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Abstract: For saturated formations X ⊆ F where F is hereditary
it is proved that the class XsnF

of groups all of whose X-projectors
are F-subnormal is a saturated formation and its local de�nitions
are found. The methods for calculating the XsnF

-residual of a �nite
solvable group are discussed in the paper.
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1 Introduction and the Main Result

All the groups under consideration are �nite. The classical method for
studying the structure of a group is to consider the properties of its subgroup
chains. For example, a group is nilpotent if every its cyclic primary (or Sylow)
subgroup is subnormal. These results have been signi�cantly developed within
the framework of the theory of formations. The structure of groups with
di�erent systems of formational subnormal subgroups was studied, for
example, in [1, 2, 3, 4, 5, 6, 7].
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De�nition 1 ([8, De�nition 6.1.2], [9, 1.2.8]). Let F be a class of groups.
A subgroup H of G is called F-subnormal in G, if H = G or there exists
a maximal chain of subgroups H = H0 ⊂ H1 ⊂ · · · ⊂ Hn = G such that
Hi/CoreHi(Hi−1) ∈ F for i = 1, . . . , n. Denoted by HF-snG.

In [10, De�nition 1.2] the author proposed the following construction: Let
F be a class of groups and X be a saturated homomorph. Denote by fX(F) the
class of groups in which all X-subgroups are F-subnormal. The constructions
of the works [1, 2, 3, 4, 5] are particular cases of it with the right choice of X.

Note that in an arbitrary case it is di�cult to �nd all X-subgroups of
a group from the computational point of view. That is why in the theory
of classes of groups the systems of special X-subgroups in each group are
considered. In the case when X is a saturated formation, all X-projectors of
the group G can be taken as such system. For example, the set of all Sylow
p-subgroups of a group coincides with the set of all its Np-projectors.

Let X be a class of groups. Recall [12, III, De�nition 3.1] that a subgroup
U of a group G is called X-maximal in G provided that (a) U ∈ X, and (b)
if U ≤ V ≤ G and V ∈ X, then U = V ; a subgroup H of a group G is
called X-projector [12, III, De�nition 3.2] if HN/N is X-maximal in G/N
for every N ⊴ G. According to [12, III, Theorem 3.10] X-projectors exist in
every group in the case when X is a non-empty saturated formation.

In [11] the authors studied the question: how the structure of a group
depends on the embedding of its X-projectors? In particular for the non-
empty classes of groups X and F they denoted [11, De�nition 2.5] by XsnF

the class of groups all of whose X-projectors are F-subnormal.
In the case when X is a saturated formation and F is a hereditary formation

it was only proven that XsnF
is a formation [11, Theorem 2.14(2)]. At �rst

we establish the connection between XsnF
and fX(F). Recall that X

S denotes
the class of groups all of whose subgroups belong to X for a class of groups X.

Theorem 1. Let ∅ ̸= X be a saturated formation and F be a hereditary
formation. If X ⊆ F or F is saturated, then XS

snF
= fX(F).

The aim of this paper is to describe the structure of XsnF
and to suggest

the algorithms for computing the XsnF
-residual of a (solvable) group, in

particular for testing whether a group is an XsnF
-group. At �rst we are

interested in conditions for XsnF
to be saturated (local) and in its canonical

local de�nition.

Theorem 2. Let ∅ ̸= X ⊆ F be saturated formations and F be the canonical
local de�nition of F. If F is hereditary, then XsnF

is a local (saturated)
formation locally de�ned by X where X(p) is a class of all XsnF

-groups all
of whose X-projectors belong to F (p) for all prime p.

Proposition 1. If X ⊇ F are saturated formations, then XsnF
= X.

Note that from Theorem 2 the key results of [4] follow.
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Corollary 1 ([4, Theorems 3.4 and 3.6]). Let π be a set of primes and F be
a hereditary saturated formation. Then the class WπF of all groups G, all of
whose Sylow p-subgroups for every p ∈ π∩π(G) and the unit subgroup are F-
subnormal, is a hereditary saturated formation. If F and H are the canonical
local de�nitions of F and WπF respectively, then H(p) is the class of all WπF-
groups all of whose Sylow π-subgroups belong to F (p) for all p ∈ π(F) and
H(p) = ∅ otherwise.

The main idea of a local formation is to reduce the veri�cation that a
group has a given property associated with it to verifying that the group has
certain properties associated with the values of its local de�nition (simpler
formations). Therefore the presented in Theorem 2 local de�nition of XsnF

is
not good from the computational point of view because it requires to check
that a group belongs to XsnF

for every its value. We obtained a simpler local
de�nition of XsnF

in the solvable case.

Theorem 3. Let ∅ ̸= X ⊆ F be saturated formations of solvable groups,
F be hereditary and F be the canonical local de�nition of F. Then XsnF

is
locally de�ned by X, where X(p) is a class of all solvable groups all of whose
X-projectors belong to F (p) for all prime p.

Recall that the F-residual of a group G is the smallest normal subgroup
GF of G with G/GF ∈ F. If F is a local formation and f is its local de�nition,
then from [12, IV, Theorem 3.2(b)] the formula for the F-residual follows:

GF = Oπ(G)∩π(F)(G)
∏

p∈π(G)∩π(F)

Op′(Op(Gf(p)))

This formula was used to compute the F-residual of a solvable group in [13].
If a test for a group to belong to F is known, then the method for computing
the F-residual was suggested in [14]. For the formations of groups F de�ned
by the action of a group on its chief series the polynomial time algorithms
for the computation of the F-residual of a permutation group were suggested
in [15]. Note that in the case F ∩ X ̸∈ {F,X} we cannot use any of these
methods to compute the XsnF

-residual of a group.

De�nition 2. Let H be a subgroup of a group G, F be a hereditary formation
and a chain of subgroups G = G0 ≥ G1 ≥ G2 ≥ . . . be de�ned by Gi =
HGF

i−1. We will denote the �nal term of this chain by g(H,G,F).

Remark 1. Note that H is F-subnormal in G if and only if H = g(H,G,F).

Recall [12, III, De�nition 3.5] that a subgroup H of a group G is called
X-covering for a class of groups X if H is an X-projector of V for every
H ≤ V ≤ G. For example a Sylow p-subgroup is an Np-covering subgroup.
It is known [12, III, Theorem 3.21] that for a saturated formation X and
a solvable group G the sets of its X-projectors and X-covering subgroups
coincide. Our second approach in the computation of the XsnF

-residual is
based on the following result.
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Theorem 4. Let ∅ ̸= X be a saturated formation and F be a hereditary
formation. Assume that in a group G every X-projector is an X-covering
subgroup. Then the XsnF

-residual of G is ⟨g(H,G,F)X | H is an X-projector
of G with g(H,G,F) ̸= H⟩.

In Section 4 we present the algorithms for the computation of the XsnF
-

residual of a solvable group based on Theorems 3 and 4 and compare them
to a known ones in case when they are applicable.

2 Preliminaries

We use standard de�nitions and notations (see [8, 12]). Recall some of
them: P is the set of all primes; π(G) is the set of all prime divisors of |G|;
π(X) = ∪

G∈X
π(G); Φ(G) is the Frattini subgroup of G; Oπ(G) is the smallest

normal subgroup of G of π-index; Np is the class of all p-groups.
Recall that a formation is a class of groups F which is closed under taking

epimorphic images (i.e. from G ∈ F and N ⊴ G it follows that G/N ∈ F)
and subdirect products (i.e. from G/N1 ∈ F and G/N2 ∈ F it follows that
G/(N1 ∩ N2) ∈ F). For a formation F let EΦF = (G | G/Φ(G) ∈ F). A
formation F is said to be: saturated if F = EΦF; hereditary ifH ∈ F whenever
H ≤ G ∈ F.

A function of the form f : P → {formations} is called a formation
function. Recall [12, IV, De�nition 3.1] that a formation F is called local if

F = LF (f) = (G |G/CG(H/K) ∈ f(p)

for every p ∈ π(H/K) and chief factor H/K of G)

for some formation function f . In this case f is called a local de�nition
of F. By the Gasch�utz�Lubeseder�Schmid theorem [12, IV, Theorem 4.6],
a non-empty formation is local if and only if it is saturated. Recall [12, IV,
Proposition 3.8] that if F is a local formation, there exists a unique formation
function F , de�ning F, such that F (p) = NpF (p) ⊆ F for every p ∈ P. In
this case F is called the canonical local de�nition of F.

The basic properties of F-subnormality are contained in the following two
lemmas.

Lemma 1 ([8, Lemma 6.1.6]). Let F be a formation, H,R ≤ G and N ⊴ G.
(1) If H F-snG, then HN/N F-snG/N .
(2) If N ≤ H and H/N F-snG/N , then H F-snG.
(3) If H F-snR and R F-snG, then H F-snG.

Lemma 2 ([8, Lemma 6.1.7]). Let F be a hereditary formation, G be a group
and H,R ≤ G.

(1) If H F-snG, then H ∩R F-snR.
(2) If H F-snG and RF-snG, then H ∩RF-snG.

Recall that the generalization F̃(G) of the Fitting subgroup is de�ned by

Φ(G) ⊆ F̃(G) and F̃(G)/Φ(G) = Soc(G/Φ(G)).
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Lemma 3 ([3, Lemma 2.7]). Let F be a saturated formation, G be a group

and H be an F-subnormal F-subgroup of G. If G = HF̃(G), then G ∈ F.

3 Proofs of the Main Results

Recall that H/K is called a primitive section of a group G if K ⊴ H ≤ G
andH/K is a primitive group, i.e. a group with a core-free maximal subgroup
[12, A, De�nition 15.1].

3.1. Proof of Theorem 1. Since any X-projector is an X-subgroup, we
see that fX(F) ⊆ XsnF

. Note that in the assumptions of the theorem every
primitive section of an EΦF ∩ X-group belongs to F. Therefore fX(F) is a
hereditary formation by [10, Theorem 3.1]. Note that XS

snF
is the greatest by

inclusion hereditary subformation of XsnF
by its de�nition and [16, Lemma

25.4]. Hence fX(F) ⊆ XS
snF

.

Assume that fX(F) ⊂ XS
snF

. Let G be a minimal order group from XS
snF
\

fX(F). It means that G has a non-F-subnormal X-subgroup H.
Let N be a minimal normal subgroup of G. Then G/N ∈ XS

snF
. Hence

G/N ∈ fX(F) by our assumption. If G has two di�erent minimal normal
subgroups N1 and N2, then from G/Ni ∈ fX(F) it follows that G ≃ G/(N1∩
N2) ∈ fX(F), a contradiction. ThusN is the unique minimal normal subgroup
of G.

If GF ≃ 1, then G ∈ F. Since F is a hereditary formation, every subgroup
of G is F-subnormal in G. So G ∈ fX(F), a contradiction. Hence GF ̸≃ 1
and N ≤ GF. Let P be an X-projector of G. From P F-sn G it follows that
PGF < G. Hence PN < G. In particular, G/N ̸∈ X by the de�nition of
X-projector.

Assume that HN < G. Then HN ∈ fX(F). It means that H F-sn HN .
From G/N ∈ fX(F) it follows that HN/N F-sn G/N . Hence HN F-sn G
and therefore H F-sn G by Lemma 1, a contradiction. Thus HN = G. Hence
G/N ≃ H/(H∩N) ∈ X, the �nal contradiction. It means that fX(F) = XS

snF
.

3.2. Proof of Theorem 2. According to [11, Theorem 2.14] XsnF
is a

formation. Assume that XsnF
is nonsaturated. Let G be a minimal order

group from EΦXsnF
\XsnF

. Recall [12, A, Theorem 9.2(e)] that Φ(G)N/N ≤
Φ(G/N) for any normal subgroup N of G. It means that (G/N)/Φ(G/N)
is a quotient group of G/Φ(G) ∈ XsnF

. Hence (G/N)/Φ(G/N) ∈ XsnF
. If

N is non-trivial, then from |G/N | < |G| and our assumption it follows that
G/N ∈ XsnF

.
If N1 and N2 are di�erent minimal normal subgroups of G, then from

G/N1, G/N2 ∈ XsnF
it follows that G ≃ G/(N1∩N2) ∈ XsnF

, a contradiction.
Thus G has the unique minimal normal subgroup N . It is clear that Φ(G) ̸=
1. HenceN ≤ Φ(G). It means thatN is a p-group for some prime p. Therefore
Φ(G) is a p-group and Op′(G) = 1.
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LetH be an X-projector of G. Note thatHΦ(G)/Φ(G) is an X-projector of
G/Φ(G). From G/Φ(G) ∈ XsnF

it follows that HΦ(G)/Φ(G)F-sn G/Φ(G).
From (2) of Lemma 1 it follows that HΦ(G)F-sn G.

Let K = HF̃(G). Since F̃(G)/Φ(G) is a direct product of simple groups
by de�nition, it is a normal quasinilpotent subgroup of K/Φ(G). Therefore

F̃(G)/Φ(G) ≤ F∗(K/Φ(G)). Hence F̃(G)/Φ(G) ≤ F̃(K/Φ(G)) by [3, Lemma

1.1(4)]. Now K/Φ(G) = (HΦ(G)/Φ(G))F̃(K/Φ(G)). Since F is hereditary
and HΦ(G)/Φ(G)F-sn G/Φ(G), we see that HΦ(G)/Φ(G)F-sn K/Φ(G) by
Lemma 2. From X ⊆ F it follows that HΦ(G)/Φ(G) ∈ F. Therefore
K/Φ(G) ∈ F by Lemma 3. It means that K acts F -hypercentrally on

F̃(G)/Φ(G). From Op′(G) = 1 and [16, Theorem 9.18] it follows that K acts
F -hypercentrally on Φ(G). Thus K ∈ F. Since F is hereditary, HΦ(G) ∈ F
and therefore H F-sn HΦ(G). Thus HF-sn G by Lemma 1. It means that
G ∈ XsnF

, a contradiction. Thus XsnF
is a saturated formation.

According to [12, IV, Proposition 1.2] the class of groups all of whose
X-projectors are F (p)-subgroups is a formation. Therefore X(p) is the inter-
section of formations and hence a formation.

Let H = LF (X). Assume that H \ XsnF
̸= ∅ and G is a minimal order

group from H \ XsnF
. Since H and XsnF

are saturated formations, we see
that Φ(G) = 1 and G has the unique minimal normal subgroup N . If N
is non-abelian, then CG(N) = 1 and for every p ∈ π(N) the following
holds G ≃ G/CG(N) ∈ X(p) ⊆ XsnF

, a contradiction. Thus N is abelian.
Hence CG(N) = N and N is a p-group for some prime p. Let H be an
X-projector of G. Note that HN/N is an X-projector of G/N . It means
that HN/N F-sn G/N . Hence HN F-sn G. From G/N = G/CG(N) ∈ X(p)
it follows that HN/N ∈ F (p). Now HN ∈ NpF (p) = F (p) ⊆ F. Since F
is hereditary, we see that H F-sn HN . Therefore H F-sn G. It means that
G ∈ XsnF

, a contradiction. Thus H ⊆ XsnF
.

Assume that XsnF
\H ̸= ∅. Let G be a minimal order group from XsnF

\H.
Since H and XsnF

are saturated formations, we see that Φ(G) = 1 and
G has the unique minimal normal subgroup N . Let H be an X-projector
of G. From G ∈ XsnF

it follows that H F-sn G. Since F is hereditary, we

see that H F-sn HN . Now from X ⊆ F and N ≤ F̃(HN) it follows that
HN ∈ F by Lemma 3. Let p ∈ π(N). Since N is the unique minimal normal
subgroup of G, we see that CG(N) ⊆ N . Hence Op′(HN) = 1. Now HN ≃
HN/Op′(HN) ∈ F (p). Since F is hereditary, F (p) is hereditary for every p
too by [12, IV, Proposition 3.16]. Thus H ∈ F (p). It means that G belongs
to a formation X(p) for every p ∈ π(N). Therefore G/CG(N) ∈ X(p) for
every p ∈ π(N). From G/N ∈ LF (X) it follows that G ∈ LF (X) = H, a
contradiction. Hence H ⊆ XsnF

. Thus H = XsnF
.

Note that X(p) ⊆ XsnF
by the de�nition of X. Hence X is an inner

de�nition of XsnF
. Let prove that X is a full de�nition of XsnF

. Note that
if F (p) = ∅, then X(p) = ∅. That is why we may assume that F (p) ̸= ∅.
Assume that G ∈ NpX(p). It means that G has a normal p-subgroup N with



ON THE RECOGNITION OF FINITE SOLVABLE GROUPS 859

G/N ∈ X(p). Note that G ∈ XsnF
by [12, IV, Proposition 3.8(a)]. Let H be

an X-projector of G. Then HN/N ≃ H/(H ∩N) is an X-projector of G/N
andH∩N is a p-group. From G/N ∈ X(p) it follows thatH/(H∩N) ∈ F (p).
Now H ∈ NpF (p) = F (p). Thus G ∈ X(p). So X is a full de�nition of XsnF

.
Thus X is the canonical local de�nition of XsnF

.

3.2.1. Proof of Proposition 1. Assume that X ⊇ F are saturated forma-
tions and G ∈ XsnF

. Let H be an X-projector of G. Then H F-sn G. If H ̸=
G, then HGF < G by the de�nition of F-subnormality. Hence HGF/GF <
G/GF ∈ F ⊆ X, a contradiction with the de�nition of X-projector. Thus
H = G ∈ X. So XsnF

⊆ X. On the other hand an X-group is the unique
X-projector in itself and hence F-subnormal. It means that X ⊆ XsnF

. Thus
X = XsnF

.

3.2.2. Proof of Corollary 1. Note that the unit group is the unique (1)-
projector and all Sylow p-subgroups are all Np-projectors in every group.
It means that F0 = (1)snF

and Fp = (Np)snF
are saturated formations by

Theorem 2. Then WπF = ∩i∈π∪{0}Fi is a saturated formation. A direct
check or [4, Theorem 3.1(5)] can be used to prove that WπF is hereditary.
Let F0(p) = F0 and Fq(p) be the class of all Fq-groups all of whose Sylow q-
subgroups belong to F (p) for all p ∈ π(F) and F0(p) = Fq(p) = ∅ otherwise.
Then F0 and Fq are the canonical local de�nitions of F0 and Fq respectively
by Theorem 2. Let H(p) = ∩i∈π∪{0}Fi(p) ⊆WπF be an inner local de�nition
ofWπF. From NpFi(p) = Fi(p) for every i ∈ π∪{0} it follows that NpH(p) =
H(p). Thus H is the canonical local de�nition of WπF.

3.3. Proof of Theorem 3. From ∅ ̸= X ⊆ F ⊆ S it follows that 1S-sn G
for every XsnF

-group G. Thus XsnF
consists of solvable groups by [3, Lemma

2.6]. Let X(p) be the class of all solvable groups all of whose X-projectors
are F (p)-groups. From [12, IV, Proposition 1.2] it follows that X(p) is a
formation. Let H = LF (X). Then H is a saturated formation of solvable
groups.

Assume that H\XsnF
̸= ∅. Let G be a minimal order group from H\XsnF

.
Since H and XsnF

are saturated formations of solvable groups, we see that
Φ(G) = 1, G is solvable and has the unique minimal normal subgroup N .
So N is abelian. Hence CG(N) = N and N is a p-group for some prime
p. Let H be an X-projector of G. Note that HN/N is an X-projector of
G/N . It means thatHN/N F-sn G/N . HenceHN F-sn G by Lemma 1. From
G/N = G/CG(N) ∈ X(p) it follows that HN/N ∈ F (p). Now HN ∈
NpF (p) = F (p) ⊆ F. Since F is hereditary, we see that H F-sn HN by
Lemma 2. Therefore H F-sn G. It means that G ∈ XsnF

, a contradiction.
Thus H ⊆ XsnF

.
Assume that XsnF

\H ̸= ∅. Let G be a minimal order group from XsnF
\H.

Since H and XsnF
are saturated formations of solvable groups, we see that

Φ(G) = 1, G is solvable and has the unique minimal normal subgroup N .
Now N is abelian p-group for some p ∈ π(G) and CG(N) = N . Let H be
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an X-projector of G. From G ∈ XsnF
it follows that H F-sn G. Since F is

hereditary, we see that H F-sn HN by Lemma 2. Now from X ⊆ F and
N ≤ F(HN) = F̃(HN) it follows that HN ∈ F by Lemma 3. Note that
Op′(HN) = 1. Now HN ≃ HN/Op′(HN) ∈ F (p). Since F is hereditary,
F (p) is hereditary for every p too by [12, IV, Proposition 3.16]. Thus H ∈
F (p). It means that G belongs to a formation X(p). Therefore G/CG(N) ∈
X(p). From G/N ∈ LF (X) it follows that G ∈ LF (X) = H, a contradiction.
Hence H ⊆ XsnF

. Thus H = XsnF
.

3.4. Proof of Theorem 4. Assume that

D = ⟨g(H,G,F)X | H is an X-projector of G with g(H,G,F) ̸= H⟩.

Note that (SF)x = (Sx)F for any x ∈ G and S ≤ G. Therefore g(Hx, G,F) =
g(H,G,F)x. Thus D is a normal subgroup of G.

Let H be an X-projector of G with K = g(H,G,F) ̸= H. Note that
HKF = K and K F-sn G. Assume that N is a normal subgroup of G such
that HN/N F-sn G/N . Since F is hereditary, HN/N F-sn KN/N . Note that
KF ⊆ (KN)F and (KN/N)F = (KN)FN/N . If HN/N < KN/N , then by
the de�nition of F-subnormality

KN/N = HKFN/N ⊆ (HN/N)(KN/N)F < KN/N,

a contradiction. Thus HN/N = KN/N ≃ K/(K ∩ N) ∈ X. Hence KX ≤
K ∩N ≤ N . It means that D ≤ GXsnF .

Assume that D < GXsnF . It means that there is an X-projector S/D which
is not F-subnormal in G/D. Note that [12, III, Proposition 3.7] there is an X-
projector H of G with HD/D = S/D. Let K = g(H,G,F). If K = H, then
H F-sn G and hence S/D = HD/D F-sn G/D, a contradiction. So H < K.
From the de�nition of D it follows that KX ≤ D. By the assumption of the
theorem H is an X-covering subgroup of G. Therefore H is an X-projector
of K. It means that HKX = K. Hence HD/D = KD/D F-snG/D, the �nal

contradiction. Thus D = GXsnF .

4 The computation of the XsnF
-residual of a solvable group

Recall [17] that a subgroup H of a group G is called P-subnormal if H = G
or there is a chain of subgroups H = H0 < H1 < · · · < Hn = G such
that |Hi : Hi−1| is a prime for 1 ≤ i ≤ n. Groups with various systems
of P-subnormal subgroups were studied in [10, 17, 18]. In the universe of
all solvable groups the concepts of P-subnormal and U-subnormal subgroups
coincide where U denotes the class of all supersolvable groups. Recall that N-
covering subgroup (of a solvable group) is called a Carter subgroup. According
to Theorem 2 the class NsnU

of all solvable groups all of whose Carter
subgroups are P-subnormal is a saturated formation. Note that the symmetric
group of degree 4 belongs to this class but the alternating group of degree 4
does not belong to it. Therefore NsnU

is not hereditary.
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Let A denote the class of all solvable groups all of whose Sylow subgroups
are abelian. The dihedral group of order 8 shows that A is a non-saturated
formation. So UsnA is a formation but we cannot tell either it is saturated
or not.

If not stated the opposite for the rest of the section all considered in

this section groups are solvable . It is known [12, III, Theorem 3.21] that
in the universe of all solvable groups for a saturated formation F in every
group there is a single conjugacy class of F-projectors which coincides with
the set of all F-covering subgroups.

Let X ⊆ F be saturated formations of solvable groups, F be hereditary
and F be the canonical local de�nition of F. If we are able to compute
X-projectors and the F (p)-residual, then we are able to compute the X(p)-
residual of a group for all prime p where X is the local de�nition of XsnF

that is described in Theorem 3:

GX(p) = (HF (p))G, H is an X-projector of G. (1)

From Theorem 4 the algorithm for the computation of the XsnF
-residual

of a group for a saturated formation X and a hereditary formation F follows.

Algorithm 1: ResidualXsnF(G, X, F)

Result: GXsnF .
Data: G is a solvable group, functions to compute the X-residual,

the F-residual and an X-projector.
G0 ← generators of an X-projector of G;

G1 ← generators of G;

G2 ← generators of GF;

L← G0 ∪G2;

while |⟨L⟩| ̸= |⟨G1⟩| do
G1 ← L;

G2 ← generators of ⟨L⟩F;
L← G0 ∪G2;

end

if |⟨L⟩| ̸= |⟨G0⟩| then
return (⟨L⟩X)G;

else

return 1;

end

In the computer system algebra GAP [19] there is two packages which deal
with formations, their residuals and projectors: FORMAT [20] and CRISP
[21]. We implemented the described above methods to compute the XsnF

-
residual of a group in GAP.

To help the reader understand the applicability of the obtained algorithms,
we present the runtime for some groups. All groups of orders 1296, 1200 and
1120 are taken from the package SmallGroups while The Dark's group, the



862 V.I. MURASHKA

maximal subgroup MF22 of Fischer's group and the wreath product U of
the subgroup of upper triangular matrices in GL(4, 7) with the cyclic group
of order 3 are taken from FORMAT. The timings (in seconds) were obtained
using GAP 4.11.0 started with 4 GB of RAM on Intel(R) Core(TM) i5-8250U
CPU 1.60GHz 1.80GHz.

Group(s) NsnU
-residual UsnA -residual

All 3609 groups of order 24 · 34 17.61 18.89
All 1201 solvable groups of order 24 · 3 · 52 5.42 5.11
All 1092 groups of order 25 · 5 · 7 5.10 5.03
The Dark's group of order 23 · 39 · 524 · 7 · 318 0.19 0.31
MF22 of order 28 · 39 0.02 0.02
U of order 212 · 313 · 718 0.03 0.06

Acknowledgments. I am grateful to the reviewer for his helpful report.
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