S@©MR ISSN 1813-3304

CUBNPCKNE SJIEKTPOHHDBIE
MATEMATUYECKUE USBECTUA

Siberian Electronic Mathematical Reports

http://semr.math.nsc.ru

Tom 3, cmp. 60-61 (2006) VK 517.518
Kpamxue coobwerusa MSC 58J53

ISOSPECTRAL FLAT ORIENTABLE 2-ORBIFOLDS

R.R. ISANGULOV

The spectrum of the Laplace — Beltrami operator A = —div grad, or the Lapla-
cian for short, on a compact flat two-dimensional orbifold is studied. Two orbifolds
V and V' are said to be isospectral, if the spectra of their Laplacians on orbifolds
V and V' coincide.

There is a well-known problem about isospectrality of Riemannian manifolds:
whether isospectral manifolds are isometric. Kac [1] famously framed it in the ques-
tion, "Can one hear the shape of a drum?"The answer is negative in general (see [2]
for more details). For example, Milnor in [3]| constructed a pair of 16-dimensional
isospectral non-isometric tori. The basic definitions and results concerning spectral
theory of the Laplacian defined on a Riemannian manifolds and orbifolds could be
found, for instance, in Buser [4] and Chiang [5].

In this paper we give an answer to this problem for compact flat orientable
two-dimensional orbifolds Vi = §%(2,2,2,2), Vo = S5%(2,4,4), V3 = S?%(2,3,6),
Vi = 5%(3,3,3), which underlying space is the two-dimensional sphere S? and the
singular set consists of finitely many elliptic points of given orders.

To describe the spectrum of an orbifold V' we use the trace function

te(Hy) = / Hy(z,2,t)dV,
1%

where Hy (x,y,t) is a fundamental solution to the heat equation on V, and dV
is the volume element. We apply the method given in [6] to derive the following
theorems.
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Theorem 1. The trace function of every compact flat orientable 2-orbifold V;,
i=1,...,4, can be calculated explicitly:

Vi :
(i) = SOV S i
LeA

Here A is a lattice of the flat torus which is a finite-fold covering of V;, Ay = %,
)\2:%) )\3:%7 A4:§

Theorem 2. Any two compact flat orientable 2-orbifolds are isospectral if and only
if they are isometric.

In order to prove Theorem 1, we use a relationship between the fundamental
solution to the heat equation on orbifold V' and on regular covering of V' (see [7]).

Theorem 1 combined with the following statements implies Theorem 2:

(i) The spectrum of V' uniquely determines the trace function tr(Hy ), and, con-
versely, the trace function tr(Hy ) uniquely determines the spectrum of V.

(ii) The trace function tr(Hy ) determines a compact flat orientable 2-orbifold V'
up to isometry.

The author is grateful to Professor Alexander D. Mednykh for suggesting the
problem and for continuous encouragement.
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