S@MR

ISSN 1813-3304

СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports http://semr.math.nsc.ru

Том 3, стр. 83–85 (2006) Краткие сообщения УДК 516.162.3 MSC 57M99, 57M20

UNIQUENESS OF THE EMBEDDING OF A 2-COMPLEX INTO A 3-MANIFOLD

J. GLOCK

Let a 2-dimensional complex \mathcal{K}^2 embedded into a 3-dimensional manifold \mathcal{M}^3 be given.

Question. To which extent does \mathcal{K}^2 determine its regular neighbourhood in \mathcal{M}^3 ?

For the restricted class of special polyhedra *Casler* [1] showed that in fact the thickening is unique (independently of the surrounding manifold).

Trying to solve the question for general 2-complexes I started to collect counterexamples to uniqueness. Together with C. Hog-Angeloni we found four potential obstructions to uniqueness which lead to restrictions on \mathcal{M}^3 and the regular neighbourhood of \mathcal{K}^2 :

Assume \mathcal{M}^3 and \mathcal{K}^2 to be compact, connected and piecewise linear. \mathcal{M}^3 moreover should be orientable. Consider the following phenomena:

- 1.: The lens spaces $L_{5,1}$ and $L_{5,2}$ are non-homeomorphic but they have the same spine \mathcal{K}^2 . Hence there are non-homeomorphic thickenings in a connected sum. Therefore we assume \mathcal{M}^3 to be prime.
- **2.:** If \mathcal{M}^3 is a counterexample to the 3-dimensional Poincaré conjecture then a spine \mathcal{K}^2 might also embed into a 3-ball \mathcal{B}^3 .

If Perelman's attempt to prove the Poincaré conjecture turns out to be correct, this phenomenon doesn't occur.

3.: For $\mathcal{K}^2 = S^2 \vee S^1$ there are two non-homeomorphic thickenings regarding the glueing of S^1 to S^2 . One thickening has connected boundary and the other one has two boundary components.

Therefore we assume that the boundary of the regular neighbourhood of \mathcal{K}^2 be connected.

Glock, J., Uniqueness of the embedding of a 2-complex into a 3-manifold. © 2006 Glock J.

Communicated by S.V. Matveev March 6, 2006, published March 14, 2006.

J. GLOCK

- 4.: Consider the square and the granny knot embedded in S^3 . Both knots are connected sums of two copies of the trefoil knot. The knot complements are not homeomorphic but they have the same spine.
 - Therefore we assume that the regular neighbourhood of \mathcal{K}^2 doesn't contain essential annuli.

Using these assumptions we proved that the thickening of \mathcal{K}^2 in \mathcal{M}^3 is unique.

Theorem (Hog-Angeloni and G. [3]). Let \mathcal{M}^3 be orientable, prime (and not a Poincaré counterexample) and $f : \mathcal{K}^2 \to \mathcal{M}^3$ be a p.l. embedding of a compact connected 2-complex. If the regular neighbourhood $\mathcal{N} = \mathcal{N}(f(\mathcal{K}^2))$ does not contain essential annuli and has connected boundary, then \mathcal{N} is determined by \mathcal{K}^2 .

For the proof we used several theorems from 3-manifold theory, like the JSJdecomposition or results of Waldhausen and Johannson.

Since the question about the uniqueness of thickenings arose from the theory of 2-complexes, it would be nice to avoid 3-manifold theory and find conditions based on 2-complexes. An even more interesting goal would be to get 3-manifold results using the theory of 2-complexes in turn.

Hence from now on I would like to study the homeomorphism type of the pair $(\mathcal{N}, \mathcal{K}^2)$ for a regular neighbourhood \mathcal{N} of \mathcal{K}^2 in an orientable \mathcal{M}^3 which moreover should be independent of the particular surrounding manifold. Neither of these requirements follows from the previous ones.

This time we start with a given presentation $P = \langle x_1, ..., x_k | r_1, ..., r_l \rangle$ of \mathcal{K}^2 which embeds in some 3-manifold with k generators and l relators: Let P be a finite presentation and let \mathcal{C}_P be the standard complex associated to P. The 1-skeleton of \mathcal{C}_P is a bouquet of oriented loops which correspond to the generators. For each relator r_i there exists a 2-cell in \mathcal{C}_P with attaching map according to r_i . Then the Whitehead graph $\mathcal{WG}(P)$ is the intersection of the boundary of the regular neighbourhood of the vertex in \mathcal{C}_P (which is a 2-sphere) with \mathcal{C}_P itself. The Whitehead graph is also known as link, star or coinitial graph (with slightly different definitions regarding multiplicity of edges).

Since we started with a Whitehead graph $\mathcal{WG}(P)$ of a given presentation P in a 3-manifold, the following holds: If the Whitehead graph is uniquely embedded in S^2 then \mathcal{K}^2 has a unique thickening, since orientable 1-handles for P can be attached in at most one way. So we need to find conditions under which the embedding of $\mathcal{WG}(P)$ is unique.

For this purpose there is a useful result of Whitney: He calls a graph G *n*-separated $(n \ge 0, n \in \mathbb{N})$ if it is the union of two subgraphs G_1 and G_2 with the following properties:

- no common edges
- the number of common vertices is $\leq n$
- each G_i has a vertex not belonging to the other

A graph which is not n-separated is called (n+1)-connected. With this notation Whitney proves ([4, 5]):

Every 3-connected, planar graph without loops and multiple edges (= simple) has a unique embedding (up to homeomorphism) in S^2 .

The next step will be to apply Whitney's result to Whitehead graphs of presentations: A syllable in a cyclically written defining relator of P is a sequence of two adjacent symbols $x_i^{\pm 1}, x_j^{\pm 1}$. Since each syllable corresponds to exactly one edge in

84

the Whitehead graph, one can easily see that $\mathcal{WG}(P)$ is simple iff the presentation P is reduced and no syllable occurs more than once.

At this point many questions come up which I will study:

- 1.: In order to apply Whitney's result, $\mathcal{WG}(P)$ should be 3-connected. So we want to avoid Whitehead graphs which become disconnected after removing one or two vertices. How can cut vertices or pairs of cut vertices of $\mathcal{WG}(P)$ be detected resp. excluded in P?
- **2.:** In the case of a presentation P with 2 generators, the Whitehead graph is 3-connected if every possible syllable appears in P. The only 3-connected graph with 4 vertices is the complete graph K_4 . In this context I plan to study 2-bridge knots which have a 2-generator, 1-relator group as a fundamental group.
- **3.:** C. Hog-Angeloni has given syllable conditions for a presentation to decide whether the corresponding 2-dimensional complex is a spine of a 3-manifold. She uses the so called railroad systems [2]. So the question is which of these railroad systems lead to a unique thickening.
- **4.:** Finally I want to know whether the Whitehead graph carries information about the decomposition of a 3-manifold like the factor splitting of the fundamental group or the JSJ-decomposition. To which extent can the structure of the fundamental group of a 2-complex be seen in the Whitehead graph ?

References

- B. G. Casler, An embedding theorem for connected 3-manifolds with boundary. Proc. Amer. Math. Soc. 16 (1965), 559-566.
- [2] C. I. Hog-Angeloni, Detecting 3-Manifold Presentations. Lond. Math. Soc. LNS 275, Cambridge University Press, 2000.
- [3] C. I. Hog-Angeloni, J. Glock, *Embeddings of 2-complexes into 3-manifolds*. Journal of Knot Theory and Its Ramifications. Vol. 14, No. 1 (2005) 9-20.
- [4] H. Whitney, Non-separable and planar graphs. Trans. Amer. Math. Soc. 34 (1932), 339-362.
- [5] H. Whitney, 2-Isomorphic graphs. Amer. J. Math. 55 (1933), 245-254.

Janina Glock

Fachbereich Mathematik, Johann Wolfgang Goethe Universität, Robert Mayer strasse 6-10, D-60325 Frankfurt, Germany *E-mail address:* glock@math.uni-frankfurt.de