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ON H.WEYL AND H.MINKOWSKI POLYNOMIALS

VICTOR KATSNELSON

Abstract. We introduce certain polynomials, so-called H.Weyl and
H.Minkowski polynomials, which have a geometric origin. The location of
roots of these polynomials is studied.

Erasm Darwin, the nephew of the great sci-
entist Charles Darwin, believed that some-
times one should perform the most unusual
experiments. They usually yield no results
but when they do ... . So once he played
trumpet in front of tulips for the whole day.
The experiment yielded no results.

1. H.WEYL AND H.MINKOWSKI POLYNOMIALS.

Let M be a smooth manifold of dimension n:

dim M = n,

which is embedded injectively into the Euclidean space of a higher dimension, say
n + p, p > 0. We identify M with the image of this embedding, so we consider M

as a subset of Rn+p:

M ⊂ Rn+p.
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For x ∈ M, let Nx be the normal subspace to M at the point x. Nx is an affine
subspace of the ambient space Rn+p,

dim Nx = p.

For t > 0, let

(1.1) Dx(t) = {y ∈ Nx : dist(y, x) ≤ t},
where dist(y, x) is the Euclidean distance between x and y. If the manifold M is
compact, and t > 0 is small enough, then

(1.2) Dx1(t) ∩Dx2(t) = ∅ for x1 ∈ M, x2 ∈ M, x1 6= x2.

Definition 1.1. The set

(1.3) TR
n+p

M (t) def=
⋃

x∈M

Dx(t)

is said to be the tube neighborhood of the manifold M, or the tube around M. The
number t is said to be the radius of this tube.

Is it clear that for manifolds M without boundary,

(1.4) TR
n+p

M (t) = {x ∈ Rn+p : dist(x, M) ≤ t},
where dist(x, M) is the Euclidean distance from x to M. Thus, for manifolds
without boundary, the equality (1.4) could also be taken as a definition of the tube
TM(t). However, for manifolds M with boundary the sets TR

n+p

M (t) defined by (1.3)
and (1.4) do not coincide. In this, more general, case the tube around M should
be defined by (1.3), but not by (1.4). Hermann Weyl, [69], obtained the following
result, which is the starting point of our work:

Theorem [H.Weyl]. Let M be a smooth compact manifold, without boundary or
with boundary, of the dimension n: dim M = n, which is embedded in the Euclidean
space Rn+p, p ≥ 1.

I. If t > 0 is small enough1, than the (n + p) - dimensional volume Voln+p of
the tube TR

n+p

M (t) around M, considered as a function of the radius t of this
tube, is a polynomial of the form

(1.5) Voln+p(TR
n+p

M (t)) = ωp tp
( [ n

2 ]∑

l=0

w2l,p(M) · t2l
)
,

where

(1.6) ωp =
πp/2

Γ(p
2 + 1)

is is the p-dimensional volume of the unit p - dimensional ball.

1If the condition (1.2) is satisfied.
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II. The coefficients w2l,p(M) depend on p as:

(1.7) w2l,p(M) =
2−l Γ(p

2 + 1)
Γ(p

2 + l + 1)
· k2l(M) , 0 ≤ l ≤ [

n
2

]
,

where the values k2l(M), 0 ≤ l ≤ [n
2 ], may be expressed only in terms of

the intrinsic metric2 of the manifold M. In particular, the constant term
w0,p(M) = k0(M) is the n-dimensional volume of M:

(1.8) k0(M) = Voln (M).

H.Weyl, [69], have expressed the coefficients k2l(M) as integrals of certain rather
complicated curvature functions of the manifold M.

Remark 1.1. In the case when M is compact without boundary and even dimen-
sional, say n = 2m, the top coefficient k2m(M) is especially interesting:

(1.9) k2m(M) = (2π)mχ(M),

where χ(M) is the Euler characteristic of M.

Definition 1.2. Let M be a smooth manifold, without boundary or with bound-
ary, of the dimension n: dim M = n, which is embedded in the Euclidean space
Rn+p, p ≥ 1, and TR

n+p

M (t) is the tube of the radius t around M, (1.1).

The polynomial W p
M(t) which appears in the expression (1.5) for the volume

Voln+p

(
TR

n+p

M (t)
)
of this tube:

(1.10) Voln+p (TR
n+p

M (t)) = ωpt
p ·W p

M(t) for small positive t,

is said to be the H. Weyl polynomial of the index p for the manifold M.

Remark 1.2. The radius t of the tube is a positive number, so the formula (1.10) is
meaningful for positive t only. However the polynomial W p

M is determined uniquely
by its restriction on any fixed interval [0, ε], ε > 0, and we may and will consider
this polynomial for every complex t.

Definition 1.3. Let M be a smooth manifold of the dimension n: dim M = n,
which is embedded in the Euclidean space Rn+p, p ≥ 1, and let W p

M be the Weyl
polynomial of M (defined by (1.2), (1.10) ).

The coefficients k2l(M), 0 ≤ l ≤ [n/2] which are defined in terms of the Weyl
polynomial W p

M by the equality

(1.11) W p
M(t) def=

[ n
2 ]∑

l=0

2−l Γ(p
2 + 1)

Γ(p
2 + l + 1)

k2l(M) · t2l ,

are said to be the Weyl coefficients of the manifold M.

Remark 1.3. Often, the factor in (1.11) appears in a ‘decoded’ form:

(1.12)
2−l Γ(p

2 + 1)
Γ(p

2 + l + 1)
=

1
(p + 2)(p + 4) · · · (p + 2l)

.

2That is the metric which is induced on manifold M from the ambient space Rn+p.
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Remark 1.4. Defining the Weyl polynomials W p
M of the manifold M by (1.10),

we assumed that M is already embedded into Rn+p. The tube around M and its
volume are primary in this definition. So, in fact we defined the notion of the
Weyl polynomial not for the manifold M itself but for manifold M which is already
embedded in an ambient space. Moreover, we assume implicitly that from the very
beginning the manifold M carries a ‘natural’ Riemannian metric, and that this
‘original’ Riemannian metric coincides with the metric on M induced from the
ambient space Rn+p. (In other words, we assume that the imbedding is isometrical.)
However, in this approach the ‘original’ metric does not play an ‘explicite’ role in the
definition (1.1)-(1.10)-(1.11) of the Weyl polynomial W p

M and the Weyl coefficients
k2l(M).

There is another approach to define the Weyl coefficients and the Weyl polynomials,
which does not require an actual embedding M into the ambient space. Starting from
the given Riemannian metric on M, the Weyl coefficients k2l(M) can be introduced
formally, by means of the Hermann Weyl expressions for k2l(M) in terms of the
given metric on M. Then the Weyl polynomials W p

M(t) can be defined by means of
the expression (1.11). In this approach, the intrinsic metric of M is primary, but
not the tubes around M and their volumes.

If the codimension p of M equals one3, dim M = n, the Weyl polynomial is of the
form:

(1.13) Voln+1(TR
n+1

M (t)) = 2t ·W 1
M(t) , W 1

M(t) =
[ n
2 ]∑

l=0

w2l(M) · t2l,

where

(1.14) w2l(M) =
2−lΓ( 1

2 )
Γ( 1

2 + l + 1)
k2l(M) , 0 ≤ l ≤ [n

2 ] .

In (1.13) the ‘shortened’ notation is used: w2l(M) instead of w2l,1(M). The factor
2t is the one-dimensional volume of the one-dimensional ball of radius t, that is the
length of the interval [−t, t].

If the hypersurface M is orientable 4, then the tube TM(t) can be decomposed into
the union of two half-tubes, say, T+

M(t) and T−M(t). The half-tubes T+
M(t) and T−M(t)

are the parts of the tube TM(t) which are situated on the distinct sides of M. In
particular, if the hypersurface M is the boundary of a set V : M = ∂V , then

(1.15) T+
M(t) = TM(t) \ V, T−M(t) = TM(t) ∩ V .

The (n+1)− dimensional volumes Voln+1(T+
M(t)) and Voln+1(T−

M(t)) of the half-
tubes also are polynomials of t. These polynomials are of the form 5 :

(1.16) Voln+1(T+
M(t)) = tW +

M (t), Voln+1(T−
M(t)) = tW −

M (t) ,

3In other words, M is a hypersurface in Rn+1.
4The orientation of the hypersurface M can be specified by means of the continuous vector

field of unit normals on M. The half-tubes T+
M(t) and T−M(t) are the parts of the tube TM(t)

corresponding to the ‘positive’ и ‘negative’ directions of these normals.
5The equalities (1.16), (1.17) is one of the results of the theory of tubes around manifolds. See

[26], [8],[1]
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where:

W +
M (t) =

[ n
2 ]∑

l=0

w2l(M) · t2l + t

[ n+1
2 ]−1∑

l=0

w2l+1(M) · t2l,(1.17a)

W −
M (t) =

[ n
2 ]∑

l=0

w2l(M) · t2l − t

[ n+1
2 ]−1∑

l=0

w2l+1(M) · t2l,(1.17b)

and the coefficients w2l(M) are the same that in (1.13)-(1.14). Unlike the coefficients
w2l(M), the coefficients w2l+1(M) depend not only on the ‘intrinsic’ metric of the
manifold M, but also on how M is embedded to Rn+1. It is remarkable that when
the volumes of the half-tubes are summed:

2 WM(t) = W +
M (t) + W −

M (t),

the dependence on the way of embedding disappears. As it is seen from (1.17),
W −

M (t) = W +
M (−t), hence

(1.18) 2 WM(t) = W +
M (t) + W +

M (−t).

Remark also that the volumes of the half-tubes can be expressed only in the terms
of the polynomial W +

M :

Voln+1(T+
M(t)) = tW +

M ( t ) for small positive t .(1.19a)

Voln+1(T−
M(t)) = tW +

M (−t) for small positive t .(1.19b)

The theory of the tubes around manifolds is presented in [26], and to some extent in
[8], Chapter 6, and in [1], Chapter 10. The comments of V.Arnold [6] to the Russian
translations of the paper [69] by H.Weyl are very rich in content.

In the event that the hypersurface M is the boundary of a convex set V : M = ∂V ,
the Weyl polynomial W 1

M can be expressed in terms of polynomials considered in
the theory of convex sets.

In the theory of convex sets the following fact, which was discovered by Hermann
Minkowski, [41, 42], is of principal importance: Let V1 and V2 be compact convex sets
in Rn. For positive numbers t1, t2, let us form the ‘linear combination’ t1V1+t2V2 of
the sets V1 и V2 (in the sense commonly accepted in the theory of convex sets). Then
the n-dimensional Euclidean volume Voln(t1V1 + t2V2) of this linear combination,
considered as a function of the variables t1, t2, is a homogeneous polynomial of
degree n. (It may be equal zero identically.) Choosing V as V1 and the unit ball Bn

of Rn as V2, we conclude :

Let V be a compact convex set in Rn, Bn be the unit ball of Rn. Then n-dimensional
volume Voln(V + tBn), considered as a function of the variable t ∈ [0,∞), is a
polynomial of degree n.

Definition 1.4. Let V, V ⊂ Rn, be a compact convex set. The polynomial which
expresses the n-dimensional volume of the linear combination V + tBn as a
function of the variable t ∈ [0,∞) is said to be the Minkowski polynomial of the set
V and is denoted by MRn

V (t):

(1.20) MRn

V (t) = Voln(V + tBn) , (t ∈ [0,∞)).
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The coefficient of Minkowski polynomial are denoted by mRn

k (V ):

(1.21) MRn

V (t) =
∑

0≤k≤n

mRn

k (V )tk.

If there is no need to emphasize that the ambient space is Rn, the shortened notation
MV (t), mk(V ) for the Minkowski polynomial and its coefficients will be used.

Of course,
MRn

V (t) = Voln(VRn

V (t)),
where VRn

V (t)) is t-neighborhood of the set V with respect to Rn:

(1.22) VRn

V (t) = {x ∈ Rn : dist(x, V ) ≤ t}.
It is evident that

(1.23) m0(V ) = Voln(V ), and mn(V ) = Voln(Bn).

If the boundary ∂V of a convex set V is smooth, then the (n − 1)-dimensional
volume (‘the area’) of the boundary ∂V can be expressed as

(1.24) m1(V ) = Voln−1(∂V ) .

For a convex set V , whose boundary ∂V may be non-smooth, the formula (1.24)
serves as a definition of the ‘area’ of ∂V . (See [10],31; [41], § 24; [66],6.4.) Let us
emphasize that the Minkowski polynomial is defined for an arbitrary compact con-
vex set V , without any extra assumptions. The boundary of V may be non-smooth,
and the interior of V may be empty. In particular, the Minkowski polynomial is
defined for any convex polytope.

Definition 1.5. Let V, V ⊂ Rn, be a convex set. V is said to be solid if the interior
of V is not empty, and non-solid if the interior of V is not empty.

Definition 1.6. The n - dimensional closed convex surface M is the boundary ∂V of
a solid compact convex set V :

(1.25) M = ∂V, V ⊂ Rn+1 .

The set V is said to be the generating set for the surface M.

Lemma 1.1. If the closed n - dimensional convex surface M is also a smooth mani-
fold, then the Weyl polynomial W 1

M of the surface M and the Minkowski polynomial
MRn+1

V of its generating set V are related in the following way:

(1.26) 2tW 1
M(t) = MRn+1

V (t)−MRn+1

V (−t).

Proof of Lemma 1.1. We assign the positive orientation to the vector field
of exterior normals on ∂V . Let T+

∂V (t) is the ‘exterior’ half-tube around ∂V . For
positive t,

V + tBn+1 = V ∪ T+
∂V (t),

Moreover the set V and T+
∂V (t) do not intersect. Therefore,

Voln+1(V + tBn+1) = Voln+1(V ) + Voln+1(T+
∂V (t)).

Hence,
MV (t) = MV (0) + tW +

M (t), M = ∂V ,
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where W+
M is a polynomial defined in (1.16) (with n replaced by n+1: now dim V =

n + 1). Then also
MV (−t) = MV (0)− tW +

M (−t).
Thus, (1.19),

MV (t)−MV (−t) = Voln+1(T+
∂V (t)) + Voln+1(T−∂V (t)) ,

or
MV (t)−MV (−t) = t (W +

M (t) + W +
M (−t)).

The equality (1.26) follows from the last equality and from (1.18). Q.E.D.

Since the Minkowski polynomial is defined for an arbitrary compact convex set,
the formula (1.26) can serve as a definition of the Weyl polynomial of an arbitrary
closed convex surface, smooth or non-smooth. Even more, we can define the Weyl
polynomial for the ‘improper convex surface ∂V ’, where V is a non-solid compact
convex set.

Definition 1.7. Let V, V ⊂ Rn+1, be a compact convex set. The boundary ∂V of
the set V is said to be the boundary surface of V . The boundary surface of V is said
to be proper if V is solid, and improper if V is non-solid.

The following improper closed convex surface plays a role in what follow:

Definition 1.8. Let V , V ⊂ Rn, be a compact convex set which is solid with
respect to Rn. We identify Rn with it image Rn × 0 by the ‘canonical’ embedding6

Rn into Rn+1, and the set V with the set V × 0 considered as a subset of Rn+1:
V × 0 ⊂ Rn+1. The set V × 0, considered as a subset of Rn+1, is said to be the
squeezed cylinder with the base V .

Remark 1.5. The set V × 0 can be interpreted as a ‘ cylinder of zero hight’ whose
‘lateral surface’ is the Cartesian product ∂V × [0, 0], and whose bases, lower and
upper, are the sets V × (−0) and V × (+0):

(1.27) ∂(V × 0) =
(
(∂V )× [0, 0]

) ∪ (
V × (−0)

) ∪ (
V × (+0)

)
.

In other words, the boundary surface ∂(V × 0) can be considered as ‘the doubly
covered’ set V . In particular,

(1.28) dim ∂(V × 0) = n .

and the number Voln(V ×(−0))+Voln(V ×(+0)) = 2Voln(V ) can be naturally inter-
preted as the ‘n- dimensional area’ of the n- dimensional convex surface (improper)
∂(V × 0):

(1.29) Voln(∂(V × 0)) = 2Voln(V ) .

On the other hand, the equality (1.24), in which the squeezed cylinder V ×0 ⊂ Rn+1

plays the role of the set V ⊂ Rn, takes the form

(1.30) Voln(∂(V × 0)) = mRn+1

1 (V × 0) ,

where mRn+1

k (V × 0), k = 0, 1, . . . , n + 1, are the coefficients of the Minkowski
polynomial MRn+1

V×0 (t) of the squeezed cylinder V × 0 with respect to the ambient
space Rn+1. (See (1.21).)

6The point x ∈ Rn is identified with the point (x, 0) ∈ Rn+1.
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In section 11 we prove the following statement, which appears as Lemma 11.1 there:

Lemma 1.2. Let V be a compact convex set in Rn, and

(1.31) MRn

V (t) =
∑

0≤k≤n

mRn

k (V )tk

be the Minkowski polynomial with respect to the ambient space Rn. Then the
Minkowski polynomial MRn+1

V×0 (t) with respect to the ambient space Rn+1 is equal
to:

(1.32) MRn+1

V×01(t) = t
∑

0≤k≤n

Γ( 1
2 )Γ(k

2 + 1)
Γ(k+1

2 + 1)
mRn

k (V ) tk .

So,

mRn+1

0 (V × 0) = 0, mRn+1

k+1 (V × 0) =
Γ( 1

2 )Γ(k
2 + 1)

Γ(k+1
2 + 1)

mRn

k (V ), k = 0, . . . , n .

In particular, mRn+1

1 (V × 0) = 2mRn

0 (V ). Since mRn

0 (V ) = Voln(V ), (1.23),

(1.33) mRn+1

1 (V × 0) = 2Voln(V ) .

The equalities (1.29), (1.30) and (1.33) agree.

Remark 1.6. Any non-solid compact convex set V can be presented as the limit
(in the Hausdorff metric) of a monotonic 7 family {Vε}ε>0 of solid convex sets Vε :

V = lim
ε→+0

Vε.

Moreover, the approximating family {Vε}ε>0 of convex sets can be chosen so that
the boundary ∂(Vε) of each set Vε is a smooth surface. Thus, the improper convex
surface ∂V may be presented as the limit of proper convex smooth surfaces ∂(Vε)
which shrink to ∂V :

∂V = lim
ε→+0

∂(Vε).

Definition 1.9. Let V, V ⊂ Rn+1, be an arbitrary compact convex set. The Weyl
polynomial W 1

∂V (t) of the convex surface M = ∂V , proper or improper, is defined
by the formula (1.26). In other words, the Weyl polynomial tW 1

∂V is defined as the
odd part of the Minkowski polynomial MRn+1

V :

(1.34) t ·W 1
∂V (t) = OMRn+1

V (t),

where the notions of the even part EP and the odd part OP of an arbitrary polynomial
P are introduced in Definition 7.2 below.

Remark 1.7. In the case when the set V is solid and its boundary ∂V is smooth,
both definitions, Definition 1.9 and Definition 1.2 of the Weyl polynomial W 1

∂V ,
are applicable to ∂V . In this case both definitions agree.

7The monotonicity means that Vε′ ⊃ Vε′′ ⊃ V for ε′ > ε′′ > 0.
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Remark 1.8. Why may be useful to consider improper convex surfaces and their
Weyl polynomials?
As it was remarked (Remark 1.6), every improper convex surface ∂V is a limiting
object for a family of proper smooth convex surfaces ∂(Vε). It turns out that the
Weyl polynomial for this improper surface is the limit of the Weyl polynomials for
this ‘approximating’ family {Vε}ε>0 of smooth proper surfaces.
So the Weyl polynomials for the improper surface ∂V may be useful in the study
of the limiting behavior of the family of the Weyl polynomials for the proper sur-
faces ∂(Vε) shrinking to the improper surface ∂V . In particular, see Theorem 2.7
formulated in the end of Section 2, and its proof presented in the end of Section
11.

Let M be an n - dimensional closed convex surface which is not assumed to be
smooth, and V is the generating convex set for M: M = ∂V . Let MRn+1

V be the
Minkowski polynomial for V , defined by Definition 1.4. According to Definition 1.9,
the Weyl polynomial W 1

M is equal to

(1.35) W 1
M(t) =

∑

0≤l≤[n
2 ]

m2l+1(V )t2l,

in other words,

(1.36) w2l(M) = m2l+1(V ), 0 ≤ l ≤ [n
2 ],

where w2l(M) are the coefficients of the Weyl polynomial W 1
M, (1.13), of the n-

dimensional surface M with respect to the ambient space Rn+1, and mk(V ), k =
2l + 1, are the coefficients of the Minkowski polynomial MRn+1

V :

(1.37) MRn+1

V (t) = Voln+1(V + tBn+1), MRn+1

V (t) =
∑

0≤k≤n+1

mk(V )tk .

Definition 1.10. Given a closed n- dimensional convex surface M, proper or not,
M = ∂V , the numbers k2l(M), 0 ≤ l ≤ [n

2 ], are defined as

(1.38) k2l(M) = 2l Γ(l + 1
2 + 1)

Γ( 1
2 + 1)

mRn+1

2l+1(V ),

where mRn+1

k (V ), k = 2l+1, are the coefficients of the Minkowski polynomial MRn+1

V

for the generating set V , (1.37). The numbers k2l(∂V ), 0 ≤ l ≤ [
n
2

]
, are said to be

the Weyl coefficients for the surface M.

Remark 1.9. According to Lemma 1.2, in the event that the (improper) convex
surface M,dim M = n, is the boundary of the squeezed cylinder (see Definition 1.8),
that is if M = ∂(V × 0), where V ⊂ Rn, the Weyl coefficients k2l(M), 0 ≤ l ≤ [n

2 ],
are:

(1.39) k2l(M) = 2l+1 Γ(l + 1) mRn

2l (V ) ,

where mRn

k (V ), k = 2l, are the coefficients of the Minkowski polynomial MRn

V for
the base V of the squeezed cylinder ∂(V × 0).
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Remark 1.10. In the case when convex surface M, M = ∂V , is smooth and ‘prop-
er’, that is the set V generating the surface M is solid, both definitions, Defini-
tion 1.10 and Definition 1.3 of the Weyl coefficients k2l(M) are applicable. Accord-
ing to (1.13)-(1.14) and (1.36)-(1.38), in this case8 both definitions agree.

Note, that according to (1.24), (see also Remark 1.5),

(1.40) k0(M) = Voln(M)

for every n - dimensional closed convex surface M.

Lemma 1.3. I. Let V , V ⊂ Rn, be a solid (with respect to Rn) compact convex
set. Then the coefficients mRn

k (V ), 0 ≤ k ≤ n, of its Minkowski polynomials9 are
strictly positive: mRn

k (V ) > 0, 0 ≤ k ≤ n .
II. Let M be a proper compact convex surface, dim M = n. Then all its Weyl

coefficients k2l(M) are strictly positive : k2l(M) > 0, 0 ≤ l ≤ [n
2 ] .

III. Let M be the boundary surface10of a squeezed cylinder whose base V , dim V =
n, is a compact convex set which is solid with respect to Rn. Then all its Weyl
coefficients k2l(M) are strictly positive : k2l(M) > 0, 0 ≤ l ≤ [n

2 ] .

The statement I of Lemma 1.3 is a consequence of a more general statement related
to the monotonicity properties of the mixed volumes. This will be discussed later, in
Section 8. The statements II and III of Lemma 1.3 are consequences of the statement
I and (1.38), (1.39).

Definition 1.11. Given a closed n - dimensional convex surface M, the Weyl poly-
nomial W p

M of the index p, p = 1, 2, 3, . . . , for M is defined as

(1.41) W p
M(t) =

[ n
2 ]∑

l=0

2−l Γ(p
2 + 1)

Γ(p
2 + l + 1)

k2l(M) · t2l ,

where the Weyl coefficients k2l(M) are introduced in Definition 1.10.

Let us emphasize that in Definition 1.11 no assumption concerning the smoothness
of the surface M are made. We already mentioned that the definitions of the Weyl
coefficients k2l for smooth manifolds and for convex surfaces agree. Therefore, Defi-
nitions 1.2 - 1.3: (1.3)-(1.10)-(1.11) of the Weyl polynomial and the Weyl coefficients
for a smooth manifold and Definition 1.11 of the Weyl polynomials for a closed con-
vex surface agree if the convex surface is also a smooth manifold.

We also define the W ∞
M of the infinite index.

Definition 1.12. Let M, dim M = n be either a smooth manifold, or a closed
compact convex surface, and let k2l(M), l = 0, 1, . . . , [n

2 ], be the Weyl coefficients
of M, defined by Definition 1.3 in the smooth case, and by Definition 1.10 in the
convex case. The Weyl polynomial of the infinite index W ∞

M is defined as

(1.42) W∞
M(t) =

[ n
2 ]∑

l=0

k2l(M) · t2l.

8Actually, the equalities (1.14), (1.36) served as a motivation for Definition 1.10.
9See (1.20), (1.21).
10See Definition 1.8 and Remark 1.5.
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Remark 1.11. In view of (1.12),

W p
M(
√

pt) = k0(M) +
[ n
2 ]∑

l=1

pl

(p + 2)(p + 4) · · · (p + 2l)
k2l(M) · t2l .

Therefore, the polynomial W∞
M(t) can be considered as a limiting object for the

family
{
W p

M(t)
}

p=1, 2, 3, ...
of the Weyl polynomials of the index p:

(1.43) W∞
M(t) = lim

p→∞
W p

M(
√

pt) .

Thus, the sequence
{
W p

M

}
p=1, 2, 3, ...

of the Weyl polynomials, deg W p
M =

2
[

n
2

]
, as well as the ‘limiting’ polynomial W∞

M are related to any closed n -
dimensional convex surface M.

Weyl polynomials (and Minkowski polynomials in the convex case) reflect somehow
intrinsic properties of the appropriate manifolds. On the other hand, there are known
very distinguished and remarkable geometrical objects such as regular polytopes,
compact matricial groups, spaces of constant curvatures, etc. Our belief is that the
Weyl polynomials related to these geometric objects are of fundamental importance
and possess interesting properties. These polynomials should be carefully studied. In
particular, the following question is natural:

What can we say about roots of such polynomials?

2. FORMULATION OF MAIN RESULTS.

In this section we formulate the main results of this paper about location of the
roots of the Minkowski and Weyl polynomials related to convex sets and surfaces.
Dissipative and conservative polynomials. We introduce two classes of polynomials:
dissipative polynomials and conservative polynomials. In many cases the Minkowski
polynomials related to convex sets are dissipative, and the Weyl polynomials are
conservative.

Definition 2.1. The polynomial M is said to be dissipative if all roots of M are
situated in the open left half plane {z : Re z < 0}. The dissipative polynomials are
also called the Hurwitz polynomials, or the stable polynomials.

Definition 2.2. The polynomial W is said to be conservative if all roots of W are
purely imaginary and simple, in other words if all roots of W are contained in the
imaginary axis {z : Re z = 0}, and each of them is of multiplicity one.

Theorem 2.1. Given a closed compact convex surface M, dim M = n M = ∂V ,
let W 1

M be the Weyl polynomial of index 1 related to M, and let MRn+1

V be the
Minkowski polynomial related to the set V .

If the polynomial MRn+1

V is dissipative, then the polynomial W 1
M is conservative.

The proof of Theorem 2.1 is based on the relation (1.26). Theorem 2.1 is derived
from (1.26) using Hermite-Biehler theorem. We do this in Section 7.
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From (1.43) it follows that if for every p the polynomial W p
M has only purely imag-

inary roots, than all the roots of the polynomial W ∞
M are purely imaginary as well.

In particular, all the roots of the polynomial W ∞
M are purely imaginary if for every

p the polynomial W p
M is conservative.

However, what is important for us that is the converse statement:

Lemma 2.1. If the polynomial W ∞
M is conservative, then all the polynomials

W p
M, p = 1, 2, 3, . . . , are conservative as well.

Lemma 2.1 is the consequence of some Laguerre result about the multiplier se-
quences. Proof of Lemma 2.1 appeares in the end of Section 6.

Keeping in mind Lemma 2.1, we will concentrate our efforts on the study of the
location of the roots of the Weyl polynomial W ∞

M of the infinite index.

The case of low dimension. In this section we discuss the Minkowski polynomials
of convex sets V, V ⊂ Rn, and the Weyl polynomials of closed convex surfaces M,
dim V = n, for ‘small’ n: n = 2, 3, 4, 5.

Theorem 2.2. Let n be one of the numbers 2, 3, 4 or 5, and let V, V ⊂ Rn, be a
solid compact convex set. Then the Minkowski polynomial MRn

V is dissipative.

Theorem 2.3. Let n be one of the numbers 2, 3, 4 or 5, and let M be closed
proper 11 convex surface of dimension n.

Then:

1. The Weyl polynomial W∞
M of infinite index is conservative.

2. For every p = 1, 2, 3, . . . , the Weyl polynomial W p
M of index p is conser-

vative.

Theorem 2.2 and 2.3 are proved in section 10. Proving these theorems, we combine
the Routh-Hurwitz criterion, which express the property of a polynomial to be
dissipative in terms of its coefficients, and the Alexandrov-Fenchel inequalities,
which express the logarithmic convexity property for the sequence of the cross-
sectional measures of a convex set.

Selected ’regular’ convex sets: balls, cubes, squeezed cylinders. For large n, the
statements analogous to Theorems 2.2 and 2.3 do not hold. If n is large enough,
then there exists such solid compact convex sets12 V , dim V = n, that Minkow-
ski polynomials MRn+1

V are not dissipative, and the Weyl polynomials W p
∂V are

not conservative. However, for some ‘regular’ convex sets V , like balls and cubes,
the Weyl polynomials W p

∂V are conservative, and the Minkowski polynomial are
dissipative in any dimension.

Let us present the collection of ‘regular’ convex sets and their boundary surfaces
which we are dealing with further. Such sets and surfaces will be considered for
every n.

11That is the generating set V is solid.
12Very flattened ellipsoids can be taken as such V. See Theorem 2.7.
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♦ The unit ball Bn:

Bn = {x = (x1, . . . , xn) ∈ Rn :
∑

1≤k≤n

|xk|2 ≤ 1 },(2.1)

Voln(Bn) =
πn/2

Γ(n
2 + 1)

.(2.2)

♦ The squeezed spherical cylinder Bn × 0, Bn × 0 ⊂ Rn+1.
♦ The unit sphere,

Sn = {x = (x1, . . . , xn, xn+1) ∈ Rn+1 :
∑

1≤k≤n+1

|xk|2 = 1 },

in other words, the boundary surface of the unit ball: Sn = ∂Bn+1 ,

Voln(Sn) = (n + 1)Voln+1(Bn+1) .(2.3)

♦ The boundary surface of the squeezed spherical cylinder ∂(Bn × 0) :

(2.4) Voln(∂(Bn × 0)) = 2Voln(Bn) .

♦ The unit cube Qn:

Qn = {x = (x1, . . . , xn) ∈ Rn : max
1≤k≤n

|xk| ≤ 1 },(2.5)

Voln(Qn) = 2n .(2.6)

♦ The squeezed cubic cylinder Qn × 0, Qn × 0 ⊂ Rn+1.
♦ The boundary surface ∂Qn+1 of the unit cube:

(2.7) Voln(∂Qn+1) = (n + 1)Voln+1(Qn+1).

♦ The boundary surface of the squeezed cubic cylinder ∂(Qn × 0):

(2.8) Voln(∂(Qn × 0)) = 2Voln(Qn) .

The location of roots of the Minkowski and Weyl polynomials
related to the ‘regular’ convex sets.

Let us state the main results about location of roots of the Minkowski polynomials
and the Weyl polynomials related to the above mentioned ‘regular’ convex sets and
their surfaces.

Theorem 2.4. For every n = 1, 2, 3, . . . :
1. The Minkowski polynomial MRn

Bn related to the ball Bn is dissipative, more-
over all its roots are negative 13.

2. The Minkowski polynomial MRn+1

Bn×0 related to the squeezed spherical cylinder
Bn×0 is of the form14 MRn+1

Bn×0(t) = t·DRn+1

Bn×0(t), where the polynomial DR
n+1

Bn×0

is dissipative. If n is large enough, then the polynomial MRn+1

Bn×0 has non-real
roots.

3. The Minkowski polynomial MRn

Qn related to cube Qn is dissipative, moreover
all its roots are negative.

13This part of the Theorem is trivial: MRn

Bn (t) = (1 + t)n

14The factors t appears because the set Bn × 0 is not solid in Rn+1.
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4. The Minkowski polynomial MRn+1

Qn×0 related to the squeezed cubical cylinder
Qn×0 is of the form14 MRn+1

Qn×0(t) = t·DRn+1

Qn×0(t), where the polynomial DR
n+1

Qn×0

is dissipative, moreover all roots of the polynomial DR
n+1

Qn×0 are negative.

Theorem 2.5. For every n = 1, 2, 3, . . . :
1. The Weyl polynomials W ∞

∂Bn+1(t) of infinite index, as well as the Weyl poly-
nomials W p

∂Bn+1(t) of arbitrary finite index p, p = 1, 2, . . . , related to the
boundary surface of the ball Bn+1 are conservative.

2. The Weyl polynomials W p
∂(Bn×0) of order 15 p = 1, p = 2 and p = 4 re-

lated to the boundary surface of the squeezed spherical cylinder Bn × 0 are
conservative.

3. The Weyl polynomials W ∞
∂Qn+1(t) of infinite index, as well as the Weyl poly-

nomials W p
∂Qn+1(t) of arbitrary finite index p, p = 1, 2, . . . , related to the

boundary surface of the cube Qn+1 are conservative.
4. The Weyl polynomials W ∞

∂(Qn×0)(t) of infinite index, as well as the Weyl
polynomials W p

∂(Qn×0)(t) of arbitrary finite index p, p = 1, 2, . . . , related to
the boundary surface of the squeezed cubic cylinder Qn× 0 are conservative.

Remark 2.1. The roots of the Weyl polynomial W 1
∂Bn+1 can be found explicitly.

Indeed
W 1

∂Bn+1(it) = Voln+1(Bn+1)
1

2it

(
(1 + it)n+1 − (1− it)n+1

)
.

Changing variable

t → ϕ : 1 + it = |1 + it|eiϕ, t = tg ϕ , −π

2
< ϕ <

π

2
,

we reduce the equation W 1
∂Bn+1(it) = 0 to the equation

sin (n + 1)ϕ
sin ϕ

= 0, −π

2
< ϕ <

π

2
.

The roots of the latter equation are:

ϕk =
kπ

n + 1
, −

[n

2

]
≤ k ≤

[n

2

]
, k 6= 0 .

So, the roots tk of the equation W 1
∂Bn+1(it) = 0 are

tk = tg kπ
n+1 , − [

n
2

] ≤ k ≤ [
n
2

]
, k 6= 0 .

In particular, the polynomial W 1
Sn is conservative.

Negative results:

Theorem 2.6. Given an integer p, p ≥ 5. If n is large enough: n ≥ N(p), then
the Weyl polynomial W p

∂(Bn×0) is not conservative: some of its roots do not belong
to the imaginary axis.

For an integer q : q ≥ 1, let En, q, ε be the n + q- dimensional ellipsoid:

(2.9a) En, q, ε = {(x1, x2, . . . , xn, . . . , xn+q) ∈ Rn+q :
∑

0≤j≤n+q

(xj/aj)2 ≤ 1},

15The case p = 3 remains open.
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where

(2.9b) aj = 1 for 1 ≤ j ≤ n, aj = ε for n + 1 ≤ j ≤ n + q .

Theorem 2.7.
1. Given an integer q : 5 ≤ q < ∞. If n is large enough:n ≥ N(q), and ε is

small enough: 0 < ε ≤ ε(n, q), then the Minkowski polynomial MRn+q

En, q, ε
is

not dissipative: some of its roots are situated in the open right-half plane.
2. Given an integer p and an odd integer q: p ≥ 1, q ≥ 1, p + q ≥ 6 . If n is

large enough:n ≥ N(p, q), and ε is small enough: 0 < ε ≤ ε(n, p, q), then
the Weyl polynomial W p

En, q, ε
is not conservative: some of its roots do not

belong to the imaginary axis.

Proof of Theorem 2.7 is presented in Section 11.

3. THE EXPLICIT EXPRESSIONS
FOR THE MINKOWSKI AND WEYL POLYNOMIALS

RELATED TO THE ‘REGULAR’ CONVEX SETS.

Hereafter, we use the following identity for the Γ- function:

(3.1) Γ(ζ + 1/2) Γ(ζ + 1) = π1/22−2ζΓ(2ζ + 1) , ∀ζ ∈ C : 2ζ 6= −1, −2, −3, . . . .

Let as present explicit expressions for the Minkowski polynomials related to the
‘regular’ convex sets: balls, cubes, squeezed cylinders, as well as the expression
for the Weyl polynomials related to the boundary surfaces of these sets. The items
related to balls are marked by the symbol

⊙
, the items related to cubes are marked

by the symbol ¡.⊙
The unit ball Bn.

Since Bn + tBn = (1 + t)Bn for t > 0, then, according to (1.4),

(3.2) MRn

Bn(t) = Voln(Bn) · (1 + t)n ,

or

(3.3) MRn

Bn(t) = Voln(Bn)
∑

0≤k≤n

n!
(n− k)!

· tk

k!
.

Thus, the coefficients of the Minkowski polynomial MRn

Bn for the ball Bn are:

(3.4) mRn

k (Bn) = Voln(Bn) · n!
(n− k)!

· 1
k!

, 0 ≤ k ≤ n .

⊙
The squeezed spherical cylinder Bn × 0.

The Minkowski polynomial for the squeezed spherical cylinder Bn × 0 is:

(3.5) MRn+1

Bn×0(t) = Voln(Bn) ·t
∑

0≤k≤n

n!
(n− k)!

π1/2Γ(k
2 + 1)

Γ(k+1
2 + 1)

1
k!

tk .
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The expression (3.5) is derived from (3.3) and (1.31)-(1.32). (See Lemma 1.2.)
Thus, the coefficients of the Minkowski polynomial MRn+1

Bn×0 for the squeezed spher-
ical cylinder Bn × 0 are:

(3.6) mRn+1

0 (Bn × 0) = 0, mRn+1

k+1 (Bn × 0) =

= Voln(Bn) · n!
(n− k)!

· π1/2Γ(k
2 + 1)

Γ(k+1
2 + 1)

1
k!

, 0 ≤ k ≤ n .

⊙
The unit sphere Sn = ∂Bn+1.

According to (1.38) and (3.4), the Weyl coefficients of the n- dimensional sphere
Sn = ∂Bn+1 are:

(3.7) k2l(∂Bn+1) = Voln(∂Bn+1) · n!
(n− 2l)!

· 1
l!

1
2l

, 0 ≤ l ≤ [n
2 ] .

Thus, the Weyl polynomials related to the n- dimensional sphere are:

(3.8) W p
∂Bn+1(t) = Voln(∂Bn+1) ·

·
[ n
2 ]∑

l=0

n!
(n− 2l)!

· 2−l Γ(p
2 + 1)

Γ(p
2 + l + 1)

· 1
l!
·
( t2

2

)l

, p = 1, 2, . . . .

(3.9) W ∞
∂Bn+1(t) = Voln(∂Bn+1) ·

[ n
2 ]∑

l=0

n!
(n− 2l)!

· 1
l!
·
( t2

2

)l

·
⊙

The boundary surface ∂(Bn × 0) of the squeezed spherical cylinder Bn × 0.
According to (1.39) and (3.4), the Weyl coefficients of the n- dimensional improper
surface ∂(Bn × 0) are:

(3.10) k2l(∂(Bn× 0)) = Voln(∂(Bn× 0)) · n!
(n− 2l)!

· Γ(1/2)
Γ(l + 1/2)

1
2l

, 0 ≤ l ≤ [n
2 ] .

Thus, the Weyl polynomials related to the (improper) surface ∂(Bn × 0) are:

(3.11) W p
∂(Bn×0)(t) = Voln(∂(Bn × 0)) ·

·
[ n
2 ]∑

l=0

n!
(n− 2l)!

· 2−l Γ(p
2 + 1)

Γ(p
2 + l + 1)

· Γ(1/2)
Γ(l + 1/2)

·
( t2

2

)l

, p = 1, 2, . . . .

(3.12) W ∞
∂(Bn+1×0)(t) = Voln(∂(Bn+1 × 0)) ·

[ n
2 ]∑

l=0

n!
(n− 2l)!

· Γ(1/2)
Γ(l + 1/2)

·
( t2

2

)l

·

¡ The unit cube Qn.
The Minkowski polynomial MRn

Qn is:

(3.13) MRn

Qn(t) = Voln(Qn) ·
∑

0≤k≤n

n!
(n− k)!

1
Γ(k

2 + 1)k!

(√π

2

)k

tk .

The expression (3.13) is obtained in the following way. The n- dimensional cube Qn

is considered as the Cartesian product of the one-dimensional cubes:

Qn = Q1 × · · · Q1 .
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For n = 1, the Minkowski polynomial is: MR1

Q1(t) = 2(1 + t) . Then the rule is used
how to express the Minkowski polynomial of the Cartesian product in terms of the
Minkowski polynomials for the Cartesian factors. (See details in Section 12.)

Thus, the coefficients of the Minkowski polynomial for the cube Qn are:

(3.14) mRn

k (Qn) = Voln(Qn) · n!
(n− k)!

· 1
Γ(k

2 + 1)k!

(√π

2

)k

, 0 ≤ k ≤ n .

¡ The squeezed cubic cylinder Qn × 0.
The Minkowski polynomial MRn+1

Qn×0 is:

(3.15) MRn+1

Qn×0(t) = Voln(Qn) · t
∑

0≤k≤n

n!
(n− k)!

Γ( 1
2 )

Γ(k+1
2 + 1)k!

(√π

2

)k

tk .

The expression (3.15) is derived from (3.13) and (1.31)-(1.32). (See Lemma 1.2.)
Thus, the coefficients of the Minkowski polynomial MRn+1

Qn×0 for the squeezed cubic
cylinder are:

(3.16) mRn+1

0 (Qn × 0) = 0, mRn+1

k+1 (Qn × 0) =

= Voln(Qn) · n!
(n− k)!

· Γ( 1
2 )

Γ(k+1
2 + 1)

1
k!

(√π

2

)k

, 0 ≤ k ≤ n .

¡ The boundary surface ∂Qn+1 of the unit cube Qn+1.
According to (1.38) and (3.14), the Weyl coefficients of the n- dimensional surface
∂Qn+1 are:

(3.17) k2l(∂Qn+1) = Voln(∂Qn+1) · n!
(n− 2l)!

·

· 1
Γ(l + 1

2 + 1)
1

2l l!

(√π

2

)2l+1

, 0 ≤ l ≤ [n
2 ] .

Taking into account the identity Γ(l + 1 + 1
2 ) · Γ(l + 1) = π1/22−(2l+1)Γ(2l + 2),

which is the identity (3.1) for ζ = l + 1/2, we can transform (3.17) to the form

(3.18) k2l(∂Qn+1) = Voln(∂Qn+1) · n!
(n− 2l)!

· 1
(2l + 1)!

(π

2

)l

, 0 ≤ l ≤ [n
2 ] .

Thus, the Weyl polynomials related to the n- dimensional surface ∂Qn+1 are:

(3.19) W p
∂Qn+1(t) = Voln(∂Qn+1) ·

·
[ n
2 ]∑

l=0

n!
(n− 2l)!

· 2−l Γ(p
2 + 1)

Γ(p
2 + l + 1)

· 1
(2l + 1)!

·
(πt2

2

)l

, p = 1, 2, . . . .

(3.20) W ∞
∂Qn+1(t) = Voln(∂Qn+1) ·

[ n
2 ]∑

l=0

n!
(n− 2l)!

· 1
(2l + 1)!

·
(πt2

2

)l

·

¡ The boundary surface ∂(Qn × 0) of the squeezed cubic cylinder Qn × 0.
According to (1.39) and (3.14), the Weyl coefficients of the surface (improper)
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∂(Qn × 0) are:

(3.21) k2l(∂Qn × 0) = Voln(∂Qn × 0) · n!
(n− 2l)!

·

·
√

π

Γ(l + 1
2 )

1
l! 2l

(π

2

)l

, 0 ≤ l ≤ [n
2 ] .

Using the identity Γ(l +1/2)Γ(l +1) =
√

π2−2lΓ(2l +1), which is the identity (3.1)
for ζ = l, the equality (3.21) can be transformed to the form

(3.22) k2l(∂Qn × 0) = Voln(∂Qn × 0) · n!
(n− 2l)!

· 1
(2l)!

(π

2

)2l

, 0 ≤ l ≤ [n
2 ] .

Thus, the Weyl polynomials related to the improper n- dimensional surface ∂(Qn×
0) are:

(3.23) W p
∂(Qn×0)(t) = Voln(∂(Qn × 0)) ·

·
[ n
2 ]∑

l=0

n!
(n− 2l)!

· 2−l Γ(p
2 + 1)

Γ(p
2 + l + 1)

· 1
(2l)!

·
(πt2

2

)l

, p = 1, 2, . . . .

(3.24) W ∞
∂(Qn×0)(t) = Voln(∂(Qn × 0)) ·

[ n
2 ]∑

l=0

n!
(n− 2l)!

· 1
(2l)!

·
(πt2

2

)l

·

4. WEYL AND MINKOWSKI POLYNOMIALS
OF ‘REGULAR’ CONVEX SETS

AS RENORMALIZED JENSEN POLYNOMIALS.

To investigate directly a location of roots of the Minkowski polynomials MRn

Bn ,
MRn+1

Bn×0, MRn

Qn , MRn+1

Qn×0 and Weyl polynomials W p
∂Bn+1 , W p

∂(Bn×0), W ∞
∂Qn+1 ,

W p
∂(Qn×0) for a finite n is difficult. It turns out that it is much easier to inves-

tigate first a location of roots of the entire functions which are the limits of the
(renormalized) Minkowski and Weyl polynomials as n → ∞, and then to deduce
properties of roots of the original Minkowski and Weyl polynomials from properties
of these limiting entire functions.

Jensen polynomials. From the explicit expressions (3.3), (3.5), (3.13), (3.15) for the
Minkowski polynomials and (3.8), (3.9), (3.11), (3.12), (3.19), (3.20), (3.23), (3.24)
for the Weyl polynomials we notice that each of this expressions contains the factor

n!
(n− k)!

, which is ‘a part’ of the binomial coefficient
(
n
k

)
. The factorial ratio can

be presented as

(4.1)
n!

(n− k)!
= 1 ·

(
1− 1

n

)
·
(
1− 2

n

)
· · · · ·

(
1− k − 1

n

)
· nk , 1 ≤ k ≤ n .

Definition 4.1.
1. Given a formal power series f :

(4.2) f(t) =
∑

0≤l<∞
alt

l .
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We associate with f the sequence of the polynomials Jn(f ; t), n =
1, 2, 3, . . . :

(4.3) Jn(f ; t) =
∑

0≤l≤n

n!
(n− l)!

1
nl
· alt

l,

or, decoding the factor n!
(n−l)!

1
nl ,

(4.4) Jn(f ; t) = a0 +
∑

1≤l≤n

1
(
1− 1

n

)(
1− 2

n

) · · · (
1− l−1

n

) · alt
l.

The polynomials Jn(f ; t) are said to be the Jensen polynomials associated with
the power series f .

2. Given a function f holomorphic in the disc {t : |t| < R}, where R ≤ ∞,
we associate the sequence of the Jensen polynomials with the Taylor series
(4.2) of the function f according the rule (4.3). We denote these polynomials
by Jn(f ; t) as well and call them the Jensen polynomials associated with the
function f .

3. The factors

(4.5) jn,0 = 1, jn,k = 1
(
1− 1

n

)
,
(
1− 2

n

) · · · (
1− k−1

n

)
, 1 ≤ k ≤ n,

jn,k = 0, k > n ,

are said to be the Jensen multipliers.
Thus, the Jensen polynomials associated with f of the form (4.2) can be

written as:

(4.6) Jn(f ; t) =
∑

0≤<∞
jn,l · alt

l .

Since jn,k → 1 as k is fixed, n →∞ , the following result is evident:

Lemma 4.1 (The approximation property of Jensen polynomials.).
Given the power series (4.2), then:

1. The sequence of the Jensen polynomials Jn(f ; t) converge to the series f
coefficients-wise ;

2. If moreover the radius of convergence of the power series (4.2) is positive,
say equal to R, 0 < R ≤ ∞, then the sequence of the Jensen polynomials
Jn(f ; t) converge to the function which is the sum of this power series locally
uniformly in the disc {t : |t| < R}.

The approximation property in not specific for the polynomials constructed from
the Jensen multipliers jn,k. This property holds for any multipliers jn,k which
satisfy the conditions jn,k → 1 as k is fixed, n → ∞ , and are uniformly bounded:
sup
k,n

|jn,k| < ∞ . What is much more specific, that for some f , the polynomial Jn(f ; t)

constructed from the Jensen multipliers jn,k preserve the property of f to possess
only real roots. In particular:

Theorem 1 ([Jensen]). Let f be a polynomial such that all its roots are real. Then
for each n, all roots of the Jensen polynomial Jn(f, t) are real as well.
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This result is a special case of Schur composition theorem [56]. Actually, Jensen,
[Jen], obtained a more general result in which formulation f can be not only a
polynomial with real roots, but also an entire function which belongs to the so
called Laguerre-Polya class of entire functions. We return to this generalization
later, is Section 5. Now we focus our attention on representation of the Minkowski
and Weyl polynomials as Jensen polynomials of certain entire functions.

The relation (4) as well as the expressions (3.3), (3.5), (3.13), (3.15) for the Minkows-
ki polynomials suggest us how the Minkowski polynomials should be renormalized
so that the renormalized polynomials tend to a non-trivial limit as n →∞.

Entire functions which generate the Minkowski polynomials for balls, cubes, spher-
ical and cubic cylinders. Let us introduce the infinite power series:

MB∞(t) =
∑

0≤k<∞

1
k!

tk ;(4.7a)

MB∞×0(t) =
∑

0≤k<∞

Γ( 1
2 + 1)Γ(k

2 + 1)
Γ(k+1

2 + 1)
1
k!

tk ;(4.7b)

MQ∞(t) =
∑

0≤k<∞

1
Γ(k

2 + 1)k!

(√π

2

)k

tk ;(4.7c)

MQ∞×0(t) =
∑

0≤k<∞

Γ( 1
2 + 1)

Γ(k+1
2 + 1)k!

(√π

2

)k

tk .(4.7d)

The series (4.7) represent entire functions which grow not faster than exponentially.
More precisely, the functions MB∞ and MB∞×0 grow exponentially: they are of
order 1 and normal type, the functionsMQ∞ andMBQ∞×0 grow subexponentially:
they are of order 2/3 and normal type.

With each of the entire functions (4.7) we associate the sequence of polynomials
which are the Jensen polynomials associated with this entire function:

MBn(t)=Jn(MB∞ ; t) ,(4.8a)
MBn×0(t)=Jn(MB∞×0; t) ,(4.8b)
MQn(t)=Jn(MQ∞ ; t)(4.8c)

MQn×0(t)=Jn(MQ∞×0; t) ,(4.8d)

From the expressions (3.3), (3.5), (3.13), (3.15) for the Minkowski polynomials it
follows that they are related to the above introduced polynomials (4.8) as:

MRn

Bn(t) = Voln(Bn) MBn(nt) ;(4.9a)

MRn+1

Bn×0(t) = Voln(Bn)ω1tMBn×0(nt) ;(4.9b)

MRn

Qn(t) = Voln(Qn) MQn(nt) ;(4.9c)

MRn+1

Qn×0(t) = Voln(Qn)ω1tMQn×0(nt) ;(4.9d)

The polynomialsMBn ,MBn×0,MQn ,MQn×0 can be interpreted as renormalized
Minkowski polynomials respectively. We take the equalities (4.9) as the definition of
the renormalized Minkowski polynomials MBn , MBn×0, MQn , MQn×0 in terms
of the ‘original’ Minkowski polynomials MRn

Bn , MRn+1

Bn×0, MRn

Qn , and MRn+1

Qn×0,.
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From the approximative property of Jensen polynomials and from (4.8) it follows
that

(4.10) MBn(t) →MB∞(t), MBn×0(t) →MB∞×0(t), MQn(t) →MQ∞(t),

MQn×0(t) →MQ∞×0(t) as n →∞ .

This explains the notation (4.7) .

We summarize the above stated consideration as the following

Theorem 4.1. Let {V n} be one of the four families of convex sets: {Bn}, {Bn×0},
{Qn}, {Qn× 0}. For each of these four families, there exists the single entire func-
tion 16 MV∞ such that in every dimension n, the renormalized Minkowski polyno-
mials MV n , defined by (4.9), are generated by this entire function MV∞ as the
Jensen polynomials Jn(MV∞): the equalities (4.8) hold.

Entire functions which generate the Weyl polynomials for the surfaces of balls,
cubes, spherical and cubic cylinders. Let us introduce the infinite power series:

W p
∂B∞(t) =

∞∑

l=0

2−l Γ(p
2 + 1)

Γ(p
2 + l + 1)

· 1
l!
·
(
− t2

2

)l

, p = 1, 2, . . . ;(4.11a)

W∞
∂B∞(t) =

∞∑

l=0

1
l!
·
(
− t2

2

)l

;(4.11b)

W p
∂(B∞×0)(t) =

∞∑

l=0

2−l Γ(p
2 + 1)

Γ(p
2 + l + 1)

· Γ(1/2)
Γ(l + 1/2)

·
(
− t2

2

)l

, p = 1, 2, . . . ;(4.11c)

W∞
∂(B∞×0)(t) =

∞∑

l=0

Γ(1/2)
Γ(l + 1/2)

·
(
− t2

2

)l

;(4.11d)

W p
∂Q∞(t) =

∞∑

l=0

2−l Γ(p
2 + 1)

Γ(p
2 + l + 1)

· 1
(2l + 1)!

·
(
− πt2

2

)l

, p = 1, 2, . . . ;(4.11e)

W∞
∂Q∞(t) =

∞∑

l=0

1
(2l + 1)!

·
(
− πt2

2

)l

;(4.11f)

W p
∂(Q∞×0)(t) =

∞∑

l=0

2−l Γ(p
2 + 1)

Γ(p
2 + l + 1)

· 1
(2l)!

·
(
− πt2

2

)l

, p = 1, 2, . . . ;(4.11g)

W∞
∂(Q∞×0)(t) =

∞∑

l=0

1
(2l)!

·
(
− πt2

2

)l

.(4.11h)

The series (4.11) represent entire functions. The functions (4.11b) and (4.11d) are
of order 2 and normal type, the functions (4.11a), (4.11c), (4.11f) and (4.11h) are
of order 1 and normal type, the functions (4.11e) and (4.11g) are of order 2/3 and
normal type.

16The symbol V∞ means {B∞}, {B∞ × 0}, {Q∞} or {Q∞ × 0} respectively,
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With each of the entire functions (4.11) we associate the sequence of polynomials
which are the Jensen polynomials associated with this entire function:

Wp
∂Bn+1(t)=J2[n/2](Wp

∂B∞ ; t) , 1 ≤ p ≤ ∞ ;(4.12a)

Wp
∂(Bn+1×0)(t)=J2[n/2](Wp

∂(B∞×0); t) , 1 ≤ p ≤ ∞ ;(4.12b)

Wp
∂Qn(t)=J2[n/2](Wp

∂Q∞ ; t) , 1 ≤ p ≤ ∞ ;(4.12c)

Wp
∂(Qn×0)(t)=J2[n/2](Wp

∂(Q∞×0); t) , 1 ≤ p ≤ ∞ .(4.12d)

From the expressions (3.8), (3.9), (3.11), (3.12), (3.19), (3.20), (3.23), (3.24), for
the Weyl polynomials it follows that they are related to the above introduced poly-
nomials (4.12) as:

W p
∂Bn+1(t) = Voln(∂Bn+1) ·Wp

∂Bn+1(int) ;(4.13a)

W p
∂(Bn×0)(t) = Voln(∂(Bn × 0)) ·Wp

∂(Bn×0)(int) ;(4.13b)

W p
∂Qn+1(t) = Voln(∂Qn+1) ·Wp

∂Qn+1(int) ;(4.13c)

W p
∂(Qn×0)(t) = Voln(∂(Qn × 0)) ·Wp

∂(Qn×0)(int) ;(4.13d)

The equalities (4.13) hold for all n : 1 ≤ n < ∞, p : 1 ≤ p ≤ ∞.

The polynomials Wp
∂Bn+1 , Wp

∂(Bn×0), Wp
∂Qn+1 , Wp

∂(Qn×0) can be interpreted as
renormalized Weyl polynomials. We take the equalities (4.13) as the definition of the
renormalized Weyl polynomials Wp

∂Bn+1 , Wp
∂(Bn×0), Wp

∂Qn+1 , Wp
∂(Qn×0) in terms

of the ‘original’ Minkowski polynomials W p
∂Bn+1 , W p

∂(Bn×0), W p
∂Qn+1 , W p

∂(Qn×0).

From the approximative property of Jensen polynomials and from (4.12) it follows
that for every fixed p, 1 ≤ p ≤ ∞,

(4.14) Wp
∂Bn+1(t) →Wp

∂B∞(t), Wp
∂(Bn×0)(t) →Wp

∂(B∞×0)(t),

Wp
∂Qn+1(t) →Wp

∂Q∞(t),Wp
∂(Qn×0)(t) →Wp

∂(Q∞×0)(t) as n →∞ .

This explains the notation (4.11) .

We summarize the above stated consideration as the following

Theorem 4.2. Let {Mn} be one of the four families of n-dimensional convex sur-
faces: {∂Bn+1}, {∂(Bn × 0)}, {∂Qn+1}, {∂(Qn × 0)}. For each of these four fam-
ilies, and for each p, 1 ≤ p ≤ ∞, there exists the single entire function 17 Wp

M∞

such that in every dimension n, the renormalized Weyl polynomials Wp
Mn , defined

by (4.13), are generated by this entire function Wp
M∞ as the Jensen polynomials

J2[n/2](Wp
M∞).

17The symbol M∞ means {B∞}, {B∞ × 0}, {Q∞} or {Q∞ × 0} respectively,
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5. ENTIRE FUNCTIONS OF THE HURWITZ
AND OF THE LAGUERRE-POLYA CLASS.

MULTIPLIERS PRESERVING LOCATION OF ROOTS.

Hurwitz class of entire functions.

Definition 5.1. An entire function H is said to be in the Hurwitz class, written
H ∈ H, if

1. H 6≡ 0, and roots of H have negative real part: if H(ζ) = 0, then Re ζ < 0.
2. The function H is of exponential type: lim

|z|→∞
ln |H(z)|
|z| < ∞, and its defect dH

is non-negative: dH ≥ 0, where

(5.1) 2dH = lim
r→+∞

ln |H(r)|
r − lim

r→+∞
ln |H(−r)|

r .

The following functions serve as examples of entire functions of class H:
a). A dissipative polynomial P (t).
b). An exponential exp{αt}, where Reα ≥ 0 .
c). The product P (t) · exp{αt}: P (t) is a dissipative polynomial, Reα ≥ 0 .

The significance of the Hurwitz class of entire functions stems from the fact that
function in this class 18 are the locally uniform limits in C of dissipative polynomials.

Laguerre-Polya class of entire functions.

Definition 5.2. An entire function E is said to be in the Laguerre-Pólya class,
written E ∈ L-P, if E is real and can be expressed in the form

(5.2) E(t) = ctne−βt2+αt
∞∏

k=1

(1 + tαk) e−tαk ,

where c ∈ R \ 0, β ≥ 0, α ∈ R, αk ∈ R, n is non-negative integer, and
∑∞

k=1 α2
k <

∞.

Within the Laguerre-Polya class, those functions E are said to be of type I, written
E ∈ L-P-I , which are representable in the form

(5.3) E(t) = ctneαt
∞∏

k=1

(1 + tαk) ,

where c ∈ R \ 0, α ≥ 0, αk ≥ 0, n is non-negative integer, and
∑∞

k=1 αk < ∞.

The significance of the Laguerre-Polya class stems from the fact that function
in this class, and only these, are the locally uniform limits in C of polynomi-
als with only real roots. (See [37], Chapter 8; [43], Chapter II, Theorems
9.1, 9.2, 9.3.)

18The full description of the class of entire functions which are the limits of dissipative poly-
nomials can be found in [37], Chapter VIII, Theorem 4. This class (up to the change of variables
z → iz) is denoted by P ∗ there.
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Lemma 5.1. An entire function E which is of type I in the Laguerre-Polya class
also is the Hurwitz class:

L-P-I ⊂ H .

Proof. The roots of the entire function E which admit the representation (5.3)
are located at the points −(αk)−1, thus is strictly negative. From the properties of

the infinite product
∞∏

k=1

(1 + tαk) with
∑∞

k=1 |αk| < ∞, it follows that a function E

which admit the representation (5.3) is of exponential type α, and lim
r→+∞

ln |H(±r)|
r =

±α. Thus, the defect dH = α ≥ 0 since α ≥ 0.

Multipliers preserving the reality of roots.

Definition 5.3. A sequence {γk}0≤k<∞ of real numbers is a multiplier sequence if
for every polynomial f :

f(t) =
∑

0≤k≤n

aktk

with only real roots, the polynomial

h(t) =
∑

0≤k≤n

γkaktk

too has only real roots. (The degree n of the polynomial f can be arbitrary.)

Theorem 2 ([Polya, Schur]). A sequence {γk}0≤k<∞ of real numbers which are
not all roots is a multiplier sequence if and only if the power series

Ψ(t) =
∑

0≤k≤∞

γk

k!
tk

represents an entire function, and either the function Ψ(t) or the function Ψ(−t)
is in the Lagierre-Polya class of type I.

This result was obtained in [49]. The presentation of this and related results can be
found in Chapter VIII of [37], in Chapter II of [43], in [51] (Section 5 ), in numerous
papers by Th.Craven and G.Csordas.

Theorem 5.1 ([Jensen-Craven-Csordas-Williamson]). Let E(t) be an entire func-
tion belonging to the Laguerre-Polya class L-P, and {Jn(E, t)}n=1, 2, 3, ... be the
sequence of the Jensen polynomials associated with the function E. (Definition 4.1.)

1. Then for each n, all roots of the polynomial Jn(E, t) are real;

2. If E(t) belongs to the subclass L-P-I of the Laguerre-Polya class L-P, then
for each n, all roots of the polynomial Jn(E, t) are negative;

3. If moreover E(t) is not of the form E(t) = p(t) eβt, where p(t) is a polyno-
mial, then for each n, all roots of the polynomial Jn(E, t) are simple .
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The statement 1 of the theorem was proved by Jensen 19, [Jen]. It is a special

case of Theorem by G.Polya and I. Schur corresponding to Ψ(t) =
(
1 +

t

n

)n

. The
refinement of the statement 1 which is formulated as the statement 3 was done by
G.Csordas and J.Williamson in [18], where the alternative proof of the statement 1
also was done. In [18], the main Theorem formulated on p. 263, which appeared as
the statement 3 of Theorem 5.1 of the present paper, was formulated not accurately.
The correction was done in [16], Section 4.1 there.

Theorem 5.2. Let H be an entire function belonging to the Hurwitz class H,
and {Jn(H, t)}n=1, 2, 3, ... be the sequence of the Jensen polynomials associated with
the function H. (Definition 4.1.) Then for each n, the polynomial {Jn(H, t) is
dissipative.

Theorem 5.2 can be obtained as a consequence of Theorem 5.1 and Hermite-Bieler
Theorem. Proof of Theorem 5.2 will be done in Section 5.

Laguerre multipliers.

Theorem 3 ([Laguerre]). Let an entire function E(t),

(5.4) E(t) =
∑

0≤l<ω

εlt
l, ω ≤ ∞,

be in the Laguerre-Polya class: E ∈ L-P, and let an entire function ψ be in the
Laguerre-Polya class L-P and moreover satisfy the condition: all roots of ψ are
negative.

1. Then the power series

(5.5) Eψ =
∑

0≤l<ω

εlψ(l)tl

converges for every t, and its sum is an entire function of the Laguerre-Polya
class: Eψ ∈ L-P.

2. If moreover E(t) is of type I: E ∈ L-P-I, then the the sum of power series
(5.5) also is an entire function of the type I: Eψ ∈ L-P-I.

This theorem appeared by E. Laguerre, [35], section 18, p.117, or [34], p. 202. La-
guerre himself has formulated this theorem for the function E which is a polynomial
with real roots. The extended formulation, where E is a general entire function from
the class L-P, can be found in the paper [49], p. 112, or in its reprint in [47], p.123.
In [49] the extended formulation is attributed to Jensen, [Jen].

The presentation of the above mentioned results of Polya, Schur, Laguerre, Jensen,
as well as of many related results, can be found in [43], Chapter II; [37], Chapter
VIII,[51]; [51], Chapter 5, especially Sections 5.5, 5.6, 5.7; in numerous papers of
Th.Craven and G.Csordas (See for example [14]). See also [50], Part five. The book
of L. de Branges [19] is closely related to this circle of problems.

19Though Jensen himself did not introduce explicitly the polynomials which are called ‘the
Jensen polynomials’ now.
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6. PROPERTIES OF ENTIRE FUNCTIONS
GENERATING MINKOWSKI AND WEYL POLYNOMIALS
OF ‘REGULAR’ CONVEX SETS AND THEIR SURFACES.

Entire functions generating the Minkowski polynomials.

Theorem 6.1. The entire functions (4.7) generating the renormalised Minkowski
polynomials of balls, cubes, squeezed spherical and cubic cylinders, possesses the
following properties:

1. The function MB∞ is of type I of the Laguerre-Polya class;
2. The function MB∞×0 belongs to the Hurwitz class. It has infinitely roots, all

but finitely many its roots are non-real;
3. The function MQ∞ is of type I of the Laguerre-Polya class;
4. The function MQ∞×0 is of type I of the Laguerre-Polya class .

Lemma 6.1. The function
1

Γ(t + 1)
, where Γ is the Euler Gamma function, is in

Laguerre-Polya class, and all its roots is negative.

Indeed,
1

Γ(t + 1)
= eCt

∏

1≤k<∞

(
1 +

t

k

)
e−

t
k ,

(C is the Euler constant, C ≈ 0.5772156 . . . .)

sc Proof of Theorem 6.1. The statement 1 is evident: MB∞(t) = et.
To obtain Statement 3, we remark that the function MQ∞ is of the form Eψ,

(5.5), where E(t) = exp{
√

π
2 t}, and ψ(t) =

1
Γ( t

2 + 1)
. Then we apply the Laguerre

theorem on multipliers to these E and ψ. The needed property of ψ is formulated
as Lemma 6.1.

The statement 4 can be obtained in the same way that the statement 3. One

need take E(t) = exp{
√

π
2 t}, and ψ(t) =

Γ( 1
2 )

Γ( t+1
2 + 1)

.

Proof of the statement 2 is more complicated. From (4.7b) it follows that

MB∞×0(t) =
∑

0≤k<∞
B(k

2 + 1, 1
2 )

1
k!

tk =
∑

0≤k<∞

1∫

0

ξ
k
2 (1− ξ)−

1
2 dξ

1
k!

tk .

Changing the order of summation and integration and summarizing the exponential
series, we obtain the integral representation:

(6.1) MB∞×0(t) = 2

1∫

0

(1− ξ2)−
1
2 ξeξtdξ .

The fact that the functions MB∞×0 belongs to the Hurwitz class will be derived
from the integral representation (6.1). This will be done in Section 13.
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Entire functions generating the Weyl polynomials.

Lemma 6.2. Let E:

(6.2) E(t) =
∑

0≤l<∞
alt

2l

be an even entire function of the class L-P, and let p > 0 be a number. Then the
function Ep(t) defined by the power series

(6.3) Ep(t)
def=

∑

1≤l<∞

2−lΓ
(

p
2 + 1

)

Γ
(
l + p

2 + 1
) · alt

2l,

belongs to the class L-P as well.

Proof. Lemma 6.2 is the consequence of the Laguerre theorem on multipliers. The
function

(6.4) ψp(t) =
2−

t
2 Γ

(
p
2 + 1

)

Γ
(

t
2 + p

2 + 1
)

is in the Laguerre-Polya class (see Lemma 6.1), and its roots are negative.

We point out, see (4.11), that the entire functions W p
∂B∞ , W p

∂(B∞×0), W p
∂Q∞ ,

W p
∂(Q∞×0), which generate the Weyl polynomials of the finite index p for the appro-

priate families of convex surfaces, can be obtained from the entire functionsW∞
∂B∞ ,

W∞
∂(B∞×0), W∞

∂Q∞ , W∞
∂(Q∞×0), which generate the Weyl polynomials of the infinite

index, by means of the transformation of the form
∑

0≤k<∞
aktk →

∑

0≤k<∞
ψp(k) aktk .

Theorem 6.2.

1. The functions W∞
∂B∞ , W∞

∂Q∞ , W∞
∂(Q∞×0) belong to the Laguerre-Polya class

L-P.
2. The function W∞

∂(B∞×0) does not belong to the Laguerre-Polya class L-P:
this function has infinitely many non-real roots.

Proof. The statement 1 is evident in view of the explicit expressions:

W∞
∂B∞(t) = exp{−t2/2} ,(6.5)

W∞
∂Q∞ (t) =

sin{(π/2)
1
2 t}

(π/2)
1
2 t

,(6.6)

W∞
∂(Q∞×0) = cos{(π/2)

1
2 t} .(6.7)

The function W∞
∂(B∞×0), which appears in Statement 2, can not be expressed in

terms of ‘elementary’ functions, but it can be expressed in terms of the Mittag-
Leffler function E1, 1

2
:

(6.8) W∞
∂(B∞×0)(t) =

√
πE1, 1

2

(
− t2

2

)
,
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where

(6.9) Eα,β(z) =
∑

0≤k<∞

zk

Γ(αk + β)
.

From (6.9) the integral representation can be derived:

(6.10)
√

πE1, 1
2
(t) = 1 + t

1∫

0

(1− ξ)−
1
2 etξ dξ .

The integral representation (6.10) can be derived from the Tailor series (6.9) in the
same way as the integral representation (6.1) was derived from the Taylor series
(4.7b). From (6.10) the following asymptotic can be obtained:

(6.11)
√

πE1, 1
2
(t) =





1
2t , t → −∞,

√
πt et, t → +∞.

O(|t|), t → ± i∞.

From (6.11) it follows that the indicator diagram of the entire function E1, 1
2
(t) of

the exponential type is the interval [0, 1] . Moreover, the function E1, 1
2
(it) belongs

to the class C, as this class was defined in [38], Lecture 17. From Theorem of
Cartwright-Levinson (Theorem 1 of the Lecture 17 from [38]) it follows that the
function E1, 1

2
(t) has infinitely many roots, these roots have a positive density, and

are located ‘near’ the rays arg t = π
2 and arg t = −π

2 . From this and from (6.8)
it follows that the roots of the function W∞

∂(B∞×0)(t) are located near four rays
arg t = π

4 , arg t = 3π
4 , arg t = 5π

4 , arg t = 7π
4 . In particular, infinitely many of the

roots of the function W∞
∂(B∞×0)(t) are non-real.

Remark 6.1. Much more precise results about the Mittag-Leffler function Eα,β and
distribution of its roots are known. See, for example, [27], section 18.1, or [20].

Theorem 6.3.
1. For every p = 1, 2, . . ., the functions W p

∂B∞ , W p
∂Q∞ , W p

∂(Q∞×0) belong to
the Laguerre-Polya class L-P.

2. If p is large enough, then the function W p
∂(B∞×0) does not belong the

Laguerre-Polya class L-P: it has non-real roots.

Proof. The statement 1 of this theorem is a consequence of the statement 1 of
Theorem 6.2 and Lemma 6.2. The statement 2 of this theorem is a consequence of
the statement 2 of Theorem 6.2 and the approximational property (1.43).

Remark 6.2. The fact that the functionW p
∂B∞ belongs to the Laguerre-Polya class

L-P, that is all its roots are real, can be established without reference to Lemma
6.2. The function W p

∂B∞ can be expressed in terms of Bessel functions Jν . Recall
that for arbitrary ν,

(6.12) Jν(t) =
(

t

2

)ν ∑

0≤l<∞

(−1)l(t2/4)l

l! Γ(ν + l + 1)
.
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Comparing (6.12) with (4.11a), we see that

(6.13) W p
∂B∞(t) = Γ

(p

2
+ 1

) (
t

2

)− p
2

J p
2
(t) .

In particular,
for 20 p = 1,

(6.14) W 1
∂B∞(t) =

sin t

t
,

for p = 2,

(6.15) W 2
∂B∞(t) = 2

J1(t)
t

.

It is known that for every ν > −1, all roots of the Bessel function Jν(t) are real
(This result is due to A.Hurwitz. See, for example, [64], Chapter XV, Section 15.27.)

The statement 2 of Theorem 6.3 may be strengthen essentially.

Theorem 6.4.
1. For p = 1, 2, 4, the function W p

∂(B∞×0) belongs the Laguerre-Polya class
L-P ;

2. For p : 5 ≤ p ≤ ∞, the function W p
∂(B∞×0) does not belong the Laguerre-

Polya class L-P : it has infinitely many non-real roots .

Proof. For every p ≥ 1, the functionW p
∂(B∞×0) admits the integral representation

(6.16) W p
∂(B∞×0) = p

1∫

0

(1− ξ2)
p
2−1ξ cos tξ dξ .

This integral representation can be obtained from (4.11c) in the same way that the
integral representation (6.1) was obtained from (4.7b). Using the identity

Γ(l + 1/2) Γ(l + 1) = Γ(1/2) 2−2l Γ(2l + 1),

we reduce (4.11c) to the form

W p
∂(B∞×0) =

p

2

∑

0≤l<∞
B(l + 1, p/2)(−1)l t2l

(2l)!
.

Then we use the integral representation for the function Beta, change the order of
summation and integration and summarize the series using the Taylor expansion
for cos z. For every p : 1 ≤ p < ∞, the function W p

∂(B∞×0) can be calculated
asymptotically. This calculation may be done using the integral representation
(6.16), or in other way. The asymptotic expression for the function W p

∂(B∞×0) is
presented in Section 13, see (13.27), (13.28). From this expression it follows that:
1. For p > 4, infinitely many (actually all but finitely many) roots of theW p

∂(B∞×0)

are non-real. This is sufficiently for the negative result of the statement 2 of
Theorem 6.4 to be obtained.

20Deriving (6.14) from (6.13), we used the formula J 1
2
(t) =

(
2
πt

) 1
2 sin t . (Concerning this

formula, see, for example, [70], section 17.24.) However, (6.14) may be obtained directly from
(4.11a).
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2. For p ≤ 4, all but finitely many roots of the function W p
∂(B∞×0) are real and

simple. This alone is not sufficiently for the result of the statement 1 of to be
obtained. The additional reasoning should be invoked. For p = 2 and p = 4, the
function W p

∂(B∞×0) can be calculated explicitly. The case p = 3 remains open.
Proof of the fact that for p = 1, 2, 4 all roots of the function W p

∂(B∞×0) are real
will be done in Section 13. See Lemma 13.6.

Proof of Theorem 2.5. According to Theorems 6.2, 6.3 and 6.4 (Statements
1 of these theorems), each of the functions W p

∂B∞ , W p
∂Q∞ , W p

∂(Q∞×0) with p :
1 ≤ p ≤ ∞, and W p

∂(B∞×0) with p = 1, 2, 4, belongs to the class of Laguerre-
Polya L-P. By Theorem of Jensen-Csordas-Williamson, the Jensen polynomials
associated with each of these entire functions, has only simple real roots. According
to Theorem 4.2, the renormalized Weyl polynomials Wp

∂Bn+1 , Wp
∂Qn+1 , Wp

∂(Qn×0)

with p : 1 ≤ p ≤ ∞, and Wp
∂(Bn×0) with p = 1, 2, 4 have only simple real roots.

In view of renormalizing relations (4.13), the Weyl polynomials W p
∂Bn+1 , W p

∂Qn+1 ,
W p

∂(Qn×0) are conservative.

Proof of Theorem 2.6. According to Theorem 6.4, Statement 2, for p : 5 ≤ p ≤
∞, each of the entire functions W p

∂(B∞×0) has infinitely many non-real roots. Since
for fixed p, Jn(W p

∂(B∞×0); t) → W p
∂(B∞×0)(t) locally uniformly in C as n → ∞, by

Hurwitz theorem, every polynomial Jn(W p
∂(B∞×0)) with p, n : p ≥ 5, n ≥ N(p) has

non-real roots. By Theorem 4.2, the renormalized Weyl polynomialsWp
∂(Bn×0) have

non-real roots. In view of the renormalizing relations (4.12), the Weyl polynomial
W p

∂(Bn×0) have roots which do not belong to the imaginary axis.

Proof of Lemma 2.1. This lemma is a consequence of lemma 6.2. If the polynomi-
al W ∞

M (t) is conservative, then the polynomial E(t) = W ∞
M (it) is a real polynomial

with only real simple roots. The function Ep(t) = W p
M(it) is related with this E(t)

as well as the function Ep(t) appeared in (6.3) is related to E(t) from (6.2). By
Lemma 6.2, all roots of Ep are real. Let us show that the roots are simple. Consider
the function E(t) + ε, were ε is a small real number, positive or negative. Since
all roots of the polynomial E(t) are real and simple, all roots of the polynomial
E(t) + ε are real if |ε| is small enough. By Lemma 6.2, all roots of the polynomial
Ep(t)+ ε are real. But if the polynomial Ep(t) have a multiple root, this root splits
into a group of simple roots by the perturbation Ep(t) → Ep(t) + ε, and by an
appropriate choice of sign of ε, some of roots in this group will be non-real.

Remark 6.3. We apply Lemma 2.1 in special cases n = 2, 3, 4, 5 only. In these
cases Lemma is quite elementary. Actually only the cases n = 4 and n = 5 deserve
attention, the cases n = 2 and n = 3 are trivial. The cases n = 4 and n = 5 are
reduced to the following elementary statement:
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Let k0, k2, k4 be positive numbers. Assume that the roots of the polynomial
Q(t) = k0 +k2t+k4t

2 are negative and different. Then for every p > 0, the
roots of the polynomial

Qp(t) = k0 +
k1

(p + 2)
t +

k4

(p + 2)(p + 4)
t2

are negative and different as well.

Indeed, the conditions posed on polynomials Q and Qp are equivalent to the in-
equalities

k2
1 > k0k4 and

(
k1

p + 2

)2

> k0
k2

(p + 2)(p + 4)
.

It is evident that the first of these inequalities implies the second.

7. HERMITE-BIELER THEOREM AND ITS APPLICATION.

In its traditional form, Hermite-Bieler theorem gives conditions under which all
roots of a polynomial belong to the upper half-plane {z : Im z > 0}. We need the
version of this theorem adopted to the left half-plane, and for the case of polyno-
mials with non-negative coefficients only. Before to present such a reformulation of
Hermite-Bieler theorem, we give several definitions:

Definition 7.1. Let S1 and S2 be two sets which are situated on the same straight
line21 L of the complex plane: S1 ⊂ L, S2 ⊂ L , and moreover each of the sets
S1, S2 consists of isolated points only. The sets S1 and S2 interlace if between every
two points of S1 there is a point of S2, and between every two points of S2 there is
a point of S1.

Definition 7.2. Let P be a power series:

(7.1) P (t) =
∑

0≤k

pktk,

where t is a complex variable, and the coefficients pk are complex numbers.

The real part RP and the imaginary part IP of P are defined as

(7.2) RP (t) =
P (t) + P (t)

2
, IP (t) =

P (t)− P (t)
2i

,

where the overline bar is used as a notation for the complex conjugation.

The even part EP and the odd part OP of P are defined as

(7.3) EP (t) =
P (t) + P (−t)

2
, OP (t) =

P (t)− P (−t)
2

,

In term of coefficients,
RP (t) =

∑

0≤k

aktk, IP (t) =
∑

0≤k

bktk,(7.4a)

21In our considerations the straight line L will be either the real axis or the imaginary axis.
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where

ak =
pk + pk

2
, bk =

pk − pk

2i
,(7.4b)

and

(7.5) EP (t) =
∑

0≤l

p2lt
2l, OP (t) =

∑

0≤l

p2l+1t
2l+1.

Theorem 4 ([Hermite-Bieler]). Let P be a polynomial, A = RP and B = IP be the
real and imaginary parts of P , i.e.

P (t) = A(t) + iB(t),

where A and B be a polynomials with real coefficients. In order for all roots of P
to be contained within the open upper half-plane {z : Im z > 0}, it is necessary and
sufficient that the following three conditions be satisfied:

1. The roots of each of the polynomials A and B are all real and simple.
2. The sets ZA and ZB of the roots of the polynomials A and B interlace.
3. The inequality

(7.6) B′(0)A(0)−A′(0)B(0) > 0

holds.

Let us formulate a version of Hermite-Bieler Theorem for the left half-plane.

Lemma 7.1. Let M be a polynomial with positive coefficients,

M(t) =
∑

0≤k≤n

mktk, mk > 0, 0 ≤ k ≤ n ,

and let EM and OM be the even and the odd parts of M . In order for the polynomial
M be dissipative it is necessary and sufficient that the following two condition be
satisfied:

1. The polynomials EM and OM are conservative.
2. The sets of roots of the polynomials EM and OM interlace.

Lemma 7.2. Let W ,

(7.7) W (t) = w0 + w2t
2 + w4t

4 · · · + w2m−2t
2m−2 + w2mt2m

be an even polynomial with positive coefficients w2l:

w0 > 0, w2 > 0, . . . , w2m > 0 .

In order for the polynomial W to be conservative it is necessary and sufficient that
the polynomial M = W + W ′ to be dissipative, where W ′ is the derivative of W :

(7.8) W ′(t) = 2 · w2t + 4 · w4t
3 · · · + (2m− 2) · w2m−2t

2m−3 + 2m · w2mt2m−1 .

Proof of Lemma 7.1. Let

(7.9) P (t) = M(it), A(t) = (EM)(it), B(t) = i−1 · (OM)(it),

so
P (t) = A(t) + iB(t) .
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A and B are polynomials with real coefficients:

A(t) =
∑

0≤l≤[n
2 ]

(−1)lm2lt
2l, B(t) = t

∑

0≤l≤[n−1
2 ]
(−1)lm2l+1t

2l .

Moreover,

(7.10) B′(0)A(0)−A′(0)B(0) = m0 m1 .

From (7.9) it is evident that

(All roots of A are real and simple) ⇔ (The polynomial EM is conservative)

(All roots of B are real and simple) ⇔ (The polynomial OM is conservative)
(All roots of P lie in {z : Im z > 0}) ⇔ (The polynomial M is dissipative)

and under condition that all roots of A and B are real,

(The roots of A and B interlace) ⇔ (The roots of EM and OM interlace)

Thus, Lemma 7.1 is an immediate consequence of Hermite-Bieler Theorem it the
above stated form. The inequality (7.6) is ensured automatically by (7.10) since the
coefficients mk are assumed to be positive.

Q.E.D.
Proof of Lemma 7.2. It is clear that the polynomials W and W ′ are the even
and the odd parts of M = W + W ′:

W = EM, W ′ = OM.

Let M be dissipative. Then, according to Lemma 7.1, W is conservative. Conversely,
let W be conservative. According to Rolle theorem, the polynomial W ′ is conser-
vative as well, and the sets of roots of W and W ′ interlace. By Lemma 7.1, the
polynomial M is dissipative. Q.E.D.

Remark 7.1. The claim of Lemma 7.1 remains true if to replace the assumption
posed on the coefficients mk of of M with a weaker assumption. It enough to as-
sume that only the coefficients m0 and m1 are strictly positive, whereas the other
coefficients mk, k = 2, 3, . . . , n, are real.

Proof of Theorem 2.1. The relation (1.34) means that the polynomial tW 1
∂V (t)

is the odd part of the Minkowski polynomial MV . Thus, we are in the situation of
Lemma 7.1. Since the polynomial MV is dissipative, the point z = 0 is not a root
of M , that is m0(V ) 6= 0. According to (1.23), this means that Voln(V ) 6= 0. Thus,
the set V is solid. By Proposition 8.1, all the coefficients mk(V ) of the polynomial
MV the are strictly positive. According to Lemma 7.1, the polynomial O(MV ) is
conservative. Since O(MV )(0) = 0, the polynomial t−1 · O(MV )(t) = W 1

∂V (t) is
conservative as well. Q.E.D.

Proof of Theorem 5.2. In the course of the proof we shall refer to some facts
from the theory of entire functions which usually are formulated in literature for
functions whose roots are in the upper rather then in the left half-plane. Therefore,
it is convenient pass from the variable t to the variable it. Given a function H(t) of
the Hurwitz class H, let f(t) = H(it). Then f is an entire function of exponential
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type, all roots of f are in the upper half-plane, and moreover, the defect df of f is
non-negative, where

2 df = lim
r→+∞

f(−ir)− lim
r→+∞

f(−ir) .

(It is clear that df = dH , where dH is the same as in (5.1).) Thus the function f is
in the class P as this class was defined in [37], Chapter VII, Section 4. Let

f(t) = A(t) + iB(t) ,

where A and B be real entire functions. Combining Lemma 1 from [37], Chapter
VII, Section 4 with Theorem 4 from [37], Chapter VII, Section 2, we obtain that
the functions A and B possess the properties:

1. A and B are real entire functions of exponential type;
2. A(0)B′(0)−B(0)A′(0) > 0;
3. For every θ ∈ R, all roots of the linear combination Cθ, where Cθ(t) =

cos θA(t)+ sin θB(t), are simple and real. (The entire functions A and B are
a real pair in the terminology of N.G.Chebotarev, [13].)

According to Hadamard’s factorization theorem, the entire function Cθ is in the
Laguerre-Polya class. According to Jensen-Csordas-Williamson Theorem (Theorem
5.1), for each n, all roots of the Jensen polynomial Cθ,n(t) = Jn(Cθ; t) are real and
simple. Thus, the real polynomials An(t) = Jn(A; t) and Bn(t) = Jn(B; t) possess
the property: For every θ ∈ R, all roots of the linear combination cos θAn(t) +
sin θBn(t), are real and simple. (The polynomials An and Bn are real pair as well.)
From the property of the polynomials An and Bn > 0 to be a real pair together with
the property An(0)B′

n(0) − Bn(0)A′n(0) it follows that all roots of the polynomial
fn(t) = An(t)+iBn(t) are in the upper half-plane. Thus, all roots of the polynomial
Hn(t) = fn(−it) are in the left half-plane. In other words, the polynomial Hn is
a Hurwitz polynomial. On the other hand, from the construction it follows that
Hn(t) = Jn(H; t) .

8. PROPERTIES OF MINKOWSKI POLYNOMIALS
OF A CONVEX SET.

MOTION INVARIANCE: Let V, V ⊂ Rn, be a compact convex set, τ be a motion22

of the space Rn, and τ (V) be the image of the set V under he motion τ . Then
Mτ (V )(t) = MV (t).

CONTINUITY: The correspondence V → MV between compact convex sets V in Rn

and their Minkowski polynomials MV is continuous 23.

A sketch of the proof of the continuity property can be found in [10], section 29;
[12], section 19.2; [54], section 5.1; [66],

22The motion of the space Rn is an affine transformation of Rn which preserves the Euclidean
distance in Rn.

23The set of compact convex sets in Rn is equipped by the Hausdorff metric, the set of all
polynomials is equipped by the topology of the locally uniform convergence in C.
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MONOTONICITY: Let V1 and V2 be compact convex sets in Rn, and MV1 ,MV2

be the appropriate Minkowski polynomials. If V1 ⊂ V2, then the coefficients
mk(V1), mk(V2) of the polynomials MV1 , MV2 , defined as in (1.21), satisfy the in-
equalities

(8.1) mk(V1) ≤ mk(V2), 0 ≤ k ≤ n .

Explanation. According to the definition of the mixed volumes,

(8.2) mk(V ) =
n!

(n− k)! k!
Vol(V, V, . . . , V︸ ︷︷ ︸

n−k

; Bn, Bn, . . . , Bn

︸ ︷︷ ︸
k

).

Inequalities (8.1) follow from the monotonicity of the mixed volumes (8.2) with
respect to V . (Concerning the monotonicity of the mixed volumes see, for example,
[10], section 29; [12], section 19.2; [66], Theorem 6.4.11; [54], section 5.1, formula
(5.1.23).) Q.E.D.

Lemma 8.1. a). For any compact convex set V, V ⊂ Rn, the coefficients mk(V )
of its Minkowski polynomial, defined as in (1.21), are non-negative:

(8.3a) 0 ≤ mk(V ), 0 ≤ k ≤ n.

(According to (1.23), the coefficient mn(V ) is strictly positive.)
b). If moreover the set V is solid, then all coefficients mk(V ) are strictly positive:

(8.3b) 0 < mk(V ), 0 ≤ k ≤ n.

The Weyl coefficients k2l(∂V ), 0 ≤ l ≤ [
n−1

2

]
, defined by Definition 1.10,

are strictly positive as well.

Proof. Taking V as V2 and an one-point subset of V as V1 in (8.1), we obtain
(8.3a). If the set V is solid, then there exist a ball x0 + ρBn of some positive radius
ρ: x0 + ρBn ⊂ V . Taking the ball x0 + ρBn as V1 and V as V2 in (8.1), we obtain
the inequalities mk(x0 + ρBn) ≤ mk(V ), 0 ≤ k ≤ n. Moreover, mk(x0 + ρBn) =
mk(ρBn) = ρn−kmk(Bn) = ρn−k n!

k! (n−k)! Voln(Bn) > 0.

Remark 8.1. The notion of the interior point of a set V depend on the space in
which V is embedded. The set V , V ⊂ Rn, which is non-solid with respect to the
‘original’ space Rn, is solid if V is considered as be embedded in the space Rd of
the ‘right’ dimension d, d < n. The dimension dim V of the set V should be taken
as such d.

Definition 8.1. Let V, V ⊆ Rn, be a convex set. The dimension dimV of V is the
dimension of the smallest affine subspace of Rn which contains V .

Lemma 8.2. Let V, V ⊂ Rn, be a compact convex set of the dimension d:

(8.4) dim V = d, 0 ≤ d ≤ n.

Then

(8.5) mRn

k (V ) = 0 for 0 ≤ k < n− d; mRn

k (V ) > 0 for n− d ≤ k ≤ n .

This lemma is a consequence of Lemma 8.1 and of the following
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Lemma 8.3. Let V , V ⊂ Rn, be a convex set of dimension d, d ≤ n, and let
MRn

V (t) =
∑

0≤k≤n

mRn

k (V )tk and 24 MRd

V (t) =
∑

0≤ k≤d

mRd

k (V )tk be the Minkovski

polynomials of the set V with respect to the ambient spaces Rn and Rd respectively.
Then

(8.6) MRn

V (t) = tn−d ·
∑

0≤ k≤d

π
n−d

2 Γ(k
2 + 1)

Γ(k+n−d
2 + 1)

mRd

k (V )tk .

Lemma 8.3 appears in slightly different notation as Theorem 11.1 in Section 11,
where proof is presented.

Definition 8.2. The mixed volumes appearing in (8.2) are said to be cross-sectional
measures of the set V and are denote as vn−k(V ):

(8.7) Vol(V, V, . . . , V︸ ︷︷ ︸
n−k

; Bn, Bn, . . . , Bn

︸ ︷︷ ︸
k

) = vn−k(V ), 0 ≤ k ≤ n .

Thus, the coefficients of the Minkovski polynomials MV , which appear in (1.21),
can be presented as

(8.8) mk(V ) =
(

n

k

)
vn−k(V ),

(
n

k

)
=

n!
k! (n− k)!

are binomial coefficients,

and the Minkowski polynomial itself can be presented as

(8.9) MV (t) =
∑

0≤k≤n

(
n

k

)
vn−k(V )tk .

The following fact will be used essentially in Section 10:

ALEXANDROV–FENCHEL INEQUALITY. Let V , V ⊂ Rn, be a compact convex set.
Then its cross-sectional measures vk(V ) satisfy the inequalities
(8.10) v2

k(V ) ≥ vk−1(V ) vk+1(V ), 1 ≤ k ≤ n− 1 .

A.D.Alexandrov published two proofs of this inequality in [3] and [4]. The first of
them, a combinatorial one, is carried out for the convex polyhedra. The second proof
is more analytical. It uses the theory of self-adjoint elliptic operators depending on
parameter. This proof is carried out for smooth convex bodies. To the general case,
both proofs are generalized by limit arguments. The first proof is developed in de-
tail in the textbook [36]. The second proof is reproduced in Busemann [11]. It has
become customary to talk on ‘Alexandrov-Fenchel inequality’, because Fenchel [22]
also stated the inequality and sketched the proof. Its detailed exposition was never
published. At the end of 1978 independently Tessier in Paris and A.G.Khovanskĭı
in Moscow obtained an algebraic-geometrical proof of the Alexandrov-Fenchel in-
equality using the Hodge index theorem. This proof is developed in §27 of the
English translation of [12] and was written by A.G.Khovanskĭı. (In the Russian
original of [12] an erroneous algebraic proof of the Alexandrov-Fenchel inequality
was included which has been excluded in the English translation.) Regarding the
Alexandrov-Fenchel inequality see also [12], § 20 and Section 6.3 of [54].

24Defining the Minkowski polynomial MRd

V , we can assume that the smallest affine subspace
of Rn which contains V is the space Rd.
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Definition 8.3. A sequence {pk}0≤k≤n of non-negative numbers:

(8.11) pk ≥ 0 , 0 ≤ k ≤ n,

is said to be logarithmic concave, if the following inequalities hold:

(8.12) p2
k ≥ pk−1pk+1, 1 ≤ k ≤ n− 1 .

Thus, the Alexandrov-Fenchel inequalities can be formulated in the form:

For any convex set V , the sequence {vk(V )}0≤k≤n of its cross sectional
measures is logarithmic concave.

Under the extra condition (8.11), the logarithmic concavity inequalities (8.12) for
the coefficients of the polynomial

(8.13) P (t) =
∑

0≤k≤n

(
n

k

)
pktk,

or for the coefficients of the entire function

(8.14) P (t) =
∑

0≤k<∞

pk

k!
tk,

have been considered in connection with distribution roots of P . In this setting,
such (and analogous) inequalities are commonly known as Turán Inequalities
(Turán-like Inequalities). Concerning Turán inequalities see, for example, [30] and
[15].

Remark 8.2. The Turán inequalities (8.12) for the coefficients of the polynomial
(8.13) or entire function (8.14) impose some restrictions on location of roots of P .
However, these inequalities alone do not ensure that all roots of P are located in the
left half-plane {z : Re z < 0}.

For example, given m ∈ N, let
(8.15) pk = 1 for k = 0, 1, . . . , m and pk = 0 for k > m.

Such pk satisfy the Turán inequalities (8.12). The function (8.14) corresponding to
these pk is the polynomial

(8.16) Pm(t) =
∑

0≤k≤m

tm

m!
.

This polynomial is a section of the exponential series. It is known that already for
m = 5 the polynomial (8.16) has two roots located in the half-plane {z : Re z >
0}. G. Szeg’o, [60], studied the limiting distribution of roots of the sequence of
polynomials Pm, (8.16), as m → ∞. From his results on the limiting distributions
of the roots it follows that for large m the polynomial Pm not only has roots in the
half-plane {z : Re z > 0}, but that the total number of its roots located there has a
positive density as m →∞. Regarding roots of sections of power series we address
to the book [21] and to the survey [44]. For m < n, the polynomial (8.13) with pk

as in (8.15) takes the form

(8.17) Pm,n(t) =
∑

0≤k≤m

(
n

k

)
tk .
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I.V.Ostrovskii, [45], studied the limiting distribution of roots of the sequence of the
polynomials Pm,n as m,n → ∞, m/n → α, α ∈ (0, 1). From his results it follows
that for large m,n: n/m = O(1), n/(n−m) = O(1) the polynomial Pm,n not only
has roots in the half-plane Re z > 0, but that the total number of its roots located
there has a positive density as m,n →∞, m/n → α ∈ (0, 1).

9. ROUTH-HURWITZ CRITERION.

Of course it is desirable to obtain an information about the location of roots of the
Weyl and Minkowski polynomials directly from geometrical considerations. At the
moment we are not able to do this. The only general tool from geometry which
we can use are the Alexandrov-Fenchel inequalities (8.10) for cross-sectional mea-
sures vk(V ) of convex sets. Therefore one should express all polynomials which we
investigate in terms of this cross-sectional measures.

As it was explained in (8.9), the expression of the Minkowski polynomial MRn

V for
the convex set V, V ⊂ Rn, in terms of the cross-sectional measures vk(V ) is

(9.1) MRn

V (t) =
∑

0≤k≤n

(
n

k

)
vn−k(V )tk .

Lemma 9.1. Let M be a closed convex surface, dim M = n, and let V , V ⊂ Rn+1,
be a generating convex set: M = ∂V.

Then the Weyl W∞
M can be expressed as

(9.2) W∞
M (t) =

∑

0≤l≤[n
2 ]

(n + 1)!
2ll!(n− 2l)!

vn−2l(V ) t2l ,

where vk(V ) are the cross-sectional measures of the generating convex set V .

Proof. The expression (9.2) is a consequence of (1.41), (1.38) and (8.8).

To extract an information about the location of roots of the Minkowski
polynomial MRn

V from (9.1), we may use the Alexandrov-Fenchel inequalities
(8.10). The Alexandrov-Fenchel inequalities relate the cross-sectional measures
vk(V ), vk−1(V ), vk+1(V ). To extract such an information about the roots of the
Weyl polynomial W∞

M from (9.2), we need the analogous inequalities which relate
the cross-sectional measures vk(V ), vk−2(V ), vk+2(V ).

Lemma 9.2. Let V, V ⊂ Rn+1, be a compact convex set. Then its cross-sectional
measures satisfy the inequalities

(9.3) v2
k(V ) ≥ vk−2(V )vk+2(V ), 2 ≤ k ≤ n− 1.

Proof. We derive (9.3) from (8.10). Rising the inequality (8.10) to square, we
obtain that v4

k(V ) ≥ v 2
k−1(V )v 2

k+1(V ). Inequalities (8.10) with k replaced with
k − 1 and k + 1 are:

v2
k−1(V ) ≥ vk−2(V )vk(V ) and v2

k+1(V ) ≥ vk(V )vk+2(V )
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respectively. The inequality (9.3) is the consequence of the last three inequalities.
Q.E.D.

The inequalities (8.10) and (9.3) for the coefficients of the polynomials (9.1) and
(9.2) respectively is one of two general tools which will be used in the study of the
location of roots of these polynomials. The second general tool is the criteria which
express the properties of polynomials to be dissipative (or conservative respectively)
in terms of their coefficients. Such criteria are formulated as the positivity of certain
determinants constructed from the coefficients of the tested polynomials.

Theorem 5 ([Routh-Hurwitz]). Let

(9.4) P (t) = a0t
n + a1t

n−1 + . . . + an−1t + an

be a polynomial with strictly positive coefficients:

(9.5) a0 > 0, a1 > 0, . . . , an−1 > 0, an > 0 .

For the polynomial P to be dissipative, it is necessary and sufficient that all the
determinants ∆k, k = 1, 2, . . . , n− 1, n, be strictly positive:

(9.6) ∆1 > 0, ∆2 > 0, . . . , ∆n−1 > 0, ∆n > 0,

where

(9.7) ∆1 = a1, ∆2 =

∣∣∣∣
a1 a3

a0 a2

∣∣∣∣ , ∆3 =

∣∣∣∣∣∣

a1 a3 a5

a0 a2 a4

0 a1 a3

∣∣∣∣∣∣
,

∆4 =

∣∣∣∣∣∣∣∣

a1 a3 a5 a7

a0 a2 a4 a6

0 a1 a3 a5

0 a0 a2 a4

∣∣∣∣∣∣∣∣
, . . . , ∆n =

∣∣∣∣∣∣∣∣∣∣

a1 a3 a5 . . . 0
a0 a2 a4 . . . 0
0 a1 a3 . . . 0
. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . an

∣∣∣∣∣∣∣∣∣∣

·

This result, as well as many relative results, can be found in [24], Chapter XV. See
also [32].

Remark 9.1. Actually, to prove that the polynomial P , (9.4), of degree n with
positive coefficients ak, k = 1, 2, . . . , n, is dissipative, there is no need to inspect
all Hurwitz determinants ∆k, k = 1, 2, . . . , n, for positivity. It is enough to inspect
either the determinants ∆k only with even k, or the determinants ∆k only with
even k. (See [24], Chapter XV, §13.)

Applying the Routh-Hurwitz criterion to investigate whether the Minkowski poly-
nomial MRn

V is dissipative, we should take, according to (9.1),

(9.8) ak =
n!

k!(n− k)!
vk(V ) , 0 ≤ k ≤ n, ak = 0, k > n .

From the criterion of dissipativity, the criterion of conservativity can be derived
easily.

Theorem 6 ([Criterion of conservativity]). Let

(9.9) P (t) = a0t
2m + a2t

2m−2 + . . . + a2m−2t
2 + a2m

be a polynomial with strictly positive coefficients a2l, 0 ≤ l ≤ m:

(9.10) a0 > 0, a2 > 0, . . . , a2m−2 > 0, a2m > 0 .
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For the polynomial P to be conservative, it is necessary and sufficient that all the
determinants Dk, k = 1, 2, . . . , 2m− 1, 2m, be strictly positive:

(9.11) D1 > 0, D2 > 0, D3 > 0, . . . , D2m−1 > 0, D2m > 0,

where the determinants Dk are constructed from the coefficients of the polynomial
P according to the following rule. Determinant Dk are the determinant ∆k, (9.7),
whose entries a2l, 0 ≤ l ≤ m, are the coefficients of the polynomial P , and a2l+1 =
(m− l) a2l, 0 ≤ l ≤ m− 1:

D1 = m a0, D2 =

∣∣∣∣
m a0 (m− 1)a2

a0 a2

∣∣∣∣ , D3 =

∣∣∣∣∣∣

ma0 (m− 1)a2 (m− 2)a4

a0 a2 a4

0 m a0 (m− 1)a2

∣∣∣∣∣∣
,

(9.12) D4 =

∣∣∣∣∣∣∣∣

m a0 (m− 1) a2 (m− 2)a4 (m− 4)a6

a0 a2 a4 a6

0 m a0 (m− 1) a2 (m− 2)a4

0 a0 a2 a4

∣∣∣∣∣∣∣∣
, . . .

D2m =

∣∣∣∣∣∣∣∣∣∣

m a0 (m− 1)a2 (m− 2)a4 . . . 0
a0 a2 a4 . . . 0
0 ma0 (m− 1)a2 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a2m

∣∣∣∣∣∣∣∣∣∣

·

Proof. This theorem is the immediate consequence of Hermite-Bieler theorem and
Lemma 7.2. Q.E.D.

Applying the Conservativity criterion to investigate whether the Weyl polynomial
W∞

M is dissipative, we should take, according to (9.2) and (9.9),

(9.13) a2l =
(n + 1)!

2m−l(m− l)!(2l + n− 2m)!
v2l+n−2m(V ) ,

0 ≤ l ≤ m, a2l = 0, l > m , where m =
[

n
2

]

10. THE CASE OF LOW DIMENSION:
PROOF OF THEOREMS 2.2 AND 2.3.

Proof of Theorem 2.2. We apply the Routh-Hurwitz criterion of dissipativity
to the Minkowski polynomial MRn

V . ‘Opening’ the Hurwitz determinants ∆k, (9.7)
, and taking into account that ak = 0 for k > n, we obtain that for n ≤ 5,

∆1 = a1(10.1.1)
∆2 = a1a2 − a0a3 ,(10.1.2)

∆3 = a1a2a3 + a0a1a5 − a0a
2
3 − a2

1a4 ,(10.1.3)

∆4 = a1a2a3a4 + a0a2a3a5 + 2a0a1a4a5 − a2
1a

2
4 − a2

0a
2
5 − a0a

2
3a4 − a1a

2
2a5,

(10.1.4)

∆5 = a5∆4 ,(10.1.5)

where we should take ak as in (9.8).

According to Routh-Hurwitz criterion, we have to prove that ∆1 > 0, ∆2 >
0, . . . , ∆n > 0. The cases n = 2, 3, 4, 5 will be considered separately. Since V
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is solid, vk(V ) > 0, 0 ≤ k ≤ n. (Corollary 8.1.b and (8.8) .)
Thus, the determinant ∆1 =

(
n
1

)
v1(V ) is always positive.

The cases n = 2, 3, 4, 5 will be considered separately. To shorten notation, we right
vk instead vk(V ).

n = 2. In this case,
a0 = v0, a1 = 2v1, a2 = v2,

∆2 = 2v2v1 .

The inequality ∆2 > 0 is evident. Thus, the Minkowski polynomial MR2

V is dissipa-
tive.

n = 3. In this case,

a0 = v0, a1 = 3v1, a2 = 3v2, a3 = v3 , ak = 0, k > 3 .

Substituting these expressions for ak into (10.1), we obtain

∆2 = 9v1v2 − v0v3, ∆3 = v3∆2 .

Thus, the property of MR3

V to be dissipative is equivalent to the inequality

9v1v2 > v0v3,(10.2)

n = 4. In this case,

a0 = v0, a1 = 4v1, a2 = 6v2, a3 = 4v3 a4 = v4, ak = 0, k > 4 .

Substituting these expressions for ak into (10.1), we obtain

∆2 = 24v1v2 − 4v0v3, ∆3 = 96v1v2v3 − 16v0v
2
3 − 16v2

1v4 , ∆4 = v4∆3 .

Thus, the property of MR4

V to be dissipative is equivalent to the pair of inequalities

6v1v2 > v0v3,(10.3.2)

6v1v2v3 > v0v
2
3 + v2

1v4 .(10.3.3)

n = 5. In this case,

a0 = v0, a1 = 5v1, a2 = 10v2, a3 = 10v3, a4 = 5v4, a5 = v5, ak = 0, k > 5 .

Substituting these expressions for ak into (10.1), we obtain

∆2 = 50v1v2 − 10v0v3, ∆3 = 500v1v2v3 + 5v0v1v5 − 100v0v
2
3 − 125v2

1v4 ,

∆4 = 2500v1v2v3v4 + 100v0v2v3v5 + 50v0v1v4v5

− 625v2
1v2

4 − v2
0v2

5 − 500v0v
2
3v4 − 500v0v

2
1v5 , ∆5 = v5∆4 .

Thus, the property of MR5

V to be dissipative is equivalent to the triple of inequalities

5v1v2 > v0v3,(10.4.2)

100v1v2v3 + v0v1v5 > 20v0v
2
3 + 25v2

1v4 ,(10.4.3)
2500v1v2v3v4 + 100v0v2v3v5+50v0v2v4v5 >(10.4.4)

> 625v2
1v2

4 + 500v0v
2
3v4 + 500v1v

2
2v5 + v2

0v2
5 .

As it is claimed in Lemma 10.1 below, the inequalities (10.2), (10.3), (10.4), where
vk = vk(V ) are the cross-sectional measures of the solid compact set V of the
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appropriate dimension, are the consequences of the Alexandrov-Fenchel inequalities.
This completes the proof. Q.E.D.

Remark 10.1. All this business works up to certain n, but it does not work for all
n. If n is large enough, then the conditions v2

k ≥ vk−1vk+1, 1 ≤ k ≤ n− 1 , posed
on positive numbers vk does not imply the inequalities ∆k ≥ 0 for all k = 1, . . . , n,
where ∆k is constructed from ak =

(
n
k

)
vk. Already by n = 30, ∆5 < 0 for certain

vk satisfying these conditions. Moreover, as we will see later, for n large enough,
there exist examples of such compact convex sets V ⊂ Rn for which the Minkowski
polynomial MV is not dissipative, and the Weyl polynomial W 1

∂V is not conservative.
In such examples the sets V are although solid, but ‘almost degenerated’.

Lemma 10.1. Let vk, 0 ≤ k ≤ n, be strictly positive numbers satisfying the in-
equalities

(10.5) v2
k ≥ vk−1vk+1, 1 ≤ k ≤ n− 1 .

Then:

1. If n = 3, then the inequality (10.2) holds;

2. If n = 4, then the inequalities (10.3) holds;

3. If n = 5, then the inequalities (10.4) holds.

Proof of Lemma 10.1. Given k, 1 ≤ k ≤ n− 2, multiplying the inequalities

v2
k ≥ vk−1vk+1, v2

k+1 ≥ vkvk+2,

an then cancelling on vkvk+1, we obtain the inequality

(10.6) vkvk+1 ≥ vk−1vk+2 , 1 ≤ k ≤ n− 2 .

In particular, for n = 3, k = 1, as well as for n = 4, k = 1 and n = 5, k = 1.

v1v2 ≥ v0v3 .

This inequality implies the inequality (10.2), (10.3.2) and (10.4.2). Multiplying the
inequality v1v2 ≥ v0v3 with the positive number v3, we obtain

(10.7a) v1v2v3 ≥ v0v
2
3

For n = 4, k = 2, the inequality (10.6) means

v2v3 ≥ v1v4.

Multiplying the inequality v2v3 ≥ v1v4 with v1, we get

(10.7b) v1v2v3 ≥ v2
1v4.

The inequalities (10.7) imply the inequality (10.3.3) and (10.4.3) .
Multiplying the inequality v2v3 ≥ v1v4 (this is (10.6) for k = 2, n = 5) with v1v4, we
obtain

(10.8a) v1v2v3v4 ≥ v2
1v2

4 .

Multiplying the inequality v1v2 ≥ v0v3 (this is (10.6) for k = 1, n = 5) with v3v4, we
obtain

(10.8b) v1v2v3v4 ≥ v0v
2
3v4 .
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Multiplying the inequality v3v4 ≥ v2v5 (this is (10.6) for k = 3, n = 5) with the
positive number v1v2, we obtain

(10.8c) v1v2v3v4 ≥ v1v
2
2v5 .

Further, multiplying the inequalities v1v2 ≥ v0v3 (this is (10.6) for k = 1, n = 5) and
v3v4 ≥ v2v5 (this is (10.6) for k = 3, n = 5), we obtain that v1v4 ≥ v0v5. Rising it to
square, we obtain

v2
1v2

4 ≥ v2
0v2

5 .

Multiplying this inequality with the inequality v2v3 ≥ v1v4 (this is (10.6) for k =

2, n = 5), we obtain that

(10.8d) v1v2v3v4 ≥ v2
0v2

5 .

Since 2500 > 625 + 500 + 500 + 1, the inequality (10.4.4) it the consequence of
the inequalities (10.8). (The number 2500 is the coefficient before the monomial
v1v2v3v4 in the left hand side of (10.4.4), the numbers 625, 500, 500, 1 are the
coefficients before the monomials v2

1v2
4 , v0v

2
3v4, v1v

2
2v5 and v2

0v2
5 in the right hand

side of (10.4.4) respectively.) Q.E.D.

Proof of Theorem 2.3. We apply the Criterion of conservativity, which was for-
mulated in the previous section, to the Weyl polynomial W∞

M . Opening the deter-
minants ∆k, (9.12) , and taking into account that a2l = 0 for l >

[
n
2

]
, we obtain

that for n ≤ 5, that is 25 for m =
[

n
2

] ≤ 2,

D1 = ma0(10.9.1)
D2 = a0a2 ,(10.9.2)

D3 = a0

(
(m− 1)a2

2 − 2ma0a4

)
,(10.9.3)

D4 = a0a4(a2
2 − 4a0a4) .(10.9.4)

where we should take a2l as in (9.13).

According to the Conservativity criterion, we have to prove that D1 > 0, D2 >
0, . . . , D2m > 0, where m =

[
n
2

]
.

Since V is solid, vk(V ) > 0, 0 ≤ k ≤ n + 1. (Corollary 8.1.b and (8.8) .) Thus, the
determinants D1, D2 are always positive.

Therefore, if n = 2, or if n = 3, that is if m = 1, the Weyl polynomial W∞
M is

conservative. Of course, this fact is evident without referring to the conservativity
criterion:

In the case n = 2, according to (9.8) or (9.2),

W∞
M (t) = 3v2 + 3v0t

2 .

In the case n = 3, according to (9.8) or (9.2),

W∞
M (t) = v3 + 3v1t

2 .

Evidently, in both cases, n = 2 or n = 3, the polynomial W∞
M is conservative.

In the cases n = 4, n = 5, to what corresponds m = 2,

D3 = a0(a2
2 − 4a0a4), D4 = a4D3 .

25Recall that n = dim M, n + 1 = dim V : M = ∂V.
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According to (9.13), we have to take in the cases:
In the case n = 4

a0 = 15v0, a2 = 30v2, a4 = 5v4 .

Thus,
D3 = 15v0(900v2

2 − 300v0v4) .

The conditions D3 > 0, D4 > 0 take the form

(10.10) 3v2
2 > v0v4 .

In the case n = 5
a0 = 90v1, a2 = 60v3, a4 = 6v5 .

Thus,
D3 = 90v1(900v2

2 − 300v0v4) .

The conditions D3 > 0, D4 > 0 take the form

(10.11) 5v2
3 > 3v1v5 .

So, in the cases n = 4 and n = 5 the property of the Weyl polynomial W∞
M be

conservative is equivalent to the inequality (10.10) and (10.11) respectively, where
vk = vk(V ) are the cross-sectional measures of the solid compact set V generating
the surface M : M = ∂V. In its turn, the inequalities (10.10) and (10.11) are evident
consequences of the inequalities v2

2 ≥ v0v4 and v2
3 ≥ v1v5 respectively. The latter

inequalities are special cases of the inequalities (9.3). (See Lemma 9.2.) Thus, in the
cases n = 4 and n = 5 the Weyl W∞

M polynomial of infinite index is conservative.
By Lemma 2.1, all Weyl polynomials W p

M, p = 1, 2, 3, . . . , are conservative as
well.

11. EXTENDING OF THE AMBIENT SPACE.

Adjoint convex sets. Let V be a compact convex set, V ⊂ Rn. However we may
consider the space Rn as a subspace of the space Rn+q of a higher dimension
q = 1, 2, 3, . . . . The embedding Rn to Rn+q is standard:

Rn ↪→ Rn+q : (ξ1, . . . , ξn) → (ξ1, . . . , ξn; 0, . . . , 0︸ ︷︷ ︸
q

).

Thus, the set V , which originally was considered as a subset of Rn, may also be
considered as a subset of Rn+q. In other words, we identify the set V ⊂ Rn with
the set V × 0q, which is the Cartesian product of the set V and the zero point 0q

of the space Rq: V × 0q ⊂ R(n+q).

Definition 11.1. Given a compact convex set V , V ⊂ Rn, and a number q, q =
0, 1, 2, 3, . . . , the q-th adjoint to V set V (q) is defined as:

(11.1) V (q) def= V × 0q, V (q) ⊂ Rn+q ,

where 0q is the zero point of the space Rq, and the space Rn+q is considered as the
Cartesian product: Rn+q = Rn × Rq.
The Minkowski polynomial M Rn+q

V×0q of the q-th adjoint set V (q),

(11.2) MRn+q

V×0q = Voln+q(V × 0q + tBn+q),

is said to be the q-th adjoint Minkowski polynomial for the set V .
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For q = 0, the set V (0) coincides with V , and the polynomial MRn+0

V×00 coincides with
MRn

V . For q = 1, the set V (1) is what we are called the squeezed cylinder with the
base V .

Minkowski polynomials for adjoint sets. Let us answer the natural question:

How the polynomials MRn

V (t) and MRn+q

V×0q (t) are related?

The answer this question will be done by an inductive reasoning. Lemma 11.1 below
provides the step of the induction.

Lemma 11.1. Let V be a compact convex set in Rn, and

(11.3) MRn

V (t) =
∑

0≤k≤n

mRn

k (V )tk

be the Minkowski polynomial with respect to the ambient space Rn. Then the
Minkowski polynomial MRn+1

V×0 (t) is equal to:

(11.4) MRn+1

V×01(t) = t
∑

0≤k≤n

π1/2Γ(k
2 + 1)

Γ(k+1
2 + 1)

mRn

k (V ) tk .

The following theorem completes the inductional reasoning:

Theorem 11.1. Let V be a compact convex set in Rn, and

(11.5) MRn

V (t) =
∑

0≤k≤n

mRn

k (V )tk

be the Minkowski polynomial of the set V . Then the q-th adjoint Minkowski poly-
nomial M Rn+q

V×0q (t) of the set V is equal to:

M Rn+q

V×0q (t) =
∑

0≤k≤n

mRn

k (V ) γ
(q)
k tk+q ,(11.6)

where

γ
(q)
k = πq/2 Γ(k

2 + 1)

Γ(k+q
2 + 1)

, k = 0, 1, 2, . . . ; q = 0, 1, 2, . . . .(11.7)

A sketch of proof of this theorem can be found in [28], Chapter VI, Section 6.1.9.
A detailed proof is presented below.

Remark 11.1. Theorem 11.1 means that the sequence of the coefficients
{mRn+q

k (V × 0q)}0≤k≤n+q of the polynomial MRn+q

V×0q :

(11.8) M Rn+q

V×0q (t) =
∑

0≤k≤n+q

mRn+q

k (V × 0q) tk

are obtained from the sequence of the coefficients {mk(V )}0≤k≤n of the polynomial
MRn

V , (11.5), by means of shift and multiplication:

mRn+q

k (V × 0q) = 0, 0 ≤ k < q;(11.9a)

mRn+q

k+q (V × 0q) = mRn

k (V ) γ
(q)
k , 0 ≤ k ≤ n .(11.9b)
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Remark 11.2. According to Theorem 11.1, the transformation which maps the
polynomial MRn

V into the polynomial MRn+q

V×0q is essentially of the form

(11.10)
∑

0≤k≤n

mktk →
∑

0≤k≤n

γkmktk,

where γk is a certain sequence of multipliers. (The factor tq before the sum in (11.6)
is not essential). The transformations of the form (11.10) were already discussed
is Section 5. There such transformations were considered in relation with location
of roots of polynomials and entire functions.

Lemma 11.2. For any q, q = 1, 2, 3, . . ., the sequence {γ(q)
k }k=0, 1, 2, ... is not a

multiplier sequence in the sense of Definition 5.3.

Proof. In Section 13 we explain that the entire function

(11.11) µq(t) =
∑

0≤k<∞

γ
(q)
k

k!
tk

has infinitely many non-real roots. The entire function µq(t), (11.11), appears
as the function MBn×0q (t) in Section 5. (Up to a constant factor which is not
essential for study the roots.) According to the Polya-Schur Theorem, which was
formulated in Section 5, the sequence {γ(q)

k }k=0, 1, 2, ... is not a multiplier sequence.

Remark 11.3. In Section 5 we study the function µq(t) in much more details that
it is needed to prove Lemma 11.2. The study of section 5 is aimed to clarify for
which q the roots of the function in question are located in the left half plane. The
question whether there are non-real roots is much more rough. This question may
be answered from very general considerations. The function µq admits the integral
representation:

(11.12) µq(t) = qωq

1∫

0

(1− ξ2)
q
2−1ξ eξt dξ .

(Expanding the exponential eξt into the Taylor series, we see that the Taylor
coefficients of the function in the right hand side of (11.12) are the numbers
γ
(q)
k

k! .) From (11.12) it follows that the function µq(t) is an entire function of
exponential type, and that its indicator diagram is the interval [0, 1]. Moreover,
sup−∞<t<∞ |µq(it)| < ∞. In particular, the function µq(it) belongs to the class
of entire functions which is denoted by C in [38], Lecture 17. From Theorem of
Cartwright-Levinson (Theorem 1 of the Lecture 17 from [38]) it follows that the
function µq(t) has infinitely many roots, these roots have positive density, and the
‘majority’ of these roots is located ‘near’ the rays arg t = π

2 and arg t = −π
2 . In

particular, the function µq(t) has infinitely many non-real roots. (We already used
this reasoning proving Statement 2 of Theorem 6.2.)

Proof of Lemma 11.1. Let (x, s) ∈ Rn+1, where x ∈ Rn, and s ∈ R. Then by
Pythagorean theorem,

dist2Rn+1((x, s), V × 0) = dist2Rn(x, V ) + s2.



ON H.WEYL AND H.MINKOWSKI POLYNOMIALS 215

Therefore, the equivalence holds:

(11.13)
(
distRn+1((x, s), V × 0) ≤ t

)
⇐⇒

(
distRn(x, V ) ≤

√
t2 − s2

)

Let

(11.14) TR
n+1

V×01(t) = {(x, s) ∈ Rn+1 : distRn+1((x, s), V × 01) ≤ t}.
be the t-neighborhood of the set V × 01 with respect to the ambient space Rn+1.
Thus,

(11.15) Voln+1(TR
n+1

V×01(t)) = MRn+1

V×01(t).

For fixed s ∈ R, let S(s) be the ‘horizontal section’ of the set TR
n+1

V×01(t) on the
‘vertical level’ s:

S(s) = {x ∈ Rn : (x, s) ∈ TR
n+1

V (t)}.
It is clear that

(11.16) Voln+1(TR
n+1

V×01(t)) =
∫

Voln(S(s))ds .

The equivalence (11.13) means that

S(s) = TR
n

V (
√

t2 − s2) = {x ∈ Rn : distRn(x, V ) ≤
√

t2 − s2}.
Thus,

(11.17) Voln(S(s)) = MRn

V (
√

t2 − s2).

From (11.16) and (11.17) it follows that

MRn+1

V×01(t) =

t∫

−t

MRn

V (
√

t2 − s2)ds .

Changing variable s → ts1/2, we obtain

MRn+1

V (t) = t

1∫

0

MRn

V (t(1− s)1/2)s−1/2ds.

Substituting the expression (1.31) for MRn

V into the last formula, we obtain

MRn+1

V×01(t) = t
∑

0≤k≤n

mk(V ) tk
1∫

0

(1− s)k/2s−1/2ds.

According to Euler,
1∫

0

(1− s)k/2s−1/2ds = B
(

k
2 + 1, 1

2

)
=

Γ
(

1
2

)
Γ
(

k
2 + 1

)

Γ
(

k+1
2 + 1

) = π1/2 Γ
(

k
2 + 1

)

Γ
(

k+1
2 + 1

) ·

Thus, (11.4) holds.

Proof of Theorem 11.1. For q = 0, the statement of the Theorem is self-
evident. Let us show how to pass from q to q + 1. Since V × 0q+1 = (V × 0q)× 01,
and Rn+q+1 = Rn+q × R1, we can apply Lemma 11.1 to the convex set V × 0q
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whose Minkowski polynomial is (11.6) by the induction assumption. The induction
assumption can be formulated as

mRn+q

k (V × 0q) = 0, 0 ≤ k < q;(11.18a)

mRn+q

k (V × 0q) = mRn

k−q(V ) γ
(q)
k−q, q ≤ k ≤ q + n .(11.18b)

By Lemma 1.2,

mR(n+q)+1

k ((V × 0q)× 01) = 0, k = 0 ;

(11.19a)

mR(n+q)+1

k ((V × 0q)× 01) = mR(n+q)

k−1 ((V × 0q)) · γ(1)
k−1 , 1 ≤ k ≤ n + q + 1 .

(11.19b)

In view of the identity
γ

(q)
k · γ(1)

k+q = γ
(q+1)
k ,

(11.19) takes the form (11.18) with q replaced by q + 1 .

Remark 11.4. From (1.6) and (11.7) it follows that

(11.20) γ
(q)
k =

ωk+q

ωk
.

Thus, the equalities (11.9b) can be rewritten as

(11.21)
mRn+q

k+q (V × 0q)
ωk+q

=
mRn

k (V )
ωk

, q = 0, 1, 2, . . . .

The equality (11.21) holds for k = 0, 1, . . . , n. For other k, the value mRn

k (V ) is
not yet defined. Let us agree that

(11.22) ωk = 1 for k < 0, mRn

k (V ) = 0 for k < 0 and for k > n .

Under this agreement, the equality (11.21) holds for every k ∈ Z: for k > n or for
k < −q (11.21) is trivial, for −q ≤ k ≤ −1 it coincides with (11.9a), for 0 ≤ k ≤ n
– with (11.9b).

The Minkowski polynomials for the q-th adjoint to the ball Bn. In particular, ap-
plying Theorem 11.1 to the case V = Bn, Bn ⊂ Rn, we obtain:

(11.23) MRn+q

Bn×0q (t) = ωnωq tqMBn×0q (nt) ,

where the normalized Minkowski polynomial MBn×0q is defined as

(11.24) MBn×0q (t) =
∑

0≤k≤n

n!
(n− k)!nk

Γ( q
2 + 1)Γ(k

2 + 1)

Γ(k+q
2 + 1)

tk

k!
.

The polynomial MBn×0q is the Jensen polynomial associated with the entire func-
tions MBn×0q

:

(11.25) MBn×0q (t) = Jn(MB∞×0q ; t),

where

(11.26) MB∞×0q (t) =
∑

0≤k<∞

Γ( q
2 + 1)Γ(k

2 + 1)

Γ(k+q
2 + 1)

tk

k!
.
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Comparing with (11.12), we obtain Comparing with (11.12), we obtain

(11.27) MB∞×0q (t) = q

1∫

0

(1− ξ2)
q
2−1ξ eξt dξ .

For every q = 0, 1, 2, . . . , the function MB∞×0q is an entire function of the expo-
nential type one.

Lemma 11.3.

1. For q = 0, 1, 2, 4, the entire function MB∞×0q is in the Hurwitz class H;
2. For q ≥ 5, the entire function MB∞×0q is not in the Hurwitz class: it has

infinitely many roots in the open right half plane {z : Imz > 0}..

Proof of this Lemma is presented in Section 13. Statement 2 is a consequence of
the asymptotic calculation of the function MB∞×0q . (See Lemma 13.1.)

For q = 0, the function MB∞×00 = et, thus it is of type I in the Laguerre-Polya
class: MB∞×00 ∈ L-P-I. For q = 2 and q = 4 the functions MB∞×0q can be
calculated explicitly and investigated by elementary methods. The case q = 1 is
more involved. The case q = 3 remains open.

Proof of Statement 1 of Theorem 2.7. Let q ≥ 5 be given. According to state-
ment 2 of Lemma 11.3, the functionMB∞×0q has infinitely many roots in the open
right half-plane. In view of the approximation property of the Jensen polynomials
(Lemma 4.1), for n ≥ n(q) some roots of the Jensen polynomial Jn(MB∞×0q ; t)
are located in the open right half-plane. In view of (11.23) and (11.25), some
roots of the Minkovski polynomial MBn×0q of the (non-solid) convex set Bn × 0q,
Bn × 0q ⊂ Rn+q, are located in the open right half-plane. Fix n : n ≥ n(q). Con-
sider the ellipsoids En, q, ε defined in (2.9), En, q, ε ⊂ Rn+q. For ε > 0, the ellipsoid
En, q, ε is a solid convex set with respect to the ambient space Rn+q. The family of
the convex sets {En, q, ε}ε>0 is monotonic, (See Remark 1.6 and footnote 7), and

(11.28) lim
ε→+0

En, q, ε = Bn × 0q .

It is known that the Minkowski polynomials MV (t) depends on the set V continu-
ously: see Section 8 and footnote 23. Therefore,

(11.29) lim
ε→0

MRn+q

En, q, ε
(t) = MRn+q

Bn×0q (t)

locally uniformly in C. Hence, there exists ε(q, n), ε(q, n) > 0 such that the
Minkowski polynomial MRn+q

En, q, ε
has roots located in the open right half-plane.

The Weyl polynomials for the surfaces of the adjoint convex sets. Passing to define
the so-called adjoint Weyl polynomials W p

V×0q , we do this following Definition 1.9
as a sample.

Definition 11.2. Given a convex compact set V , V ⊂ Rn, and a number q, q =
0, 1, 2, 3, . . . , , the q-th adjoint Weyl polynomial W 1

∂(V×0q) of the index 1 for the
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convex surface ∂(V × 0q) is defined by means of the odd part of the q-th adjoint
Minkowskii polynomial MRn+q

V×0q :

(11.30) 2tW 1
∂(V×0q)(t)

def= MRn+q

V×0q (t)−MRn+q

V×0q (−t) ,

where MRn+q

V (q) is the q-th adjoint Minkowskii polynomial which was introduced in
Definition 11.1. In more detail 26 ,

(11.31) W 1
∂(V×0q)(t) =

∑

l∈Z
mRn+q

2l+1 (V × 0q)t2l .

From (11.31) we may define the Weyl coefficients k2l(∂(V × 0q)) according to Def-
inition 1.10:

(11.32) k2l(∂(V × 0q)) = mRn+q

2l+1 (V × 0q)
(2π)lω1

ω1+2l
.

Then we define the Weyl polynomials W p
∂(V×0q) with higher p according to 27 Defi-

nition 1.11:

Definition 11.3.

(11.33) W p
∂(V×0q)(t)

def=
∑

l∈Z
k2l(∂(V × 0q))(2π)−l ω2l+p

ωp
t2l .

Thus,

(11.34) ωpt
pW p

∂(V×0q)(t) =
∑

l∈Z

mRn+q

2l+1 (V × 0q)
ω2l+1

ω1ω2l+p t2l+p .

Let us clarify how the Weyl polynomials for the convex surfaces ∂V and ∂(V × 0q)
are related. Here we also have to distinguish the cases even and odd q.

Lemma 11.4. Let V, V ⊂ Rn, be a solid compact convex set, and let p > 0, q > 0
be integers. Then

1. For even q

(11.35) ωpt
p ·W p

∂(V×0q)(t) = ωp+qt
p+q ·W p+q

∂V (t) ;

2. For odd q

(11.36) ωpt
p ·W p

∂(V×0q)(t) = ωp+q−1t
p+q−1W p+q−1

∂(V×01)(t) .

Proof of Lemma 11.4. We distinguish cases of even and odd q.
1. q is even. The equality (11.21) with k = 2l + 1− q takes the form

mRn+q

2l+1(V × 0q)
ω2l+1

=
mRn

2l+1−q(V )
ω2l+1−q

.

26According to the agreement (11.22), mR
n+q

2l+1 (V × 0q) = 0 for 2l + 1 < 0 or 2l + 1 > n + q .

27Remark that
2−l Γ( p

2
+ 1)

Γ( p
2

+ l + 1)
= (2π)−l ω2l+p

ωp
.
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From this and (11.34) it follows that

ωpt
pW p

∂(V×0q)(t) =
∑

l∈Z

mRn

2l+1−q(V )
ω2l+1−q

ω1ω2l+p t2l+p .

Changing the summation variable: l → l + q
2 , we obtain

ωpt
pW p

∂(V×0q)(t) =
∑

l∈Z

mRn

2l+1(V )
ω2l+1

ω1ω2l+p+q t2l+p+q .

The expression in the right hand side of the last equality has the same structure
that the expression in the right hand side of (11.34), with V × 0q replaced to V , p
replaced by p + q, q replaced by 0. So, (11.35) is proved.

2. q is odd. The equality (11.21) implies the equality

mRn+q

2l+1(V × 0q)
ω2l+1

=
mRn+1

2l+1−(q−1)(V × 01)

ω2l+1−(q−1)
.

From this and (11.34) it follows that

ωpt
pW p

∂(V×0q)(t) =
∑

l∈Z

mRn+1

2l+1−(q−1)(V × 01)

ω2l+1−(q−1)
ω1ω2l+p t2l+p .

Changing the summation variable: l → l + q−1
2 , we obtain

ωpt
pW p

∂(V×0q)(t) =
∑

l∈Z

mRn+1

2l+1 (V × 01)
ω2l+1

ω1ω2l+p+q−1 t2l+p+q−1 .

The expression in the right hand side of the last equality has the same structure
that the expression in the right hand side of (11.34), with V ×0q replaced to V ×01,
p replaced by p + q − 1, q replaced by 1. So, (11.36) is proved.

The meaning of Lemma 11.4 lies in the following. Studying the location of roots
of Weyl polynomials related to convex surfaces there is no need to consider the
boundary surfaces ∂(V × 0q) of q-th adjoint convex sets V × 0q for arbitrary large
q. It is enough to restrict the consideration to the cases q = 0 and q = 1 only, that
is to the case of the set V itself and to the case of the squeezed cylinder with the
base V .

Proof of Statement 2 of Theorem 2.7. By Statement 2 of Theorem 6.4,
the entire function W p+q−1

∂(B∞×0) has infinitely many non-real roots which. (We have
assumed that p + q − 1 ≥ 5.) If n is large enough, the Jensen polynomial
Wp+q−1

∂(Bn+1×0)(t)=J2[n/2](Wp+q−1
∂(B∞×0); t) also has non-real roots. According to (4.12b)

and (4.13b), the Weyl polynomial W p+q−1
∂(Bn×0)(t) has roots which do not belong to

the imaginary axis. By Statement 2 of Lemma 11.4,

W p
∂(Bn×0q) = ωp+q−1

ωp
tq−1W p+q−1

∂(Bn×0) .

Thus, the Weyl polynomial W p
∂(Bn×0q) has roots which do not belong to the imag-

inary axis. For fixed q, n and a positive ε, consider the ellipsoid En, q, ε defined by
(2.9). Since En, q, ε → Bn × 0q as ε → +0, also W p

En, q, ε
→ W p

∂(Bn×0q) as ε → +0.
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Hence, if ε is small enough: 0 < ε ≤ ε(n, p, q), the polynomial WEn, q, ε has roots
which do not belong to the imaginary axis.

12. THE MINKOWSKI POLYNOMIAL OF THE CARTESIAN
PRODUCT OF CONVEX SETS.

Let V1 and V2 be compact convex sets,

V1 ⊂ Rn1 , V2 ⊂ Rn2 .

Then the Cartesian product V1 × V2 is a compact convex set embedded into the
Cartesian product Rn1 × Rn2 . Since Rn1 × Rn2 can be naturally identified with
Rn1+n2 , we can consider V1 × V2 as being embedded into Rn1+n2 :

V1 × V2 ⊂ Rn1+n2 .

The natural question arises:
How to express the Minkowski polynomial MRn1+n2

V1×V2
for the Cartesian product V1×V2

in terms of the Minkowski polynomials28 MRn1

V1
and MRn2

V2
for the Cartesian factors

V1 and V2 ?
To answer this question, we introduce a special multiplication in the set of polyno-
mials, the so-called M-multiplication, which is suitable for this goal.

Definition 12.1. The M-product tk ◦ tl of two monomials tk and tl is defined as

(12.1) tk ◦ tl
def=

Γ
(

k
2 + 1

)
Γ
(

l
2 + 1

)

Γ
(

k+l
2 + 1

) tk+l , k ≥ 0, l ≥ 0.

It is clear that

(12.2) a). t0 ◦ tk = tk, b). tk ◦ tl = tl ◦ tk, c). (tk ◦ tl) ◦ tm = tk ◦ (tl ◦ tm).

The M-multiplication (12.1) of monomials can be extended to the multiplication of poly-
nomials by linearity:

For A(t) =
∑

0≤k≤n1

aktk, B(t) =
∑

0≤l≤n2

blt
l,(12.3a)

(A ◦B)(t) =
∑

0≤k≤n1,
0≤l≤n2

akbl(tk ◦ tl) =
∑

0≤k≤n1,0≤l≤n2

akbl

Γ
(

k
2 + 1

)
Γ
(

l
2 + 1

)

Γ
(

k+l
2 + 1

) tk+l,

and finally, the M-product A ◦B of the polynomials A and B is defined as

(12.3b) (A ◦B)(t) =
∑

0≤r≤n1+n2

( ∑

k≥0, l≥0,k+l=r

ak bl

Γ
(

k
2 + 1

)
Γ
(

l
2 + 1

)

Γ
(

k+l
2 + 1

)
)

tr .

From (12.2.b) and (12.2.c) it follows that

A ◦B = B ◦A, (A ◦B) ◦C = A ◦(B ◦C)

28The Minkowski polynomials MV1 , MV2 , MV1×V2 are considered with respect to the ambient
spaces Rn1 , Rn2 , Rn1+n2 respectively.
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for every polynomials A, B, C. In particular, the ‘triple product’ A ◦B ◦C is well
defined. This triple product can be explicitly expressed in terms of the coefficients
of the factors: if

A(t) =
∑

0≤k≤n1

aktk, B(t) =
∑

0≤l≤n2

blt
l, C(t) =

∑

0≤m≤n3

cmtm,

then

(A ◦B ◦C)(t) =
∑

0≤r≤n1+n2+n3

( ∑

k≥0, l≥0, m≥0
k+l+m=r

ak bl cm

Γ
(

k
2 + 1

)
Γ
(

l
2 + 1

)
Γ
(

m
2 + 1

)

Γ
(

k+l+m
2 + 1

)
)

tr .

It is clear, that for every number λ and for every polynomials A and B,

(λA) ◦B = λ(A ◦B).

Moreover, if
I(t) ≡ 1, T(t) ≡ t,

then
I ◦A = A.

Thus, the polynomial I is the unity with respect to the M -Multiplication.
It is worthy to mention that

(12.4) t(
◦ k) def= t ◦ t ◦ · · · ◦ t︸ ︷︷ ︸

k

=
(
√

π/2)k

Γ(k
2 + 1)

tk.

Remark 12.1. The M-multiplication by the polynomial T is related to the trans-
formation of the form (11.10):

If A(t) =
∑

0≤k≤n

aktk,(12.5a)

then (T ◦ · · · ◦T︸ ︷︷ ︸
p

◦A)(t) = 2−ptp
∑

0≤k≤n

akγ
(p)
k tk,(12.5b)

where the ‘multipliers’ γ
(p)
k are defined by (11.7).

Lemma 12.1. The M-product A ◦B of polynomials A and B admits the integral29

representation30

(12.6a) (A ◦B)(t) = A(0)B(t) +

t∫

0

A
(
(t2 − τ2)1/2

)
dB(τ) ,

as well as

(A ◦B)(t) = A(t)B(0) +

t∫

0

B
(
(t2 − τ2)1/2

)
dA(τ) .

29The integrals in the right hand sides of (12.6) are Stieltjes integrals.
30At least, for t > 0.
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Proof. First of all, the expressions in the right hand sides of (12.6) are equal:
Integrating by parts and replacing the variable τ → (t2 − τ2)1/2, we obtain

A(0)B(t) +

t∫

0

A
(
(t2 − τ2)1/2

)
dB(τ) = A(t)B(0) +

t∫

0

B
(
(t2 − τ2)1/2

)
dA(τ).

So, the expressions in the right hand sides of (12.6) which at the first glance are
asymmetric with respect to A and B actually are symmetric. Let

A(t) =
∑

0≤k≤n1

aktk, B(t) =
∑

0≤l≤n2

blt
l

be the expressions for the polynomials A and B in terms of their coefficients. Let
us substitute these polynomials into the right hand side of (12.6a):

A(0)B(t) +

t∫

0

A
(
(t2 − τ2)1/2

)
dB(τ) =

a0

∑

0≤l≤n2

blt
l +

t∫

0

( ∑

0≤k≤n1

ak(t2 − τ2)k/2

)
·
( ∑

1≤l≤n2

l blτ
l−1

)
dτ =

∑

0≤l≤n2

a0blt
l +

∑

0≤k≤n1
1≤l≤n2

akbl · l
t∫

0

(t2 − τ2)k/2τ l−1dτ .

Changing variable τ → tτ1/2, we get

l

t∫

0

(t2 − τ2)k/2τ l−1dτ = tk+l(l/2)

1∫

0

(1− τ)k/2τ l/2−1dτ =

tk+l(l/2)B
(k

2
+ 1;

l

2

)
.

Now, according to Euler,

(l/2)B
(k

2
+ 1;

l

2

)
=

Γ
(

k
2 + 1

)
l
2Γ

(
l
2

)

Γ
(

k+l
2 + 1

) =
Γ
(

k
2 + 1

)
Γ
(

l
2 + 1

)

Γ
(

k+l
2 + 1

) .

Thus, the right hand side of (12.6a) can be transformed into the right hand side
of (12.3b). Q.E.D.

Theorem 12.1. Given the compact convex sets V1 and V2, V1 ⊂ Rn1 , V2 ⊂ Rn2 ,
let MRn1

V1
(t), MRn2

V2
(t) be the Minkowski polynomials for the sets V1 and V2. Then

the Minkowski polynomial MRn1+n2

V1×V2
of the Cartesian product V1×V2 is equal to the

M-product of the polynomials MRn1

V1
and MRn12

V2
:

(12.7) MRn1+n2

V1×V2
= MRn1

V1
◦MRn2

V2
.

A sketch of proof of this theorem can be found in [28], Chapter VI, Section 6.1.9.
A detailed proof is presented below.
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Remark 12.2. Let S be ‘the origin’ of R1, that is the one-point set:
S = {t : t = 0}. Then MS(t) = 2t, that is

(12.8) MS(t) = 2T(t).

Let V be a compact convex set embedded into Rn. The Cartesian product V ×
S × · · · × S︸ ︷︷ ︸

p

can be identified with the convex set V × 0p, V × 0p ⊂ Rn+p. Thus,

MV×S× ···×S︸ ︷︷ ︸
p

(t) = MRn+p

V×0p(t) ,

or

(12.9) 2p(T ◦ · · · ◦T︸ ︷︷ ︸
p

) ◦MRn

V = MRn+p

V×0p .

In view of (12.5) and (12.8), the equality (12.9) is another form of the equality
(11.6).

Proof of Theorem 12.1. Denote

V = V1 × V2 .

According to the identification Rn1+n2 = Rn1×Rn2 , we present a point x ∈ Rn1+n2

as a pair x = (x1, x2), where x1 ∈ Rn1 , x2 ∈ Rn2 . It is clear that

(12.10) dist2Rn1+n2 (x, V ) = dist2Rn1 (x1, V1) + dist2Rn2 (x2, V2).

For τ > 0, τ ′ > 0, τ ′′ > 0, let V (τ), V1(τ ′) and V2(τ ′′) be the τ -neighborhood of V
with respect to Rn1+n2 , the τ ′-neighborhood of V1 w. r. t. Rn1 and τ ′′-neighborhood
of V2 w. r. t. Rn2 respectively:

V (τ) = V + τBn1+n2 , V1(τ ′) = V1 + τ ′Bn1 , V2(τ ′′) = V2 + τ ′′Bn2 ;

V, Bn1+n2 ⊂ Rn1+n2 ; V1, Bn1 ⊂ Rn1 ; V2, Bn2 ⊂ Rn2 .

Here Bn be the Euclidean ball of the radius one in Rn. (With n = n1 + n2, n1, n2

respectively.)

Given a number t, t > 0, consider the t-neighborhood V (t) of V = V1 × V2, and let

0 = τ0 < τ1 < . . . < τN−1 < τN = t

be a partition of the interval [0, t]. From (12.10) it follows that
(
V1(0)× V2(t)

)∪
( ⋃

1≤k≤N

(
V1(τk) \ V1(τk−1)

)× V2

(
(t2 − τ2

k )1/2
))

⊆ V (t) ⊆(12.11)
(
V1(0)× V2(t)

)∪
( ⋃

1≤k≤N

(
V1(τk) \ V1(τk−1)

)× V2

(
(t2 − τ2

k−1)
1/2

))
.

Since V1(τk) ⊇ V1(τk−1),

Voln1

(
V1(τk) \ V1(τk−1

)
= Voln1

(
V1(τk)

)−Voln1

(
V1(τk−1)

)
,
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thus

Voln1+n2

((
V1(τk) \ V1(τk−1)

)× V2

(
(t2 − τ2

l )
1/2

))
=

(
Voln1

(
V1(τk)

)−Voln1

(
V1(τk−1)

)) ·Voln2

(
V2

(
(t2 − τ2

l )
1/2

))
,

l = k − 1 or l = k.

Moreover

Voln1+n2

(
V1(0)× V2(t)

)
= Voln1

(
V1(0)

) ·Voln2

(
V2(t)

)
.

In the notation of Minkowski polynomials, the last equalities take the form

Voln1+n2

((
V1(τk) \ V1(τk−1)

)× V2

(
(t2 − τ2

l )
1/2

))
=

(
MV1(τk)−MV1(τk−1)

)
·MV2

(
(t2 − τ2

l )
1/2

)
, l = k − 1 or l = k,(12.12a)

Voln1+n2

(
V1(0)× V2(t)

)
= MV1(0) ·MV2(t) ,(12.12b)

and also

(12.12c) Voln1+n2

(
V (t)

)
= MV (t).

Since the sets V1(τk) \ V1(τk−1) for different k do not intersect, and none of these
sets intersects with the set V1(0), it follows from (12.11) and (12.12) that

MV1(0) ·MV2(t) +
∑

1≤k≤N

(
MV1(τk)−MV1(τk−1)

)
·MV2

(
(t2 − τ2

k )1/2
)

≤ MV (t) ≤(12.13)

MV1(0) ·MV2(t) +
∑

1≤k≤N

(
MV1(τk)−MV1(τk−1)

)
·MV2

(
(t2 − τ2

k−1)
1/2

)
.

Passing to the limit as max (τk − τk−1) → 0 in the last inequality, we express the
Minkowski polynomial MV (t) as the Stieltjes integral

(12.14) MV (t) = MV1(0) ·MV2(t) +

t∫

0

MV2

(
(t2 − τ2)1/2

)
dMV1(τ) .

According to Lemma 12.1, the expression in the right hand side of (12.14) is equal
to

(
MV1

◦MV2

)
(t). Q.E.D.

13. PROPERTIES OF ENTIRE FUNCTIONS GENERATING
THE MINKOWSKI AND WEYL POLYNOMIALS

FOR THE DEGENERATED CONVEX SETS Bn+1 × 0q.

In this section we investigate location of roots of the entire functions generating the
Minkowski andWeyl polynomials related to the ‘degenerated’ convex sets Bn+1×0q.
These are:

• The entire functions MBn×0q which appears in (11.26), in particular for
q = 1 in (4.7b) .
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• The entire function W p
∂(B∞×0), 1 ≤ p < ∞, which appears in (4.11c) .

• The entire function W∞
∂(B∞×0) which appears in (4.11d) .

The functions MBn×0q , W p
∂(B∞×0), 1 ≤ p < ∞ can not be calculated explicitly

(except a very special values of the parameters p or q), but they can be calculated
asymptotically.

The above mentioned functions admit integrable representations:

(13.1) MBn×0q (t) = q

1∫

0

(1− ξ2)
q
2−1ξ eξt dξ ;

(13.2) W p
∂(B∞×0)(t) = p

1∫

0

(1− ξ2)
p
2−1ξ cos tξ dξ ;

These integral representation can be used for the asymptotic calculation of the
functions MBn×0q , W p

∂(B∞×0).

Another way to to calculate the functions (13.1), (13.2) asymptotically is to use the
structure of their Taylor series. The Taylor coefficients of each of these functions
are ratios of factorials: these functions belong to the so-called Fox-Wright function,
[17].

The Fox-Wright function is defined as

(13.3) pΨq

{
α1 α2 αp

β1 β2 βp
; ρ1 ρ2 ρq

σ1 σ2 σq
; z

}
def=

∑

0≤k<∞

∏p
j=1 Γ(αj k + βj)∏q
j=1 Γ(ρj k + σj)

· xk

k!
.

Comparing (13.3) with the Taylor expansions (11.26), (4.11c), (4.11d), we see that

(13.4) MBn×0q (t) = Γ
(q

2
+ 1

)
· 1Ψ1

{
1
2
1
;

1
2

1+ q
2
; t

}
, 1 ≤ q < ∞ ,

(13.5) W p
∂(B∞×01)(t) = Γ( 1

2 ) · Γ(p
2 + 1) · 1Ψ2

{
1
1 ; 1 1

1
2

p
2 +1 ;− t2

4

}
, 1 ≤ p < ∞ ,

Asymptotic behavior of the functions pΨq(z) has been studied by E.Barnes, [7],
G.N.Watson, [64], G. Fox, [23]), E.M.Wright, [71], [72].

Analysis of the function MBn×0q (t): We would like to investigate for which
q this function belongs to the Hurwitz class H. According to (13.4), we may
readdress the question to the proportional function 1Ψ1

{
1
2
1
;

1
2

1+ q
2
; z

}
. From the

Taylor expansion it is clear that this function is an entire function of exponential
type. Since the Taylor coefficients of the function are positive, its defect 31 is
non-negative. So, the function MBn×0q (t) is in the Hurwitz class H is and only if
all roots of the function 1Ψ1

{
1
2
1
;

1
2

1+ q
2
; z

}
are situated in the open left half plane.

To investigate the location of roots of the last function, we use the following
asymptotic approximation, which can be derived from the results stated in [71],

31We recall that the defect of an entire function H of exponential type is defined by (5.1).



226 VICTOR KATSNELSON

[72]:
For any ε : 0 < ε <

π

2
,

(13.6) 1Ψ1

{
1
2
1
;

1
2

1+ q
2
; z

}
=

=





2
q
2 z−

q
2 ez (1 + r1(z)) , | arg z| ≤ π

2 − ε ;
2

Γ( q
2 )z

−2 + r2(z), | arg z − π| ≤ π
2 − ε ;

2
q
2 z−

q
2 ez + 2

Γ( q
2 )z

−2 + r3(z) , | arg z ∓ π
2 | ≤ ε .

The reminders admit the estimates:

(13.7) |r1(z)| ≤ C1(ε)|z|−1, | arg z| ≤ π

2
− ε ;

|r2(z)| ≤ C2(ε)|z|−2, | arg z − π| ≤ π

2
− ε ;

|r3(z)| ≤ C3

(
|z|−2 + |ez||z|−( q

2+1)
)

, | arg z ∓ π

2
| ≤ ε ,

where the values C1(ε) < +∞, C2(ε) < +∞, C3(ε) < +∞ do not depend on z.

From (13.6), (13.7) it follows that for any ε > 0 the function 1Ψ1

{
1
2
1
;

1
2

1+ q
2
; z

}
has

not more that finitely many roots outside the angular domain {z : | arg z ∓ π
2 | ≤

ε. Inside this domain the analyzed function 1Ψ1

{
1
2
1
;

1
2

1+ q
2
; z

}
has infinitely many

roots, and these roots are asymptotically close to the roots of the approximating
function fq(z):

fq(z) = 2
q
2 z−

q
2

(
ez +

21− q
2

Γ( q
2 )

z
q
2−2

)
.

Investigating the location of roots of the approximating function fq(z), one should
distinguish several cases:
q = 4. In this case, the equation fq(z) = 0 is the equation ez+ 1

2 = 0, so, the roots of
the approximating function can be found explicitly: these root form an arithmetical
progression located on the straight line {z = x + iy : x = − ln 2, −∞ < y < ∞}.
From this and (13.6)-(13.7) it follows that the roots of the the analyzed function

1Ψ1

{
1
2
1
;

1
2

1+ q
2
; z

}
function are asymptotically close to the above appeared straight

line. Thus, for q = 4 all roots of the function 1Ψ1

{
1
2
1
;

1
2

1+ q
2
; z

}
but finitely many are

disposed in the open left half plane. Actually, for q = 4 all roots of this function are
disposed in the open left half plane. To establish this, one need the further analysis.
This will be done a little bit later.
q 6= 4. In this case, the equation fq(z) = 0 is the equation

ez + cq z
q
2−2 = 0 , cq =

21− q
2

Γ( q
2 )

,

where the exponent q
2 − 2 is different from zero. The last equation has infinitely

many roots which have no finite accumulation points and which are asymptotically
close to the ‘logarithmic parabola’

(13.8) x = ( q
2 − 1) ln (|y|+ 1) + ln|c|, −∞ < y < ∞ , (z = x + iy).
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From this and from (13.6)-(13.7) it follows that the roots of the function

1Ψ1

{
1
2
1
;

1
2

1+ q
2
; z

}
are asymptotically close to the logarithmic parabola (13.8). Now

we should distinguish the cases q < 4 and q > 4.
q < 4. In this case, the logarithmic parabola, (13.8) except may by its compact
subset, is located inside the left half plane. Since the roots of the analyzed function
are asymptotically close to this parabola, all roots but finitely many are located in
the left half plane.
q > 4. In this case, the logarithmic parabola, (13.8) except may by its com-
pact subset, is located inside the right half plane. So, all roots of the function

1Ψ1

{
1
2
1
;

1
2

1+ q
2
; z

}
, except finitely many, are located in the right half plane.

Let us formulate this result as

Lemma 13.1. If q > 4, then the entire function MBn×0q has infinitely many
roots within the right half plane. In particular, this function does not belong to the
Hurwitz class H.

Claim 2 of Lemma 11.3 is a consequence of Lemma 13.1.

Lemma 13.2. For q : 0 ≤ q ≤ 2, the function MBn×0q belongs to the Hurwitz
class H.

Proof. For q = 0, the assertion is evident: the function in question is equal to ez.
To investigate the case q > 0, we use the integral representation

(13.9) 1Ψ1

{
1
2
1
;

1
2

1+ q
2
; z

}
=

q

Γ( q
2 + 1)

Iq(z) ,

where

(13.10) Iq(z) =

1∫

0

(1− ξ2)
q
2−1ξ eξt dξ .

The defect of the entire function 1Ψ1

{
1
2
1
;

1
2

1+ q
2
; z

}
is non-negative. So it is enough

to prove that this function has no roots in the closed right half plane. The function
Iq(z) is of the form

(13.11) Iq(z) =

1∫

0

ϕq(ξ)eξzdξ ,

where

(13.12) ϕq(ξ) = (1− ξ2)
q
2−1ξ, 0 ≤ ξ ≤ 1 .

The crucial circumstance is:
For q : 0 ≤ q ≤ 2, the function ϕq(ξ) is positive and strictly increasing on the
interval (0, 1).
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Lemma 13.3. [Polya] If ϕ(ξ) is a non-negative increasing function on the interval
[0, 1], then the entire function

(13.13) I(z) =

1∫

0

ϕ(ξ)eξzdξ

has no zeros in the closed right half plane.

This lemma is a continual analog of one Theorem of one theorem of S.Kakeya.
Proof of this Lemma and the reference to the paper of S.Kakeya could be found in
[48], § 1. We give another proof. We have learned the idea of this proof from [46].
(See Lemma 4 there.)

Proof of Lemma 13.3. Let z = x + iy. Since f(x) > 0 for x ≥ 0, f(x) has no
zeros for 0 ≤ x < ∞. Let us show that f(z) has no zeros for 0 ≤ x < ∞, y 6= 0.
It is enough to consider the case y > 0 only. We prove that Im (e−zf(z)) < 0 for
z = x + iy, x ≥ 0, y > 0, thus f(z) 6= 0 for z = x + iy, x ≥ 0, y > 0. To prove this,
we use the integral representation

(13.14) e−zf(z) =

∞∫

0

ψ(ξ)e−iξydξ ,

where

(13.15) ψ(ξ) =

{
ϕ(1− ξ)e−xξ, 0 ≤ ξ ≤ 1 ,

0, 1 < ξ < ∞ .

In particular,

(13.16) −(Im e−zf(z)) =

∞∫

0

ψ(ξ) sin ξy dξ , z = x + iy, x ≥ 0, y > 0 ,

where the function ψ(ξ) is non-negative and decreasing on [0,∞), strictly decreasing
on some non-empty open interval, and ψ(∞) = 0. Further,

(13.17)
∞∫

0

ψ(ξ) sin ξy dξ =
∞∑

k=0

(k+1)π
y∫

kπ
y

ψ(ξ) sin ξy dξ =

π
y∫

0

( ∞∑

k=0

(−1)kψ(ξ + kπ
y )

)
sin ξy dξ > 0 :

The series under the last integral is a Leibnitz type series. Thus the sum of this
series is non-negative on the interval of integration, and is strictly positive on some
subinterval.

Lemma 13.4. For q = 4, the function MBn×0q belongs to the Hurwitz class H.

Proof. For q = 4, the integral in (13.10) can be calculated explicitly:

(13.18) I4(z) =
(2z2 − 6z + 6)ez + (z2 − 6)

z4
·
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Our goal is to prove that the function (2z2−6z+6)ez+(z2−6)
z4 has no roots in the closed

right half plane. Instead to investigate this function, we will investigate the function

(13.19) f(z) = (2z2 − 6z + 6) + (z2 − 6)e−z .

We prove that the function f(z) has no roots in the closed right half plane other
than the root at the point z = 0 of multiplicity four. The function f is of the form

(13.20) f(z) = g(z) + h(z) , where g(z) = (2z2 − 6z + 6), h(z) = (z2 − 6)e−z .

In the right half plane the function h is subordinate to the function g in the following
sense. For R > 0, let us consider the contour ΓR which consists of the interval IR

of the imaginary axis and of the semicircle CR located in the right half plane:

(13.21) ΓR = IR ∪ CR , where IR = [−iR, iR], CR = {z : |z| = R, Re z ≥ 0 .

It is clear that |g(z)| ≥ 1.75 |z|2, |h(z)| ≤ 1.25 |z|2 if z ∈ CR and R is large enough.
In particular, |g(z)| > |h(z)| if z ∈ CR and R is large enough. On the imaginary
axis,

(13.22) |g(iy)|2 = 36 + 12y2 + 4y4, |h(iy)|2 = 36 + 12y2 + y4 , −∞ < y < ∞,

In particular, |g(z)| ≥ |h(z)| for z ∈ IR, and the inequality is strict for z 6= 0. Thus,

(13.23) |g(z)| ≥ |h(z)| for z ∈ ΓR and R is large enough.

For 0 < ε < 1, consider the function

(13.24) fε(z) = g(z) + (1− ε)h(z) .

The function g, which is a polynomial, has two simple roots: z1,2 = 3±i
√

3
2 . They

are located in the open right half plane. In view of (13.24) and Rouche’s theorem,
for ε > 0 the function fε(z) has precisely two roots z1(ε), z2(ε) in the open right
half plane. For ε positive an very small, the roots z1(ε), z2(ε) are located very close
to the boundary point z = 0. This can be shown by the asymptotic calculation.
Since fε(z) = 6ε + 1−ε

4 z4 + o(|z|4) as z → 0, the equation fε(z) = 0 has the roots
z1(ε), z2(ε) which behave as

z1,2(ε) = ε
1
4 24

1
4 e±

π
4 (1 + o(ε)) as ε → + 0 .

Since for ε > 0 the function fε has only two roots in the open right half plane,
there are no roots other than z1(ε), z2(ε) there. Since f(z) = limε→+0 fε(z),
the function f(z) has no roots in the open right half plane. (We apply Hur-
witz’s theorem.) From (13.22) it follows that the function f does not vanish on
the imaginary axis except the point z = 0. At this point the function f has the
root of multiplicity four. Thus, for q = 4 the function Iq(z) is in the Hurwitz class.

Claim 1 of Lemma 11.3 is a consequence of Lemma 13.2 and Lemma 13.4.

Remark 13.1. From (13.9) and (13.18), the explicit expression follows:

(13.25) 1Ψ1

{
1
2
1
;

1
2

1+ q
2
; z

}
= 2

(2z2 − 6z + 6)ez + (z2 − 6)
z4

for q = 4 .

This expression agrees with the asymptotic (13.6).
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Analysis of the function W p
∂(B∞×0): We may calculate the function

W p
∂(B∞×0) asymptotically expressing it in terms of the appropriate Fox-Wright

function, (13.5), and then refer to the asymptotic expansion of this Fox-Wright
function. However, we derive the asymptotic of the function
W p

∂(B∞×0) from the asymptotic of the functionMBn×0p(t). From (13.1) and (13.1)
it follows that

(13.26) W p
∂(B∞×0)(t) =

1
2
(MBn×0p(it) +MBn×0p(−it)

)
.

Comparing (13.26) with (13.6), we see that

(13.27) W p
∂(B∞×0)(t) =

=





2
p
2 t−

p
2 cos (t− πp

4 ) + 2
Γ( p

2 ) t
−2 + r1(t), | arg t| ≤ ε ,

2
q
2 (te−iπ)−

p
2 cos (t + πp

4 ) + 2
Γ( p

2 ) t
−2 + r2(t), | arg t− π| ≤ ε ,

2
p
2 (t e∓

iπ
2 )−

p
2 e∓it(1 + r3(t)) , | arg t± π

2 | ≤ π
2 − ε ,

where the reminders r1(t), r2(t), r2(t) admit the estimates

(13.28a) |r1(t)| ≤ C1(ε)
(
|t|−(1+ p

2 )e|Im t| + |t|−3
)

, | arg t| ≤ ε ,

(13.28b) |r2(t)| ≤ C2(ε)
(
|t|−(1+ p

2 )e|Im t| + |t|−3
)

, | arg t− π| ≤ ε ,

(13.28c) |r3(t)| ≤ C3(ε) |t|−1|, | arg t∓ π

2
| ≤ π

2
− ε ,

and C1(ε) < ∞, C2(ε) < ∞, C3(ε) < ∞ for every ε : 0 < ε < π
2 . Moreover, the

function W p
∂(B∞×0)(t) is even function of t, and takes real values at real t.

From (13.27), (13.28) it follows that for every ε > 0 the function W p
∂(B∞×0)(t) may

have not more that finitely many roots within the angles {t : | arg (t∓ π
2 | ≤ π

2 −ε} .
Within the angle {t : | arg t| ≤ ε}, the function W p

∂(B∞×0)(t) has infinitely many
roots, and these roots are asymptotically close to the roots of the approximating
function

fp(t) = 2
p
2 t−

p
2 cos (t− πp

4 ) +
2

Γ(p
2 )

t−2 , | arg t| ≤ ε .

(Since the function W p
∂(B∞×0)(t) is even, there is no need to study its behavior

within the angle {t : | arg t− π| ≤ ε}.) The behavior of roots of the approximating
equation fp(t) = 0, that is the equation

(13.29) cos (t− πp
4 ) +

21− p
2

Γ(p
2 )

t
p
2−2 = 0 , | arg t| ≤ ε ,

depends on p.

If 0 < p < 4, then all but finitely many roots of the equation (13.29) are
real and simple, and these roots are asymptotically close to the roots of the
equation cos (t− πp

4 ).
If p = 4, then all but finitely many roots of the equation (13.29) are real and
simple, and these roots are asymptotically close to the roots of the equation
cos (t− π) + 1

2 = 0 = 0.
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If p > 4, then all but finitely many roots of the equation (13.29) are non-real
and simple, they are located symmetrically with respect to the real axis, and
are asymptotically close to the ‘logarithmic parabola’

|y| = (p
2 − 1) ln(|x|+ 1) + ln cp , cp =

21− p
2

Γ(p
2 )

, 0 ≤ x < ∞ .

Thus we prove the following

Lemma 13.5. For each p : 0 ≤ p < ∞, the function W p
∂(B∞×0)(t) has infinitely

many roots. All but finitely many these roots are simple. They lie symmetric with
respect to the point z = 0.

1. If 0 ≤ p ≤ 4, then all but finitely many these roots are real ;
2. If 4 < p, then all but finitely many these roots are non-real. In particular,

the function W p
∂(B∞×0)(t) does not belong to the Laguerre-Polya class L-P.

Lemma 13.6. For 0 < p ≤ 2, as well as for p = 4, the function W p
∂(B∞×0) belongs

to the Laguerre-Polya class.

Proof. The equality (13.26) is a starting point of our reasoning. If the function
MBn×0p(t) is in the Hurwitz class H, then the function

(13.30) Ω(t) = MBn×0p(it)

is in the class P in the sense of of [37].

Definition 13.1. [B.Levin, [37],Chapter VII, Section 4.] An entire function Ω(t)
of exponential type belongs to the class P if:

1. Ω(t) has no roots in the closed lower half-plane {t : Im t ≤ 0}.
2. The defect dΩ of the function ω is non-negative, where

2dΩ = lim
r→+∞

ln |Ω(−ir)|
r

− lim
r→+∞

ln |Ω(ir)|
r

.

In the book [37] of B.Ya.Levin, the following version of the Hermite-Bieler Theorem
is proved:

Theorem 7. [ [37], Chapter VII, Section 4, Theorem 7 ] If an entire function Ω(t)
is in class P, then its real and imaginary parts RΩ(t) and IΩ(t):

RΩ(t) =
Ω(t) + Ω(t)

2
, IΩ(t) =

Ω(t)− Ω(t)
2i

,

possess the properties:

1. The roots of each of the functions RΩ(t) and IΩ(t) are real and simple;
2. The root sets of the functions RΩ(t) and IΩ(t) interlace.

Let us apply this theorem to the function Ω(t) defined by (13.30):

Ω(t) = MBn×0p(it) ,
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taking into account that the function MBn×0p is real:
MBn×0p(t) ≡ MBn×0p(t), or what is the same, MBn×0p(−it) ≡ MBn×0p(it).
Hence,

RΩ(t) =
1
2
(MBn×0p(it) +MBn×0p(−it)

)
,

or taking (13.26) into account,
RΩ(t) = W p

∂(B∞×0)(t) .

Thus, the following result holds:

Lemma 13.7. If the function MBn×0p(t) belongs to the Hurwitz class H, then the
function W p

∂(B∞×0)(t) belongs to the Laguerre-Polya class L-P.

Combining Lemma 13.7 with Lemmas 13.2 and 13.4, we obtain Lemma 13.6.

Remark 13.2. For the function Ω(t) of the form (13.30), its real part RΩ(t) IΩ(t)
has infinitely many non-real roots if p > 4. Nevertheless, all roots of the imaginary
part IΩ(t) are real for every p ≥ 0.

Indeed, according to (13.1) and (13.30),

(13.31) IΩ(t) = p

1∫

0

(1− ξ2)
p
2−1ξ sin ξt dξ .

According to A.Hurwitz (see [64], section 15.27), for every ν ≥ − 1, all roots of the
entire function

( t

2

)−ν

Jν(t) =
∞∑

l=0

(−1)l

l! Γ(ν + l + 1)

( t2

4

)l

are real. (Jν(t) is the Bessel function of the index ν.) For ν > 1
2 , the function

( t
2 )−νJν(t) admits the integral representation

(13.32)
1
2

( t

2

)−ν

Jν(t) =
1

Γ(ν + 1
2 ) Γ( 1

2 )

1∫

0

(1− ξ2)ν− 1
2 cos tξ dξ .

Thus, for ν > − 1
2 all roots of the entire function

1∫
0

(1 − ξ2)ν− 1
2 cos tξ dξ are real.

If all roots of a real entire function of exponential type are real, then all roots of

its derivative are real as well. Thus, for ν > − 1
2 all roots of the function

1∫
0

(1 −
ξ2)ν− 1

2 ξ sin tξ dξ are real. However, for ν = p−1
2 , the last function coincides with

the function 1
p

IΩ(t).

For p = 3, we do not know whether the function W p
∂(B∞×0)(t) belongs to the

Laguerre-Polya class or not. Our conjecture is that YES. Let us formulate our
conjectures more precisely. Let us formulate our conjectures in terms of the Fox-
Wright functions.
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CONJECTURE 1. For 0 ≤ λ ≤ 2, all roots of the Fox-Wright function

(13.33) 1Ψ1

{
1
2
1
;

1
2

1+λ
; t

}
=

∑

0≤k<∞

Γ(k
2 + 1)

Γ(k
2 + 1 + λ)

tk

k!

lie in the open left half plane.

We proved that the answer is affirmative for 0 ≤ λ ≤ 1, and for λ = 2.

CONJECTURE 2. For 0 ≤ λ ≤ 2, all roots of the Fox-Wright function

(13.34) 1Ψ2

{
1
1 ; 1

1
2

1
1+λ ; t

}
=

∑

0≤l<∞

Γ(l + 1)
Γ(l + 1

2 )Γ(l + 1 + λ)
tl

l!

are negative and simple.

We proved that the answer is affirmative for 0 ≤ λ ≤ 1, and for λ = 2.

From Hermite-Bieler theorem it follows that if Conjecture 1 holds for some λ, then
for this λ Conjecture 2 holds as well.

The conjectures 1 and 2 are related to some deep questions related to ‘meromorphic
multiplier sequences’. (See [17], Problem 1.1.)

14. CONCLUDING REMARKS.

1. In the present paper we use geometric consideration to a small extent. The
only general geometric tool which we used was the Alexandrov-Fenchel inequalities.
We did not use the monotonicity properties of the coefficients of the Minkowski
polynomials. If V0, V1, V2 are convex sets, such that

V1 ⊆ V0 ⊆ V2

and MV0(t), MV1(t), MV2(t) are their Minkowskii polynomials,

MVj (t) =
∑

0≤k≤n

mk(Vj)tk, j = 0, 1, 2,

then for the coefficients of these polynomials the inequalities

mk(V1) ≤ mk(V0) ≤ mk(V2) , 0 ≤ k ≤ n.

hold. In this connection, the use of the Kharitonov criterion of stability may be
helpful. (Concerning the Haritonov criterion see Chapters 5 and 7 of the book [9]
and the literature quoted there.) The Kharitonov criterion deals with the ‘interval
stability’ of polynomials. In its simplest form, this criterion allow to determine
whether the polynomial

(14.1) f(t) =
∑

0≤k≤n

aktk

with the real coefficients ak is stable from the information that these coefficients
belongs to some intervals:

(14.2) a−k ≤ ak ≤ a+
k , 0 ≤ k ≤ n .
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Applying this criterion, one need to construct certain polynomials from the given
numbers a−k , a+

k , 0 ≤ k ≤ n . (There are finitely many such polynomials.) If all
these polynomials are stable, then the arbitrary polynomial f(t), (14.1), whose
coefficients satisfy the inequalities (14.2), is stable.

2. In the example of a convex set V whose Minkowski polynomial is not dissipative,
the set V are very ‘flattened’ in some direction. (See Theorem 2.7.)

What one can say about Minkowski polynomials of those convex set V which are
‘isotropic’?

The notion of isotropy may be defined in the following way.

Definition 14.1. The solid convex set V , V ⊂ Rn, is said to be isotropic (with
respect to the point 0), if the integral

∫

V

|〈x, e〉|2dvn(x)

takes the same value (i.e. is constant with respect to e) for every vector e ∈ Rn such
that 〈e, e〉 = 1 . Here 〈 . , . 〉 is the standard scalar product in Rn, and dvn(x) is the
standard n-dimensional element on volume.
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2nd ed: Birkhäuser Verlag, Basel·Boston·Berlin 2005.
Russian transl. of 1th ed.:
Грей,А. Трубки. Мир, Москва 1993.
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ichungen. Journ. fúr Reine Angew. Mathematik., 144 (1914), 89–113. Reprinted in [47], 100–
124.
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[52] Schläfli, L. Gesammelte Mathematische Abhandlungen. Band 1. Birkhäuser, Basel 1950, 392
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