then %,% € R for
any R € Algg. If ch(F) = 2 then 2R = 0 for any R € Algp but % € R.
Finally, if ch(F) = 3 then 3R = 0. So in any case we can apply Proposition
8 to R € Algp to compute the affine group scheme aut(S3). Denote by

Affy: Algr — Grp the group functor such that R — Affy(R) = ((1) RR%)-

Then we claim

Theorem 9. For an arbitrary field F, there is an isomorphism of group
schemes

aut(Sg) = Affg.

We recall that the isomorphism condition between group functors is that
there is a collection of group isomorphisms 7r: aut((S2)g) = Affs(R) such
that when o: R — S is an F-algebra homomorphism, the following squares
commute:

aut((Se)r) =% Affy(R)

all laz
aut((Sa)s) = Affz(S)

where each «; (i = 1,2) is given by applying the corresponding functor
aut(S2) or Affy to the homomorphism «. Consider now the F-algebra of
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dual numbers F(e). Recall that for an algebraic group G € GL(V) (with
V' a finite-dimensional F-vector space), its Lie algebra is lie(G) = {d €
gl(V): 14+ ed € (F(e))}. Thus lie(aut Sz) = lie(Affy) = affy(F) where

affy (F) = {<8 /;) A G]F}.

As a corollary of Proposition 9 we have
Corollary 10. For an arbitrary field we have:
Der(52) = affa(F).

2.2. Conservative algebra Wj. Consider now the six-dimensional F-algebra
Wy whose multiplication algebra is given in the following table

€1 €9 €3 €4 €5 €6
€1 —€1 —362 €3 364 —e€5 €g
€9 362 0 261 €3 0 —e€5
es | —2e3| —e1 | —3e4| O eg 0
ey4 0 0 0 0 0 0
€5 —261 —362 —€3 0 —265 —€g
eg | 2e3 el 3eq 0 —eg 0

If F is of characteristic # 2, 3, the graph of B relative to the basis of the e;’s

) RN
LA
L

which is, of course, strongly connected. In the case char(F) = 3 the graph
is not strongly connected:

€2

A\
€5 €1 €3 €4

There is an ideal I := @®;29Fe; so that Wy = I@Fey and again Wo /I = Fes
is a zero-product algebra.

Remark 11. Recall that the Jacobson radical rad(A) of a unital algebra A
contains every nilpotent ideal of A. On the other hand if I < A and A/I is
semisimple, then rad(A) C I.
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Theorem 12. For a ground field F of characteristic not 3, we have M(Ws) =
Endp(W3), hence Wy is simple. In the characteristic 3 case, Wy has a five
dimensional ideal I = @;xoFe; and Wa /I = Fey has zero product. The mul-
tiplication algebra M = M(W3) is 20-dimensional, its radical rad(M) is
12-dimensional and M/ rad(M) = Ma(F) & My(F).

Proof. We will apply Proposition 5 repeatedly.
(A) Assume first that char(F) # 2,3. Then L}, = 6Ejs hence Ey, €
M := M(Wy3) for any k (take into account Remark 6). Since L}, =

—6F9, we have Eo, € M for any k. Also L2 L2

= —6F39 hence

exHes

FEs3p. € M for every k. Since REQ = 3F35—3FEgo we conclude Fg, € M
for every k. Furthermore L., = 3Ei3 + 2E31 + E43 — Eg5 hence
FEq € M for any k. And ﬁnally R62 = —3F19 — E31 — 3E59 + Eg1
which implies Es € M for every k. Thus M = Endg(Ws).

(B) When the ground field has characteristic 2 we take into account:

R2 L., =

Re,Le, =

Eyo

Eq + Eg2
= FEio+ Ey3+ Egs
= B+ Eo3
Eoo + E33 + Egs

S8 By

(C) In case char(F) = 3 we have

€1

€2

e

RN

€5

L
L
L,
L
L
L

€6

Eq1 + Ess,
Ev1 — Es,
Er5 — Ess,
Es,
Ey,

= —FE11 + E33 — Es5 + Ege,
—FE31 + Ey3 — Fgs,

= F13 — 91 + Esg,

=0,
= FE11 — E33 + E55 — Egg,
= —E13+ E91 — Exg,

E33 + Egg,
E33 — Eg3,
E36 — Egg,
E237
E437

implying
implying
implying
implying
implying
implying

Re,
en = Ep1

eq — E237

By € M for any k.
Eg. € M for any k.
FEq € M for any k.
Eo, € M for any k.
Es3i € M for any k.
FEs € M for any k.

= —FE11 + E33 + E51 — Egs,
— FEsq,

R
Re, = E13 — Eo1 — Es3,
R
R

es = — 15 + E3¢ + Es5 — Lgg,
Rey = E1g — Eas — Esg.

E31 + Egs,
E31 — Eg1,
Er6 — Esg,
E257
E457

A basis for M is given by the set of matrices:

Er3 + Esg,
Er3 — Es3,
E35 — Egs,
E267
E46.

We have computed again the radical M= of its trace form (f, g) :=

Tr(fg) and it is 12-dimensional ideal. More precisely

ML

rad () =

FEy @ FEyx3 @ FEys ®FEy ©FEy ©FEy3 ©FEys © FE6D
F(E11 + E15 — Es1 + 2E55) @ F(E13 + Ei16 — Es3 + 2E56)®
F(Es) + Es5 — E¢1 + 2FEs5) @ F(Es3 + FEss — Egs + 2Feg)
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and (ML) = F(Ey3 + Es6) ®F(Ey1 + Ey5) + F(Ea3 + Fag) + F(Ea1 +
Es5) being (M1)* = 0. Since M~ is nilpotent, rad(M) D> M+
(see Remark 11). Define next the subspace S of M whose basis is
{eij}? =1 U{uij}; 1 given by

e1,1 = B+ Eis,  ego = E33+ Esg,
e12 = Fi3+ Eig, e21 = E31 + Ezs,
u1,1 = —Ei5 + Es5, us2 = —FE36 + Egg,
u1 2 = Eig — Es6,  u21 = E35 — Egs.

If 0;; denotes the Kronecker delta, it is easy to check that
€ijekl = 0jk€il, Uijug = Ojkuy and e;uy = uge;; =0
for any 4, j,k,l € {1,2}. Thus S = Ms(F) & M3(F) and furthermore
M = M+a@S. Thus M/ M+ =2 My(F) @ My(F) is semisimple which
implies rad(M) € M*. So rad(M) = M.
[l

2.2.1. Automorphisms of Ws. In this section we work over a commuta-
tive ring R and denote Wo(R) the R-algebra ®Y_; Re; where the multiplica-
tion table of the e;’s is that of the multiplication table of Wy given above. If

we take a generic element w = Z?Zl Aiei € Wa(R) and compute the matrix
of L,, relative to the basis of the ¢;’s we obtain:

A= 2)s 3\s 26 — 2\3 0 0 0
Xoe— A3 —3A\1 — 3\ 0 0 0 0
2o 0 M= 3 —3)\3 0 0
0 0 Ao 3\ 0 0

0 0 0 0 XM =205 A3 — A

0 0 0 0 —o M — s

If f is any element in aut(Wa(R)) we know Ly, = fLyf~! hence the
characteristic polynomial of L,, is invariant under automorphism of W (R).
So the coefficients of that polynomial are invariants and we list here:

El (w) = 9/\5,
lo(w) = —11A7 — 1151 + 3102 + 11A2A3 — 112,
l3(w) = —3X5 (22A] 4 220501 — 17AZ — 22X0)3 + 22X2)6) ,
Oa(w) = 19T+ 38A5AF — 1200202 — 38X9A3A% + 38Ma M6\ — 139A3N —
382 A3 51 + 38X A5 \g A1 + 40)\%4-

L9AZAS + 139002322 + 19A3A2 — 13902226 — 38A3 A3,

65(11}) = 35 ()\% + AsA1 — 2A§ — X3+ )\2A6) .
(19A] + 19A501 — 22 — 19X23 + 19X2X¢)

56(10) = -9 ()\% + AsA1 — A2Ag + )\2)\6) :

()\% + A5\ — 2)\% — X3 + )\2)\(5) 2,

All these polynomial remain invariant under automorphism but we are
using only the first one: /¢;.
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Lemma 13. If an element x € Wo(R)\{0} with {1 (x) = 9 satisfies 1> = —2x
and Torz(R) = 0 then © = seq +e5 +reg for some r,s € R such that 2s = 0.
In particular zf% € R we have x = e5 + reg.

Proof. Take © = z;e; where z; € R. Since ¢1(z) = 9 we have x5 = 1. By
using the multiplication table, from the equality z? = —22 we also obtain

—x% + xox3 + T2xe =

ro =

—r123 + T3 + x2Ty + 20176 =
—31’% + 3xgx3 + 3r124 + 224 =
—xT1 — XL —

T3+ 2126 =

SO0 o

)

which can be summarized in z; = 29 = 3 = 2x4 = 0. Thus taking s = x4
and r = zg the Lemma is proved. O

If 6 € aut(Wa(R)) then 0(e5)? = —20(es) and £1(0(e5)) = l1(es) = 9.
Hence Lemma 13 implies that if Torg(R) = 0 then O(es) = seq + e5 + reg
with 2s = 0. In case Tora(R) = 0 we have 0(e5) = e5 + reg.

Lemma 14. Let again Tors(R) = 0. If x,y € Wy (R) are linearly indepen-
dent with (1(x) =9, l1(y) = 0, and they satisfies x> = —2x, 2y = yx = —y,
y? = 0 then in case % € R we have x = e5 + reg and y = teg for some
r,t € R. If Torag(R) = R we can only conclude that x = sey + e5 + reg and

y = teg for somet € R.

Proof. From Lemma 13 we know that if % € R we have x = e5 + reg. Now
writing y = Y pie; (with ps = 0) and imposing zy = yx = —y we get the
equations:

2rpy = 0, —3u2 = 0,
—2p2 = 0, ruzg—2p; = 0,
rie—p1 = 0, p1+rue = 0,
—rpy—p3 = 0, 2ru; —pus 0,
3rus = 0, 3rus+pus = 0.

If % € R or Torg(R) = R, the first row of equations above implies us = 0,
u1 = 0. Now the second row gives pus = pug = 0. Therefore y = ugeg. If
Tore(R) = R imposing the conditions we only get x = seq + e5 + reg and
Yy = teg. O

For any 6 € aut(W3(R)) we can apply Lemma 14 taking = = 0(e5) and
y = 0(eg). Thus, if £ € R or Tora(R) = R we have f(e5) = e5 + reg and
O(eg) = teg with r;t € R and t invertible. In case Tore(R) = R we can
argue as follows: 0(e2)f(eg) = O(es) so th(e2)eg = seq + e5 + reg with ¢
invertible. But the image of Reg is the R-submodule Req @ Reg hence s = 0.
Consequently
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Lemma 15. Assume that Tors(R) = 0. Then if £ € R or Tory(R) = R we
have O(es) = e5 + reg and 0(eg) = teg with r,t € R and t invertible.

It can be checked that the left annihilator of W3(R) is the R-submodule
of all elements a;(e; +e5)+as(es3 +eg) +aqeq such that a; € R with 3a; = 0:

Lann(Wa(R)) = Tors(R)(e1 + e5) @ R(es + eg) © Rey (5)

Lemma 16. If a is in the left annihilator of Wa(R) and satisfies ega =
esa = 0 then a € Rey

Proof. Write a = a(e1 + e5) + B(es + eg) + veq with o, 8,7 € R, 3a = 0.
Then

0 = ega = 2ae3 — aeg + 3PBeq so o = 0.

But 0 = esa = —fe3 — feg + 3Best and consequently also § = 0. Thus
a = yey. ([

In case Torg(R) = 0 and 3 € R or Tory(R) = R we have proved that
O(es) = es + reg, O(eg) = teg, r,t € R, t € R*. We can apply Lemma 16
taking a = 6(eq) for any 6 € aut(Wa(R)). This implies that 0(es) = seq
for some invertible s € R. So far, when Tors(R) = 0 and either £ € R or

Tory(R) = R, the matrix of an automorphism of Wa(R) is of the form:

7 (6)
g
with r,s,t € R, s,t € R*.
We now investigate the image of ez under automorphisms of Wa(R).

* *
0 0 0s
0

o r|lo %
=

Lemma 17. Assume x € Wa(R) satisfies req = xeg = 0, xes = teg (t € R*)
and egz € Rey. Then if Tors(R) = 0 we have © € Res + Rey + Reg.

Proof. If © = Z?Zl z;e; then from xzeqy = 0 we get 9 = 3z1 = 0. But
reg = 0 gives x9 = 0 as before and x5 = x1. On the other hand zes = teg
gives —x1 — 225 =0, x3 — 26 —t = 0. So 3x5 = 0 and 23 — x4 € R*. Also
egx = 2x163 — X166 + 3x3€4 giving 1 = 0. Thus © = x3e3 + x4e4 + x5 U

Lemma 18. Assume Tor3(R) = 0 and let u = 3.0, \je; € Wa(R) be such
that u? = 0, £1(u) =0, u(es + reg) = 0, tueg = —(e5 + reg) then

(1) da € R and u = :\\—264 + ;—363 4+ A1e1 + Aoeo.

2

(2) r = —>\1t.

(3) 2 (’LL(:L’3€3 + T4€4 + ZEGEG)) = —9Xoxg.
Proof. Since 0 = ¢1(u) = 3\s5 we have A5 = 0. The fact that u(es +eg) =0
gives A\j + 1Ay = 0 = rA; + A3 — Xg. Since tueg = —(e5 + reg) we get the
equalities tAy = 1 and t\; = —r. Thus \g is invertible. Also since u? = 0
we have A\ = 0 which implies A\g = 0. Then u = Y} | A;e; and
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2 (u($3€3 + T4€4 + 55666)) = —9X\ox¢

is readily checked. Now imposing the condition that u? = 0 gives A3 = A\?/)\2
and Ay = \3/)\3. O

Assume again Torg(R) =0, 3 € R and 0 € autg(Wa(R)). We know that
O(eg) = teg, O(es) = es5 + reg, 0(eqs) = seq. Applying Lemma 17 we know
that 6(e3) = x3e3 + x4e4 + xgeg for some z; € R. Applying Lemma 18 we

have 6(eq) = %644‘ %63 + A1e1 + Ageq for suitable \; € R with A9 invertible.
Furthermore, since eses = 2e1 we have 6(e2)f(e3) = 26(e1) hence

—9\azg = £1(0(e2)b(e3)) = 2¢1(0(e1)) = 2¢1(e1) = 0.
Since Ag is invertible we get ¢ = 0 (so 6(e3) € Res + Rey). Finally

QI
O(e1) = —0(e3)0(e2) = 3/\,\12 2eq + 2M\1z3€3 + Aoxser.

In conclusion we have

Lemma 19. If Torg(R) = 0 and either 5 € R or Tory(R) = R the matriz
of 0 € autpr(Wa(R)) in the basis of the e;’s is of the form:

2
/\21’3 0 2)\1.%'3 M 0 0

TR
A Ao W X 0 0
0 0 a3 x4 0 0 (7)
0 0 0 S 0 0
0 0 0 0 1 =Mt
0 0 0 0 0 t

The algebra Wy(R) contains @} Re; = (S2)g as a subalgebra. Also
Wa(R) D Res @ Rg also as a subalgebra. Then, under the assumptions of
Lemma 19 we know that any automorphism 6 € autg(Ws2(R)) preserves both
subalgebras 0((S2)r) = (S2)r and 0(Res + Reg) = Res + Reg. The map

autp(W2(R)) — aut((S2)r)

such that 6 — 0|,), is a group homomorphism. In fact it is a monomor-
phism because in case 0]g,),, = 1 we have A\; = 0 (see equation (7)). Thus if
0 fixes eq,...,e4 then also §(e5) = e5. Moreover since eses = eg then 6 fixes
also eg whence 6 = 1.

Proposition 20. If 1,5 € R or 3 € R, 2R = 0, the map autp(Wa(R)) —
aut((S2)Rr) such that 0 — 0|s,), is a group isomorphism.

Proof. 1t only remains to prove that the map is an epimorphism. So if
1,3 € R, take an arbitrary f € autg((S)g) whose matrix relative to the
basis of the e;’s is given in (2). Define next f: Wa(R) — Wa(R) whose
restriction to (S2)g is f and f(es) = e5 — Ses, f(es) = tes. It can be
checked that f € autzp(Ws(R)) and f|(52)R = f. Now in case 1 € R and

2R = 0 take an arbitrary f € autr((S)r) whose matrix relative to the basis
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of the ¢;’s is given in (3). Then extend f to the automorphism f of (Ws)r
such that f(es) = e5 + §es and f(eg) = %66. O

If ch(F) # 3 we can describe now the affine group scheme aut(Ws).
As before Algp will be the category of associative, commutative and uni-
tal F-algebras and Grp that of groups. Then aut(W3) is the group functor
aut(WWy): Algr — Grp such that R — autr((W2)r) (as usual (W) =
W5 ®p R is the scalar extension algebra). If ch(F) # 2,3 then 1,1 € R for
any R € Algp. If ch(F) = 2 then 2R = 0 for any R € Algp but 3 € R. So
in any case we can apply Proposition 20 to R € Algr to compute the affine

group scheme aut(W2(R)). Denote by Affa: Algp — Grp the group functor
such that R — Affy(R) = <(1) Ri). Then we claim

Theorem 21. For a field F with ch(IF) # 3, there is an isomorphism of
group schemes
aut(Wg) = Affg.

Any automorphism f of W(R) is of the form in (7) relative to the standard

basis. We can refine its form a little. If we impose f(e;je;) = f(e;)f(e;) for:

(1) i=3,5 =5 we get x3 = 1.

(2) i=1,5 =3 we get 3\ = 1.

(3) i=2,5 =06 we get \y =1/t

(4) i =6,j = 3 we get s = t2.

(5) i =5,j = 3 we get x4 = 3t2\;.
Thus the form of a general automorphism of Wa(R) when Torz(R) = 0 on
canonical basis is

1 0 2tx 3t?22 0 0
T % tx? 223 0 0
0 0 t 3t2x 0 0
0 0 O 0 1 —tx
0 0 O 0 0 t

So aut(Wa(R)) = {w(z,t): x € R,t € R*} and we can observe that w(0, 1)
is the identity and that

/

w(z, t)w(x' t') = w(z + x?, tt') and w(z,t)~! = w(—tx,t71)
for any x, 2, t,t.
2.2.2. The case of characteristic 3. In order to investigate the case of
characteristic 3 we will need to note that if 3R = 0 we have
WQ(R)2 = Re1 @ Res & Res & Reg.

So for i = 1,3,5,6 and any 6 € autr(Ws(R)) we have 0(e;) € Rey @ Res @
Res ® Reg. Now 0(es) = Ajer + Azesz + Ases + Ageg and since €2 = es,
applying 6 we get 2)\% 4+ A5 + 201 = 0. Now we will use the invariant ¢
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(see section 2.2.1). We have 1 = la(e5) = fa(6(e5)) = A2 + AsA1 + A2 so that
A? + As5A1 + A2 = 1. Now from

2)\% + A5A1 +2M =0
)\%+)\5)\1+)\§:1

we get 201 A5 + 201 + A2 = 1. Also from the equality e = e; applying 0 we
get /\g + 2X A5 + 2X5 = 0 so that A5 =1+ Aq1. Thus we can write

O(es) = Aier + Asez + (1 + A)es + Ages. (9)
On the other hand by equation (5) we can write
O(eq) = aler + e5) + B(es + eg) + veq and since O(ez)0(eq) =0
after an easy calculation we get & = 8 = 0 so that 0(eq) = teq (with t € R*).

Now we put f(eq) = Z?:l yie; and O(es) = z1e1 + z3es + zzes + zgeg, for
scalars y;, z; € R, and given that 0(e2)0(es) = 0(e3) we get
tys = 23,21 = 25 = 26 = 0

so that 0(e3) = tyses. Consequently yo € R*. Now writing

O(e1) = x1e1 + x3e3 + r5es5 + wges,
since O(e3)f(e1) = 6(e3) we get 21 = 1 and x5 = 0 and so

O(e1) = e1 + w3es + xpep.
Since 6(e1)? = 20(e1) after expanding the corresponding equation we get
x6 =080 0(e1) = e1 + x3e3. Now 6(eq1)f(e2) = 0 gives
Y1 = —23Y2, Y3 = —23Y1, Y5 = 0,96 = 0.

Thus 0(e2) = —x3y2e1 +yaea+3yaes +yaes. Also O(e1)f(es) = 26(es) which
implies

AMxg — A3 =0=—Xg + A1x3 + x3.
Moreover, f(e1)0(eg) = 6(eg) and if we write O(eg) = pu1e1+pses+uses+pees
we get

p1 = ps = 0.

Also 0(e2)0(e3) = 20(e1) which implies t = 1/y3. On the other hand the
equality (e2)? = 0 gives y2(ys + z3y2) = 0 and the invertibility of yo im-
plies y4 = —:pgyg. Finally since 0(e2)0(eg) = 20(e5) we get A\; = yous and
pe = 32l Agsambling all of this together we get to the matrix of and
automorphism 6 of Wa(R):

1 0 T3 0 0 0
—x3y2 Yo Thy2  —adyo 0 0
0 0 L 0 0 0
Y2
0 0 0 yig 0 0
2
n3y2 0 p3r3ys 0 H3y2 + 1 p3xr3ys + 3
0 0 U3 0 0 p3y2+1
Y2
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(u3y2+1)2
3

whose determinant is . Hence pusys +1 € R*. So using the param-

2
eters a = 1/y2, ¢ = 3, b = p3/a + 1 the matrix of a general automorphism
0 (in the basis of the e;’s) is

1 0 c 0 0 0

3 5 g0

_ 0 0 a 0 0 0
Mapc = 0 0 0 a2 0 0 (10)

b—1 0 (b—1)c¢ 0 b bc

0 0 ab-1) 0 0 ab

where @ € R*, ¢ € R and b = you3 + 1 hence b € R*. In fact the set
{Mype: a,b € R*,c € R} is a group relative to matrix multiplications and
obeys the rule:

Ma,b,CMa’,b’,c’ = Maa’,bb’,a’c-‘,—c’

hence its identity is Mi 1 and also M} = M,

a,b,c a
autR(WQ(R)) = {Ma,b,c: a,be RX,C S R} (11)

Modulo the above identification we can see that the subset {M,1.: a €
R*,c € R} is a normal subgroup of autr(W2(R)) and it is isomorphic to
Affy(R). Of course the quotient group is isomorphic to the multiplicative

group:

~1p-1 _¢q-1- Thus

aut(Wa(R))/ Affy(R) = R™.
Let us compute the center Z(autr(W2(R))), in we consider the equality
Moy Mgy, = Myy Mgy for a fixed triple (a,b,¢) € R* x R* x R and
an arbitrary one (z,y,z) € R* x R* x R, we find that cx + z = az + ¢
hence taking x = 1 we get z = az for any z € R. So a = 1 and this implies

cx = cfor any x € R*. Thus ¢(—z) = c also. Consequently 2¢ = 0 and since
3R = 0 this implies ¢ = 0. Then

Z(autp(Wa(R))) = {Mipo: b€ R*} = R™.

Furthermore we have a decomposition My, . = M oMy 1, for any M, ,, ..
So we have an isomorphism

autr(Wa(R)) & R* x Affy(R)

1 =z
s o 3)

induced by the decomposition of aut zr(Wa(R)) as a direct product of groups.
Summarizing the previous results we have:

Theorem 22. If 3R = 0 we have an isomorphism autr(Wa2(R)) = R* X
Affy(R) where Z(autr(Wa(R)) corresponds with the first factor R*. Modulo
the above identification, both subgroups R* and Affa(R) are normal sub-
groups. The general form of an element My . € autr(Wa(R)) is in equation
(10) relative to the basis of the e;’s.
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2.3. Conservative algebra W (2). A multiplication on the 2-dimensional
vector space Vs is defined by a 2 x 2 x 2 matrix. Their classification was
given in many papers (see, for example, 23, 25|). Let us consider the space
W (2) of all multiplications on the 2-dimensional space V5 with a basis vy, ve.
The definition of the multiplication - on the algebra W(2) can be found in
Introduction (see also [15, 20, 22]). Namely, we fix the vector v; € V5 and
define

(A-B)(z,y) = Alvi, B(z,y)) = B(A(v1,2),y) — Bz, A(v1,9))

for z,y € Vo and A, B € W(2). The algebra W(2) is conservative [15].
Let us consider the multiplications afj (1,7,k = 1,2) on Va defined by the

formula ozf"j(vt,vl) = 0i05 v, for all ¢,1. It is easy to see that {afj\i,j,k =
1,2} is a basis of the algebra W(2). The multiplication table of W(2) in
this basis is given in [20]. In this work we use another basis for the algebra

W(2). Let introduce the notation

— 1 2 2 _ 2
€1 = Q13— app — Gy, €2 = 04%17
. T Wi S ST
65 — 2@11 + alz + a217 66 — 20(22 + Oé12 + 06217

— ol — A2
€7 = Qi Qo €g = G — a9y

It is easy to see that the multiplication table of W (2) in the basis ey, ..., eg
is the one in following figure:

€1 €9 €3 €4 €5 €e (&rd €g
€1 —e1 —362 €3 364 —€5 (& €7 —e€g
€9 36’2 0 26’1 €3 0 —E€j5 € 0
es | —2e3 | —e1 | —3eq 0 eg 0 0 —er
es| O 0 0 0 0 0 0 0
es | —2e; | —3e2 | —e3 0 —2e5 | —eg | —e7 | —2eg
eg | 2es el 3eq 0 —e6 | O 0 er
er | 2e3 e1 3eq 0 —eg 0 0 er
e 0 ) —e3 | —2e4 0 —es | —er| O
The subalgebra spanned by the elements e, ..., eg is the conservative (and,
moreover, terminal) algebra W5 of commutative 2-dimensional algebras. The
subalgebra spanned by the elements e, . .., e4 is the conservative (and, more-

over, terminal) algebra Sy of all commutative 2-dimensional algebras with
trace zero multiplication [20].

We now investigate the structure of W (2) over fields of arbitrary charac-
teristic. Regardless of char(F), the diagram of W(2) in the basis of the e;’s
is:
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'\/ '\/
/\ /\

which is transitive (take into account that —e% + ((ege2)es)es = e4). Now
we claim:

Theorem 23. For char(F) # 2,3 we have M(W(2)) = Endr(W (2)), hence
W(2) is simple. In the characteristic 2 case, W(2) has a two dimensional
ideal I =T (e5 + eg) ® F(eg + e7) and W(2)/I = Wy. Moreover M(W (2)) =
Mg (F) & My(F). In the characteristic 3 case M = M(W(2)) has a 12-
dimensional radical M+ of square zero and MW (2) = F(e1+e5)BF (e3+eg)
is an ideal of W(2).

Proof. (A) Assume first that char(F) # 2,3. Then we have:

LegLe7L68 = 6F34, implying F3. € M for any k.
R = —Fy;, implying Fo, € M for any k.
L2 = 6E14 + 2E»3, implying Ey, € M for any k.
L2 = 6E33 + 2Ey4, implying Ey, € M for any k.
L62R64 = 3F13+ 2F9 — 2FEg3, implying Fg; € M for any k.
LCQREG = —FEi5+ E55 + Egs, implying E5, € M for any k.
L., = 3E12+2E3 + Ey3 — Eg5 + Erg, hence — Egs + Erg € M.

Thus E7p = (—FEg5 + Ers)Esi, € M for any k. Therefore Eg; € M
and so every Fg € M. Thus we conclude M (W (2)) = Endp(W(2))
in the case of characteristic # 2, 3.

(B) Assume now char(F) = 2. A simple but tedious computation re-
veals that the radical R = rad((-,-)) of the trace form (-,-): W (2) x
W (2) — F given as before by (x,y) := trace(zy) has a basis given by

r1 = FEis+FEig, 17 = FEi5+ B,
ro = E+FEir, rs = E+ By,
r3 = FEos+ FEos, 19 = FEs55+ Esg+ Fgs+ FEgs,
rg = FEog+ Eor, 110 = K56+ Es7+ Ege + Esr,
rs = FE35+ FE3g, ri1 = FEgs+ Egs+ Ers + Ers,

re = K36+ E37, ri2 = FEg¢+ Eer + Evg + Evr.

It is also straightforward that R? = 0. The natural action M x
W(2) — W (2) provides the two-dimensional ideal R - W (2) <« W (2)
which is R- W (2) = F(es + es) ® F(eg + e7). Furthermore the quo-
tient algebra W(2)/RW (2) is isomorphic to the six-dimensional al-
gebra B of section 2.2. By Theorem 12, W (2)/RW(2) is simple.
One can easily check that RW(2) C Lann(W(2)) but RW(2) ¢
Rann(W(2)). On the other hand, the two-sided annihilator of the
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ideal RW(2), that is, the vector space of elements x € W(2) such
that x(RW(2)) = 0 = (RW(2))x is generated by es + e7, ey, €5 + eg
and eg + e7. This implies that there is no ideal I complementing
RW (2) (because if I existed it would have dimension 6 and it would
be contained in the linear span of {es + e7, e4, €5 + eg, €6 + e7} which
is impossible). Now the natural representation M — End(W(2))
induces the isomorphism map

M — End[W(2)/RW(2)] x End(RW (2))
r = (TaT\RW(z))

where T is the map induced in the quotient W (2)/RW (2) by the fact
that RW (2) is M-invariant. Hence, M(W (2)) =& Mg(F) @ Ma(F).

(C) In case char(F) = 3 we have

= —F11 + E33 — Es5 + Ege + E77 — Ess,
= —FE31 + Ey3 — Eg5 + E7s,
Eh3 — Eo + Esg — Egr,
07
Ey1 — E33 + Es5 — Eee — E77 + Ess,
—E13 + E21 — Ese + Fygr,
= Leaa
= FEy — E33 4+ Fyq — Eg6 — Er7,
—E11 + E33 + Es1 — Egz — Er3,
—FE31 + Eg1 + Er + Ega,
Ey3 — B9y — Es3 — Egs,
Eo3 + Egy,
—F15 + E36 + Es5 — Eee — Ere,
= FEi6 — Eo5 — E56 — Esg,
= Fi7+ FEog — E57 — Egr,
= —FEi3— E37+ Ess + Eg7 + Eq7.

D N
» -

i
w

SISISISISISESES
R
[T

Q
w
|

D D D
~ [=2) t
|

INIIIIIX
|

s
oo

A basis for M is given by the set of matrices:

E;; for i = 2,4,7,8 and any j,
Eai + Eyj for (a,b) € {(1,5),(3,6), (5,5), (6,6)} and (i, j) € {(1,5),(3,6)},

Eai

— Ey; for (a,b){(1,5),(3,6)} and i = 2,4,5,6,7,8.

We have computed again the radical M= of its trace form (f, g) :=
Tr(fg) and it is 12-dimensional. A basis for M* is

Eo1+Eos, FEosz+ Esg, FEi1+ Ei5— Es51+2FE55,
Ey1+Eys5, Eaz+ Eie, FEi13+ FEig— Es53+ 255,
Er1+Ers, Er3+ Erg, Es1+ E3s— FEg1 + 2Egp5,
Es1+ Egs, FEgz+ Egg, FE33+ FE3e— Eg3+ 2Ege6.

One can easily check that (M*)? = 0. Furthermore
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MW (2) =F(er +e5) ® F(es + e6)
is a (two-sided) ideal of W (2).
O

2.3.1. Automorphisms of W(2). In this section we work again over a
commutative ring R and denote W (2)g the R-algebra @©%_; Re; where the
multiplication table of the e;’s is that of the multiplication table of W (2). If
we take a generic element w = Zle Aie; € W(2)g and compute the matrix
of L,, relative to the basis of the e;’s we obtain:

—A1 — 2X5 32 2&1 0 0 0 0 0
& —3\1 —3Xs+As O 0 0 0 0 0
22 0 € 36 0 0 0 0
0 0 X2 3\ — 2ig 0 0 0 0
0 0 0 0 “A1—2x; —& 0 0 )
0 0 0 0 —Aa Ea 0 0
0 0 0 0 0 0 & A2
0 0 0 0 0 0 £ —XA-—2Xs
where &1 = —A3 + X¢ + A7 and & = A — A5 — Ag, whose characteristic

polynomial is invariant under automorphism so that L., and Lg,) have the
same characteristic polynomial for any automorphism 6 of W (2)gr. We list
some of the coefficients of that characteristic polynomial:

A1 (w) = 4 (3)\5 + )\8)7
o 3)\% + 3A5A1 — 3AgA\1 — 15)\% — /\g — 323 + 3o Ag+
Aolw) o= —4 < BAoAy — 12052 )
o 18A7 4 1851 — 18AgA; — 27A2 + M2 —
Ag(w) i= =235+ ) < 18X0A3 + 183926 + 18A9A7 — 30As\g )

The left annihilator of W (2)p is
Rey @ R(2e1 — e5 + 3eg) @ R(es + es) ® R(es + er).

Lemma 24. Assume W # 0 to be a free R-module W = @I, Re; and

M a submodule with a basis {u1,...,ur} which is a subset of another basis
{ui,...,un} of W. Then if M C &} mye; for some mazimal ideals m; <R
we have M = 0.

Proof. For i =1,...,n define the R-algebras K; := R/m; (which are fields)
and S = ®_, K;. If M # 0 the S-module M ®g S is free with a basis of
cardinal k but for any z € M we have z = )" | m;e; with m; € p; and any
element z ® 1g € M ®p S satisfies

z2@1lg=>" mie;®1lg = 1" e @m;lg
but

milg = mi(11®"'®1n) = (11®"'®mi1i®"'®1n) =
1L - ®0®---®1, = 0.
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The fact the m; is maximal in Lemma 24 is not important. What it is
essential is that it is proper (as any maximal ideal is). So we could replace
the maximality hypothesis in the Lemma with m; # R.

It is also easily seen that if L is a free R-module with a (finite) basis
{li,...,l,} then it may not have a system of generators of cardinal < n.
This allows to extend the previous Lemma in the following sense:

Lemma 25. Assume W # 0 to be a free R-module W = @©]_, Re; and
M a submodule with a basis {u1,...,ur} which is a subset of another basis
{u1,...,un} of W. Denote by p;: W — R the i-th coordinate projection
relative to the basis {e;}],. Then for eachi=1,...,n if pj(R) # 0 we have
pi(W) = R.

Proof. Assume without loss of generality that the ideal p; (W) is proper and
nontrivial. We can define the ring

n—1
——
S=R/p(W)®R®---®R

and Mg := M ® S is a free S-module of dimension K but for any element
z € M given by z =Y " | rie; we have

z2@1lg=rie1®1g+ ) 1 riei®1lg =, 16 @1
so that {e; ® 1g}i>1 is a system of generators of Mg of cardinal < n. O

It is known that any commutative ring R satisfies the strong rank condition
[24, (1.38) Corollary, p. 15], equivalently, for any monomorphism R™ — R™
we have m < n. In particular consider the free R-module R™ with canonical
basis {e;};~ ;. If a free R-submodule M of R" has dimp(M) = k then k < n.
Moreover if {ej,...,ex} C M then we want also to prove that

M = &} Re;. (12)
Indeed, take a basis {u;}¥_; of M. Then for 1 < i < k we have ¢; =
25:1 alug and for any ¢ we also have ug = Y77, bye; (where af, by € R).
Thus 1 = Z’;:l alvy = 0] (Kronecker’s delt@) or equivalently‘ AB = 1;
(identity matrix k x k in M,,(R)) where A = (ai),ﬁjzl and B = (bg)?,j:r But
since R is a commutative ring, it is stably finite (see |24, (1.12) Proposition]
and definition [24, §1B, p.5]). So BA = 1k also. Now denoting u :=
(u1,...,ux) and e := (e1,...,ex) we can write Au’ = e’ hence u’ = Be'
proving formula (12).

Lemma 26. Assume 3,3 € R and that I is left ideal of W(2)gr which is
a free R-submodule and dimp(Il) = 4. Denote by p;: W(2)r — R the ith
coordinate function relative to the basis {e;}. If pi(x) € R* for some x € I
and i € {1,2,3,4} then I = EB?-:IRej,

Proof. First we prove that if some e; € I (with i € {1,2,3,4}) then I =
@?:le. Assume first that e; € I, then in the first column of the table of
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multiplication of W(2) we can see that ey, es € I and since e4 appears in
third column we conclude ey € I. So @}, Re; C I and dimg(I) = 4 implies
by formula (12) that I = EszlRei. In case es € I we can see that e; € [
(second column of the table of multiplication of W (2)). The same applies
if e3 € I. Finally if e4 € I then es € I for a similar reason. Now assume
that some x € I has p1(z) € R*. We can assume without loss of generality
that p1(z) = 1. Since we have eg (e2 (e5 (e1z))) = 6ea then es € I and we
apply the proved part of the Lemma. If some x € I has pa(x) € R* again
we can assume pa(z) = 1 and then since we have e3 (e3 (e3 (e17))) = 18es
we conclude e4 € I and can apply again the proved part of the Lemma. In
case p3(x) € R* for some x € I we take into account that eg (e2 (eax)) = 6e2
implying es € I (as before assuming p3(z) = 1). Finally if ps(z) € R* for
some x € I we use ez(ez(e2x)) = Gea. O

Corollary 27. Assume %, % € R and that I is left ideal of W (2) which is a
free R-submodule and dimg(I) = 4. Denote as before by p;: W(2)r — R the
ith coordinate function relative to the basis {e; ?:1' The either I = @§:1R€j

or I = @§:5Rej.

Proof. By Lemma 26 either I = &} | Re; or I C ®5_Re;. But dimpg(I) =4
so (12) gives the equality I = ®%_. Re;. O

Next we keep on assuming %, % € R. We want to investigate the case that
0: W(2)r — W(2)r be an automorphism such that

(@, Re;) = &}_;Re;.
Denote 6(e1) = 35 s Aie;. Since Aj(e1) = 0 we have
A1<H(€1)) =4 (3)\5 + )\8) =080 A\g = —3\s.
Also As(er) = 3 and Ag(f(e1)) = 12A2 which implies A2 = 1/4 and in
particular A5 € RX. Furthermore €2 +e; = 0 hence 6(e1)? +6(e1) = 0 which

(after the corresponding computation) gives A5 = 3 and A7 = 3X¢. Thus we
have

1 3
O(e) = 565 + Ageg + 3hger — 568. (13)

Next we study 0(es) = 35 - pie;. Again

Ai(e2) = 0= A1(0(e2)) = 4 (3us + ps) hence pg = —3pus.
Moreover Ag(e2) = 0 = Az(f(e2)) = 1212 hence p2 = p2 = usps = 0. Since
e3 = 0 we have 0 = 0(e2)? = (ug — p7) ses — (3pe + pi7) pser. Thus

pepts = prps and 3ueps = prps whence peps = 0 = prps.
But then psf(e2) = 0, that is, 8(use2) = 0 which gives us = 0. We get

9(62) = Ue€e + Urer. (14)

But then, since ejes + 3e2 = 0, applying 6 and taking into account (13) and
(14), we find 0 = O(e1)0(e2) + 30(e2) = duges + 4urer so that ug = puy =0
which is a contradiction. So far we have proved that no automorphism of
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W(2)r maps @?:1361 to @?:5Rei. As a consequence no automorphism of
W (2)g maps ®5_ Re; to @}, Re;.

Corollary 28. If %,% € R any automorphism of W(2)g maps @}_, Re; to
itself and the same holds for ®§:5Rei,

2
a free R-submodule of dimension 2. Denote by p;: W(2)r — R the ith
coordinate function relative to the basis {e;}. Then pi(z) =0 for any x € I

and 1 € {1,2,3,4}.

Lemma 29. Assume % € R and that I is left ideal of W(2)r which is

Proof. First we assume that some re; € I withr # 0and i € {1,2,3,4}. This
will take us to a contradiction. Indeed, under that assumption we have I,, D
R, 5 where we denote by R, the localization RS~ being S = {1,7,72,...}.
Let W := W(2) g and consider the localization W, := W®pgR, then (since R,
is a flat R-algebra) I, := I ®p R, is an ideal of W, which a free R,-module

and dimg, () = 2. We will identity W, with the algebra of fractions %
(r € W,n > 0) where % = f—,; if and only if r*(r™mz — r"2’) = 0 for some

k. Now if re; € I (i = 1r,2,3,4) then =t € I, so that - € I,. Consequently
Ryre; C I, and the multiplication table of W gives @leRTei C I, (we have
identified § with e;). But then 4 < 2 taking dimensions. We conclude
that if re; € I with i € {1,2,3,4} then r = 0. Now consider = € I with
pi(z) # 0 and 7 € {1,2,3,4}. We have I > eg(e2(e5(e17))) = 6p1(z)es
whence pi(x) = 0. Next we have I 3 e3(e3(e3(e17))) = 18pa(z)es hence
p2(z) = 0. Then I > eg(e2 (eax)) = 6p3(x)ez whence p3(z) = 0 and finally
the equality I 3 ea(ea(e2x)) = 6pa(z)es to deduce that ps(z) = 0. O

Consider now an automorphism 6 of W(2)g (again %,é € R) and let us
study the image 6(eg). Since Res @ Reg is a left ideal of W(2)gr and it is
under the hypothesis of Lemma 29, we have 0(es),0(eg) € ®5_Re;. So for
instance f(e5) = 255:5 wie; and 6(eg) = 218:5 Aie; and we can use again the
invariants A1 and Ay. We have

12 = Ay (e5) = A1 (0(es)) = 4 (3us + pis)

whence pg = 3 —3us. Also —15 = As(es) = Aa(0(es)) = 1212 — 18u5 — 9. So
we deduce that 2u§—3u5+1 = 0 implying that us is invertible. Furthermore,
0(e5)? + 20(es) = 0 hence the following elements of R are zero:
2 (s — 1) pis, pistis — e — psfir, —3fistie + 3pie — psper + 20, 6 (s — 1)°.
This implies that us = 1, u7 = 0 and ug = 0. So (e5) = e5 + puges. Now
using again the invariants Aj(eg) = 0 and As(eg) = 0. We have

Al(e(eﬁ)) = 4(3)\5 + )\8) = 0 whence A\g = —3\s5.

Also A2(0(eg)) = 0 from which we derive A2 = 0 and consequently A2 = 0 =
AsAs. We also have 6(eg)? = 0 which gives

)\5)\6 - )\5)\7 == O, —3)\5>\6 - )\5)\7 =0 and so )\5)\() = )\5)\7 =0.
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As a consequence \s0(eg) = 0 which gives A5 = 0. So 6(eg) = Ageg and in
summary we have

{9(65) = e5 + 6o (15)

9(66) = )\666.

Now, under the same assumptions %, 1

5,5 € R let us investigate 6(e7), 0(es) for
0 € aut(W(2)g). As in the previous case we have 6(e7),0(es) € B°_: Re;.
Write 6(e7) = Z§:5 vi€i, since 0(eg)f(e7) = 0 we get 75 = 78 = 0 so that
O(e7) = ees + yrer. Finally write (es) = 223:5 0;e;, from the equality
Ai(es) = A1(f(es)) we get dg = 1 — 305 and from Ag (eg) = Az (6(es)) we
have d5 (205 — 1) = 0. Now the couple of identities egeg = ey and egeg = —eg
give the equations

—76 — 056 = 0, —y7 — 3d5M6 + A6 = 0, 205M6 =0

so that 76 = 0, 77 = A\¢ and d5 = 0 (because A\¢ # 0). Then f(e7) = Ager
and f(es) = dges + drer + eg but since O(eg)? = 0 we get dg = 0 so that

9 =

(e7) = Aeer (16)
9(68) = (5767 + eg.

Thus we conclude

Proposition 30. If %, % € R any automorphism 0 of W (2)r fixes any of the
left ideals EszlRei, EB?:lRei, @?:5Rei and EB§:7R6¢. Relative to the basis
{e;}2_, the matriz of an automorphism is of the form

1 0 2tz 3222 0 0 |0 0
x 1tz 22 0 0 [0 0
00 ¢t 3t2x 0 0 1]0 0
0 0 0 2 0 0 1]0 0
0 0 0 0 1 —tx|0 0 (17)
0 0 0 0O 0 t |0 0
0 0 O 0 0 0 ¢t 0
00 O 0 0 0 |tz 1

Proof. Since 6 restricts to an automorphism of Wa(R) = ®Y_, Re;, the 6 x 6
upper left block in (17) is an in (8). It remains to prove that 0(eg) = trer+eg
but we have proved in (16) that 6(eg) = drer+es. Since 0(es)0(e3)+0(e3) =0
we have

0 = (67e7 + eg)(tes + 3t2xey) + tez + 3t2wey =
367tey — teg — 6t2xey + teg + 3t2xes = 3o7tes — 3t2zey

and since ¢ is invertible 7 = tx. O
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2.3.2. The case 2R = 0. Note that necessarily % € R. In this case define
f1:=e5+eg and fo = eg + e7. Then I := Rf; & Rfy is a 2-dimensional
(two-sided) ideal of W (2)g (see Theorem 23). It has a basis { f1, fa} which is
a subbasis of {e1, es, €3, €4, €5, €6, €6 + €7, €5 + eg} which can be seen to be a
basis of W (2)g. Indeed the matrix of coordinates of these vectors relative to

the basis of the {e;} is (f\ﬁ} 102) where I and Is denote the identity matrices

of size 6 and 2 respectively and M = (8 PO é) It is easy to check

that M is invertible and agrees with its own inverse. The ideal I satisfies
IW(2)g = 0.

Lemma 31. Assume that 2R = 0 and J W (2)g is a 2-dimensional ideal
such that JW (2)gr =0 then J C I.

Proof. Any = € J satisfies zW(2)r = 0 which implies that the elements of
J are of the form

g = Aze3 + Ageq + As(es + es) + Ages + (Ag + g) er.

Note that the 5th and 8th coordinates of g (relative to the basis {e;}) agree.
So since eag € J we must have A¢g = ps(e2g) = ps(eag) = A3 + A¢ whence
A3 = 0 and we have proved that the elements of J satisfy ps(J) = 0. So
a general element of J is of the form g = A\geq + A5(e5 + eg) + Ng(eg + €7).
But J 3 eag = Mes + Nges + (A3 + Xg)es which implies Ay = 0. Thus
g € R(es +eg) ® R(eg + e7).

O

Under the hypothesis in the title of this subsection, if § € aut(W(2)r),
Lemma 31 implies 6(I) C I (recall that I is the ideal I = Rf; © Rfs de-
fined above). Consequently I C §=1(I) C I so that §(I) = I for any 0 €
aut(W(2)gr). Since W(2)r/I = Wy (see Theorem 23) any 6 € aut(W(2)g)
induces an automorphism 0: Wy — Ws. Then the matrix of 0 relative to the
basis {€;}5_, (begin &; := e; + I) is the one in formula (8). So the matrix of
0 relative to the basis {e1, ..., eq, f1, fo} of W(2)g is of the form

1 0 0 222 0 0| a1 a
T % tz? t?23 0 0| a3 a4
0 0 ¢t 2z 0 0| a5 ag
00 0 t 0 0|ar ag (15)
0 0 0 0 1 tx ag alo
0 0 0 0 0 t ailp a2
0 0 0 0 0 0 ais aiq
0 0 0 0 0 O als Qie

where t € R*. Furthermore, if we write the matrix of 6 relative to the basis
of the e;’s and impose the conditions for automorphism we find the relations

ar=as=a3 =a4 =as =ag = a7 = ag = 0, a9 = ajptz,

a
a1 = aiot,a12 = 0,a14 = 0, a15 = a13x, a16 = 2.
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Lemma 32. In case 2R = 0 the matriz of an automorphism 6 € aut(W (2)g)
relative to the basis {e1,...,es, f1, fo} of W(2)R is

1 0 0 t22 0 0 0 0
z 1 ta? %23 0 0 0 0
00 t tz 0 0 0 0
00 0 ¢ 00 0 0
Qovn=1 00 0 0 1 tr utz u (19)
00 0 0 0 t wut 0
00 0 0 0 0 v 0
00 0 0 0 0 vz Y

where we have replaced a19 with u and a3 with v. Furthermore t,v € R*,
z,u € R.

We have the relations
Qt,m,v,ugt/,x’,v/,u’ = Qtt’,x+x//t,vv’,u/+uv’/t/ and Qt_,;,v,u = Ql/t,tx,l/v,tu/v'
The set G1 = {Qiz10:t € R,z € R} is a subgroup of aut(W(2)g) iso-
morphic to Affa(R). Indeed, if we consider
A%UD:{G 7)ite Rz e R}
we have a group isomorphism ~;: Affs(R) — G; such that

((1) f) = -1410-
On the other hand G2 = {Qi044: v € R*,u € R} is also a subgroup
of aut(W(2)g) isomorphic to Affa(R) via the map v2: Affy(R) — G2 such
that (1) v) = Qo4 It is easily seen that G2 is a normal subgroup of
aut(W(2)r) and the map p: G1 — aut(Gz) given by

P(Q2,1,0)(0,00) = 21,021,000 210 = Q100,00

is a group homomorphism. We also have ;504 = Q4,101,004 and so
Aut(W(2)gr) = G2 x G with multiplication

(9291)(9’293) = [Q2P(91)(9§)] (919/1)-

If we define 7, = (é f) so that Affy(R) = {7,+: ¢ € R,t € R*} then
we have an action of Affa(R) on itself by automorphisms p’: Affy(R) —

aut(Affo(R)) given by p'(7e¢)(Tuw) = Ttuwp- Then there is a commutative
square

Gl —>l) aut(Gg) 0

| e ]

Affo(R) — aut(Affx(R)) v 10,

/

p

and we conclude that aut(W(2)r) = Affa(R) x Affy(R).
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2.3.3. The case 3R = 0. Note that necessarily % € R. Consider an R-
algebra A which is a free R-module with a finite basis. Let M := M(A) be
its multiplication algebra and Tr: M — R the trace (so Tr(T') is the trace
of the matrix of T relative to any basis of the R-module A). Also denote
by k: M x M — R the symmetric R-bilinear map k(7,S) := Tr(T'S). This
satisfies k(T1",S) = k(T,T'S) = K(1T",ST) for any T,7",S € M. Thus
ML= {T € M: k(T, ) = 0} is an ideal of M and M*A an ideal of A.
There is also an action aut(A4) x M — M such that ¢ - T = T* := T
for any ¢ € aut(A) and T € M. Furthermore k(T*,S*) = K(T,S) for
any S,T € M so that (M*)* € M* or equivalently aut(A4) - M+ c M*.
Consequently the ideal M A of A is invariant under automorphisms of A:
for any ¢ € aut(A), T € M+ and a € A one has ¢(T(a)) = T*p(a) € ML A.

Remark 33. Let F be an arbitrary field in this Lemma and U be a finite-
dimensional F-algebra, M = M(U) its multiplication algebra, I < M and
R € Algg. If j: IU — U is the inclusion, identifying IU ® R with (IU)pg via
1®1p: IU® R — Ug, we have (IU)R = IRUR.
We now particularize considering W (2)r. We start with W (2) over a field
F of characteristic 3 and take A = W(2)g. If we denote M = M(W (2)) then
Mp can be identified with M(W(2)Rr) (|6, (2.5) Lemma (a)]). Also we have
k: M x M — F as above: k(T,S) = Tr(T'S) inducing kr: Mrp x Mrp — R
and we have the standard result that (Mz)* = (M*)g. By Theorem 23 we
have MW (2) = F(ey + e5) @ F(e3 + eg) hence by Remark 33,
MJEW(2)R = R(61 + 65) & R(€3 + 66).
So this ideal is invariant under automorphisms of W (2)xg.
Next we compute the quotient algebra W (2)g/I where
I= R(61 + 65) D R(eg + 66).
We consider a basis of W (2)r/I given by
fi=e +1, fori=1,2 3,4,
f5 =eg + I7
fe = 2e7+ 1.

The multiplication of the quotient algebra relative to this basis is given in
the following table

il fol fa|fal f5 ] f6
Ji2fi] O | f3]0|2f5] fs
Jol O | O [2fi|fs]| O |2fs
f3| f3 2] 00| fo| O
fa] O 0 0 0 0 0
fs| fi] 0 [2f3]0 | f5 |2fe
fo|2f3] fi| 0 |0 |2]| O
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So we conclude that W (2)r/I = W5(R) and any automorphism of W(2)r
induces an automorphism of Wa(R) whose matrix relative to the basis of the
fi’s is given in (10). Consequently any automorphism 6 of W (2)g acts in
the form

O(e1) = e1+cez+ (e1+es)ts + (e3+eg)to
(t1 +1) e + (c+t2) e + tres + taes,

(9(62) = —3614- 562%-%63 — %64+t3 (61 +€5)+t4 (63+€6)
= (ts— % er+les+ (% - t4> e3 — Cey + tzes + tacs,
O(es) = aes+ts(e1+es5)+ts(es+es)
= (a+t6) es3 + tse1 + tses + tgeq,
O(es) = aeq+tr(er+es)+1s(e3+eq)

= tre] + tges + a’eq + tres + tges.

But imposing the conditions (e;e;) = 0(e;)0(e;) for i, € {1,2,3,4} we
get
tg = Ctl,ti =0 for ¢ Z 3.
Thus, the coordinates of 0(e;), i = 1,2, 3, 4 relative to the {ej}§:1 writen in
matrix form give

1 0 ¢ 0O 0 0 0 O
1 2 3
N A
0 0 a 0O 0 0 0 O
0 0 0 a2 00 0 0
On the other hand since the image of e; + e5 and e3 + eg is in R(e1 + e5) @

R(es + eg) we have

9(65) = _0(61) + (61 + 85) + 9 (63 + 66) To =
(—c—ta+x2)es+ (—t1 +x1 —1)er + (1 — t1) e5 + (x2 — t2) €q,
O(es) = —0(e3)+x3(e1+e5)+xq(e3+ep)r2 =

(—a—tg+x4)e3+ (23 — t5) el + (wg — t5) es + (1'4 —tg) €.

Imposing the conditions 6(e;e;) = 6(e;)8(e;) for i € {1,2,3,4} and j €
{5,6} we get

=% azo=cr, 13=0, 1, =%
and the coordinates of 6(e;) with @ = 1,...,6 relative to the basis {ej}le

writen in a matrix form are

1 0 c 0 0 0 0O
L2 o000
0 0 a 0 0 0 00
0 0 0 a2 0 0 0 0
b—1 0 ¢b—-1 0 b bc 0 0
0 0 ab—1) 0 0 ab 0 O
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Finally writing 0(e7) = >_ \je; and O(eg) = > p;e; and imposing the condi-
tions 0(e;e;) = 0(e;)0(e;) for i € {1,...,8} and j € {7,8} we get the matrix
of a general automorphism 6 € autr(W(2)g) which is

1 0 c 0 0 0 0 O
£ L S =S 0 0 00
0 0 a 0 0 0 0 O
0 0 0 a® 0 0 0 O
Mavek =1 420 0 be—e 0 b be 0 0 (20)
0 0 ab—a O 0 ab 0 O
0 0 ak 0 0 ak a O
-k 0 —ck 0 -k —ck —c 1

with a,b € R*, k,c € R.

Theorem 34. If 3R = 0 the matriz of any automorphism of W (2)g relative
to a basis {e;} with multiplication table as in the table of multiplication of
W(2) is of the form (20) with a,b € R*, ¢,k € R.

We have
Ma,b,c,dMa/,b’,c’,d’ = Maa/,bb’,ca’—i-c’,db’—i-da Mailic,d = M%
then autp(W(2)r) = Affa(R) x Affy(R) via the isomorphism

1 ¢ 1 d
e (.6 )

and as an affine group scheme
aut(W(2)) = Affg X Affg.

In this case, we have a direct product dislike the case 2R = 0 in which the
product was semidirect.

Y

)

o

2o

1
'
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