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Abstract: We discuss the pregeometries of some �nitely generated
commutative semigroups. In this article, the case of �nitely gen-
erated commutative semigroups having a unique extension is con-
sidered, and their pregeometries are studied. We prove that some
such semigroups form a pregeometry with de�nable and algebraic
closure operators. When the de�nable closure operator for such
semigroups was studied, the degree of rigidity of these semigroups
was evaluated. Moreover, it has been proven that a �nitely genera-
ted, complete archimedean semigroup is a group, and its �nite and
in�nite cases have been deterimined.

Keywords: pregeometry, rigidity, �nitely generated commutative
semigroups, de�nable closure operator, algebraic closure operator,
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1 Introduction and preliminaries

The main algebraic properties of �nitely generated commutative semi-
groups are mentioned in the books [1]. In this article, we prove that some
such semigroups form a pregeometry with de�nable and algebraic closure
operators.
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De�nition 1. [2, 3] Let S be a set, P(S) be the power set of S and let
cl : P(S) → P(S) be an operator. We say that (S, cl) is a pregeometry if the
following conditions hold.

1) if X ⊆ S, then X ⊆ cl(X) and cl(cl(X)) = cl(X);
2) if X ⊆ Y ⊆ S, then cl(X) ⊆ cl(Y );
3) if X ⊆ S, a, b ∈ S, and a ∈ cl(X ∪ {b}) \ cl(X), then b ∈ cl(X ∪ {a});
4) if X ⊂ S and a ∈ cl(X), then there is a �nite subset X0 ⊆ X such that

a ∈ cl(X0).

De�nition 2. [2, 3] Let (S, cl) be a pregeometry, A ⊆ S.
a) We say that A is closed if cl(A) = A.
b) We say that A independent if a /∈ cl(A \ {a}) for any a ∈ A and say

that A is a basis for X if A ⊆ X is independent and X ⊆ cl(A).

Lemma 1. [3] If (S, cl) is a pregeometry, X ⊆ S, B1, B2 ⊆ X, and B1, B2

are bases for X, then |B1| = |B2|.

So the cardinality of a basis for X is an invariant, and if B is a basis for the
set X, then we say that |B| is the dimension of X and write dim(X) = |B|.

De�nition 3. [2, 3] Let (S, cl) be a pregeometry. We say that (S, cl) is
modular if for �nite-dimensional closed A,B ⊆ S,

dim(A ∪B) = dim(A) + dim(B)− dim(A ∩B).

Lemma 2. a) Let the operator cl : P(S) → P(S) for the set S satisfy the
following two conditions:

1) cl(cl(X)) = cl(X);
2) For any a ∈ S, cl({a}) = S.
Then, (S, cl) is a pregeometry.
b) The pregeometry in case a) is modular.

Proof. a) From the second condition, it can be seen that cl(X) satis�es all
the conditions of a pregeometry for any non-empty X ⊆ S. Thus, if X = ∅,
then from cl(cl(X)) = cl(X), it follows that cl(∅) = ∅ or cl(∅) = S. In
both cases, this operator satis�es all the conditions of a pregeometry.

b) If cl({a}) = S for every a ∈ S, then in this pregeometry, the closed
sets can only be of two types: ∅ or S. Thus, we can have 3 possible cases:
1) A = B = ∅; 2) either A or B is the empty set; 3) A = B = S. In all
three cases, the formula dim(A∪B) = dim(A)+dim(B)−dim(A∩B) holds.
Therefore, this pregeometry is modular. □

The following question arises from Lemma 2: If there exists an operator
cl : P(S) → P(S) for the set S such that cl(cl(X)) = cl(X) for all X ⊆ S,
and there exists a �nite natural number k such that for any subset A ⊆ S
with k elements, the condition cl(A) = S, does this imply that (S, ) is a
pregeometry? However, in general, this condition does not hold for k > 1.
Let us consider the following example:
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Example 1. Let S = {x1, x2, x3, x4, x5} be a set, and let the operator
cl : P(S) → P(S) be de�ned as follows:

cl(A) =


A, if |A| ≤ 1 or |A| = 3

{x1, x4, x5}, if A = {x1, x4}
A, if |A| = 2 and A ̸= {x1, x4}
S, if |A| ≥ 4

.

Then, it can be seen that the operator "cl" satis�es all axioms of pregeometry
given in De�nition 1, except for the third axiom. Indeed, if we takeX = {x1}
and b = x4, we obtain cl(X ∪ {b}) \ cl(X) = {x1, x4, x5} \ {x1} = {x4, x5}.
However, if we take a = x5, then cl(X ∪ {a}) = {x1, x5}. Thus, b /∈ cl(X ∪
{a}).
De�nition 4. [2, 3] Let M = ⟨M,Σ⟩ be an Σ-structure and A ⊆ M . We
say that b ∈ M is de�nable over A if there is a Σ-formula φ(x, y) and a ∈ A
such that

M |= φ(b, a) ∧ ∀t
(
φ(t, a) → t = b

)
.

We denote the set of all elements that are de�nable over A by dcl(A). We
say that b ∈ M is algebraic over A if there is a Σ-formula φ(x, y) and a ∈ A
such that M |= φ(b, a) and {t ∈ M | M |= φ(t, a)} is a �nite set, and denote
the set of all elements that are algebraic over A by acl(A). The sets dcl(A)
and acl(A) for a set A are called de�nable closure and algebraic closure of
A, respectively.

Lemma 3. [3] Let M = ⟨M,Σ⟩ be an Σ-structure and τ ∈ {dcl, acl}.
a) τ(τ(A)) = τ(A).
b) If A ⊆ B, then τ(A) ⊆ τ(B).
c) If a ∈ τ(A), then there is a �nite subset A0 ⊆ A such that a ∈ τ(A0).

It can be seen from Lemma 3 that the operators acl and dcl satisfy all
conditions of pregeometry except the third one. Whether the operators acl
and dcl satisfy the third condition depends on the model under consideration.

Example 2. a) Let us consider the structure M = ⟨M, s⟩. Here M is the set
of non-negative integers, and s is a unary operation that maps each number
in M to the next element, i.e., s(0) = 1, s(1) = 2, . . . , s(k) = k + 1, . . .

Here, for any element k > 0, if we take ϕ(x, y) ⇋ y ≈ sk(x), then
M |= ϕ(0, k)∧∀t(ϕ(0, t) → t ≈ k). Thus, k ∈ dcl({0}) for any k ∈ M . Addi-
tionally, if we take φ(x) ⇋ ¬∃t(t ≈ s(x)), thenM |= φ(0)∧∀t(φ(t) → t ≈ 0).
Hence, 0 ∈ dcl(∅). From this, it can be concluded that dcl(∅) = M . Thus,
it can be seen that (M, dcl) is a pregeometry.

b) LetÂ's consider the structure M1 = ⟨M,ρ⟩, where ρM = {(1, 0), (2, 0)}
and M is the set of non-negative integers. In this case, it can be seen that
dcl({0}) = {0}, dcl({1}) = {1, 0}, dcl({2}) = {2, 0} and dcl({k}) = {k}
for any k > 2. Let X = {3}, a = 0, b = 1. Then, it can be seen that
a ∈ dcl(X ∪ {b}) \ dcl(X). However, b /∈ dcl(X ∪ {a}). Thus, in this case,
the third condition of pregeometry for the "dcl" operator is not satis�ed.
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De�nition 5. [4] For a set A in a structure M, M is called semantically
A-rigid or automorphically A-rigid if any A-automorphism f ∈ Aut(M) is
identical. The structure M is called syntactically A-rigid if M = dcl(A).

A structure M is called ∀-semantically / ∀-syntactically n-rigid (respec-
tively, ∃-semantically / ∃-syntactically n-rigid), for n ∈ ω, if M is semanti-
cally / syntactically A-rigid for any (some) A ⊆ M with |A| = n.

The least n such thatM isQ-semantically /Q-syntactically n-rigid, where
Q ∈ {∀, ∃}, is called the Q-semantical / Q-syntactical degree of rigidity, it

is denoted by degQ-semrig (M) and degQ-syntrig (M), respectively. Here if a set A

produces the value of Q-semantical / Q-syntactical degree then we say that

A witnesses that degree. If such n does not exists we put degQ-semrig (M) = ∞
and degQ-syntrig (M) = ∞, respectively.

2 u-semigroups and quasi u-semigroups and their

pregeometries

De�nition 6. [1] Let M be a set with a binary operation ∗ de�ned on it,
forming the algebraic structure M = ⟨M, ∗⟩. If the operation is associative ,
meaning that (a∗b)∗c = a∗(b∗c) for all a, b, c inM , then we callM = ⟨M, ∗⟩
a semigroup. If in the semigroup M = ⟨M, ∗⟩ the equality a ∗ b = b ∗ a holds
for all a, b in M , then this semigroup is called a commutative semigroup.

For the sake of convenience, we use the notation xy instead of the notation
x ∗ y in the semigroup M, and instead of writing x . . . x︸ ︷︷ ︸

n times

, we write xn. We

assume that xy0 = x, x0y = y for any x, y in M .
Let M be a commutative semigroup and A ⊆ M be a �nite subset. We

denote the intersection of all subsemigroups of M that contain A by ⟨A⟩.
This means that ⟨A⟩ is the smallest subsemigroup of M that contains A
with respect to being a subsemigroup. If A = {u1, . . . , uk} is a �nite subset,
then we can see that

⟨A⟩ =

{
ut11 . . . utkk | ti ∈ ω,

k∑
i=1

ti ̸= 0

}
.

De�nition 7. [1] If for a commutative semigroup M = ⟨M, ∗⟩, there exists
a �nite subset P = {p1, p2, . . . , pn} ⊆ M such that M = ⟨P ⟩, then the
semigroup M is called a �nitely generated commutative semigroup generated
by P .

It can be seen from De�nition 7 that if P ⊆ K ⊆ M and K is a �nite set,
then M = ⟨K⟩, that is, M = ⟨M, ∗⟩ is also a �nitely generated semigroup
by K. Therefore, without loss of generality, when we refer to the semigroup
M = ⟨M, ∗⟩ as �nitely generated by P , we consider P as the set with the
least number of elements that �nitely generates M = ⟨M, ∗⟩.
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De�nition 8. Let M = ⟨M, ∗⟩ be a �nitely generated commutative semi-
group, P = {p1, . . . , pn} ⊆ M and M be generated by P . If a = ps11 . . . psnn ∈
M and the equation xs11 . . . xsnn = a has a unique solution (x1, . . . , xn) =
(p1, . . . , pn) in M, then we say that M is a u-semigroup with respect to P .

Let P = {q1, q2, . . . , qn}. Here, the set {q1, q2, . . . , qn} is obtained by
rearranging the elements of the set {p1, p2, . . . , pn} in a di�erent order. If
for every a = qr11 qr22 ...qrkk in M the equation xr11 xr22 ...xrkk = a has a unique
solution (x1, x2, ..., xk) = (q1, q2, ..., qk) , then we call the semigroup M a
quasi u-semigroup with respect to P , where r1, r2, ..., rk are natural numbers
and 1 ≤ k ≤ n.

The semigroup M is called a u-semigroup [quasi u-semigroup] when there
exists a �nite set P such that M = ⟨P ⟩ and M is a u-semigroup with respect
to P [quasi u-semigroup with respect to P ].

Theorem 1. If M is a u-semigroup, then (M,dcl) is a pregeometry.

Proof. According to Lemma 3, it su�ces to prove that the third condition
of the pregeometry is satis�ed for the operator dcl : P(M) → P(M). Let M
be generated by P = {p1, . . . , pn} ⊆ M , M is a u-semigroup with respect to
P and b = pr11 . . . prnn . Let us take an arbitrary element a = ps11 . . . psnn ∈ M .
Since M is a u-semigroup, it follows that the formula

Φ(x, b) ⇋ ∃x1 . . . ∃xn
(
(xr11 . . . xrnn ≈ b) ∧ (xs11 . . . xsnn ≈ x)

)
has a unique solution x = a. It follows that dcl({b}) = M for all b ∈ M .
This proves that the third condition of pregeometry holds for a u-semigroup
M. □

Corollary 1. Let M = ⟨M, ∗⟩ be a u-semigroup.
a) If A is a non-empty closed set in the pregeometry (M, dcl), then A = M .
b) (M, dcl) is modular.

Proof.The proof of this follows from Lemma2, Theorem1 and their proofs. □

Corollary 2. If M = ⟨M, ∗⟩ is a u-semigroup then

max{deg∃-semrig (M), deg∃-syntrig (M), deg∀-semrig (M), deg∀-syntrig (M)} ≤ 1. (1)

Proof. By Corollary 1, M = dcl(A) for any nonempty A ⊆ M . In particular,

M = dcl({a}) for any a ∈ M implying deg∀-syntrig (M) ≤ 1. Since following

[4],

deg∃-syntrig (M) ≤ deg∀-syntrig (M), deg∃-semrig (M) ≤ deg∀-semrig (M),

deg∀-semrig (M) ≤ deg∀-syntrig (M),

we obtain the inequality (3). □

Example 3. Let us consider the following semigroup M = ⟨M, ·⟩, which is
a subset of the set of natural numbers and is de�ned with the usual multi-
plication operation:

M = ⟨P ⟩ = {2α · 3β|α, β ∈ {0, 1, 2, ...}, α2 + β2 ̸= 0},
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where P = {2, 3}. It can be seen that the semigroup M is not u-semigroup
with respect to P . For example, if we take the element a = 27, we can
write it as a = 27 · 30, but the equation x71x

0
2 = a does not have a unique

solution. In fact, we can see that any pair (x1, x2) = (2, x) is a solution
to this equation. However, it is not di�cult to see that this semigroup is a
quasi u-semigroup.

Proposition 1. A semigroup M = (M, ∗) is a countable u-semigroup if and
only if it is a countable cyclic semigroup without an identity element.

Proof. (⇐) First, let us prove that if M = (M, ∗) is cyclic and does not
have an identity element, it is a u-semigroup. In this case, we can assume
M = {p, p2, . . . , pα, . . . }. Now, consider the element a = pr.

We can show that the equation xr = a has no solution other than x = p.
Indeed, if this equation has another solution x = ps, then we get the following
equality: prs = pr.

This means that the set M consists only of the elements

p, p2, . . . , pr, pr+1, . . . , psr−1,

which contradicts the assumption that M is in�nite.
(⇒) Therefore, it is su�cient to prove that for the semigroup M = ⟨M, ∗⟩,

M = ⟨P ⟩ and the set P consists of only one element. Let us assume the
opposite. Without loss of generality, it is su�cient to consider the case
P = {p1, p2} and M is u-semigroup with respect to P . For the element
a = pα1 , we can express it as a = pα1 · p02. However, the equation xα1 · x02 = a
does not have a unique solution. In fact, any pair (x1, x2) = (p1, x) is a
solution to this equation. From this, we can conclude that the set P = {p}
consists of a single element, and M = {p, p2, . . . , pα, . . .} holds only when
M = ⟨M, ∗⟩ is a u-semigroup. Thus, M = ⟨M, ∗⟩ is a countable cyclic
semigroup that does not have an identity element. □

It is known that a group is also a special case of a semigroup. Therefore,
a natural question arises: is it possible to introduce the concepts of a "u-
group" and a "quasi u-group" for a group as described above? It can be seen
that a u-group does not exist because a group contains an identity element.
Moreover, it can be seen that a quasi u-group does not exist when |P | ≥ 2.
Indeed, for an element a = pr1p

t
2 in a group, the equation xr1x

t
2 = a does

not have a unique solution. In fact, any pair (x1, x2) = (pr1p
αt
2 , pt−αt

2 ) is a
solution to this equation. However, it can be seen that when P = {p}, this
group is a quasi u-group.

Theorem 2. If M = ⟨M, ∗⟩ is a quasi u-semigroup such that M = ⟨P ⟩ and
P = {p1, p2}, then (M, dcl) is a pregeometry.

Proof. First, we will prove that dcl({p1}) = M . (Similarly, it can also be
shown that dcl({p2}) = M .) We introduce the following notation:

(x | y) ⇌ ∃t(x ∗ t ≈ y) and (x ∤ y) ⇌ ¬∃t(x ∗ t ≈ y).
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Using these, we introduce the following formula:

σ(x, y) ⇌ ∀z
((

(x ∤ y) ∧ (x ̸= y) ∧ (x ∤ z) ∧ (x ̸= z) ∧ (y ̸= z)
)
→ (y | z)

)
.

From this, it can be seen that

M |= σ(p1, p2) ∧ ∀t
(
σ(p1, t) → (t ≈ p2)

)
.

According to the de�nition 4, this implies that p2 ∈ dcl({p1}). Thus, it
follows that dcl({p1}) = dcl({p1, p2}) = M . Similarly, it can be shown that
p1 ∈ dcl({p2}) and dcl({p2}) = M .

Now, we will prove that dcl({a}) = M for any a ∈ M . Since M is a quasi
u-semigroup, it does not have an identity element. Thus, there are three
possible cases:

1) a = pα1 p
β
2 ; 2) a = pα1 ; 3) a = pβ2 . (Here α and β are natural numbers

greater than zero.) Let us take an arbitrary element b from M . We can
assume that b = pr1p

s
2 and analyze each of the three cases above:

1) Let

Υ(x, y) ⇌ ∃x1∃x2
(
(xα1x

β
2 ≈ x) ∧ (xr1x

s
2 ≈ y)

)
.

Since M is a quasi u-semigroup, we have

M |= Υ(a, b) ∧ ∀t
(
Υ(a, t) → (t ≈ b)

)
.

It follows that b ∈ dcl({a}), which means that in this case dcl({a}) = M .
2) Let

ζ(x, y) ⇌ ∃x1∃x2
(
(xα1 ≈ x) ∧ σ(x, y) ∧ (xr1x

s
2 ≈ y)

)
.

Since M is a quasi u-semigroup, we have

M |= ζ(a, b) ∧ ∀t
(
ζ(a, t) → (t ≈ b)

)
.

So, we have shown that dcl({a}) = M in this case as well.
3) This case is also proven analogously to case 2.
Thus, we have proven that dcl({a}) = M for any a ∈ M . Therefore,

according to Lemma 2, (M, dcl) is a pregeometry. □

Corollary 3. Let M = ⟨M, ∗⟩ be a quasi u-semigroup, and let M = ⟨P ⟩, P =
{p1, p2}. Then:

a) (M, dcl) is a modular pregeometry;

b) max{deg∃-semrig (M), deg∃-syntrig (M), deg∀-semrig (M), deg∀-syntrig (M)} ≤ 1.

Proof. a) It follows directly from the above theorem and Lemma 2.
b) It can be seen that this can be proved as in Corollary 2. □

The proof of Theorem 2 can be brie�y explained as follows: Since M is
a quasi u-semigroup, for any a ∈ M , we can determine its generator (i.e.,
p1 or p2). Using p1 or p2, the entire semigroup can be generated. The
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question arises, "Can Theorem 2 be generalized to the case where P =
{p1, p2, ..., pn}?"

Theorem 3. If M = ⟨M, ∗⟩ is a quasi u-semigroup, then (M, acl) is a
pregeometry.

Proof. We will prove this theorem by generalizing the proof of Theorem 2
mentioned above.

Since M is a quasi u-semigroup, it follows that there exists a �nite set
P = {p1, . . . , pn} such that M = ⟨P ⟩ and M is a quasi u-semigroup with
respect to P . It is known that dcl(X) ⊆ acl(X). Furthermore, it can be
seen that dcl({a}) = M , hence acl({a}) = M for every a ∈ M . From this,
by Lemmas 2 and 3, it follows that for n = 1 and n = 2, (M, acl) is also a
pregeometry.

Now, we will prove the case for n > 2. First, we will show that P ⊂
acl({pi}) for any pi ∈ P . Using this, we will then show that acl({a}) = M
for any a ∈ M .

Let dfr(x) ⇌
∧

1≤i,j≤k
i̸=j

(xi ̸= xj) for tuple x = (x1, . . . , xk) and let us

introduce the following formulas:

ξ(t, x, z) ⇌ dfr(t) ∧
n−1∧
i=1

(
(x ∤ ti) ∧ (x ̸= ti) ∧ (ti ∤ z) ∧ (ti ̸= z)

)
,

σn(x, y) ⇌ ∃t ∀z
(
(x ∤ y)∧(x ̸= y)∧ξ(t, x, z)∧(x ∤ z)∧(x ̸= z)∧(y ̸= z) → (y | z)

)
,

where t = (t1, t2, . . . , tn−1). From the de�nition of these formulas, it can
be seen that {b | M |= σn(p1, b)} = {p2, p3, . . . , pn}, meaning that P \
{p1} ⊆ acl({p1}). From this, it follows that P ⊆ acl({p1}). Analogously,
it can be seen that P ⊆ acl({pi}) for any pi ∈ P . Therefore, in general, if
A ⊆ P,A ̸= ∅, we can say that P ⊆ acl(A).

Now, since M is a quasi u-semigroup, we will show that dcl({a}) = M for
any a ∈ M .

Let a = ps1i1 . . . p
sk
ik
, pij ∈ P, sj ∈ {1, 2, . . . , }, j ∈ {1, 2, . . . , k}, k ≤ n.

For any b ∈ M , we will prove that b ∈ dcl({a}). Let b = pr1u1
. . . prmum

, pul
∈ P ,

rl ∈ {1, 2 . . . , }, l ∈ {1, 2, . . . ,m}, m ≤ n. We will consider the following
formula:

θ(x, y) ⇌ ∃v ∃w
(
dfr(w)∧(vs11 . . . vskk ≈ x)∧(wr1

1 . . . wrm
m ≈ y)∧

m∧
i=1

σn(v1, wi)
)
.

It can be observed that M is a quasi u-semigroup, hence M |= θ(a, b), and
moreover, the set {c | M |= θ(a, c)} is �nite.

Thus, we have proven that acl({a}) = M . Therefore, according to Lemma
2, (M, acl) is a pregeometry. □

Corollary 4. Let M = ⟨M, ∗⟩ be a quasi u-semigroup, and let M = ⟨P ⟩, P =
{p1, . . . , pn}, n > 2. Then (M, acl) is a modular pregeometry.
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Proof. It follows directly from the above theorem and Lemma 2. □

Remark. It can be seen that the proof of Theorem 3 is a generalization of
the proof of Theorem 2. However, in Theorem 2, we proved that (M, dcl) is a
pregeometry using this method, whereas in Theorem 3, this method shows us
that (M, acl) is a pregeometry. If we pay attention to the proof of Theorem
3, the formula σn(pi, y) allows us to ask the question: "If some pi ∈ P is
known, what are the other elements of P? " In the proof of Theorem 3,
when n = 1, σ1(x, y) can be considered as σ(x, y) from the proof of Theorem
2. That is, using σn(pi, x), we can only �nd the elements of P other than
pi. As a result, when P = {p1, p2}, we can only �nd one element of P other
than pi. This is why we showed that (M, dcl) is a pregeometry in the case
where P = {p1, p2}. When P = {p1, . . . , pn} with n > 2, and we ask what
the elements of P are other than pi, we do not have a unique answer, but
we do have a �nite number of possible answers. Consequently, in this case,
we proved that (M, acl) is a pregeometry.

Corollary 5. Let M = ⟨M, ∗⟩ be a quasi u-semigroup, and let M = ⟨P ⟩, P =

{p1, . . . , pn}. Then deg∃-semrig (M) ≤ deg∃-syntrig (M) ≤ n− 1.

Proof. 1) Let n = 1, P = {p}. Let's consider the following formula:

ϕ(x) ⇌ ∀z((x | z) ∨ (x ≈ z)).

Then, it can be seen that M |= ϕ(p)∧∀y(ϕ(y) → (p ≈ y)), which means p ∈
dcl(∅) and from p ∈ dcl(∅) and dcl({p}) = M , it follows that dcl(∅) = M .

2) Let n = 2, P = {p1, p2}. In this case, the validity of the assertion can
be seen by Corollary 3.

3) Let n > 2, P = {p1, . . . , pn}. Let's consider the following formula:

χ(x, y) ⇌ ∀z
(
dfr(x)∧(y ̸= z)∧

n−1∧
i=1

(
(xi ∤ y)∧(xi ̸= y)∧(xi ∤ z)∧(xi ̸= z)

)
→ (y | z)

)
As we can see,

M |= χ(p1, p2, . . . , pn−1, pn) ∧ ∀t
(
χ(p1, p2, . . . , pn−1, t) → t ≈ pn

)
for this formula, which means pn ∈ dcl({p1, p2, . . . , pn−1}). Therefore, since
dcl({p1, . . . , pn−1, pn}) = M and pn ∈ dcl({p1, p2, . . . , pn−1}), it follows that
dcl({p1, p2, . . . , pn−1}) = M .

In all three cases above, we can see that

deg∃-semrig (M) ≤ deg∃-syntrig (M) ≤ n− 1.

□

3 Finitely generated Archimedean semigroups and their

pregeometries

Let M = ⟨M, ∗⟩ be commutative semigroup.
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De�nition 9. [1] Let g and h be elements of the commutative semigroup
M. If there exists an element x in M such that gx = h, then we say that g
divides h. Let A ⊆ M . The subset A is called an Archimedean subset of M
if for any two elements a and b in A, one divides some power of the other
. That is, for any a, b ∈ A, there exist an element x and a natural number
α such that bx = aα. If in the above case M = A, then the semigroup
M is called an Archimedean semigroup. The subset A is called an complete
Archimedean subset of M if, for any two elements a and b in A, one divides
the other. That is, for any a, b ∈ A, there exists an element x such that
a = bx. If in the above case M = A, then the semigroup M is called an
complete Archimedean semigroup.

Proposition 2. a) If a �nitely generated semigroup M = ⟨M, ∗⟩ is an
Archimedean semigroup, then there exist αi and aij such that

pα1
1 = pa111 pa122 . . . pa1nn

pα2
2 = pa211 pa222 . . . pa2nn

. . . . . . . . .

pαn
n = pan1

1 pan2
2 . . . pann

n

, (2)

where P = {p1, p2, ..., pn}, M = ⟨P ⟩, αi ∈ ω \ {0}, aij ∈ ω,
∑

1≤i≤n
i̸=j

a2ij > 0,

i, j ∈ {1, ..., n}.
b) If a �nitely generated semigroup M = ⟨M, ∗⟩ is an complete Archimedean

semigroup, then there exist aij such that
p1 = pa111 pa122 . . . pa1nn

p2 = pa211 pa222 . . . pa2nn

. . . . . . . . .

pn = pan1
1 pan2

2 . . . pann
n

, (3)

where P = {p1, p2, ..., pn}, M = ⟨P ⟩, aij ∈ ω,
∑

1≤i≤n
i̸=j

a2ij > 0, i, j ∈ {1, ..., n}.

Proof. a) If M is an Archimedean semigroup, then for pi and pj there exist
x ∈ M and αi ∈ ω \ {0} such that pjx = pαi

i , where i, j ∈ {1, . . . , n}, i ̸=
j. Since M is a �nitely generated semigroup, there exist uik ∈ ω (k ∈
{1, . . . , n}) such that x = pui1

1 pui2
2 . . . puin

n . So, we come to the equality

pαi
i = pui1

1 . . . p
uij+1
j . . . puin

n . By this method we form the equations (2) and

we can see that
∑

1≤i≤n
i̸=j

a2ij > 0, where aik = uik, k ̸= j and aij = uij + 1.

b) Assuming αi = 1, i ∈ {1, . . . , n} for this case, it is proved as in case
a). □
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Let M = ⟨M, ∗⟩ be a �nitely generated complete Archimedean semigroup,
P = {p1, . . . , pn} ⊆ M and M be generated by P . Thus, according to
Proposition 2, we can consider that the elements of the set P are related to
each other as follows: 

p1 = pa111 pa122 . . . pa1nn

p2 = pa211 pa222 . . . pa2nn

. . . . . . . . .

pn = pan1
1 pan2

2 . . . pann
n

, (4)

where aij ∈ ω, i, j ∈ {1, . . . , n}. Here, it is assumed that aii > 0, i ∈
{1, . . . , n}. Because if for some i, aii = 0, then the element pi is expressed
using other pj ∈ P, j ̸= i. In this case, we can see that for the set D =
P \{pi}, we have M = ⟨D⟩. The number of elements in set D is one less than
the number of elements in set P . This contradicts our earlier assumption
that the set P is the smallest set generating M (i.e., M = ⟨P ⟩). Then,
considering that M is a �nitely generated complete Archimedean semigroup

and according to Proposition 2,
∑

1≤i≤n
i̸=j

a2ij > 0 and aii > 0, we can see that

aij > 0 (i, j ∈ {1, ..., n}) in the equations (4). If M = ⟨M, ∗⟩ is a complete
Archimedean semigroup �nitely generated by the set P = {p1, . . . , pn}, then
the elements of P are interconnected by a system of equations of the form
(4), where all aij > 0. These relationships, as in (4), can be generated using
the following algorithm:

First, we demonstrate how to construct the equation p1 = pa111 pa122 . . . pa1nn

for p1, where all a1j > 0.
1) Since M is a complete Archimedean semigroup, for p1 and p2, there

exists an element x1 such that p1 = p2x1. Thus, similarly, for the elements
x1 and p1, there exists an element x2 such that x1 = p1x2. From this, we
obtain the equality p1 = p1p2x2.

2) Similarly, for x2 and p3, there exists an element x3 such that the equal-
ity x2 = p3x3 holds and from this, we obtain the equality p1 = p1p2p3x3.
Continuing this process, we see that xk = pk+1xk+1. From this, we obtain
the equality p1 = p1p2 . . . pkpk+1xk+1, where k ∈ {2, . . . , n− 1}. Thus, when
k = n− 1, we arrive at the following equality: p1 = p1p2 . . . pnxn.

3) Since xk+1 is also an element of the semigroup M, we can write xk+1 =
pc11 pc22 . . . pcnn . From this, the last equality takes the form p1 = pa111 pa122 . . . pa1nn ,
where a1j = cj + 1. Thus, it can be seen that a1j > 0 for all j ∈ {1, . . . , n}.
By repeating the above algorithm for all pi, we can see that the elements of
the set P are related through a system of equations (4) where all aij > 0.

Thus, without loss of generality, when discussing a �nitely generated com-
plete Archimedean semigroup M = ⟨M, ∗⟩, we can assume that there exists
a set P whose elements are related by a system of equations like (4), with
all aij being positive integers, such that M = ⟨P ⟩.
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Theorem 4. If M = ⟨M, ∗⟩ is a �nitely generated complete Archimedean
semigroup, P = {p1, . . . , pn} and M is generated by P , then M is a �nitely
generated Abelian group.

Proof. Let us consider an arbitrary element g = ps11 ps22 . . . psnn from M . We
can assume that si > 0 for pi in the expansion of g. Since aij > 0, if this is
not the case, using (4) as follows, we can make the numbers to the exponent
of pi in the expansion of g always greater than zero. For example, let si = 0
for some i. In this case, g = ps11 . . . p

si−1

i−1 p
si+1

i+1 . . . psnn . Taking into account
the equality p1 = pa111 pa122 . . . pa1nn ( here all a1j > 0) from the system of
equations (4), we can write the element g as follows:

g = (pa111 pa122 . . . pa1ii . . . pa1nn )s1ps22 . . . p
si−1

i−1 p
si+1

i+1 . . . psnn =

= pa11s11 pa12s22 . . . p
a1i−1si−1

i−1 pa1ii p
a1i+1si+1

i+1 . . . pa1nsnn .

Thus, we can assume without loss of generality that g = ps11 ps22 . . . psnn ,
si > 0. Then we write g as follows:

g = ps11 ps22 . . . psnn = p1p
s1−1
1 ps22 . . . psnn = (pa111 pa122 . . . pa1nn )ps1−1

1 ps22 . . . psnn =

= (pa11−1
1 pa122 . . . pa1nn )ps11 ps22 . . . psnn = (pa11−1

1 pa122 . . . pa1nn )g,

g = ps11 ps22 . . . psnn = ps11 p2p
s2−1
2 . . . psnn = ps11 (pa211 pa222 . . . pa2nn )ps2−1

2 . . . psnn =

= (pa211 pa22−1
2 . . . pa2nn )ps11 ps22 . . . psnn = (pa211 pa22−1

2 . . . pa2nn )g,

. . . . . . . . . . . . . . . . . .

g = ps11 ps22 . . . psnn = ps11 ps22 . . . pnp
sn−1
n = ps11 ps22 . . . (pan1

1 pan2
2 . . . pann

n )psn−1
n =

= (pan1
1 pan2

2 . . . pann−1
n )ps11 ps22 . . . psnn = (pan1

1 pan2
2 . . . pann−1

n )g.

Therefore, the element g satis�es the relation g = (pa111 . . . paii−1
i . . . pann

n )g,

where i ∈ {1, . . . , n}. By commutativity, the element pa111 . . . paii−1
i . . . pann

n

is the right and left identity element of the semigroup M. It is known that
if a semigroup has right and left identity elements, they are equal. It follows
that

pa11−1
1 pa122 . . . pa1nn = pa211 pa22−1

2 . . . pa2nn = . . . = pan1
1 pan2

2 . . . pann−1
n = e. (5)

Thus, we have proved that M is a monoid.
Let us now show that for each element g ∈ M there exists an element

g′ ∈ M such that gg′ = g′g = e. We �nd g′ in the form g′ = pr11 pr22 . . . prnn .
Since (5), g′g = e is equivalent to

g′g =

= (pa11−1
1 pa122 . . . pa1nn )x1(pa211 pa22−1

2 . . . pa2nn )x2 . . . (pan1
1 pan2

2 . . . pann−1
n )xn = e.

Here x1, x2, . . . , xn are some natural numbers. Then: g′g =

= (pa11−1
1 pa122 . . . pa1nn )x1(pa211 pa22−1

2 . . . pa2nn )x2 . . . (pan1
1 pan2

2 . . . pann−1
n )xn ⇔

(pr11 . . . prnn )(ps11 . . . psnn ) =

= (pa11−1
1 pa122 . . . pa1nn )x1(pa211 pa22−1

2 . . . pa2nn )x2 . . . (pan1
1 pan2

2 . . . pann−1
n )xn

⇔ pr1+s1
1 pr2+s2

2 . . . prn+sn
n =



PREGEOMETRIES ON COMMUTATIVE SEMIGROUPS 747

p
(a11−1)x1+a21x2+...an1xn

1 p
a12x1+(a22−1)x2+...an2xn

2 . . . pa1nx1+a2nx2+...(ann−1)xn
n .

(6)
It can be seen that if

r1 + s1 = (a11 − 1)x1 + a21x2 + . . . an1xn

r2 + s2 = a12x1 + (a22 − 1)x2 + . . . an2xn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rn + sn = a1nx1 + a2nx2 + . . . (ann − 1)xn

,

then gg′ = g′g = e. Accordingly, since
(a11 − 1)x1 + a21x2 + . . . an1xn − s1 = r1

a12x1 + (a22 − 1)x2 + . . . an2xn − s2 = r2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a1nx1 + a2nx2 + . . . (ann − 1)xn − sn = rn

, (7)

we can choose non-negative integers x1, x2, . . . , xn such that r1, r2, . . . , rn
are non-negative integers. So, we have shown that for each element g =
ps11 ps22 . . . psnn ∈ M there is an element g′ = pr11 pr22 . . . prnn ∈ M such that
gg′ = g′g = e.

Thus, we have proved that in this case M is a �nitely generated Abelian
group. □

It can be seen that using the equations (4) it is possible to create di�erent
views for the element g = ps11 ps22 . . . psnn ∈ M . For example, let P = {p1, p2},
p1 = pa1p

b
2, p2 = pc1p

d
2 and g = pr1p

s
2. In that case, g can be written as follows

and described in another form:

g = pr1p
s
2 = (pa1p

b
2)

r(pc1p
d
2)

s = par+cs
1 pbr+ds

2 .

Thus, it can be seen that there are in�nitely many di�erent representations
for each element g .

Theorem 5. Let M = ⟨M, ∗⟩ be a �nitely generated complete Archimedean
semigroup and generated by P = {p1, . . . , pn}, the elements of the set P
be related to each other by the relations (4) and g = ps11 ps22 . . . psnn , h =

pt11 p
t2
2 . . . ptnn . The system of equations

(a11 − 1)x1 + a21x2 + . . . an1xn = s1 − t1

a12x1 + (a22 − 1)x2 + . . . an2xn = s2 − t2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a1nx1 + a2nx2 + . . . (ann − 1)xn = sn − tn

(8)

has integer solutions if and only if g = h.

Proof. Let the system of equations (8) have an integer solution (x1 . . . , xn).
By Theorem 4 M is a �nitely generated Abelian group. Then, if we �nd
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−t1,−t2, . . . ,−tn through (8) as follows
(a11 − 1)x1 + a21x2 + · · ·+ an1xn − s1 = −t1

a12x1 + (a22 − 1)x2 + · · ·+ an2xn − s2 = −t2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a1nx1 + a2nx2 + · · ·+ (ann − 1)xn − sn = −tn

,

then according to (7) it follows that g·(p−t1
1 p−t2

2 . . . p−tn
n ) = e. Hence, gh−1 =

e, i.e. g = h.
Now, since g = h, let us prove that the system of equations (8) has an

integer solution. We consider the set

Γg = {(m1, . . . ,mn) | pm1
1 . . . pmn

n = g}
for g. It can be seen that (t1, . . . , tn) ∈ Γg. We assume that all representa-
tions of g are formed as above only using (4). As a result, the question arises
of how another representation of g can be obtained. To do this, by selecting
some integers u1, . . . , un, we can express g as follows:

g = ps11 ps22 . . . psnn = (pu1
1 . . . pun

n )(ps1−u1
1 . . . psn−un

n ) =

= (pa111 . . . pa1nn )u1 . . . (pan1
1 . . . pann

n )un(ps1−u1
1 . . . psn−un

n ) =

= p
(a11−1)u1+a21u2+···+an1un+s1
1 . . . pa1nu1+a2nu2+···+(ann−1)un+sn

n .

Let us de�ne αi = (a1i − 1)u1 + a2iu2 + · · · + aniun + si. Through this, we
obtain the form g = pα1

1 pα2
2 . . . pαn

n for g. Thus, to �nd all representations
of g, it is necessary to determine all possible (α1, . . . , αn) that arise for all
(u1, . . . , un) ∈ Zn. Thus, if we consider the following set

∆1
g = {(α1, . . . , αn) | (u1, . . . , un) ∈ Zn} ,

we can observe that Γg = ∆1
g. It can be seen that after one step from the

form g = ps11 ps22 . . . psnn , the set ∆1 that can be obtained is equal to the set
Γg. As a result, the question arises whether a set di�erent from Γg can be
obtained in the next steps. Let us examine the next step:

Let (α1, . . . , αn) ∈ ∆1
g. Then we do as above:

g = pα1
1 pα2

2 . . . pαn
n = (pv11 . . . pvnn )(pα1−v1

1 . . . pαn−vn
n ) =

= (pa111 . . . pa1nn )v1 . . . (pan1
1 . . . pann

n )vn(pα1−v1
1 . . . pαn−vn

n ) =

= p
(a11−1)v1+a21v2+···+an1vn+α1

1 . . . pa1nv1+a2nv2+···+(ann−1)vn+αn
n ,

where vj ∈ Z, j ∈ {1, . . . , n}.
Let us de�ne βi = (a1i − 1)v1 + a2iv2 + · · ·+ anivn + αi and

∆2
g = {(β1, . . . , βn) | vi ∈ Z, (α1, . . . , αn) ∈ Γα, i ∈ {1, . . . , n}} .

Then
βi = (a1i − 1)v1 + a2iv2 + · · ·+ anivn + αi =

= (a1i − 1)v1 + a2iv2 + · · ·+ anivn + (a1i − 1)u1 + a2iu2 + · · ·+ aniun + si =

(a1i − 1)(u1 + v1) + a2i(u2 + v2) + · · ·+ ani(un + vn) + si =
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(a1i − 1)u′1 + a2iu
′
2 + · · ·+ aniu

′
n + si,

where u′j = uj + vj , j ∈ {1, . . . , n}. Thus, it can be seen that

∆2
g =

{
(β1, . . . , βn) | (u′1, . . . , u′n) ∈ Zn

}
= ∆1

g = Γg.

Therefore, by induction, it can be observed that

Γg = ∆1
g = ∆2

g = · · · = ∆k
g = . . .

holds for all steps.
Since g = h, it follows that (t1, . . . , tn) ∈ ∆k

g . Thus, there exist integers
y1, y2, . . . , yn such that ti = (a1i−1)y1+a2iy2+· · ·+aniyn+si. This, in turn,
implies that the system of equations (8) has an integer solution (x1, . . . , xn),
where xi = −yi, due to g = h. □

It is known that if for each generating element pi, i ∈ {1, . . . , n} there

exists a positive integer ki ̸= 1 such that pi = pkii , then the commutative
semigroup M is a �nite semigroup. If in this case M is a group, and for each
pi, there exists an integer ki ̸= 1 such that pi = pkii , then M is a �nite group.

Theorem 6. Let M = ⟨M, ∗⟩ be a �nitely generated complete archimedean
semigroup, P = {p1, . . . , pn} and M be generated by P , the elements of the
set P be related to each other by the relations (4). Then

a) If det(A − I) ̸= 0, then M is a �nite abelian group, where A = (aij)
and I is the n-dimensional identity matrix.

b) If det(A− I) = 0, then M is an in�nite abelian group where A = (aij)
and I is the n-dimensional identity matrix.

Proof. a) By Theorem 4 it is clear that M is a �nitely generated abelian
group. Let us now prove that the group M is �nite. Let us show that for
each generating element pi, there exists an integer ki ̸= 1 such that pi = pkii .

Let g = pi and h = pkii . Then the equations (8) for g and h look like this:

(a11 − 1)x1 + a21x2 + . . . an1xn = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a1ix1 + · · ·+ (aii − 1)xi + · · ·+ anixn = 1− ki

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a1nx1 + a2nx2 + . . . (ann − 1)xn = 0

. (9)

If det(A − I) ̸= 0, then the system of equations (9) has a unique solu-
tion (x1, . . . , xi, . . . , xn)

T . Using Cramer's formula, we �nd each xi, i ∈
{1, . . . , n} as follows:

xi =
det(Di)

det(A− I)
.

Here the matrix Di is formed by replacing the i-th column of the matrix
(A − I) with the column (0, . . . , 1 − ki, . . . , 0)

T . Then we can �nd xi as
follows:

xi =
(1− ki) det(Di)

det(A− I)
, (10)



750 I.K. UKTAMALIEV

where Di is the matrix formed by replacing the i-th column of the matrix
Di with the column (0, . . . , 1, . . . , 0)T . Since the elements of the matrices
(A− I) and Di are integers, det(A− I) and det(Di) are also integers. Then,
if we take 1−ki = det(A−I), according to (10), we get an integer xi. Hence,

by theorem 5 the integer ki = 1 − det(A − I) satis�es the equality pi = pkii
for each pi ∈ P , and this means that M is a �nite abelian group.

b) If det(A−I) = 0, then it is clear that in order for (9) to have a solution,
ki = 1. So, by Theorem 5, for each pi the number ki satisfying the equality
pi = pkii is only ki = 1. Thus, in this case M is an in�nite abelian group. □

Corollary 6. Let M = ⟨M, ∗⟩ be a �nitely generated complete archimedean
semigroup, P = {p1, . . . , pn} and M be generated by P , the elements of the
set P be related to each other by the relations (4) and det(A− I) ̸= 0, where
A = (aij). Then (M, acl) is a pregeometry.

Proof. By Theorem 6 M = ⟨M, ∗⟩ is a �nite abelian group. It follows from
this that acl(A) = M for each A ∈ P(M). So, the operator acl(A) satis�es
all pregeometry conditions. Hence, (M, acl) is a pregeometry. □

It is not di�cult to see that if M = ⟨M,Σ⟩ is an Σ-structure and M is a
�nite set, then (M, acl) is a modular pregeometry and dim(X) = 0 for every
X ∈ P(M). Thus, if det(A− I) = 0, the question whether �nitely generated
complete archimedean semigroup as above form a pregeometry with dcl or
acl operators remains open for now.
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