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Abstract: We consider a three-parameter family of tetrahedra
in the spherical space, in which three edges at one vertex are
pairwise orthogonal. We obtain formulae for their dihedral angles
and volume in terms of edge lengths.
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1 Introduction

Calculating the volume of polyhedra is a classical problem, well-known
since the time of Euclid. This problem remains relevant even today, in
particular because the volume of the fundamental polyhedron is the main
geometric invariant of a three-dimensional manifold.

Detailed overview of the results on calculating the volumes of polyhedra
in spaces of constant curvature can be found in [1].

Volume formulas for non-Euclidean tetrahedra in some important special
cases have been known since the time of N. Lobachevsky, J. Bolyai and
L. Schl�a�i (see, e.g., [1] and [6]). In particular, Schl�a�i found the volume
of the orthoscheme in S3 [10]. Orthoscheme is an n-dimensional simplex
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in which there exists a path along the edges (v0, v1), (v1, v2), . . . , (vn−1, vn),
that connects all vertices and the two edges of the path are perpendicular
to each other. A three-dimensional orthoscheme is also called birectangular
tetrahedron. By de�nition, a three-dimensional orthoscheme has three right
dihedral angles (in Fig. 1 the corresponding edges are highlighted with
colored bold lines) and three others, which we will call essential dihedral
angles (in Fig. 1 they are designated as A,B,D).

Fig. 1. Ortoscheme with essential dihedral angles A,B,D

Theorem 1 (Schl�a�i, 1858). Let T be a spherical orthoscheme with essential
dihedral angles A,B,D. Then its volume V = V (T ) can be calculated by the
following formula

V =
1

4
S(A,B,D), where

S
(π
2
− x, y,

π

2
− z
)
= Ŝ(x, y, z) =

=
∞∑

m=1

(
D − sin(x) sin(z)

D + sin(x) sin(z)

)m cos(2mx)− cos(2my) + cos(2mz − 1)

m2
−

− x2 + y2 − z2

and D =
√
cos2 x cos2 z − cos2 y.

In the work of J. Murakami [7] formulae for the volume of an arbitrary
spherical tetrahedron are proposed in terms of dihedral angles and edge
lengths. However, each of them contains 16 multivalued complex dilogarithms
of implicit functions, which makes them di�cult to use. The purpose of this
work is to obtain an explicit integral formula for the volume of a su�ciently
wide three-parameter family of spherical tetrahedra, which will be convenient
to use for further calculations and the study of the asymptotic behavior of
the volume.

In this paper, the object of the study is a trirectangular tetrahedron,
that is, a tetrahedron that has three pairwise orthogonal edges with a
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common vertex. In the work [2] a formula for the volume of a trirectangular
tetrahedron was obtained in hyperbolic space.

Theorem 2 (Abrosimov, Stepanishchev, 2023). Let T = T (ℓ1, ℓ2, ℓ3) be a
trirectangular hyperbolic tetrahedron given by lengths of pairwise orthogonal
edges ℓ1, ℓ2, ℓ3 at a common vertex. Then the volume V = V (T ) can be found
by the formula

V =

1

2

tanh ℓ1∫
0

tanh ℓ2(tanh ℓ1−x)
tanh ℓ1∫
0

[
1

1− x2 − y2
+

1

x(x− 2x0) + y(y − 2y0)− e2ℓ3

]
dx dy,

where x0 =
1− e2 ℓ3

2 tanh ℓ1
and y0 =

1− e2 ℓ3

2 tanh ℓ2
.

In the present paper we consider a trirectangular tetrahedron in spherical
space. For this purpose, we introduce some notations and de�nitions.
Consider 3-dimensional sphere

S3 = {(x1, x2, x3, x4) ∈ R4 : x21 + x22 + x23 + x24 = 1}.
The distance between two points v1, v2 ∈ S3 is the angle (in radians)

between their radius vectors v1 and v2 in R4. Thus, the scalar product in R4

induces a metric in S3. We have

cos a =< v1, v2 >,

where a is a distance between v1 and v2.
Geodesics are lines along which the shortest distances are achieved.

Geodesics on a sphere are the so-called great circles, that is, circles whose
center coincides with the center of the sphere.

A spherical tetrahedron is a convex hull (in the sense of the spherical
metric) of four points in S3, called vertices of the tetrahedron.

In the book [3] one can �nd more detailed de�nitions, as well as the
derivation of some classical formulas of spherical geometry.

2 Conditions for the existence of a trirectangular

tetrahedron in S3

Consider a standard basis in R4

e1 = (1, 0, 0, 0),

e2 = (0, 1, 0, 0),

e3 = (0, 0, 1, 0),

e4 = (0, 0, 0, 1).

Let Pij denote the plane formed by the vectors ei and ej . Then the circle
Sij := Pij ∩ S3 is a geodesic.
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Fig. 2. Spherical trirectangular tetrahedron T (a, b, c)

Consider an arbitrary trirectangular tetrahedron T = T (a, b, c) in S3
given by the lengths of its three pairwise orthogonal edges a, b, c with a
common vertex (Fig. 2). Without loss of generality, we will assume that this
vertex is placed at the point v1 = (1, 0, 0, 0), and that the three orthogonal
edges v1v2, v1v3, v1v4 are directed along the geodesics S12, S13, S14, lying in
the coordinate planes P12, P13, P14 ⊂ R4. Then the vertices of tetrahedron
T (a, b, c) have the following coordinates

v1 = ( 1, 0, 0, 0),

v2 = (cos a, sin a, 0, 0),

v3 = (cos b, 0, sin b, 0),

v4 = (cos c, 0, 0, sin c).

(1)

We have constructed a model of an arbitrary trirectangular tetrahedron
T (a, b, c) in S3 and thus proved the following proposition.

Proposition 1. A trirectangular tetrahedron T (a, b, c) exists in S3 for
arbitrary a, b, c ∈ (0, π).

Proposition 2. For a, b or c = 0, tetrahedron T (a, b, c) in S3 loses its
dimension (i.e. degenerates into a triangle, segment, or point). For a, b or
c = π, tetrahedron T (a, b, c) degenerates into a rectangular �spindle�, i.e. a
body with two vertices, at each of which three orthogonal edges meet.

Proof. Indeed, let a = 0, then according to equalities (1), the vertex v2 =
(1, 0, 0, 0) coincides with the vertex v1. In this case, the tetrahedron loses
one dimension and degenerates into a triangle.

On the other hand, if a = π, then according to equalities (1), the vertex
v2 = (−1, 0, 0, 0) ∈ S3 is diametrically opposite to vertex v1. In this case,
the edge v1v2 is a half of the great circle S12. Then the two edges v1v3 and
v3v2 form a half of the great circle S13. The remaining two edges v1v4 and
v4v2 form a half of the great circle S14. Thus, tetrahedron T (a, b, c) is a
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rectangular �spindle� with diametrically opposite vertices v1 = (1, 0, 0, 0),
v2 = (−1, 0, 0, 0) ∈ S3, at each of which three orthogonal edges meet. □

3 Dihedral angles in terms of edge lengths

Theorem 3. Let T (a, b, c) be a spherical trirectangular tetrahedron given by
the lengths of its three pairwise orthogonal edges a, b, c with a common vertex.
Then the dihedral angles opposite to these edges can be found by the formulas

cosD =
cos a sin b sin c√

R
,

cosE =
sin a cos b sin c√

R
,

cosF =
sin a sin b cos c√

R
,

where R = 1−cos2 a cos2 b−cos2 a cos2 c−cos2 b cos2 c+2 cos2 a cos2 b cos2 c.

Proof. Consider a section of tetrahedron T (a, b, c) by a sphere centered at
vertex v2 (Fig. 3).

Fig. 3. Section of tetrahedron T (a, b, c)

As a section we get a spherical right triangle (Fig. 4).
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Fig. 4. Spherical triangle as a section of tetrahedron T (a, b, c)

By the �rst spherical cosine law for this triangle we have

cosE =
cosx3 − cosx1 cosx2

sinx1 sinx2
.

Replacing in the last equality cosx2 = cosx1 cosx3 according to the
spherical Pythagorean theorem, we obtain

cosE =
cosx3 sinx1

sinx2
. (2)

Let us write the spherical Pythagorean theorem for three right angled
faces of tetrahedron T (a, b, c)

cos d = cos b cos c, cos e = cos a cos c, cos f = cos a cos b. (3)

Consider the lower face v1v2v3 of tetrahedron T (a, b, c). By the spherical
law of sines in this right triangle we have

sinx3 =
sin b

sin f
=

sin b√
1− cos2 f

.

Substituting here cos f from (3), we get

sinx3 =
sin b√

1− cos2 a cos2 b
.

Hence,

cosx3 =
sin a cos b√

1− cos2 a cos2 b
. (4)

.
Renaiming b to c and x3 to x1 we obtain

cosx1 =
sin a cos c√

1− cos2 a cos2 c
. (5)

Hence,

sinx1 =
sin c√

1− cos2 a cos2 c
.

Now consider the face v2v3v4 of tetrahedron T (a, b, c). The �rst spherical
cosine law gives

cosx2 =
cos d− cos e cos f

sin e sin f
.
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Substituting cos d, cos e, cos f from (3), by straightforward calculations we
obtain

cosx2 =
sin2 a cos b cos c√

(1− cos2 a cos2 b)(1− cos2 a cos2 c)
.

Hence,

sinx2 =√
1− cos2 a cos2 b− cos2 a cos2 c− cos2 b cos2 c+ 2 cos2 a cos2 b cos2 c

(1− cos2 a cos2 b)(1− cos2 a cos2 c)
. (6)

It remains to substitute the found expressions (4), (5), (6) into the relation
(2). Then we obtain

cosE =

sin a cos b sin c√
1− cos2 a cos2 b− cos2 a cos2 c− cos2 b cos2 c+ 2 cos2 a cos2 b cos2 c

.

From the last formula one can also obtain the corresponding expressions
for cosD, cosF by renaming the edges. □

4 Edge lengths in terms of dihedral angles

Theorem 4. Let T be a spherical trirectangular tetrahedron. Then the edge
lengths a, b, c, d, e, f of T can be expressed in terms of dihedral angles D,E, F
opposite to three pairwise orthogonal edges, by the formulas

cos a =
cosD√

sin2E − cos2 F
, cos d =

cosE cosF√
(sin2D − cos2 F )(sin2E − cos2D)

,

cos b =
cosE√

sin2D − cos2 F
, cos e =

cosD cosF√
(sin2E − cos2 F )(sin2E − cos2D)

,

cos c =
cosF√

sin2E − cos2D
, cos f =

cosD cosE√
(sin2E − cos2 F )(sin2D − cos2 F )

.

Proof. Consider sections of tetrahedron T by three spheres centered at
vertices v2, v3, v4 (Fig. 3). We get three spherical right triangles (Fig. 5).

Fig. 5. Spherical triangles as sections of tetrahedron T
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By the second spherical cosine law for these right triangles we have

cosx1 =
cosF

sinE
, cosx3 =

cosE

sinF
,

cosx4 =
cosD

sinF
, cosx6 =

cosF

sinD
,

cosx7 =
cosD

sinE
, cosx9 =

cosE

sinD
.

(7)

By the second spherical cosine law for each of the three right angled faces
of tetrahedron T we have

cos a =
cosx7
sinx1

=
cosx7√

1− cos2 x1
,

cos b =
cosx9
sinx6

=
cosx9√

1− cos2 x6
,

cos c =
cosx1
sinx7

=
cosx1√

1− cos2 x7
.

(8)

We substitute cosxi in equalities (8) by expressions (7) and obtain

cos a =
cosD√

sin2E − cos2 F
,

cos b =
cosE√

sin2D − cos2 F
,

cos c =
cosF√

sin2E − cos2D
.

Then we apply spherical Pythagorean theorem for right angled faces of
tetrahedron T and use the latter formulas for cos a, cos b, cos c to get the
remaining formulas for cos d, cos e, cos f . □

5 Volume of a trirectangular tetrahedron in S3

Theorem 5. Let T = T (a, b, c) be a spherical trirectangular tetrahedron
given by the lengths of its pairwise orthogonal edges at a common vertex,
equal to a, b, c. Then the volume V = V (T ) can be found by the formula

V =

a∫
0

1

2R

[
arccos (cos b cos c)(1− cos2 b cos2 c) sinα sin b sin c√

R− cos2 α sin2 b sin2 c
−

− cosα(R− sin2 α(cos2 b+ cos2 c− 2 cos2 b cos2 c))·

·

(
arccos (cosα cos c) cos b sin c√

R− sin2 α cos2 b sin2 c
+

arccos (cosα cos b) sin b cos c√
R− sin2 α sin2 b cos2 c

)]
dα,

where R = 1−cos2 α cos2 b−cos2 α cos2 c−cos2 b cos2 c+2 cos2 α cos2 b cos2 c.

Proof. Consider a spherical trirectangular tetrahedron T (a, b, c) with given
edge lengths a, b, c. According to Proposition 1, the domain of existence of
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such a tetrahedron has the form Ω = {(a, b, c) ∈ R3 : a, b, c ∈ [0, π]} (Fig. 6).

Fig. 6. Existence domain Ω of a spherical trirectangular
tetrahedron T (a, b, c)

At the boundary a = 0 of the existence domain Ω, the tetrahedron loses
its dimension, degenerating into a triangle, and its volume vanishes.

Let D,E, F denote the dihedral angles opposite to the edges a, b, c,
respectively. According to Theorem 3, the dihedral angles are uniquely
determined by the lengths of the edges a, b, c. Di�erentiating the volume
as a function of a using the chain rule, we obtain

∂V

∂a
=

∂V

∂D
· ∂D
∂a

+
∂V

∂E
· ∂E
∂a

+
∂V

∂F
· ∂F
∂a

, (9)

since A = B = C =
π

2
and

∂A

∂a
=

∂B

∂a
=

∂C

∂a
= 0.

Recal the well-known Schl�a�i equation [9]

dV =
1

2

∑
θ

lθ dθ,

where the sum is taken over all edges of the tetrahedron, lθ denotes the
length of the edge and θ is the dihedral angle along it. Therefore,

∂V

∂D
=

d

2
,

∂V

∂E
=

e

2
,

∂V

∂F
=

f

2
, (10)

where d = arccos(cos b cos c), e = arccos(cos a cos c), f = arccos(cos a cos b),
according to (3).

Note that
∂cosD

∂a
= − sinD

∂D

∂a
or, equivlently,

∂D

∂a
=

−1√
1− cos2D

· ∂cosD
∂a

.

Using Theorem 3, by straightforward calculations we obtain

∂D

∂a
=

(1− cos2 b cos2 c) sin a sin b sin c

R
√
R− cos2 a sin2 b sin2 c

, (11)

where R = 1−cos2 a cos2 b−cos2 a cos2 c−cos2 b cos2 c+2 cos2 a cos2 b cos2 c.
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Likewise,

∂E

∂a
=

−(R− sin2 a(cos2 b+ cos2 c− 2 cos2 b cos2 c)) cos a cos b sin c

R
√
R− sin2 a cos2 b sin2 c

,

∂F

∂a
=

−(R− sin2 a(cos2 b+ cos2 c− 2 cos2 b cos2 c)) cos a sin b cos c

R
√
R− sin2 a sin2 b cos2 c

.

(12)

Integral of a di�erential form

dV =
∂V

∂a
da+

∂V

∂b
db+

∂V

∂c
dc (13)

does not depend on the choice of the integration path in Ω connecting two
�xed points. Since V = 0 on the boundary of Ω at a = 0, then by the
Newton�Leibniz formula, the volume of tetrahedron T (a, b, c) is equal to the
integral of the form (13) over any piecewise smooth curve γ ⊂ Ω with origin
(0, b, c) and end at the point with coordinates (a, b, c). We will integrate over
a straight line segment with origin (0, b, c) and end (a, b, c), since in this case
b, c are constant and the di�erential form (13) takes the form

dV =
∂V

∂a
da.

It remains to integrate both parts of the equation (9) with respect to the
variable a.

Substituting the obtained derivatives (10), (11) and (12) into equation (9)
and integrating it along the straight line segment with origin (0, b, c) and
end (a, b, c), we obtain the desired formula for the volume. To distinguish
the length of the edge a and the integration variable, we denote the latter
by α. □

6 Coxeter trirectangular tetrahedra in S3

Let T be a trirectangular tetrahedron in S3. Consider sections of
tetrahedron T by three spheres centered at vertices v2, v3, v4 (Fig. 3). As
these sections, we get three spherical right triangles (Fig. 5).

Since the sum of angles in a spherical triangle is greater than π, then the
dihedral angles of tetrahedron T satisfy the conditions

E + F >
π

2
,

D + F >
π

2
,

D + E >
π

2
.

(14)

Coxeter tetrahedron is a tetrahedron whose dihedral angles are of the form
π

n
, where n ≥ 2 is an integer. The list of spherical Coxeter tetrahedra was

constructed by H.S.M. Coxeter [4]. He shown that there are 11 types of
Coxeter tetrahedra in S3. In this section we will show that exactly 5 of these
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types belong to the family of trirectangular tetrahedra. We will calculate
their volumes using Theorem 5 in order to check our formula.

Let D =
π

ℓ
,E =

π

m
,F =

π

n
, where l,m, n ≥ 2 are integers. Solving the

system of inequalities (14) in integers ℓ,m, n we get the complete family of
Coxeter trirectangular tetrahedra in S3 (see Table 1 below).

Here we should note that conditions (14) are necessary, but not su�cient
for the existence of a trirectangular tetrahedron T in S3. That is why we
also check the existence criterion for each of the solutions. The existence
criterion for arbitrary tetrahedron in S3 in terms of dihedral angles was
given by F. Luo [5].

Theorem 6 (F. Luo, 1997). The Gram matrix G = [− cos θij ] of a spherical
n-simplex is symmetric, positive de�nite with the diagonal entries equal to
1. Conversely, any positive de�nite symmetric matrix with diagonal entries
equal to 1 is the Gram matrix of a spherical n-simplex unique up to isometry.

A Gram matrix G of tetrahedron T is de�ned by its dihedral angles as
follows

G = [− cos θij ]i,j=1,2,3,4 =


1 − cosA − cosB − cosC

− cosA 1 − cosF − cosE
− cosB − cosF 1 − cosD
− cosC − cosE − cosD 1

 ,

where θij denotes a dihedral angle along the edge vivj , we assume here that
− cos θii = 1.

This allows us to exclude example 7 in Table 1 with angles D = E =
π

3
, F =

π

5
since the determinant of corresponding Gram matrix is negative.

According to Theorem 4, we calculate the cosines of edge lengths a, b, c
for the given dihedral angles D,E, F . Then we use Theorem 5 to calculate
the volumes.

Example 1 in Table 1 represents the in�nite family of Coxeter
trirectangular tetrahedra in S3. The next simple formula follows from
Theorem 5 in this particular case.

Corollary 1. The volume of a Coxeter trirectangular tetrahedron T in S3

with dihedral angles
(π
2
,
π

2
,
π

2
,
π

2
,
π

2
,
π

n

)
, n ≥ 2, is equal V (T ) =

π2

4n
.

Proof. Without loss of generality we set

A = B = C = D = E =
π

2
, F =

π

n
.

Then by Theorem 4 we have

cos a = cos b = 0, cos c = cos
π

n
.
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Substituting the latter values into the volume formula from Theorem 5,
we �nd

V (T ) =
π sin π

n

4

π
2∫

0

dα

1 + cos π
n cosα

=
π sin π

n

4
· π

n sin π
n

=
π2

4n
.

□

� D E F cos a cos b cos c Existence Volume

1
π

2

π

2

π

n
0 0 cos

π

n
exist for n ≥ 2

π2

4n

2
π

2

π

3

π

3
0

1√
3

1√
3

exists
π2

24

3
π

2

π

3

π

4
0

1√
2

√
2

3
exists

π2

48

4
π

2

π

3

π

5
0

√
5 +

√
5

10

√
3 +

√
5

6
exists

π2

120

5
π

3

π

3

π

3

1√
2

1√
2

1√
2

exists
π2

96

6
π

3

π

3

π

4
1 1 1 degenerates 0

7
π

3

π

3

π

5
� � � doesn't exist �

Table 1. Coxeter trirectangular tetrahedra in S3

In example 6 we see that cos a = cos b = cos c = 1, which means that
tetrahedron T (a, b, c) in this case degenerates into a single point.

The volumes in the last column of Table 1 coincide with well-known
volumes of the respective Coxeter tetrahedra in S3 (see, e.g., [8], Table 1).
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