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ISOSPECTRAL FLAT ORIENTABLE 2-ORBIFOLDS

R.R. ISANGULOV

The spectrum of the Laplace — Beltrami operator ∆ = −div grad, or the Lapla-
cian for short, on a compact flat two-dimensional orbifold is studied. Two orbifolds
V and V ′ are said to be isospectral, if the spectra of their Laplacians on orbifolds
V and V ′ coincide.

There is a well-known problem about isospectrality of Riemannian manifolds:
whether isospectral manifolds are isometric. Kac [1] famously framed it in the ques-
tion, "Can one hear the shape of a drum?"The answer is negative in general (see [2]
for more details). For example, Milnor in [3] constructed a pair of 16-dimensional
isospectral non-isometric tori. The basic definitions and results concerning spectral
theory of the Laplacian defined on a Riemannian manifolds and orbifolds could be
found, for instance, in Buser [4] and Chiang [5].

In this paper we give an answer to this problem for compact flat orientable
two-dimensional orbifolds V1 = S2(2, 2, 2, 2), V2 = S2(2, 4, 4), V3 = S2(2, 3, 6),
V4 = S2(3, 3, 3), which underlying space is the two-dimensional sphere S2 and the
singular set consists of finitely many elliptic points of given orders.

To describe the spectrum of an orbifold V we use the trace function

tr(HV ) =
∫

V

HV (x, x, t) dV,

where HV (x, y, t) is a fundamental solution to the heat equation on V , and dV
is the volume element. We apply the method given in [6] to derive the following
theorems.
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Theorem 1. The trace function of every compact flat orientable 2-orbifold Vi,
i = 1, . . . , 4, can be calculated explicitly:

tr(HVi) =
area(Vi)

4πt

∑

`∈Λ

e−|` |
2/4t + λi, i = 1, . . . , 4.

Here Λ is a lattice of the flat torus which is a finite-fold covering of Vi, λ1 = 1
2 ,

λ2 = 3
4 , λ3 = 5

6 , λ4 = 2
3 .

Theorem 2. Any two compact flat orientable 2-orbifolds are isospectral if and only
if they are isometric.

In order to prove Theorem 1, we use a relationship between the fundamental
solution to the heat equation on orbifold V and on regular covering of V (see [7]).

Theorem 1 combined with the following statements implies Theorem 2:
(i) The spectrum of V uniquely determines the trace function tr(HV ), and, con-

versely, the trace function tr(HV ) uniquely determines the spectrum of V .
(ii) The trace function tr(HV ) determines a compact flat orientable 2-orbifold V

up to isometry.
The author is grateful to Professor Alexander D. Mednykh for suggesting the
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Birkhäuser, 1992. (Progress in Mathematics; 106).
[5] Y.-J. Chiang, Spectral geometry of V -manifolds and its application to harmonic maps, Dif-

ferential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990), Proc.
Sympos. Pure Math., 54, Part 1 (1993), 93–99. (Amer. Math. Soc., Providence, RI, 1993).

[6] R.R. Isangulov, Isospectral flat 3-manifolds, Sib. Math. J. 45, N. 5 (2004), 894–914.
[7] R. Brooks, Constructing isospectral manifolds, Amer. Math. Monthly, 95 (1988), 823–839.

Ruslan Ramilevich Isangulov
Sobolev institute of mathematics,
pr. akad. Koptyuga 4,
630090, Novosibirsk, Russia
E-mail address: isan@math.nsc.ru


