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PLANAR GRAPHS WITHOUT TRIANGLES ADJACENT
TO CYCLES OF LENGTH FROM 3 TO 9 ARE 3-COLORABLE

O.V. BORODIN, A.N. GLEBOV, T.R. JENSEN, A. RASPAUD

Abstract. Planar graphs without triangles adjacent to cycles of length
from 3 to 9 are proved to be 3-colorable, which extends Grötzsch’s the-
orem. We conjecture that planar graphs without 3-cycles adjacent to
cycles of length 3 or 5 are 3-colorable.

1. Introduction

In 1976, Steinberg conjectured that every planar graph without 4- and 5-cycles
is 3-colorable (see [6]). Erdős (see [8]) suggested the following relaxation of this
problem: does there exist a constant C such that the absence in a planar graph
of cycles of length from 4 to C guarantees its 3-colorability? Abbott and Zhou [1]
proved that such a C exists with C ≤ 11. This result was later improved to C ≤ 10
by Borodin [2] and to C ≤ 9 by Borodin [3] (see also [6, p. 43–44]) and Sanders
and Zhao [7]. In this paper we give a common extension of the Grötzsch 3-Color
Theorem [5] and the above result:

Theorem 1. Every planar graph without a triangle adjacent to a cycle of length
from 3 to 9 is 3-colorable.

We would also like to pose the following Novosibirsk 3-Color Conjecture (Nsk3CC):

Conjecture 2. Every planar graph without 3-cycles adjacent to cycles of length 3
or 5 are 3-colorable.
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Nsk3CC is stronger than both Steinberg’s conjecture and the recent conjecture
by Borodin and Raspaud in [4] that a plane graph having neither a 5-cycle nor
two adjacent triangles is 3-colorable. It is obvious that Nsk3CC if true would imply
Grötzsch’s theorem.

Let G be a plane graph, and let V (G), E(G) and F (G) be its sets of vertices,
edges and faces, respectively. We consider only simple graphs. A (proper) 3-coloring
of G is a mapping f : V (G) −→ {1, 2, 3} such that f(x) 6= f(y) whenever x and
y are adjacent in G. Denote the degree of a vertex v by d(v) and the size of a
face f (bridges are counted twice) by r(f); a k-vertex is one of degree k. We write
≥ k-vertex for a vertex of degree at least k, etc. Similar notation is used for faces;
triangle is a synonym for 3-cycle.

Let C be a cycle in G; by Int(C) and Ext(C) we denote the subgraphs of G
spanned by the vertices lying (strictly) inside and outside of C, respectively, and
put Int(C) = G − Ext(C), Ext(C) = G − Int(C). A cycle C is separating if
Int(C) 6= ∅ 6= Ext(C), i.e., G has at least one vertex both inside and outside C.
By a chord in a cycle C we mean an edge joining two nonconsecutive vertices of C.

To formulate the main result to be proved instead of Theorem 1, we need a few
more special definitions. A vertex or edge is triangular if it belongs to a triangle,
whereas a cycle is triangular if it shares an edge with a triangle. Observe that a
triangle is (by assumption) not triangular. Triangular vertices of degree 2 are called
special vertices. A triangle incident with a 2-vertex is special.

A 6-cycle C in G is bad if Int(C) has an induced subgraph GC each internal face
of which has size 4. In other words, the area inside a bad 6-cycle has a partition
into 4-faces of GC . Similarly, a triangular 12-cycle C in G is bad if Int(C) has
a triangular 10-cycle C ′ such that the area between C and C ′ is partitioned into
4-faces in a certain induced subgraph of G. The 4- and triangular 10-faces in a bad
partition are called 4- and 10-cells of G respectively.

A chord of a cycle C is triangular if it joines two vertices at distance 2 along C.
Observe that if a triangular cycle C = v1v2v3 . . . has a triangular chord, say v1v3,
then there is a shorter triangular cycle C ′ = v1v3 . . .. We say that a cycle is reduced
if it has no triangular chord. A reduced cycle C is good if C is not bad and either
|C| ≤ 6, or C is triangular and |C| ≤ 12.

Instead of Theorem 1, it was easier for us to prove the following stronger fact:

Theorem 3. Suppose G is a plane graph without triangles adjacent to cycles of
length from 3 to 9; then

(i) G is 3-colorable, and
(ii) if D is a good cycle with only internal chords and only special vertices in

Ext(D), then every 3-coloring of D can be extended to a 3-coloring of G.

2. Some properties of the minimal counterexample to Theorem 3

Suppose a graph G is a counterexample to Theorem 3 which has a minimal total
number of vertices and edges. If G is actually a counterexample to Statement (i) of
Theorem 3, then we first make it into a minimal counterexample to Statement (ii),
as follows.

Since G is color-4-critical, it is 2-connected and d(v) ≥ 3 for each v ∈ V (G).
By an immediate consequence of Euler’s formula, G has a face f of size at most 5.
W.l.o.g., we can assume that f is the infinite face of G. Since G is 2-connected, it
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follows that the boundary D of f is a cycle. As D has no chords, it has a 3-coloring
ϕ. As G is not 3-colorable, ϕ cannot be extended to G.

So, we can assume that a graph G, its cycle D = d1d2 . . . d|D|, and a 3-coloring
ϕ of D yield a minimal counterexample to (ii) of Theorem 3. (This implies that
each plane graph without triangles adjacent to cycles of length from 3 to 9 having
less than |V (G)| + |E(G)| vertices and edges in total satisfies both (i) and (ii) of
Theorem 3.)

We now prove some structural properties of G.

(0) G has no triangular cycles of length at most 9.

(1) If v ∈ Int(D) then D does not become bad in G− v.

Indeed, since G− v is a subgraph of G, any bad partition of Int(C) (into 4-cells
and possibly a triangular 10-cell) in G − v is also a bad partition of Int(C) in G,
contrary to the assumption that D is good in G.

(2) Every special triangle T is adjacent to D, and if T exists then it is the only
triangle adjacent to D.

Suppose v ∈ T is a special vertex. If T = D, we color G−v using the minimality
of G and then color v; a contradiction. Otherwise, v /∈ D; then deleting v leaves D
good, and we use the minimality of G again.

In what follows, we assume that if a special triangle T0 exists then it lies outside
D. Thus, the length of the outside face f∞ of G is |D| + 1 if T0 exists and |D|
otherwise.

(3) If G has a reduced cycle C of length at most 12 sharing an edge xz with a
triangle T = xyz, then y /∈ C and y cannot be adjacent to a vertex of C other than
x, z.

This follows immediately from (0) and the absence of triangular chords in C.

(4) G is 2-connected.

Otherwise, the minimality of G implies that the block BD of G that contains D
can be colored according to ϕ due to (ii) of Theorem 3, while every other component
or block of G, by (i). This yields an extension of ϕ to G; a contradiction.

(5) If v ∈ Int(D) then d(v) ≥ 3.

Indeed, if v is an internal 2-vertex, then D is good in G− v provided that D was
such in G.

(6) G has no separating good cycle S other than D.

Suppose S is a shortest such cycle; in particular, S is reduced. If |S| ≤ 6 then we
first extend ϕ to G− Int(S) (this is possible because D cannot become bad due to
(1)). Then we delete all the vertices and chords outside S and extend the 3-coloring
of S induced by ϕ to the remaining graph, which has fewer vertices than G.

Now suppose that 10 ≤ |S| ≤ 12. We first try to extend ϕ to G− Int(S), which
is smaller than G. In view of (1) again, if deleting some vertex inside S preserves at
least one triangle adjacent to D, we are done. Otherwise, there is only one vertex
v inside S, and v belongs to all triangles adjacent to D. By (3), v has degree 2,
contrary to (5).
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So, we have got a coloring ϕ′ on S induced by ϕ, and we want to extend it inside
S. If S has an external chord d, then deleting d leaves a smaller graph G− due to
the minimality of G on |V |+ |E|. Since S is reduced in G, it remains triangular in
G−, and we are done.

Hence, the only obstacle for extending ϕ′ inside S is that deleting any vertex
outside S destroys all the triangles adjacent to S. By (3) again, such a vertex must
be unique and special in G. But then S = D; a contradiction.

(7) If a good cycle C in G has a chord d, then |C| ∈ {6, 12}, d is external, and
d cuts off a 4-cycle from C.

Clearly, a good cycle C has no chords if |C| ≤ 5 due to !C∇≤9. For |C| = 6, the
only possible chord in C is external and splits C into two 4-cycles. If 10 ≤ |C| ≤ 11
then no chord can cut off a 3-cycle from C since C is reduced; by (0) neither can it
cut off a ≥ 4-cycle from the part of C that is adjacent to the triangle that makes C
triangular. Suppose |C| = 12; then, similarly, a chord should be external and split
C into a 4-cycle and a triangular 10-cycle.

(8) If D is a good cycle, then there is no 2-path xyz joining two different and
nonconsecutive vertices x, z of D through y ∈ Int(D).

Suppose D is split by such a path xyz into cycles D′ and D′′, where 4 ≤ |D′| ≤
|D′′| (and |D′| + |D′′| = |D| + 4). If |D| ≤ 6 then |D′| = 4 while |D′′| = |D| = 6
due to d(y) ≥ 3 combined with (6) and (7). However, now due to (7) an edge going
out of y not to x or z must split D′′ into two 4-cycles, making D bad.

Suppose D is large. If |D′| = 4 then again combining d(y) ≥ 3 with (6) and
(7) implies that |D′′| = |D| = 12, where D′′ in turn must be split into a 4-cycle
and a triangular 10-cycle by an edge going out of y inside D′′. This violates the
assumption that D is good. For |D′| = 5 we have |D′′| ≤ 11, which is impossible
due to the same reasons. For |D′| ≥ 6 we must have |D′′| ≤ 10, which implies that
|D′| = 6, |D′′| = 10. By (7), a chord from y splits D′ into two 4-cycles. But then D
is bad; a contradiction.

(9) If D is a good cycle, then there is no 3-path P = wxyz joining two different
and nonconsecutive vertices w, z of D through x, y ∈ Int(D) provided that the
2-path P ′ = wxy is incident with an ≤ 5-face f , unless r(f) = 5 and f is incident
with all the vertices of P and another vertex of D.

The argument in proving (8) is applied with obvious changes; P splits G−Ext(D)
into two cycles, D′ and D′′, where 5 ≤ |D′| ≤ |D′′|. If |D′| = 5, then due to (6) and
(7), D′ must form a 5-face f ′. Due to (5) applied to x, it follows that f ′ = f , and
we are done.

So, suppose |D′| ≥ 6. By d(x) ≥ 3 and the presence of f , each of D′, D′′ either
is separating or contains a chord. Due to (6) combined with (7), none of them can
be good.

If |D| ≤ 6 then |D′| = |D′′| = 6, so that each of D′, D′′ is bad. Hence D is a bad
6-cycle; a contradiction. Suppose D is triangular. Since |D′|+ |D′′| = |D|+ 2|P | =
|D| + 6 ≤ 18, it follows that |D′| ≤ 9, i.e., |D′| is nontriangular. Then |D′′| is
triangular. But |D′′| ≤ |D| ≤ 12, hence |D′′| is a bad 12-cycle. This implies that
|D′| = 6, so that D′ is also bad. By the definition of badness, it follows that D is
bad; a contradiction.
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Observe that (7–9) implies that D has no chords at all.

(10) Remark. In what follows, we shall make G into smaller graphs by deleting
and identifying vertices, combined with inserting edges. In doing so, we should be
sure that we do not (a) identify two vertices of D, because then D is not a cycle
anymore, or (b) create an edge between two vertices of D colored the same, for
otherwise our precoloring ϕ of D would be spoiled. On the other hand, to stay
within our assumptions on G, we should not create: (c) loops, (d) multiple edges,
(e) triangles, and (f) triangular cycles of length at most 9. Observe that, assuming
(e), the only way to violate (f) is to identify two vertices on a triangular path. The
last possible obstacle is (g) making D into a bad cycle.

(11) G has no 4-cycles other than D.

By (6), G has no separating 4-cycle. Of course, G has no 4-cycle with just one
edge inside. So suppose f = wxyz is a face inside D.

First observe that identifying w with y (or x with z) within f cannot violate
(10a); namely, suppose w, y ∈ D. By (0), w and y are not consecutive along D.
Then by (6), (8), neither of x, z can be internal. It follows from (7) that the only
obstacle for (10a) is the trivial case of G = D = wxyz.

Next suppose (10b) is an obstacle for identifying x with z. W.l.o.g., x ∈ D,
z /∈ D, and there is an edge zdi such that di ∈ D, where di is not adjacent to x
along D. By (0), (6) and (8) apllied to the path yzdi it follows that y must be
internal, which contradicts (9).

Now observe that identifying x with z cannot creat loops, multiple edges, or
3-cycles. The first claim follows from !C∇≤9. The other two imply a 2-path joining
two vertices in a 4- or 5-cycle through its internal vertex, which contradicts (6),
(8). So, none of (10c–e) is an obstacle for this operation.

Next suppose (10f) is an obstacle, i.e. we have created a triangular ≤ 9-cycle
C = wv1 . . . vk, k ≤ 8, by identifying w with y. We pick a shortest such C, which
implies that C has no triangular chord. Then G has reduced triangular cycles Cx =
yxwv1 . . . vk and Cz = yzwv1 . . . vk, each of length at most 11. W.l.o.g., we can
assume that z lies (nonstrictly) inside Cx. However, z cannot actually coincide
with one of vi’s, 1 ≤ i ≤ k, by (7). Hence, z is strictly inside the good cycle Cx,
which contradicts (6), (8).

Finally, suppose collapsing the 4-face f by identifying x with z makes D into
a bad cycle in the graph G∗ obtained, i.e., (10g) is an obstacle. Let S∗ be a bad
partition of G∗. If x∗z is a vertex inside a cell of S∗, then S∗ is also a bad partition
of D in G, a contradiction.

So suppose x ∗ z is a vertex of S∗ in G∗. By Cy denote a cell of S∗ that contains
y nonstrictly inside. (Clearly, if y is strictly inside a cell of S∗, then Cy is uniquely
defined; otherwise, the edge xy, which is not a chord in any cell by (0) being
checked two paragraphs ago, belongs to the boundary of two adjacent cells, and we
can take any of them as Cy.) A cell Cw is defined similarly. We make the following
convention: if y and w lie nonstrictly inside the boundary of a certain cell of S∗, we
take Cy = Cw.

Observe that if y, along with edge xy, lies on the boundary of Cy, then the cycle
Cy is also a cycle of G. (The same is true for w and Cw.) This implies that if
Cy = Cw then, again, S∗ is a bad partition of G, a contradiction.
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So suppose Cy 6= Cw. In particular, this implies that in G∗ no Jordan curve
joining w with y can have all its internal points strictly inside a certain cell in S∗.

Now if both y and w are on the boundaries of their cells, then S∗ augmented
by the 4-face wxyz yields a partition S of G. Clearly, S shows that D is bad in
G, a contradiction. Indeed, if |D| = 6 then both S∗ and S consist of 4-cycles only,
whereas |D| = 12 implies that both S∗ and S have one (and the same) triangular
10-cycle each, while the other their cycles have length 4.

If y ∈ Int(Cy) while w is on the boundary of Cw, then in G we have a cycle
C ′y = xyzy1 . . . yk which is by 2 longer than the cycle Cy = xy1 . . . yk in G∗. Since
d(y) ≥ 3 in G by (5), y has a neighbour t nonstrictly inside C ′y such that t /∈ {x, z}.
It follows from (7), (8) applied to t that the 6- or triangular 12-cycle C ′y is bad.
Combining a bad partition of C ′y with cycle wxyz and all the cells of S∗ except
Cy yields a bad partition S of G, as desired. More specifically: if |Cy| = 10, then
|D| = 12 and Cy was the bad 10-cell of S∗ in G∗, while in G the bad 10-cell of S is
inside the bad 12-cycle C ′y. Suppose |Cy| = 4; then the 10-cell exists if and only if
|D| = 12, and it is the same both in S∗ and in S. Finally, if |D| = 6 then necessarily
|Cy| = 4, and the argument is even simpler.

It remains to assume that y ∈ Int(Cy), w ∈ Int(Cw). Then, similarly, we have
bad cycles C ′y, C ′w, and the bad partition S of D in G can be combined from their
bad partitions (in G) augmented by wxyz and S∗ − {Cw, Cy}. This completes the
proof of (11).

(11′) G has no bad cycles.

Since any bad cycle has at least one 4-cell in its interior, it follows from (11).

(12) G has neither nonfacial 6-cycles nor triangular nonfacial reduced 12-cycles
other than D.

Such a cycle C must be good due to (11′), and it cannot have a chord due to
(7). It follows that C is separating, contrary to (6).

(13) G has no nontriangular faces of size at least 6 other than D.

The proof proceeds along the lines of proving (11). Suppose f = wxyz . . . is such
a face inside D. If all vertices of f lie on D, then G has no vertices inside D by (7),
and we are done. So suppose y /∈ D.

First observe that identifying x with z within f cannot create loops, multiple
edges, or 3-cycles. The first follows since f is nontriangular, the second from (11),
and the third yields a separating 5-cycle other than D.

If we have created a triangular cycle C = xv1 . . . vk, k ≤ 8, by identifying x with
z, then G should have a separating triangular ≤ 11-cycle C ′ = zyxv1 . . . vk, which
is impossible. Now consider (10a); namely, suppose x, z ∈ D. This contradicts (6),
(8).

The next case to consider is (10b). Then w.l.o.g. x ∈ D, y, z /∈ D, and there is an
edge zdi such that di ∈ D and zdi creates a chord under contraction. Recall that
by (11′), we have no bad cycles anymore.

Following the argument in proving (9), assume that f is inside C ′. Then d(y) ≥ 3
implies that |C ′′| ≥ 7 and, moreover, |C ′′| ≥ 13 if C ′′ is triangular. Clearly, |C ′| ≥ 6,
and, moreover, |C ′| ≥ 13 if C ′ is triangular. This implies that |D| ≥ 7 and, moreover,
|D| ≥ 13 if D is triangular; a contradiction.
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Finally, the proof that (10g) cannot be an obstacle becomes easier than in (11).
Indeed, suppose identifying x with z makes D bad. Due to (11), this means that the
graph G∗ obtained has a 4-cycle xy1y2y3. Then we have a 6-cycle C = zyxy1y2y3

in G. (Here, y 6= y2 since f is not triangular, while y = y1 would imply a 4-cycle
= zy1y2y3 in G.) By (12), C must be facial, which yields d(y) = 2, contrary to (5).

(14) A vertex v ∈ D of degree 2 cannot be incident with an internal 5-face
uvwxy, unless ϕ(u) = ϕ(w).

Suppose ϕ(u) 6= ϕ(w). Excluding the trivial case |D| = |G| = 5 and using (6),
(7) and (8) implies that x, y /∈ D. By (11′), we have |D| = 6 or 12. Indeed, otherwise
we delete v and extend ϕ first to x, y (which is possible due to (6), (8)), then to
G− v, and finally to G; a contradiction.

We now add an edge uw to G− v. This can create neither multiple edges by (0),
nor a triangle due to (11). Neither can this operation create a triangular ≤ 9-cycle
uwx1 . . . xk, for otherwise the ≤ 10-cycle uvwx1 . . . xk and vertices x, y contradict
(5–7). Of course, the currently outside face D′ cannot be bad, because |D′| = 5 or
11. This completes the proof of (14).

Let f = v1 . . . v5 be a 5-face, where all vi’s except possibly v1 are internal 3-
vertices. By wi denote the vertex adjacent to vi, 2 ≤ i ≤ 5, and not incident with f .
Then f is weak if it is surrounded by three 5-faces f ′i = wivivi+1wi+1xi, 2 ≤ i ≤ 4.

(15) Graph G cannot have a weak internal 5-face.

The proof of (15) is split into steps (16–18) below. Let G∗=G − {v2, . . . , v5},
and let f∗ be the new face created by this deletion. By αi-operation we mean the
identification of wi with wi+1, 2 ≤ i ≤ 4, inside f∗.

(16) An αi-operation is always possible to perform, unless wi and wi+1 are
already precolored the same color.

The argument as in proving (11) and (13) shows that the only obstacle for
identifying wi with wi+1 is that wi, wi+1 ∈ D. Moreover, xi should also belong to
D. The statement (16) now follows from (14).

By β-insertion we mean adding an edge w2w5 inside f∗.

(17) A β-insertion is possible, unless |D| = 6 or 12 and D is split by w2 and
w5 into two paths: one having length 3, the other also having length 3 or being a
triangular 9-path, respectively.

We check the list of obstacles (10) for this operation. A loop implies a 4-cycle
w2v2v1v5w5; here w2 = w5. If the edge w2w5 already exists in G, we have a sepa-
rating 5-cycle w2v2v1v5w5, which is impossible. Creating a triangle w2w5z implies
a 6-cycle w2v2v1v5w5z in G; here z 6= v1 by (0). If we have created a triangular
(reduced) ≤ 9-cycle by adding w2w5, then G has a good separating ≤ 12-cycle,
which contradicts (6) and (12): this cycle is simple by (0), and has no chords.

Clearly, we do not identify two vertices of D by inserting w2w5 into f∗. Creating
a chord in D means that w2, w5 ∈ D. Then D must be split into two paths, of
length at least three each (to avoid separating ≤ 6-cycles). If one of these paths is
triangular, then its length should be at least 9 in order to avoid separating triangular
≤ 12-cycles. All this is only possible if |D| = 6 or 12, with the only possible splitting
into paths being 3+3 or 3+9, respectively. But this is precisely what was stated.
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Finally, we check that making D bad by inserting w2w5 happens precisely in the
situation described in (17). Clearly, |D| = 6 or 12. In the bad partition obtained,
the boundary of every 4-cell must go through w2w5 by (11). Consider the two
maximal (on inclusion) among the new 4-cycles and triangular 10-cycles obtained.
One of them has the outside boundary being a 3-path P1, while the other, a 3- or
a triangular 9-path P2. Since G has no 4-cycles different from D, it follows that
w2, w5 ∈ D and, moreover, the whole P1 should go along D. Then |P2| = 3 or 9
depending on whether |D| = 6 or 12, respectively, which completes the proof of
(17).

By γ-contraction we mean identifying v1 with w4 inside f∗.

(18) If β-insertion is impossible then γ-contraction becomes possible.

Again, we check possible obstacles for identifying v1 with w4 one by one, making
use of the fact that D is split by w2, w5 into a 3-path P1 and either a 3- or a
triangular 9-path P2.

Observe that in our G∗=G− {v2, . . . , v5}, we cannot reach w2 or w5 from v1 in
fewer than 3 steps and from w4 in fewer than 2 steps. Therefore, we do not create
loops, multiple edges or triangles. Creating a triangular (reduced) ≤ 9-cycle implies
a triangular (reduced) ≤ 9-path from v1 to w4. Its triangular segment between v1

and one of w2, w5, as well as that between w4 and w5, must contain at least 8 edges
due to (0). If this is the case, then our forbidding ≤ 9-cycle has to reach w4 from
w2 in just one step (edge), which is impossible by the observation above.

So, there should be a short triangular segment between w4 and w2. It cannot
contain less then 7 edges, since G has no separating ≤ 11-cycle w2v2v3v4w4 . . .. But
then our triangular ≤ 9-cycle has at most two edges to reach v1 from w2, which is
impossible.

Clearly, v1 /∈ D due to (6), (8). Creating a chord in D now means that v1 is
adjacent to D, but then the 7-cycle P1w2v2vv1v5w5 must be split into a 4- and a
5-cycle, which is impossible.

It remains to verify that D cannot degenerate into a bad cycle by identifying
v1 with w4. Clearly, |D| = 6 or 12. At the very least, we should be able to create
a 4-cycle (going through v1 ∗ w4); moreover, it should go through one of w2, w5.
But again, this contradicts the observation in the second paragraph of proving (18).
This completes the proof of (18).

To prove (15), it remains to show how to color the deleted vertices v2, . . . , v5.
Suppose c(w2) = 1, c(w5) = 2 by the β-insertion, while c(w3) = c(w4) = α due
to the α-operation. If c(v1) = 1, we color v5, v4, v3, v2 in this order. By symmetry,
suppose c(v1) = 3. We put c(v2) = 2, c(v5) = 1. Suppose α 6= 1; we put c(v3) = 1,
and then color v4.

Now suppose that the γ-contraction yields c(v1) = c(w4) = γ, while c(w2) =
c(w3) = α due to the α-operation. If α = γ, we color v5, v4, v3, v2 in this order.
Otherwise, we color v2, v3, v5, v4 in this order. This completes the proofs of (15).

3. Discharging

The rest of our proof consists in showing that the properties (1–18) of G are
incompatible with each other. In fact, we prove the nonexistence of the graph G2

obtained from G by deleting the special 2-vertex if the latter exists. Accordingly,
all the concepts below, like f∞, the degrees of vertices of D, etc., are from now on
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referred to G2 rather than to G. In particular, D = d1d2 . . . d|D| is the boundary of
the outside face f∞ of G2. A face f is large if r(f) > 5. Observe that if a large face
in G2 is not triangular then by (13) it is adjacent to the special triangle in G.

Euler’s formula |V (G2)| − |E(G2)|+ |F (G2)| = 2 for G2 may be rewritten as

∑

v∈V (G2)

(d(v)− 4) +
∑

f∈F (G2)

(r(f)− 4) = −8.

We set the initial charge of every vertex v of G2 to be ch(v) = d(v)− 4, of every
face f 6= f∞ to be ch(f) = r(f)− 4, and set ch(f∞) = r(f∞) + 4. Clearly,

∑

x∈V (G2)∪F (G2)

ch(v) = 0.

We now use the discharging procedure, leading to the final charge ch∗, defined by
applying the following rules:

R0. Each internal 3-face receives 1/3 from each incident vertex.

R1. (a) Each internal triangular 3-vertex v receives 2/3 from each incident large
face.

(b) Each internal nontriangular 3-vertex receives 1/3 from each incident face.
(c) If an internal 4-vertex is incident with two triangles, then it receives 1/3 from

each incident large face.
(d) Suppose that an internal 4-vertex v is incident with faces f1, . . . , f4, in a

cyclic order, among which only f1 is a triangle. Then v receives 1/3 from f3 if
r(f3) > 5; otherwise (i.e., when r(f3) = 5), vertex v gets 1/6 from each of f2, f4.

Before stating Rules 2 and 3, we recall that the degrees of vertices of D are
assumed to be those in G2; i.e. the special edges are discounted.

R2. Every 2-vertex (in D) receives 5/3 or 4/3 from f∞ and either 1/3 or 2/3,
respectively, from the other (internal) incident face f . More specifically: let d(v1) >
2, d(v2) = . . . d(vk) = 2, d(vk+1) > 2, where k ≥ 2. Then each of v2, vk receives 5/3
from f∞ and 1/3 from f , while each vi, where 2 < i < k, receives 4/3 from f∞ and
2/3 from f .

R3. Suppose v ∈ D, where d(v) ≥ 3. Then:
(a) If v is a triangular 3-vertex, then v receives 1/3 from the incident large face

and 1 from f∞.
(b) If v is a nontriangular 3-vertex, then v receives 1/3 from each large incident

internal face; furthermore, f∞ gives v charge 1, 2/3, or 1/3 depending on whether
v is incident with no, one, or two large internal faces, respectively.

(c) If v is an ≥ 4-vertex then it receives nothing from the incident faces, unless
d(v) = 4, in which case v gets 2/3 or 1/3 from f∞ if v is incident with two or one
triangle, respectively.

R4. An internal 5-face f receives 1/6 from each incident large internal face f∗

through each of their mutually incident internal 3-vertices.

R5. The charge remaining on the vertices and faces of G2 after applying R1-R4
is transferred to f∞.
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Since the above procedure preserves the total charge, we have:
∑

x∈V (G2)∪F (G2)

ch∗(x) = 0.

The rest of the proof consists in showing that ch∗(x) ≥ 0 whenever x ∈ V (G2) ∪
F (G2), and that ch∗(f∞) > 0, with an obvious final contradiction.

4. Checking that all new charges are nonnegative and ch∗(f∞) > 0

(19) If v ∈ V (G2) then ch∗(v) ≥ 0.

If d(v) = 2 then v cannot be incident with an internal ≤ 4-face by (5), (7), and
(11). By R2, v always gets 2 in total (either as 5/3+1/3 or as 4/3+1/3) from f∞
and the internal face incident with v, so that ch∗(v) = 2− 4 + 2 = 0.

Suppose d(v) = 3. If v is not incident with a 3-face, then ch∗(v) = 3−4+3×1/3 =
0 by R1b if v /∈ D; otherwise, ch∗(v) = 0 by R3b (in three options). If v is incident
with a 3-face, then ch∗(v) = −1 − 1/3 + 2 × 2/3 = 0 by R0 and R1a if v /∈ D;
otherwise, ch∗(v) = −1− 1/3 + 1/3 + 1 = 0 by R0 and R3a.

Suppose d(v) = 4. If v ∈ D then ch∗(v) ≥ 0 by R0 and R3c. If v /∈ D, we have
three cases to consider: If v is not incident with a 3-face, then ch∗(v) = ch(v) = 0.
If v is incident with only one 3-face, then v receives 1/3 (in total) by R1d and sends
away 1/3 by R0, so that ch∗(v) = 0. If v is incident with two 3-faces, then v twice
receives 1/3 due to R1c and sends away 1/3 twice by R0, so that ch∗(v) = 0.

Finally, if d(v) ≥ 5 then v sends away 1/3 at most bd(v)/2c times according to
R0, so that ch∗(v) ≥ d(v)− 4− d(v)/6 = (5d(v)− 24)/6 > 0.

(20) If f ∈ F (G2), r(f) 6= 5, and f 6= f∞, then ch∗(f) ≥ 0.

If r(f) = 3 then ch∗(f) = 3− 4 + 3× 1/3 = 0 by R0. Due to (11), r(f) 6= 4.
Suppose r(f) > 5. Due to (13), f is triangular in G, which implies that r(f) ≥ 10.

Recall that at the beginning f has charge r(f) − 4; then f sends at most 2/3 to
each incident internal vertex v by R1, or to and through v by R1b combined with
R4. By R2, R3, f sends at most 2/3 to each incident vertex of D. For r(f) ≥ 12
this already implies ch∗(f) = r(f)− 4− r(f)× 2/3 = (r(f)− 12)/3 ≥ 0.

Suppose r(f) = 11. If at least one incident vertex gets at most 1/3 from f , then
ch∗(f) ≥ 7− 1/3− 10× 2/3 = 0. Similarly, if at least two incident vertices get 1/2
each from f by R1b combined with R4, then ch∗(f) ≥ 7 − 2 × 1/2 − 9 × 2/3 = 0.
So we are done unless f gives 2/3 to ten incident vertices and at least 1/2 to the
eleventh.

Suppose f is in trouble. Then first observe that f is incident with internal 3-
vertices only: otherwise an incident vertex in D having degree at least 3 gets at
most 1/3 from f by R3 and nothing by R4. (Clearly, if f is incident with a 2-vertex
(in D) then it should be incident with an ≥ 3-vertex in D.) So, we assume that all
vertices incident with f are internal. If one of them has degree at least 4, we are
done again, since it takes at most 1/3 by R1b and nothing by R4.

By (13), f is adjacent to at least one triangle, and hence to a large face. On
the other hand, due to parity, f is incident with a nontriangular 3-vertex, which
according to our assumptions above should take 2/3 or 1/2 by R3b and R4, and
for this reason should be incident with a 5-face that is adjacent to f .

Consider a maximal sequence S5 of 5-faces adjacent to f . From both sides, S5

ends in a large face (it cannot finish with a 3-face). Then the two extreme vertices
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of S5 along the boundary of f are different due to (4), so that each takes 1/2 from
f , and we are done.

Now suppose r(f) = 10. Potentially, f might send away 10×2/3, which is by 2/3
greater than its initial charge. However, we now show that in fact f sends at most 6
in total. The argument is similar to that given for r(f) = 11 but more complicated.
Clearly, if at least one incident vertex gets nothing from f , then f already saves
2/3 and ch∗(f) ≥ 6 − 9 × 2/3 = 0. So from now on we assume that each incident
vertex takes at least 1/6 from f ; in particular, each incident vertex has degree at
most 4. Similarly, we are done if there are at least two vertices taking at most 1/3
from f .

First observe that at least one incident vertex has degree > 3 or belongs to D.
Indeed, if f is incident with ten internal 3-vertices, we delete all of them and color
the remaining graph according to ϕ. Now each of the vertices of the bondary 10-
cycle of f (which is a cycle indeed by (0)) has two admissible colors, so we can get
a desired coloring of the whole G, a contradiction.

Case 1. No vertex incident with f belongs to D.
Let the boundary of f be the cycle v1 . . . v10. By above, we may assume that

precisely one incident vertex, v1, has degree 4 (but still takes 1/3 or 1/6 from f
by R1d), while each of the other nine has degree 3. We have three options for v1

described in R1c and R1d; in all of them v1 is triangular.
First suppose v1 is not incident with a 5-face. Then by parity, among the nine

vertices at f other than v1 there is a nontriangular (3-)vertex. It must be incident
with a 5-face, for otherwise it also saves 1/3 for f . Again by means of the S5

argument above, we find two 3-vertices saving 1/6 each.
It remains to assume that v1 is incident with a 5-face f ′ and a triangle f ′′.

Clearly, f is adjacent to both f ′ and f ′′, and still to a large face. Observe that v1

gets 1/6 from f and thus saves 1/2 for f ; another saver, of 1/6, is the vertex at
the end of the S5 chain of 5-faces adjacent to f that starts at f ′. In total, f saves
1/2+1/6=2/3, and we are home.

Case 2. f has a vertex in common with D.
Recall that R4 does not take away anything from f through vertices of D. Thus,

each common ≥ 3-vertex v of f and D takes at most 1/3 from f by R1–3. If f
is incident with a 2-vertex then it is also incident with two ≥ 3-vertices of D. On
the other hand, if d(v) = 3 then f should have a vertex more in common with D.
Finally, if d(v) ≥ 4 then f saves 2/3 at v alone.

(21) If f ∈ F (G2), r(f) = 5, and f 6= f∞, then ch∗(f) ≥ 0.

Recall that f has initial charge 1, gives 1/3 to each incident internal 3-vertex by
R1b and to each incident 2-vertex by R2. In turn, f gets 1/6 from each adjacent
large internal face through a common internal 3-vertex by R4.

If f is incident with a 2-vertex d2 ∈ D, then both d1 and d3 are ≥ 3-vertices of
D due to (6), (7) and (8). None of d1, d3 takes anything from f , so that ch∗(f) ≥ 0
in this case.

To be in trouble, f must be incident with at least four internal 3-vertices. More-
over, each large internal face adjacent to f along an edge whose both end vertices
are internal and have degree 3 gives 2× 1/6 = 1/3 to f by R4.

If d(v5) > 3 or v5 ∈ D, this implies that f = v1 . . . v5 must be adjacent to at
least four 5-faces: those incident with edges v1v2, v2v3, v3v4, and with one of v1v5,
v4v5, for otherwise f receives 1/3 in total by R4. However, this contradicts (15).
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Similarly, if f is incident with all five internal 3-vertices, then f gets the total of
2/3 from two adjacent large faces due to (15), which implies that ch∗(f) ≥ 0.

(22) ch∗(f∞) > 0.
By R1–R4, no vertex of D gets more than 5/3 from f∞. If r(f∞) ≤ 6 then

ch∗(f∞) = |D| + 4 − |D| × 5/3 = 2(6 − |D|)/3 ≥ 0. Moreover, since D cannot
entirely consist of 2-vertices, and since each ≥ 3-vertex of D takes at most 1 from
f∞, it follows that ch∗(f∞) > 0 in this case.

Now suppose r(f∞) ≥ 10. In fact, f∞ is a triangular (in G) outside face in G2 of
size at most 12. Recall that ch(f∞) = |D|+4 and observe that |D|+4−|D|×4/3 =
(12− |D|)/3 ≥ 0 for r(f∞) ≤ 12. So, it will be suffice to show that f∞ sends each
incident vertex at most 4/3 on the average, and in turn f∞ receives some positive
charge by R5. To this end, we make a local redistribution of charges given by f∞
to the vertices of D.

If a 2-vertex d2 takes 5/3 from f∞ by R2, we instead give d2 only 4/3 and share
the remaining 1/3 evenly among those of d1, d3 that have degree at least 3. So, if
both have degree at least 3, then each gets additional 1/6 from f∞; if only one,
then it gets the whole 1/3. (These two options are the only admissible by R2.)

After this averaging each 2-vertex gets precisely 4/3 from f∞. We next show
that each ≥ 3-vertex d3 of D now takes at most 4/3, and that at least one of the
vertices and faces of G2 gives some positive charge to f∞.

If d(d3) > 3 then d3 remains with at most 1 after averaging due to R3, because
no 2-vertex belongs to a triangle. So suppose d(d3) = 3.

If d3 is not triangular then the only way for it to remain with 4/3 is to get 1
from f∞ by R3a and twice by 1/6 in the course of averaging, for no 5-face can be
incident with two 2-vertices in a row due to (6), (7) and (8).

If d3 is triangular then the only way for it to remain with 4/3 is to get 1 from
f∞ by R3a and 1/3 from the neighbour 2-vertex incident with a large internal face
(recall that no 2-vertex can be incident with a triangle).

So, we are done unless |D| = 12 and D has only these two types of 3-vertices,
called hungry. If there is at least one such a hungry nontriangular 3-vertex d3, i.e.,
incident with two internal 5-faces and getting 1/6 from two 2-vertices, then all the
twelve vertices of D cannot be the same because D is triangular in G.

Clearly, our hungry triangular and nontriangular 3-vertices cannot co-exist. This
implies that all ≥ 3-vertices of D are triangular hungry 3-vertices. Moreover, they
are split into pairs by their common triangles, and these triangles are separated
from each other along D by at least two 2-vertices.

Since G2 6= D, we have an internal triangle adjacent to D and to a large internal
face, f . Clearly, r(f) ≥ 10. Since f is incident with at least four vertices of D taking
1/3 from f each by R2 and R3a, it follows that ch∗(f) ≥ r(f)−4−4×1/3−(r(f)−
4)× 2/3 = (r(f)− 8)/3 > 0.

Thus, after applying R1–R4 at least one vertex or face of G2 remains with a
positive charge, while the intermediate charge of f∞ is nonnegative. This means
that after applying R5, we have ch∗(f∞) > 0.

This completes the proof of (22) and, due to the remark at the end of Section 3,
that of Theorem 3.
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