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ON H.WEYL AND HMINKOWSKI POLYNOMIALS

VICTOR KATSNELSON

ABSTRACT. We introduce certain polynomials, so-called H.Weyl and
H.Minkowski polynomials, which have a geometric origin. The location of
roots of these polynomials is studied.

Erasm Darwin, the nephew of the great sci-
entist Charles Darwin, believed that some-
times one should perform the most unusual
experiments. They usually yield no results
but when they do .... So once he played
trumpet in front of tulips for the whole day.
The experiment yielded no results.

1. H WEYL AND HMINKOWSKI POLYNOMIALS.

Let M be a smooth manifold of dimension n:
dim M = n,

which is embedded injectively into the Euclidean space of a higher dimension, say
n+p, p > 0. We identify M with the image of this embedding, so we consider M
as a subset of R""?;

M C R™P.
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For x € M, let N, be the normal subspace to M at the point x. N, is an affine
subspace of the ambient space R"?,

dimN, = p.
For t > 0, let
(1.1) D,(t) ={y e N, : dist(y,z) < t},

where dist(y,x) is the Euclidean distance between = and y. If the manifold M is
compact, and ¢ > 0 is small enough, then

(1.2) Dy ()N D,,(t) =0 for z1 € M,x2 € M, 1 # 2.
Definition 1.1. The set
(1.3) O Y D)

zeM

is said to be the tube neighborhood of the manifold M, or the tube around M. The
number t is said to be the radius of this tube.

Is it clear that for manifolds M without boundary,
(1.4) TR () = {2 € R™P ; dist(z, M) < ¢},

where dist(z,M) is the Euclidean distance from z to M. Thus, for manifolds
without boundary, the equality (1.4) could also be taken as a definition of the tube
Te(t). However, for manifolds M with boundary the sets T% " (t) defined by (1.3)
and (1.4) do not coincide. In this, more general, case the tube around M should
be defined by (1.3), but not by (1.4). Hermann Weyl, [69], obtained the following
result, which is the starting point of our work:

Theorem [H.Weyl]|. Let M be a smooth compact manifold, without boundary or
with boundary, of the dimension n: dimM = n, which is embedded in the Fuclidean
space R"*P p > 1.

L. Ift > 0 is small enough', than the (n + p) - dimensional volume Vol,,4+p of

the tube ‘IR;,[” (t) around M, considered as a function of the radius t of this
tube, is a polynomial of the form

(5]
(1.5 Vol (350 (6) = w7 (3 war,, 00) - #),
=0
where
/2
(1.6) wp = —
SERACES)

1s is the p-dimensional volume of the unit p - dimensional ball.

1f the condition (1.2) is satisfied.
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II. The coefficients wa (M) depend on p as:

27'T(24+1)
(17) wap M) = Fy oy RO, 0<i<[5],
where the values kg (M), 0 < I < [5], may be expressed only in terms of

the intrinsic metric? of the manifold M. In particular, the constant term
wo,p(M) = ko(M) is the n-dimensional volume of M:

(1.8) ko (M) = Vol,, (M).

H. Weyl, [69], have expressed the coefficients ko (M) as integrals of certain rather
complicated curvature functions of the manifold M.

Remark 1.1. In the case when M is compact without boundary and even dimen-
sional, say n = 2m, the top coefficient ko (M) is especially interesting:

(1.9) Fam (M) = (27m)™ x(M),

where x(M) is the Euler characteristic of M.

Definition 1.2. Let M be a smooth manifold, without boundary or with bound-

ary, of the dimension n: dimM = n, which is embedded in the Fuclidean space
R™? p>1, and QR;’/[M (t) is the tube of the radius t around M, (1.1).

The polynomial Wy (t) which appears in the expression (1.5) for the volume
Vol p (TR;;W (t)) of this tube:

(1.10) Vol 4p (‘IR;? (t)) = wpt? - WE.(t) for small positive ¢,
is said to be the H. Weyl polynomial of the index p for the manifold M.

Remark 1.2. The radius t of the tube is a positive number, so the formula (1.10) is
meaningful for positive t only. However the polynomial WJ\’/’[ is determined uniquely
by its restriction on any fixed interval [0,¢], € > 0, and we may and will consider
this polynomial for every complex t.

Definition 1.3. Let M be a smooth manifold of the dimension n: dimM = n,
which is embedded in the Euclidean space R"P, p > 1, and let Wi be the Weyl
polynomial of M (defined by (1.2), (1.10) ).
The coefficients ko (M), 0 < I < [n/2] which are defined in terms of the Weyl
polynomial W3 by the equality
(5] 5
27IT(2 4+ 1)
1.11 wWh =Y 2 L
(1.11) w(®) —=T(E+1+1)

are said to be the Weyl coefficients of the manifold M.

w3

Koy (M) - t2

Remark 1.3. Often, the factor in (1.11) appears in a ‘decoded’ form:

2—ZF(£+1) _ 1
(112) F(g +21_|_1) B (p+2)(p+4) (p+21).

2That is the metric which is induced on manifold M from the ambient space R"tP,
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Remark 1.4. Defining the Weyl polynomials W%, of the manifold M by (1.10),
we assumed that M is already embedded into R™"™P. The tube around M and its
volume are primary in this definition. So, in fact we defined the notion of the
Weyl polynomial not for the manifold M itself but for manifold M which is already
embedded in an ambient space. Moreover, we assume implicitly that from the very
beginning the manifold M carries a ‘natural’ Riemannian metric, and that this
‘original’ Riemannian metric coincides with the metric on M induced from the
ambient space R"TP. (In other words, we assume that the imbedding is isometrical.)
However, in this approach the ‘original’ metric does not play an ‘explicite’ role in the
definition (1.1)-(1.10)-(1.11) of the Weyl polynomial WY, and the Weyl coefficients
ko (M).

There is another approach to define the Weyl coefficients and the Weyl polynomials,
which does not require an actual embedding M into the ambient space. Starting from
the given Riemannian metric on M, the Weyl coefficients koy(M) can be introduced
formally, by means of the Hermann Weyl expressions for koy(M) in terms of the
given metric on M. Then the Weyl polynomials WY (t) can be defined by means of
the expression (1.11). In this approach, the intrinsic metric of M is primary, but
not the tubes around M and their volumes.

If the codimension p of M equals one?, dimM = n, the Weyl polynomial is of the
form:

-~ (%]
(1.13) Vol 11(T%5 (1) =2t - Wac(t), Waclt) = wo (M) - %,

1=0
where
2-'1(3)
1.14 M) = ———2—ky(M), 0<1<[2].

In (1.13) the ‘shortened’ notation is used: wq; (M) instead of w1 (M). The factor
2t is the one-dimensional volume of the one-dimensional ball of radius ¢, that is the
length of the interval [—t,¢].

If the hypersurface M is orientable?, then the tube Ty () can be decomposed into
the union of two half-tubes, say, Ti.(t) and Ty, (t). The half-tubes T4, () and Ty, (t)
are the parts of the tube Tp¢(¢) which are situated on the distinct sides of M. In
particular, if the hypersurface M is the boundary of a set V' : M = 0V, then

(1.15) T =IO\ V, T(t) =) N V.

The (n+ 1) — dimensional volumes Vol,,1(T,;(t)) and Vol,4+1(T;(¢)) of the half-
tubes also are polynomials of ¢. These polynomials are of the form ®:

(1.16) Vol 1 (T (1) = t Wikt (t),  Vol1 (T (1) = t Wy (t),

3In other words, M is a hypersurface in R?+1.

4The orientation of the hypersurface M can be specified by means of the continuous vector
field of unit normals on M. The half-tubes Tmt[(t) and ¥ (t) are the parts of the tube Ty(t)
corresponding to the ‘positive’ u ‘negative’ directions of these normals.

5The equalities (1.16), (1.17) is one of the results of the theory of tubes around manifolds. See
[26], 8], [1]
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where:
3] (21

(1.17a) Wat(t) =D Jwa(M) -2+t Y war (M) -7,
=0 =0
3] (21

(1.17b) Wiyt () =D wa (M) -7 =t > war 2 (M) - 17,
=0 =0

and the coefficients wq; (M) are the same that in (1.13)-(1.14). Unlike the coefficients
woy (M), the coefficients wo;+1(M) depend not only on the ‘intrinsic’ metric of the
manifold M, but also on how M is embedded to R**!. It is remarkable that when
the volumes of the half-tubes are summed:

2Wae(t) = Wyt (t) + W (t),

the dependence on the way of embedding disappears. As it is seen from (1.17),
Wy (t) = Wik (—t), hence

(1.18) 2Wi(t) = Wyt (t) + Wyt (—t).

Remark also that the volumes of the half-tubes can be expressed only in the terms
of the polynomial Wy:

(1.19a) Vol 1(T:(t)) =t Wyt (t) for small positive ¢.

(1.19b) Vol 4+1(Ty (1)) = t Wyt (—t) for small positive .

The theory of the tubes around manifolds is presented in [26], and to some extent in
[8], Chapter 6, and in [1], Chapter 10. The comments of V.Arnold [6] to the Russian
translations of the paper [69] by H.Weyl are very rich in content.

In the event that the hypersurface M is the boundary of a convex set V: M = 9V,
the Weyl polynomial W3 can be expressed in terms of polynomials considered in
the theory of convex sets.

In the theory of convex sets the following fact, which was discovered by Hermann
Minkowski, [41, 42], is of principal importance: Let Vi and Va be compact convex sets
in R™. For positive numbers t1,ta, let us form the ‘linear combination’ t1 Vi +t2Va of
the sets Vi u Vo (in the sense commonly accepted in the theory of convex sets). Then
the n-dimensional Euclidean volume Vol,, (t1V1 + t2Va) of this linear combination,
considered as a function of the variables t1,ts, is a homogeneous polynomial of
degree n. (It may be equal zero identically.) Choosing V' as V; and the unit ball B™
of R™ as V5, we conclude :

Let V' be a compact convex set in R™, B™ be the unit ball of R™. Then n-dimensional
volume Vol,,(V + tB™), considered as a function of the variable t € [0,00), is a
polynomial of degree n.

Definition 1.4. Let V, V C R™, be a compact convezx set. The polynomial which
expresses the n-dimensional volume of the linear combination V + tB™ as a
function of the variable t € [0,00) is said to be the Minkowski polynomial of the set
V and is denoted by M (t):

(1.20) ME" (t) = Vol,(V +tB"), (t€[0,00)).
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The coefficient of Minkowski polynomial are denoted by mﬂ,in (V):
(1.21) MY ()= > m§ (V)tk.
0<k<n

If there is no need to emphasize that the ambient space is R™, the shortened notation
My (t), mg(V) for the Minkowski polynomial and its coefficients will be used.

Of course,
MY (t) = Voln (TF (1),
where U (t)) is t-neighborhood of the set V' with respect to R™:

(1.22) T (t) = {x e R™ : dist(z, V) < t}.
It is evident that
(1.23) mo(V) = Vol,,(V), and m,(V) = Vol,(B").

If the boundary OV of a convex set V' is smooth, then the (n — 1)-dimensional
volume (‘the area’) of the boundary 0V can be expressed as

(1.24) ml(V) = Voln_l(6V) .

For a convex set V', whose boundary 0V may be non-smooth, the formula (1.24)
serves as a definition of the ‘area’ of V. (See [10],31; [41],§ 24; [66],6.4.) Let us
emphasize that the Minkowski polynomial is defined for an arbitrary compact con-
vex set V', without any extra assumptions. The boundary of V' may be non-smooth,
and the interior of V may be empty. In particular, the Minkowski polynomial is
defined for any convex polytope.

Definition 1.5. Let V, V. C R", be a convex set. V is said to be solid if the interior
of V is not empty, and non-solid if the interior of V is not empty.

Definition 1.6. The n - dimensional closed convex surface M is the boundary OV of
a solid compact convex set V:

(1.25) M=09V, VcCR".

The set V is said to be the generating set for the surface M.

Lemma 1.1. If the closed n - dimensional convex surface M is also a smooth mani-
fold, then the Weyl polynomial WJ‘}[ of the surface M and the Minkowski polynomial

M]R{,"H of its generating set V' are related in the following way:
Rn+1

(1.26) AW () = ME (1) — M%7 (<),

PrROOF OF LEMMA 1.1. We assign the positive orientation to the vector field
of exterior normals on JV. Let ‘Igv(t) is the ‘exterior’ half-tube around 0V. For
positive t,

V+tB"T = VUL (1),

Moreover the set V' and derv(t) do not intersect. Therefore,
Vol,, 41 (V + tB™ 1) = Vol, 11 (V) + Vol,41 (T4, (¢)).

Hence,
My (t) = My (0) + tWyi(t), M=V,
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where W;[ is a polynomial defined in (1.16) (with n replaced by n+1: now dim V' =
n+ 1). Then also
My (—t) = My (0) — t Wyt (1)

Thus, (1.19),
My (t) = My (=t) = Vol 11 (F5 (1)) + Volnr1 (Toy (1))
or
My () = My (—t) = t (Wyt () + Wyt (—1)).
The equality (1.26) follows from the last equality and from (1.18). Q.E.D.

Since the Minkowski polynomial is defined for an arbitrary compact convex set,
the formula (1.26) can serve as a definition of the Weyl polynomial of an arbitrary
closed convex surface, smooth or non-smooth. Even more, we can define the Weyl
polynomial for the ‘improper convex surface 9V’, where V' is a non-solid compact
convex set.

Definition 1.7. Let V, V C R*"", be a compact convex set. The boundary OV of
the set V' is said to be the boundary surface of V.. The boundary surface of V is said
to be proper if V is solid, and improper if V' is non-solid.

The following improper closed convex surface plays a role in what follow:

Definition 1.8. Let V, V C R™, be a compact convex set which is solid with
respect to R™. We identify R"™ with it image R™ x 0 by the ‘canonical’ embedding®
R™ into R™*1, and the set V with the set V x 0 considered as a subset of R™H!:
V x 0 C R 1. The set V x 0, considered as a subset of R"*!, is said to be the
squeezed cylinder with the base V.

Remark 1.5. The set V x 0 can be interpreted as a ‘ cylinder of zero hight’ whose
dateral surface’ is the Cartesian product OV x [0,0], and whose bases, lower and
upper, are the sets V x (=0) and V x (40):

(1.27) OV x0) = ((0V) x [0,0]) U (V x (=0)) U (V x (+0)) .

In other words, the boundary surface O(V x 0) can be considered as ‘the doubly
covered’ set V. In particular,

(1.28) dimo(V x 0) =n.

and the number Vol,, (V x (=0))+Vol,(V x (+0)) = 2 Vol (V) can be naturally inter-
preted as the ‘n- dimensional area’ of the n- dimensional convex surface (improper)
oV x 0):

(1.29) Vol,, (9(V x 0)) = 2 Vol (V).

On the other hand, the equality (1.24), in which the squeezed cylinder V x 0 C R™*+!
plays the role of the set V' C R"”, takes the form

(1.30) Vol,((V x 0)) = m®"" (V x 0),

n+1(

where mﬂi Vx0), k=0,1,...,n+ 1, are the coefficients of the Minkowski

polynomial M 1{{}";01 (t) of the squeezed cylinder V' x 0 with respect to the ambient
space R, (See (1.21).)

6The point z € R™ is identified with the point (x,0) € R?*1.
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In section 11 we prove the following statement, which appears as Lemma 11.1 there:

Lemma 1.2. Let V be a compact convex set in R™, and
(1.31) MY ()= > mi (V)k
0<k<n

be the Minkowski polynomial with respect to the ambient space R™. Then the

Minkowski polynomial Mon( ) with respect to the ambient space R" 1 is equal
to:

1 IOTE+1) g
(1.32) MY () =ty —22 : my (V)
0<k<n (T +1)
So,
R F(

mE T (Vx0)=0, mf (Vx0)=

In particular, m&"" (V x 0) = 2m%" (V). Since m%" (V) = Vol,,(V), (1.23),

(1.33) mE " (V x 0) = 2Vol, (V).

The equalities (1.29), (1.30) and (1.33) agree.

Remark 1.6. Any non-solid compact convexr set V' can be presented as the limit
(in the Hausdorff metric) of a monotonic” family {V.}.~o of solid convex sets V. :

V = lim V..

e—+0

Moreover, the approxzimating family {V:}c~0 of convex sets can be chosen so that
the boundary O(V:) of each set V. is a smooth surface. Thus, the improper convex
surface OV may be presented as the limit of proper convex smooth surfaces O(Vy)
which shrink to OV :

oV = lim 9(VL).

e——+40

Definition 1.9. Let V, V C R™*!, be an arbitrary compact convex set. The Weyl
polynomial W, (t) of the convex surface M = OV, proper or improper, is defined
by the formula (1.26). In other words, the Weyl polynomial tWalv is defined as the

odd part of the Minkowski polynomial M]%H] :
(1.34) t-Wa(t) = M5 (1),

where the notions of the even part €P and the odd part °P of an arbitrary polynomial
P are introduced in Definition 7.2 below.

Remark 1.7. In the case when the set V is solid and its boundary OV is smooth,
both definitions, Definition 1.9 and Definition 1.2 of the Weyl polynomial W 3/,
are applicable to OV . In this case both definitions agree.

"The monotonicity means that V., D Vo DV for &/ > &” > 0.
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Remark 1.8. Why may be useful to consider improper convex surfaces and their
Weyl polynomials?

As it was remarked (Remark 1.6), every improper convex surface OV is a limiting
object for a family of proper smooth convex surfaces O(V). It turns out that the
Weyl polynomial for this improper surface is the limit of the Weyl polynomials for
this ‘approzimating’ family {V:}cso of smooth proper surfaces.

So the Weyl polynomials for the improper surface OV may be useful in the study
of the limiting behavior of the family of the Weyl polynomials for the proper sur-
faces O(Vy) shrinking to the improper surface OV . In particular, see Theorem 2.7
formulated in the end of Section 2, and its proof presented in the end of Section
11.

Let M be an n-dimensional closed convex surface which is not assumed to be
smooth, and V' is the generating convex set for M: M = 9V. Let M%}"H be the
Minkowski polynomial for V', defined by Definition 1.4. According to Definition 1.9,
the Weyl polynomial Wj\}[ is equal to

(1.35) W)= > maa (V)
o<i<[3]

in other words,
(1.36) wo (M) = ma 1 (V), 0<1<[F],

where wo; (M) are the coefficients of the Weyl polynomial W3, (1.13), of the n-
dimensional surface M with respect to the ambient space R"™! and m(V), k =

2] + 1, are the coefficients of the Minkowski polynomial M R‘;H:

(1.37) M%) = Vol (V+tB"Y, MY @)= Y m(V)tE.
0<k<n+1

Definition 1.10. Given a closed n- dimensional convezr surface M, proper or not,
M = 9V, the numbers ky (M), 0 <1 < [Z], are defined as

lF(l + % + 1) R+

(1.38) ko (M) =2 F(%+1) Mg

V),

where mﬂinﬂ (V)), k = 2l+1, are the coefficients of the Minkowski polynomial MH%,"H

for the generating set V, (1.37). The numbers ky(V), 0 <1< [2], are said to be
the Weyl coeftficients for the surface M.

Remark 1.9. According to Lemma 1.2, in the event that the (improper) convex
surface M, dim M = n, is the boundary of the squeezed cylinder (see Definition 1.8),
that is if M = 9(V x 0), where V. C R", the Weyl coefficients ko (M), 0 <1 < [§],
are:

(1.39) k(M) = 21T (1+ 1) mly (V)

where m" (V), k = 21, are the coefficients of the Minkowski polynomial M]%/" for
the base V' of the squeezed cylinder O(V x 0).
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Remark 1.10. In the case when convex surface M, M = OV, is smooth and ‘prop-
er’, that is the set V generating the surface M is solid, both definitions, Defini-
tion 1.10 and Definition 1.3 of the Weyl coefficients koi (M) are applicable. Accord-
ing to (1.13)-(1.14) and (1.36)-(1.38), in this case® both definitions agree.

Note, that according to (1.24), (see also Remark 1.5),
(1.40) ko(M) = Vol,,(M)
for every n-dimensional closed convex surface M.

Lemma 1.3. . Let V, V C R", be a solid (with respect to R™) compact convex
set. Then the coefficients mﬂ,fn (V), 0 < k < n, of its Minkowski polynomials® are
strictly positive: mR"(V) >0, 0<k<n.

Il. Let M be a proper compact convex surface, dimM = n. Then all its Weyl
coefficients k(M) are strictly positive: kg (M) >0, 0 <1< [F].

[Il. Let M be the boundary surface'®of a squeezed cylinder whose base V, dimV =
n, is a compact convexr set which is solid with respect to R™. Then all its Weyl
coefficients ka (M) are strictly positive: kg (M) >0, 0 <1< [F].

The statement | of Lemma 1.3 is a consequence of a more general statement related
to the monotonicity properties of the mixed volumes. This will be discussed later, in
Section 8. The statements Il and Il of Lemma 1.3 are consequences of the statement
| and (1.38), (1.39).

Definition 1.11. Given a closed n - dimensional convex surface M, the Weyl poly-

nomial W of the indexp, p=1,2,3, ..., for M is defined as
(5] o1 pyp
2-IT(Z +1)
1.41 WEH) =Y =2 k(M) - %,
( ) M() s F(%+l+1) 2l( )

where the Weyl coefficients ko (M) are introduced in Definition 1.10.

Let us emphasize that in Definition 1.11 no assumption concerning the smoothness
of the surface M are made. We already mentioned that the definitions of the Weyl
coeflicients ko; for smooth manifolds and for convex surfaces agree. Therefore, Defi-
nitions 1.2-1.3: (1.3)-(1.10)-(1.11) of the Weyl polynomial and the Weyl coefficients
for a smooth manifold and Definition 1.11 of the Weyl polynomials for a closed con-
vex surface agree if the convex surface is also a smooth manifold.

We also define the Wy¥ of the infinite index.

Definition 1.12. Let M, dimM = n be either a smooth manifold, or a closed
compact convex surface, and let ky (M), 1 =0, 1, ..., [§], be the Weyl coefficients
of M, defined by Definition 1.3 in the smooth case, and by Definition 1.10 in the
convex case. The Weyl polynomial of the infinite index Wy¥ is defined as

3]
(1.42) W(t) =Y kau(M) -t
=0

8 Actually, the equalities (1.14), (1.36) served as a motivation for Definition 1.10.
9See (1.20), (1.21).
10gee Definition 1.8 and Remark 1.5.
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Remark 1.11. In view of (1.12),

2] :

P _ p .
W (Vpt) = kO(M)+z D) (2 k(M) - £

3

Therefore, the polynomial WSg(t) can be considered as a limiting object for the
family {V(/'Jﬁ(t)}p:1 5 5 of the Weyl polynomials of the index p:

(1.43) WS(t) = lim Wh(y5t).

Thus, the sequence {Wjﬁ}p:1 2,3, ...

2[%], as well as the ‘limiting’ polynomial W$; are related to any closed n -
dimensional convex surface M.

of the Weyl polynomials, deg W%, =

Weyl polynomials (and Minkowski polynomials in the convex case) reflect somehow
intrinsic properties of the appropriate manifolds. On the other hand, there are known
very distinguished and remarkable geometrical objects such as regular polytopes,
compact matricial groups, spaces of constant curvatures, etc. Our belief is that the
Weyl polynomials related to these geometric objects are of fundamental importance
and possess interesting properties. These polynomials should be carefully studied. In
particular, the following question is natural:
What can we say about roots of such polynomials?

2. FORMULATION OF MAIN RESULTS.

In this section we formulate the main results of this paper about location of the
roots of the Minkowski and Weyl polynomials related to convex sets and surfaces.
Dissipative and conservative polynomials. We introduce two classes of polynomials:
dissipative polynomials and conservative polynomials. In many cases the Minkowski
polynomials related to convex sets are dissipative, and the Weyl polynomials are
conservative.

Definition 2.1. The polynomial M is said to be dissipative if all roots of M are
situated in the open left half plane {z : Rez < 0}. The dissipative polynomials are
also called the Hurwitz polynomials, or the stable polynomials.

Definition 2.2. The polynomial W is said to be conservative if all roots of W are
purely imaginary and simple, in other words if all roots of W are contained in the
imaginary axis {z : Rez = 0}, and each of them is of multiplicity one.

Theorem 2.1. Given a closed compact conver surface M, dimM =n M = 9V,
let Wy be the Weyl polynomial of index 1 related to M, and let M]%nﬂ be the
Minkowski polynomial related to the set V.

If the polynomial MH%,"H is dissipative, then the polynomial W}V[ 18 conservative.

The proof of Theorem 2.1 is based on the relation (1.26). Theorem 2.1 is derived
from (1.26) using Hermite-Biehler theorem. We do this in Section 7.
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From (1.43) it follows that if for every p the polynomial W has only purely imag-
inary roots, than all the roots of the polynomial W;° are purely imaginary as well.
In particular, all the roots of the polynomial Wy are purely imaginary if for every
p the polynomial WJ\’,’[ is conservative.

However, what is important for us that is the converse statement:

Lemma 2.1. If the polynomial WP is conservative, then all the polynomials
WJ"/’[, p=1,2,3,..., are conservative as well.

Lemma 2.1 is the consequence of some Laguerre result about the multiplier se-
quences. Proof of Lemma 2.1 appeares in the end of Section 6.

Keeping in mind Lemma 2.1, we will concentrate our efforts on the study of the
location of the roots of the Weyl polynomial W of the infinite index.

The case of low dimension. In this section we discuss the Minkowski polynomials
of convex sets V, V' C R”, and the Weyl polynomials of closed convex surfaces M,
dimV = n, for ‘small’ n: n =2, 3, 4, 5.

Theorem 2.2. Let n be one of the numbers 2, 3,4 or 5, and let V, V C R™, be a
solid compact convex set. Then the Minkowski polynomial M&” is dissipative.

Theorem 2.3. Let n be one of the numbers 2, 3, 4 or 5, and let M be closed

propert convex surface of dimension n.

Then:
1. The Weyl polynomial W5t of infinite index is conservative.
2. For everyp =1,2,3, ..., the Weyl polynomial W of index p is conser-
vative.

Theorem 2.2 and 2.3 are proved in section 10. Proving these theorems, we combine
the Routh-Hurwitz criterion, which express the property of a polynomial to be
dissipative in terms of its coefficients, and the Alexandrov-Fenchel inequalities,
which express the logarithmic convexity property for the sequence of the cross-
sectional measures of a convex set.

Selected ’'regular’ convex sets: balls, cubes, squeezed cylinders. For large n, the
statements analogous to Theorems 2.2 and 2.3 do not hold. If n is large enough,
then there exists such solid compact convex sets'? V, dimV = n, that Minkow-
ski polynomials M]{{}"H are not dissipative, and the Weyl polynomials W}, are
not conservative. However, for some ‘regular’ convex sets V, like balls and cubes,
the Weyl polynomials W7, are conservative, and the Minkowski polynomial are
dissipative in any dimension.

Let us present the collection of ‘regular’ convex sets and their boundary surfaces
which we are dealing with further. Such sets and surfaces will be considered for
every n.

HThat is the generating set V is solid.
12Very flattened ellipsoids can be taken as such V. See Theorem 2.7.
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¢ The unit ball B™:

(2.1)

(2.2)

B'={r=(a1,....2,) €R": ¥ |en2< 1},
1<k<n

7Tn/2

Vol,,(B") = EaT

¢ The squeezed spherical cylinder B x 0, B” x 0 C R**1,
¢ The unit sphere,

(2.3)

S"={x=(21,..., Tn, Tny1) ER"TT: Z i |* =13,
1<k<n+1

in other words, the boundary surface of the unit ball: S* = 9B"+! |

Vol,,(S™) = (n + 1) Vol,,41 (B™1).

¢ The boundary surface of the squeezed spherical cylinder (B™ x 0) :

(2.4)

Vol,, (8(B™ x 0)) = 2 Vol,,(B").

¢ The unit cube Q™:

(2.5)
(2.6)

Q" ={x=(z1,...,z,) ER™: 1211?§n|xk‘ <1},

Vol,, (Q") = 2.

¢ The squeezed cubic cylinder Q™ x 0, Q™ x 0 C R**1,
¢ The boundary surface Q"' of the unit cube:

(2.7)

Vol,, (0Q™1) = (n + 1) Vol,, 11 (Q").

¢ The boundary surface of the squeezed cubic cylinder 9(Q™ x 0):

(2.8)

Vol,, (9(Q™ x 0)) = 2 Vol,,(Q") .

The location of roots of the Minkowski and Weyl polynomials
related to the ‘regular’ convex sets.

Let us state the main results about location of roots of the Minkowski polynomials
and the Weyl polynomials related to the above mentioned ‘regular’ convex sets and
their surfaces.

Theorem 2.4. For everyn=1,2,3, ...:

1.

The Minkowski polynomial MY, related to the ball B" is dissipative, more-
over all its roots are negative'3.

The Minkowski polynomial M%Z;lo related to the squeezed spherical cylinder
B™x0 is of the form* Mﬁézzlo (t) = t.D%T;O(t), where the polynomial DR&ZTO
1s dissipative. If n is large enough, then the polynomial Mg:,?o has non-real
T001S.

The Minkowski polynomial Mg: related to cube Q™ is dissipative, moreover
all its roots are negative.

13This part of the Theorem is trivial: Mgz ) =0+
14 The factors ¢ appears because the set B™ x 0 is not solid in R*t1,
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The Minkowski polynomial MS:TO related to the squeezed cubical cylinder
"% 0 is of the form* ME. (#) = t-DR"" (¢ , where the polynomzial DR
Q" %0 Q" x0 Q" x0

is dissipative, moreover all roots of the polynomial Dg;;lo are negative.

Theorem 2.5. For everyn=1,2,3, ...:

1.

The Weyl polynomials W54 (t) of infinite index, as well as the Weyl poly-
nomials W2y, .1 (t) of arbitrary finite index p, p = 1, 2, ..., related to the
boundary surface of the ball B! are conservative.

The Weyl polynomials Wap(ano) of order'’> p = 1,p = 2 and p = 4 re-
lated to the boundary surface of the squeezed spherical cylinder B™ x 0 are
conservative.

The Weyl polynomials W805n+1 (t) of infinite indez, as well as the Weyl poly-
nomials WaanH(t) of arbitrary finite indezx p,p = 1, 2, ..., related to the
boundary surface of the cube Q™' are conservative.

The Weyl polynomials Wao(anxo) (t) of infinite index, as well as the Weyl
polynomials Wap(ano) (t) of arbitrary finite index p, p =1, 2, ..., related to
the boundary surface of the squeezed cubic cylinder Q™ x 0 are conservative.

Remark 2.1. The roots of the Weyl polynomial VVaan+1 can be found explicitly.

Indeed

. nt1y 1 A7 \n
W3 gnti(it) = Vol 1 (B +1)ﬁ((1 +it)" T — (1 —at)" ).
Changing variable
. . ; ™ ™
t—g: Ltit=[1+itle t=tgp, —5<p<g,

we reduce the equation WaanH(it) =0 to the equation

< 1
YGRSV S §
sin ¢ 2 2
The roots of the latter equation are:
km n n
Sk [P xk< [2], ko
L [2] =F= 13 7
So, the roots ty, of the equation WaanH(it) =0 are
te=tenfr, — (3] <k<[3], k#0.

In particular, the polynomial W, is conservative.

Negative results:

Theorem 2.6. Given an integer p, p > 5. If n is large enough: n > N(p), then
the Weyl polynomial Wg(ano) s mot comservative: some of its roots do not belong
to the imaginary axis.

For an

(2.9a)

integer q : ¢ > 1, let E,, 4 . be the n + ¢- dimensional ellipsoid:
En,q,sz{($17x23 ey Ty e axn+q)€Rn+q: Z (xj/aj)zg]-},
0<j<n+q

15 The case p = 3 remains open.
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where
(2.9b) aj=1for 1<j<n, aj=¢ for n+1<j<n+gq.
Theorem 2.7.

1. Given an integer ¢ : 5 < q < oo. If n is large enough:n > N(q), and € is
small enough: 0 < € < e(n, q), then the Minkowski polynomial M}ER:HE 18
not dissipative: some of its roots are situated in the open right-half pldﬁe.

2. Given an integer p and an odd integer q: p>1,q>1,p+q>6.If n is
large enough:n > N(p,q), and € is small enough: 0 < € < &(n, p, q), then
the Weyl polynomial W]’;n»w is not conservative: some of its roots do not
belong to the imaginary axis.

Proof of Theorem 2.7 is presented in Section 11.

3. THE EXPLICIT EXPRESSIONS
FOR THE MINKOWSKI AND WEYL POLYNOMIALS
RELATED TO THE ‘REGULAR’ CONVEX SETS.

Hereafter, we use the following identity for the I'- function:
(3.1) T(C+1/2)T(C+1)=722"XD(2¢ +1), Ve C: 20 # —1, =2, =3, ... .

Let as present explicit expressions for the Minkowski polynomials related to the
‘regular’ convex sets: balls, cubes, squeezed cylinders, as well as the expression
for the Weyl polynomials related to the boundary surfaces of these sets. The items
related to balls are marked by the symbol (), the items related to cubes are marked
by the symbol [.

(® The unit ball B™.
Since B™ + tB™ = (1 + t)B" for t > 0, then, according to (1.4),

(3.2) M (£) = Vol,(B™) - (1+1)",
R™ n n! tk
(3.3) ME,(t) = Vol, (B )0<§k:<n oH R

Thus, the coefficients of the Minkowski polynomial Mgz for the ball B™ are:

n! 1

(3.4) mi (B") = Volo(B") - =57 7

0<k<n.

(® The squeezed spherical cylinder B™ x 0.

The Minkowski polynomial for the squeezed spherical cylinder B™ x 0 is:
nl T PTE+) 1,

(n—k)! I‘(% +1) k!

n+1 n
(3.5) M o(t) = Vol (B™) -t >
0<k<n
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The expression (3.5) is derived from (3.3) and (1.31)-(1.32). (See Lemma 1.2.)
Thus, the coefficients of the Minkowski polynomial M§:;10 for the squeezed spher-
ical cylinder B™ x 0 are:

Rn+1

(3.6) mE"(B"x0)=0, mE.(B"x0)=
n! Wl/QF(g +1)

1
— Vol (B") - : -y
B T TR 1) W

0<k<n.

(® The unit sphere S™ = 9B 1.
According to (1.38) and (3.4), the Weyl coefficients of the n- dimensional sphere
S" = 9Bt are:

! 11
(3.7) kot (OB™) = Vol, (9B™1) - —

(n—20)! 11207 2]

Thus, the Weyl polynomials related to the n- dimensional sphere are:

0<l1

IN

(38) W2, (t) = Vol,(0B" )

[2314 nt 270G+ 1 (tQ)l —1,2
(n=20)! T(§+i+1) I D) , p=1,2,....

=0
n! 1 /t2\!
L (n—20)! 11 (5) '

(® The boundary surface 9(B™ x 0) of the squeezed spherical cylinder B™ x 0.
According to (1.39) and (3.4), the Weyl coefficients of the n- dimensional improper
surface 9(B™ x 0) are:

(5]

©l3

(3.9) Wgni(t) = Vol, (0B™ 1) -

n! r(/2) 1
(n—20)! T(+1/2) 2V
Thus, the Weyl polynomials related to the (improper) surface 9(B™ x 0) are:

(3.10) ko ((B™ % 0)) = Vol,,(9(B™ x 0)) - 0<i<|

|3

].

(3.11) WPF

J oy (1) = VoL (D(B" x 0)) -

]

w3

n! 2*lr(g+1)' r(1/2) (tQ)l 19

n—20)! T(Z+i1+1) T(I+1/2) \2

=0 (

w3

]
(3.12)  Wygns1x0y(t) = Vol,(A(B" ! x 0)) -

n! r'(1/2) (ﬁ)l

S (n-2)! TI+1/2) \2

(1 The unit cube Q™.
The Minkowski polynomial Mgl is:

o . nl 1 VTN
(3.13) Mg (t) = Volo(Q )ngk:gn (nfk)!l“(g—i—l)k!( 2 ) .

The expression (3.13) is obtained in the following way. The n- dimensional cube Q"
is considered as the Cartesian product of the one-dimensional cubes:

Qn:QIX Ql
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For n = 1, the Minkowski polynomial is: ME; (t) =2(1+1t). Then the rule is used

how to express the Minkowski polynomial of the Cartesian product in terms of the

Minkowski polynomials for the Cartesian factors. (See details in Section 12.)
Thus, the coefficients of the Minkowski polynomial for the cube Q™ are:

" ny __ n n! 1 \/7? k
(3.14)  m¥(Q") = Vol.(Q") - R (7) . 0<k<n.

(1 The squeezed cubic cylinder Q™ x 0.

The Minkowski polynomial MS:,J;O is:

F(%)
L 4 1)k

n+1 ﬁ k .
(3.15) MG o(t) = Vol (Q™) - tz (7) .
0<k<n
The expression (3.15) is derived from (3.13) and (1.31)-(1.32). (See Lemma 1.2.)
Thus, the coefficients of the Minkowski polynomial M, 52110 for the squeezed cubic
cylinder are:

R

(8.16) m§" Q" x 0) =0, miL)(Q"x0)=
ol i)
= Vol,,(Q") - ) . F(L;rl2+ D

[ The boundary surface 9Q™ 1! of the unit cube Q" 1!.
According to (1.38) and (3.14), the Weyl coefficients of the n- dimensional surface
oQ" ! are:

%(ﬁ)k 0<k<n.

3 f— —

n!
(317) kQI(aQnJrl) _ Voln(aQn+1) . m
11 man :
mﬂ<7) , 0<I<[3].

Taking into account the identity I'(l + 1 + %) - T(I + 1) = 7'/22-GH+DD(20 + 2),
which is the identity (3.1) for { =14 1/2, we can transform (3.17) to the form

n! 1 !
(3.18)  ka(0Q™) = Vol (0Q™). 7). o=i<n

(n—20)! (20+1)!

Thus, the Weyl polynomials related to the n- dimensional surface Q™! are:

(3.19) aQn+1(t> Vol,(9Q" ") -
[

5] n! 27'T(B +1) 1 (777t2
(n —2)! F(§+l+1) (2l + 1) 2

), p=1,2 ... .
=0

3

(3.20) WsGnta (t) = Vol, (9Q™ 1) -

1=0
[0 The boundary surface 9(Q™ x 0) of the squeezed cubic cylinder Q™ x 0.
According to (1.39) and (3.14), the Weyl coefficients of the surface (improper)

n! t?
(n—20) (21i1)1 ' (%) '
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A(Q™ x 0) are:
n!
(n—20)
VLS 1 (77

l
VT (= <1<z,
T+ )2 2)’ 0sis[3]

Using the identity I'(I +1/2)['(I+1) = /727 2T'(2] + 1), which is the identity (3.1)
for ¢ =, the equality (3.21) can be transformed to the form

(3.21) kyu(0Q" x 0) = Vo, (9Q" x 0) -

n! 1 2l
(322)  ku(dQ" x 0) = Volu(9Q" X 0) - =57 o (5) , 0<1<[2].

Thus, the Weyl polynomials related to the improper n- dimensional surface 9(Q™ x
0) are:

(323) Wi gu)(t) = Vol (3(Q" x 0)) -
A w24y .(ﬂg)z L
Zotn—2D TE+1+1) @ \2 /> P70%
0o " 3] n! 1 T2\ !
B2 Wilgna ) = Vol 0@ x0)- 3y gy (75)

4. WEYL AND MINKOWSKI POLYNOMIALS
OF ‘REGULAR’ CONVEX SETS
AS RENORMALIZED JENSEN POLYNOMIALS.

To investigate directly a location of roots of the Minkowski polynomials Mgz,
METXIO, MSZ, MST;O and Weyl polynomials W, ..., Wap(ano)v WaGn1s
Wap(ano) for a finite n is difficult. It turns out that it is much easier to inves-
tigate first a location of roots of the entire functions which are the limits of the
(renormalized) Minkowski and Weyl polynomials as n — oo, and then to deduce
properties of roots of the original Minkowski and Weyl polynomials from properties
of these limiting entire functions.

Jensen polynomials. From the explicit expressions (3.3), (3.5), (3.13), (3.15) for the
Minkowski polynomials and (3.8), (3.9), (3.11), (3.12), (3.19), (3.20), (3.23), (3.24)
for the Weyl polynomials we notice that each of this expressions contains the factor

L, which is ‘a part’ of the binomial coefficient (7). The factorial ratio can
(n—k)! i
n—k)!
be presented as
n! 1 2 k—1 &
) " 1 (1==2)(1=Z2). . (1= . <k<n.
(4.1) (n—k)! 1 (1 n) (1 n) (1 n ) w, lsksn

Definition 4.1.
1. Given a formal power series f:

(4.2) fo= > at.

0<Il<oco
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We associate with f the sequence of the polynomials J,(f;t),n =
1,2, 3, ... :

(4.3) I(fit)= 3 (n”'l)';l Lt

0<i<n
1

al

(4.4) In(fity=ao+ > 1(1-L)(1-2) - (1-LL) -ath.

1<i<n

or, decoding the factor #‘l),

The polynomials J,,(f;t) are said to be the Jensen polynomials associated with
the power series f.

2. Given o function f holomorphic in the disc {t : |t| < R}, where R < oo,
we associate the sequence of the Jensen polynomials with the Taylor series
(4.2) of the function f according the rule (4.3). We denote these polynomials
by 3.(f;t) as well and call them the Jensen polynomials associated with the
function f.

3. The factors

(45) jno=1, jax=1(1-1),(1-2)... (1-51) 1<k<n,

n

are said to be the Jensen multipliers.
Thus, the Jensen polynomials associated with [ of the form (4.2) can be
written as:

(4.6) 9u(fit) = S st

0<<©

Since j,.; — 1 as k is fixed, n — oo, the following result is evident:

Lemma 4.1 (The approximation property of Jensen polynomials.).
Given the power series (4.2), then:

1. The sequence of the Jensen polynomials J,(f;t) converge to the series f
coefficients-wise ;

2. If moreover the radius of convergence of the power series (4.2) is positive,
say equal to R, 0 < R < oo, then the sequence of the Jensen polynomials
In(f;t) converge to the function which is the sum of this power series locally
uniformly in the disc {t: |t| < R}.

The approximation property in not specific for the polynomials constructed from
the Jensen multipliers jy ;. This property holds for any multipliers j, , which
satisfy the conditions j, , — las k is fixed, n — oo, and are uniformly bounded:
sup |jn,k| < co. What is much more specific, that for some f, the polynomial g,,(f;t)

k,n
constructed from the Jensen multipliers j, . preserve the property of f to possess

only real roots. In particular:

Theorem 1 (|Jensen|). Let f be a polynomial such that all its roots are real. Then
for each n, all roots of the Jensen polynomial J,(f, t) are real as well.
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This result is a special case of Schur composition theorem [56]. Actually, Jensen,
[Jen|, obtained a more general result in which formulation f can be not only a
polynomial with real roots, but also an entire function which belongs to the so
called Laguerre-Polya class of entire functions. We return to this generalization
later, is Section 5. Now we focus our attention on representation of the Minkowski
and Weyl polynomials as Jensen polynomials of certain entire functions.

The relation (4) as well as the expressions (3.3), (3.5), (3.13), (3.15) for the Minkows-
ki polynomials suggest us how the Minkowski polynomials should be renormalized
so that the renormalized polynomials tend to a non-trivial limit as n — oo.

Entire functions which generate the Minkowski polynomials for balls, cubes, spher-
ical and cubic cylinders. Let us introduce the infinite power series:

(4.7a) Mp=()= Y 4t

0<k<oo
(4.7¢) Mo=(t) = OS;OO r(’;-lu)kv (@)k th
(4.7d) M= xo(t) = 03;@%(?)%’“.

The series (4.7) represent entire functions which grow not faster than exponentially.
More precisely, the functions Mp~ and Mpeyo grow exponentially: they are of
order 1 and normal type, the functions Mg~ and M pge xo grow subexponentially:
they are of order 2/3 and normal type.

With each of the entire functions (4.7) we associate the sequence of polynomials
which are the Jensen polynomials associated with this entire function:

(4.8a) Mpn (t)=0n(Mp=;t),
(4.8b) Mpnyo(t)=3n(Mpexo;t),
(4.8¢) M (t)=0n(Mg==;t)
(4.8d) M@gnxo(t)=dn(Mg=xo;t),

From the expressions (3.3), (3.5), (3.13), (3.15) for the Minkowski polynomials it
follows that they are related to the above introduced polynomials (4.8) as:

(4.9a) M (t) = Vol,(B")  Mpn(nt);
(4.9b) ME(#) = Vol, (BMwit Mpgn o(nt) ;
(4.9¢) Mgi (t) = Vol (Q™)  Mgn(nt);
(4.9d) MEY o (8) = Vol (Q)wit Mgnxo(nt) ;

The polynomials M pn, Mpn o, Mgn, Mgnxo can be interpreted as renormalized
Minkowski polynomials respectively. We take the equalities (4.9) as the definition of
the renormalized Minkowski polynomials Mpn, Mpnyg, Mgn, Mgnyo in terms

of the ‘original’ Minkowski polynomials M%.,, ME, o, ME., and MZ, ..
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From the approximative property of Jensen polynomials and from (4.8) it follows
that

(410) Mipa(t) = M (), Maoxo(t) = Mxolt), Man(t) — Ma (1)
Monxo(t) = Mgexo(t) as n— oo.

This explains the notation (4.7).

We summarize the above stated consideration as the following

Theorem 4.1. Let {V"} be one of the four families of convex sets: {B™}, { B™ x0},
{Q™}, {Q™ x 0}. For each of these four families, there exists the single entire func-
tion'® My such that in every dimension n, the renormalized Minkowski polyno-
mials My, defined by (4.9), are generated by this entire function My as the
Jensen polynomials 3, (Mye): the equalities (4.8) hold.

Entire functions which generate the Weyl polynomials for the surfaces of balls,
cubes, spherical and cubic cylinders. Let us introduce the infinite power series:

1 l
(411a) WD (t) ZF +1+1§ ﬁ'(_i)’ p=1,2...;

(411b)  W5Se(t) =

(4.11¢) Wg(Boo woy(t) =

=1,2,...;

>
iQ rg+1y 1rQa/2 .(_ﬁ>l, )

TZ+i+1) T(+1/2) 2

%S 2
(4.11d) Wype o)) =) m ' (_ %)l;

» 27T +1) 1 mt? \!
(4-11¢) Wf’Qm(t):Z (§+l+1)'(21+1)!'<_7)’ p=12

2

(4.11f) wagm(t)zzwil)!-(—@)l;
I

= 27r(E+1) 1 2 \!
p — 2 . _ =
(411g) W@(QOOXO)(t) - ;:O F(% 1+ 1) (2[)' ( 2 ) y D 1; 2, ’
o Zoo 1 mt? \!
1=0 '

The series (4.11) represent entire functions. The functions (4.11b) and (4.11d) are
of order 2 and normal type, the functions (4.11a), (4.11c), (4.11f) and (4.11h) are
of order 1 and normal type, the functions (4.11e) and (4.11g) are of order 2/3 and
normal type.

16The symbol V°° means {B>®}, {B% x 0}, {Q>} or {Q x 0} respectively,



190 VICTOR KATSNELSON

With each of the entire functions (4.11) we associate the sequence of polynomials
which are the Jensen polynomials associated with this entire function:

(4.12a) WE g (£)=02pn)21Whgeos 1) 1<p<oo;
(4.12b) Wa(Bn+1xo)( )=02(n/2)( 3(wao);t), 1 <p<oo;
(4.12¢) Whon ()=82jn/2) (Wan, t), 1 <p<oo;
(4.12d) Wiiqnxoy (=82 /2 Wy goe woyit), 1< p<o0.

From the expressions (3.8), (3.9), (3.11), (3.12), (3.19), (3.20), (3.23), (3.24), for
the Weyl polynomials it follows that they are related to the above introduced poly-
nomials (4.12) as

(4.13a) W”B”H(t) = Vol,(0B"™"') - Wh .. (int);
(4.13b) Bn o) (1) = Vol (d(B"™ x 0)) - a(ano)(mt),
(4.13¢) Qnﬂ (t) = Vol,(0Q" ") - W Qn+1 (int);
(4.134) W om0y () = VoL, (A(Q" x 0)) - W5 (. (int) ;

The equalities (4.13) hold for alln: 1 <n < oo, p: 1 <p < oc.

The polynomials W5 ..., Wg(anoy WSQ"H, Wg(ano) can be interpreted as
renormalized Weyl polynomials. We take the equalities (4.13) as the definition of the
: : P P P P :
renormah.ze.d Wey} polyno.mlals WB.B"‘H’ Wa(ano)’ WBQ"+1’ Wa(ano) in terms

of the ‘original’ Minkowski polynomials W ..., Wg(ano)v WanH, Wg(ano)'

From the approximative property of Jensen polynomials and from (4.12) it follows
that for every fixed p, 1 < p < o0,

(4.14) Wipnia(t) = Wipe (1), Wg(ano (t) — WS(B""XO) (),
WanH( ) = Wioee (1), Wg(ano)( ) — Wa(Qooxo)( ) as n — 0.
This explains the notation (4.11).

We summarize the above stated consideration as the following

Theorem 4.2. Let {M"} be one of the four families of n-dimensional convex sur-
faces: {0B™ 1}, {0(B™ x 0)}, {0Q" 1}, {0(Q™ x 0)}. For each of these four fam-
ilies, and for each p, 1 < p < oo, there exists the single entire function” W’;v[oc
such that in every dimension n, the renormalized Weyl polynomials WY, defined
by (4.13), are generated by this entire function W5 .. as the Jensen polynomials

Jan/2](We)-

17The symbol M means {B>}, {B> x 0}, {Q>®} or {Q° x 0} respectively,
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5. ENTIRE FUNCTIONS OF THE HURWITZ
AND OF THE LAGUERRE-POLYA CLASS.
MULTIPLIERS PRESERVING LOCATION OF ROOTS.

Hurwitz class of entire functions.

Definition 5.1. An entire function H is said to be in the Hurwitz class, written
HeXH, if

1. H #0, and roots of H have negative real part: if H({) = 0, then Re{ < 0.
2. The function H is of exponential type: | lllim % < 00, and its defect dy
Z|—00
18 non-negative: dg > 0, where
(5.1) 2dy = Tm Bl _ f mlHCn]

r——400 T r—-+400 .

The following functions serve as examples of entire functions of class H:
a). A dissipative polynomial P().

b). An exponential exp{at}, where Rea > 0.

¢). The product P(t) - exp{at}: P(t) is a dissipative polynomial, Rea > 0.

The significance of the Hurwitz class of entire functions stems from the fact that
function in this class '8 are the locally uniform limits in C of dissipative polynomials.

Laguerre-Polya class of entire functions.

Definition 5.2. An entire function E is said to be in the Laguerre-Pélya class,
written B € L-P, if F is real and can be expressed in the form

(5.2) E(t) = ct"e Pt TT (1 + tan) et
k=1

where c € R\ 0, 3 >0, @ € R, a, € R, n is non-negative integer, and Y _p-, ai <
0.

Within the Laguerre-Polya class, those functions E are said to be of type 1, written
E € L-P-1, which are representable in the form

(5.3) E(t) = ct"e™ ﬁ (1+tag),
k=1

where ¢ € R\ 0, a >0, oy, > 0, n is non-negative integer, and Y po, ap < oo.

The significance of the Laguerre-Polya class stems from the fact that function
in this class, and only these, are the locally uniform limits in C of polynomi-
als with only real roots. (See [37], Chapter 8; [43], Chapter II, Theorems
9.1,9.2,9.3.)

18The full description of the class of entire functions which are the limits of dissipative poly-
nomials can be found in [37], Chapter VIII, Theorem 4. This class (up to the change of variables
z — iz) is denoted by P* there.
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Lemma 5.1. An entire function E which is of type 1 in the Laguerre-Polya class
also is the Hurwitz class:

L-PI C .

PROOF. The roots of the entire function E which admit the representation (5.3)

are located at the points —(ay) ™!, thus is strictly negative. From the properties of
o0

the infinite product [] (1 + tay) with > po | Jag| < oo, it follows that a function F
k=1

In|H(£r)| _

which admit the representation (5.3) is of exponential type o, and lim m

r——4o00

+a. Thus, the defect dg = o > 0 since a > 0. 0
Multipliers preserving the reality of roots.

Definition 5.3. A sequence {7k }o<k<oo 0f Teal numbers is a multiplier sequence if
for every polynomial f:

f&)y="Y" at*

0<k<n
with only real Toots, the polynomial
h(t)z Z Vkaktk
0<k<n

too has only real roots. (The degree n of the polynomial f can be arbitrary.)

Theorem 2 ([Polya, Schur]). A sequence {Vi}o<k<oo Of real numbers which are
not all roots is a multiplier sequence if and only if the power series

U(t) = ot
0<k<oco

represents an entire function, and either the function W(t) or the function ¥(—t)
is in the Lagierre-Polya class of type 1.

This result was obtained in [49]. The presentation of this and related results can be
found in Chapter VIII of [37], in Chapter II of [43], in [51] (Section 5 ), in numerous
papers by Th. Craven and G. Csordas.

Theorem 5.1 ([Jensen-Craven-Csordas-Williamson|). Let E(t) be an entire func-
tion belonging to the Laguerre-Polya class L-P, and {J,(E, t)}n=1,213,.. be the
sequence of the Jensen polynomials associated with the function €. (Definition 4.1.)

1. Then for each n, all roots of the polynomial J,,(E, t) are real;

2. If E(t) belongs to the subclass L-P-1 of the Laguerre-Polya class L-P, then
for each m, all roots of the polynomial 3,,(E, t) are negative;

3. If moreover E(t) is not of the form E(t) = p(t) €%, where p(t) is a polyno-
mial, then for each n, all roots of the polynomial J,,(E, t) are simple.
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The statement 1 of the theorem was proved by Jensen!® [Jen|. It is a special

t\"
case of Theorem by G.Polya and I. Schur corresponding to ¥(t) = (1 + 7> . The
n

refinement of the statement 1 which is formulated as the statement 3 was done by
G.Csordas and J. Williamson in [18], where the alternative proof of the statement 1
also was done. In [18], the main Theorem formulated on p.263, which appeared as
the statement 3 of Theorem 5.1 of the present paper, was formulated not accurately.
The correction was done in [16], Section 4.1 there.

Theorem 5.2. Let H be an entire function belonging to the Hurwitz class H,
and {Jn(H, t)}n=1,2,3,.. be the sequence of the Jensen polynomials associated with
the function 3. (Definition 4.1.) Then for each n, the polynomial {3,(H,t) is
dissipative.

Theorem 5.2 can be obtained as a consequence of Theorem 5.1 and Hermite-Bieler
Theorem. Proof of Theorem 5.2 will be done in Section 5.

Laguerre multipliers.

Theorem 3 ([Laguerre]). Let an entire function E(t),

(5.4) E(t)= Y et w<oo,
0<l<w

be in the Laguerre-Polya class: E € L-P, and let an entire function i be in the
Laguerre-Polya class L-P and moreover satisfy the condition: all roots of ¥ are
negative.

1. Then the power series

(5.5) Ey= Y et

0<l<w

converges for every t, and its sum is an entire function of the Laguerre-Polya
class: By € L-P.

2. If moreover E(t) is of type 1: E € L-P-1, then the the sum of power series
(5.5) also is an entire function of the type 1: E, € L-P-1.

This theorem appeared by E.Laguerre, [35], section 18, p.117, or [34], p.202. La-
guerre himself has formulated this theorem for the function £ which is a polynomial
with real roots. The extended formulation, where F is a general entire function from
the class L-P, can be found in the paper [49], p. 112, or in its reprint in [47], p.123.
In [49] the extended formulation is attributed to Jensen, [Jen].

The presentation of the above mentioned results of Polya, Schur, Laguerre, Jensen,
as well as of many related results, can be found in [43], Chapter II; [37], Chapter
VIIL,[51]; [51], Chapter 5, especially Sections 5.5, 5.6, 5.7; in numerous papers of
Th. Craven and G. Csordas (See for example [14]). See also [50], Part five. The book
of L.de Branges [19] is closely related to this circle of problems.

19Though Jensen himself did not introduce explicitly the polynomials which are called ‘the
Jensen polynomials’ now.
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6. PROPERTIES OF ENTIRE FUNCTIONS
GENERATING MINKOWSKI AND WEYL POLYNOMIALS
OF ‘REGULAR’ CONVEX SETS AND THEIR SURFACES.

Entire functions generating the Minkowski polynomials.

Theorem 6.1. The entire functions (4.7) generating the renormalised Minkowski
polynomials of balls, cubes, squeezed spherical and cubic cylinders, possesses the
following properties:

1. The function Mpo is of type 1 of the Laguerre-Polya class;

2. The function Mpe g belongs to the Hurwitz class. It has infinitely roots, all
but finitely many its roots are non-real;

The function Mg is of type I of the Laguerre-Polya class;

4. The function Mg o is of type I of the Laguerre-Polya class.

w

Lemma 6.1. The function where I' is the Fuler Gamma function, is in

1
rit+1)’
Laguerre-Polya class, and all its roots is negative.

Indeed,
1 Ct ( t) _t
— = 1+— e *,
VR VL
(C is the Euler constant, C'~ 0.5772156... .) 0

sc Proof of Theorem 6.1. The statement 1 is evident: M pe (t) = €.
To obtain Statement 3, we remark that the function Mg is of the form Ey,

(5.5), where E(t) = exp{@t}, and (t) = . Then we apply the Laguerre

I'(5+1)
theorem on multipliers to these F and . The needed property of v is formulated
as Lemma 6.1.

The statement 4 can be obtained in the same way that the statement 3. One

G (3)
need take E(t) = exp{%t}, and '(Z)(t) = WQ—’_D
Proof of the statement 2 is more complicated. From (4.7b) it follows that
1 i 1
k _1
Mp=xo(t) = E B(%-ﬁ-lv%)ﬁtk: E /52(1—5) zdfgtk-

0<k<o0 0<k<oo

Changing the order of summation and integration and summarizing the exponential
series, we obtain the integral representation:

1
(6.1) Mpsxo(t) = 2/ (1—¢2) 2¢eflde
0

The fact that the functions Mg o belongs to the Hurwitz class will be derived
from the integral representation (6.1). This will be done in Section 13. 0
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Entire functions generating the Weyl polynomials.

Lemma 6.2. Let E:

(6.2) E(t)= Y at*
0<Il<oco

be an even entire function of the class L-P, and let p > 0 be a number. Then the
function E,(t) defined by the power series

(6.3) B (1) Z 27'r(2 +1)

- & 7. alt2l7
G ri+t+1)

belongs to the class L-P as well.

PROOF. Lemma 6.2 is the consequence of the Laguerre theorem on multipliers. The
function

(6.4 0ot = 2

is in the Laguerre-Polya class (see Lemma 6.1), and its roots are negative. 0

We point out, see (4.11), that the entire functions Wig.., Wg’(Boo %0)? Wi
W&Qw «0)? which generate the Weyl polynomials of the finite index p for the appro-
priate families of convex surfaces, can be obtained from the entire functions W55,
VVBO("BQc 0)? Watee Waonoo X0)? which generate the Weyl polynomials of the infinite

index, by means of the transformation of the form
Z aktk — Z ’l/)p(k) aktk .
0<k<o0 0<k<o0

Theorem 6.2.

1. Z’h; functions Wgge , Wit s WaO(OQooxo) belong to the Laguerre-Polya class
2. The function WBO(OBOOXQ) does not belong to the Laguerre-Polya class L-P:
this function has infinitely many non-real roots.

PROOF. The statement 1 is evident in view of the explicit expressions:

(6.5) W§he (t) = exp{—t?/2},
- _ sinf{(n/2)3t}

(6.6) Wegee (t) = 7(71’/2)%15 )

(6.7) Wit xoy = cos{(m/2)* t}.

The function WGO(OBOOXO)’ which appears in Statement 2, can not be expressed in
terms of ‘elementary’ functions, but it can be expressed in terms of the Mittag-

Leffler function 81’ 1
£2
2 )

(6.8) Wao(onxo) (t) = ﬁ81,

N|=
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where
k

(6.9) aplz)= > m :

0<k<o0

From (6.9) the integral representation can be derived:

1
(6.10) Ve, (1) =1 +t/(1 _g)hettae .
0

The integral representation (6.10) can be derived from the Tailor series (6.9) in the
same way as the integral representation (6.1) was derived from the Taylor series
(4.7b). From (6.10) the following asymptotic can be obtained:

1
2t?

(6.11) VT 1(t) = { Vrtel, t— 4 o0
o(lt]), t— +icc.

t — — o0,

From (6.11) it follows that the indicator diagram of the entire function &, 1 (t) of
the exponential type is the interval [0, 1]. Moreover, the function &, 1 (it) belongs
to the class C, as this class was defined in [38|, Lecture 17. From Theorem of
Cartwright-Levinson (Theorem 1 of the Lecture 17 from [38]) it follows that the
function &, 1 () has infinitely many roots, these roots have a positive density, and

are located ‘mear’ the rays argt = 7 and argt = —7. From this and from (6.8)

it follows that the roots of the function Wyfpe o) (t) are located near four rays
argt = 7, argt = ‘%’T, argt = %’T, argt = %” . In particular, infinitely many of the
roots of the function Wt X0)(75) are non-real. 0

Remark 6.1. Much more precise results about the Mittag-Leffler function €, g and
distribution of its roots are known. See, for example, [27], section 18.1, or [20].

Theorem 6.3.
1. For every p = 1,2, ..., the functions Whg., Waonc, W{f(QOOxO
the Laguerre-Polya class L-P.
2. If p is large enough, then the function W&wao)
Laguerre-Polya class L-P: it has non-real roots.

) belong to

does not belong the

PROOF. The statement 1 of this theorem is a consequence of the statement 1 of
Theorem 6.2 and Lemma 6.2. The statement 2 of this theorem is a consequence of
the statement 2 of Theorem 6.2 and the approximational property (1.43). 0

Remark 6.2. The fact that the function W,y belongs to the Laguerre-Polya class
L-P, that is all its roots are real, can be established without reference to Lemma
6.2. The function Wiz can be expressed in terms of Bessel functions J,. Recall
that for arbitrary v,

_(t)’ (=1)'(t*/4)
(6.12) () = <2> Og;m UT(v+1+1)
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Comparing (6.12) with (4.11a), we see that

p (P AN

(6.13) Wl () =T (2 + 1) <2> Ts ().
In particular,
for**p=1,

int
(6.14) Wip(t) = =,
forp=2,

t

(6.15) Wipeo (t) = 2 JlT()

It is known that for every v > —1, all roots of the Bessel function J,(t) are real
(This result is due to A.Hurwitz. See, for example, [64], Chapter XV, Section 15.27.)

The statement 2 of Theorem 6.3 may be strengthen essentially.
Theorem 6.4.
1. For p = 1,2, 4, the function Wap(Booxo) belongs the Laguerre-Polya class
L-P;
2. Forp: 5 < p < oo, the function Wg(wao
Polya class L-P : it has infinitely many non-real roots.

) does not belong the Laguerre-

PrOOF. For every p > 1, the function Wap( admits the integral representation

B> x0)
1

(6.16) Wiy =p [ (1= €)F ecoste de.
0

This integral representation can be obtained from (4.11¢) in the same way that the
integral representation (6.1) was obtained from (4.7b). Using the identity

T(1+1/2)T(14+1)=T(1/2)272 (2l + 1),
we reduce (4.11c) to the form

£2l

W e o) :% - B(l+1,p/2)(—1)l@.

0<l<o0

Then we use the integral representation for the function Beta, change the order of
summation and integration and summarize the series using the Taylor expansion
for cosz. For every p : 1 < p < oo, the function Wg(BOCXO) can be calculated
asymptotically. This calculation may be done using the integral representation
(6.16), or in other way. The asymptotic expression for the function Wg( B x0) is
presented in Section 13, see (13.27), (13.28). From this expression it follows that:
1. For p > 4, infinitely many (actually all but finitely many) roots of the W& B x0)
are non-real. This is sufficiently for the negative result of the statement 2 of
Theorem 6.4 to be obtained.

1
20Deriving (6.14) from (6.13), we used the formula Jq () = (%)5 sint. (Concerning this
2

formula, see, for example, [70], section 17.24.) However, (6.14) may be obtained directly from
(4.11a).
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2. For p < 4, all but finitely many roots of the function Wap( Beex0) A€ real and
simple. This alone is not sufficiently for the result of the statement 1 of to be
obtained. The additional reasoning should be invoked. For p = 2 and p = 4, the
function Wg’( Beoxpo) Can be calculated explicitly. The case p = 3 remains open.
Proof of the fact that for p = 1, 2, 4 all roots of the function Wap(wao) are real

will be done in Section 13. See Lemma 13.6. 0

PROOF OF THEOREM 2.5. According to Theorems 6.2, 6.3 and 6.4 (Statements
1 of these theorems), each of the functions Wige, Wige Wg(Qooxo) with p :
1 < p < o0, and Wap(Boo><0) with p = 1, 2, 4, belongs to the class of Laguerre-
Polya L-P. By Theorem of Jensen-Csordas-Williamson, the Jensen polynomials
associated with each of these entire functions, has only simple real roots. According
to Theorem 4.2, the renormalized Weyl polynomials WY ..., Wan+1» Wg(@nxo)
with p: 1 < p < oo, and Wg(ano
In view of renormalizing relations (4.13), the Weyl polynomials Wg Bt WanH,
W

) with p = 1, 2, 4 have only simple real roots.

(Qn x0) are conservative. 0

PROOF OF THEOREM 2.6. According to Theorem 6.4, Statement 2, for p: 5 < p <
00, each of the entire functions W(;’( B x0) has infinitely many non-real roots. Since

for fixed p, 3n(W5’(BmX0); t) — Wé;)(BOOXO)

Hurwitz theorem, every polynomial Hn(WﬁBm ><0)) withp, n: p>5, n> N(p) has

(t) locally uniformly in C as n — oo, by

non-real roots. By Theorem 4.2, the renormalized Weyl polynomials Wg( B7x0) have

non-real roots. In view of the renormalizing relations (4.12), the Weyl polynomial
Wg( B x0) have roots which do not belong to the imaginary axis. 0

PrOOF OF LEMMA 2.1. This lemma is a consequence of lemma 6.2. If the polynomi-
al Wy¥(t) is conservative, then the polynomial E(t) = Wye(it) is a real polynomial
with only real simple roots. The function E,(t) = Wy (it) is related with this E(t)
as well as the function E,(t) appeared in (6.3) is related to E(t) from (6.2). By
Lemma 6.2, all roots of I, are real. Let us show that the roots are simple. Consider
the function E(t) + €, were € is a small real number, positive or negative. Since
all roots of the polynomial E(t) are real and simple, all roots of the polynomial
E(t) 4+ € are real if |¢| is small enough. By Lemma 6.2, all roots of the polynomial
E,(t) + € are real. But if the polynomial E,(¢) have a multiple root, this root splits
into a group of simple roots by the perturbation E,(t) — E,(t) + ¢, and by an
appropriate choice of sign of e, some of roots in this group will be non-real. 0

Remark 6.3. We apply Lemma 2.1 in special cases n = 2, 3, 4, 5 only. In these
cases Lemma is quite elementary. Actually only the cases n =4 and n =5 deserve
attention, the cases n = 2 and n = 3 are trivial. The cases n = 4 and n = 5 are
reduced to the following elementary statement:
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Let kg, ko, k4 be positive numbers. Assume that the roots of the polynomial
Q(t) = ko + kot + k4t? are negative and different. Then for every p > 0, the

roots of the polynomial

ky k4 9
QF(t) = ko + t+ t
W r+2)  (+2)(p+4)

are negative and different as well.

Indeed, the conditions posed on polynomials @) and QP are equivalent to the in-
equalities

k? > koks and (]“)2 S,
' p+2 (p+2)(p+4)
It is evident that the first of these inequalities implies the second. 0

7. HERMITE-BIELER THEOREM AND ITS APPLICATION.

In its traditional form, Hermite-Bieler theorem gives conditions under which all
roots of a polynomial belong to the upper half-plane {z : Imz > 0}. We need the
version of this theorem adopted to the left half-plane, and for the case of polyno-
mials with non-negative coefficients only. Before to present such a reformulation of
Hermite-Bieler theorem, we give several definitions:

Definition 7.1. Let S7 and Ss be two sets which are situated on the same straight
line*' L of the complex plane: Sy C L, Sy C L, and moreover each of the sets
S1, 82 consists of isolated points only. The sets S1 and Sy interlace if between every
two points of S1 there is a point of Sa, and between every two points of Sy there is
a point of S.

Definition 7.2. Let P be a power series:
(7.1) P(t)=>_ pit",
0<k

where t is a complex variable, and the coefficients py are complexr numbers.

The real part ®P and the imaginary part P of P are defined as

P(t) + P(F)

(7.2) Rp(t) = — P(t) = M

27 ’

where the overline bar is used as a notation for the complex conjugation.

The even part €P and the odd part °P of P are defined as

(7.3) Ep(t) = w7 Op(¢) = w7

In term of coefficients,

(7.4a) Pty = axth, TP(t) = bit",

0<k 0<k

211y our considerations the straight line L will be either the real axis or the imaginary axis.
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where
Dk + Dk Dk — Pk
7.4b S LIS . N N R )
(7.4) p= DTy DD
and
(7.5) P(t) = put™, OP(t) = punt™.
0<lI 0<!

Theorem 4 ([Hermite-Bieler|). Let P be a polynomial, A = *P and B =P be the
real and imaginary parts of P, i.e.

P(t) = A(t) +iB(t),

where A and B be a polynomials with real coefficients. In order for all roots of P
to be contained within the open upper half-plane {z : Im z > 0}, it is necessary and
sufficient that the following three conditions be satisfied:

The roots of each of the polynomials A and B are all real and simple.
The sets Z 4 and Zp of the roots of the polynomials A and B interlace.
The inequality

1.
2.
3.
(7.6) B'(0)A(0) — A’(0)B(0) >0
holds.

Let us formulate a version of Hermite-Bieler Theorem for the left half-plane.
Lemma 7.1. Let M be a polynomial with positive coefficients,

M@t)y= > mt*, mp>0,0<k<n,
0<k<n

and let €M and °M be the even and the odd parts of M. In order for the polynomial
M be dissipative it is necessary and sufficient that the following two condition be
satisfied:

1. The polynomials €M and °M are conservative.

2. The sets of roots of the polynomials €M and °M interlace.

Lemma 7.2. Let W,
(7.7) W (t) = wo + wat? + wat* -+ 4 wopm_ot>™ % 4+ wo,, t*™
be an even polynomial with positive coefficients wa;:

wo >0, we >0, ..., wey >0.

In order for the polynomial W to be conservative it is necessary and sufficient that
the polynomial M = W + W' to be dissipative, where W' is the derivative of W :

(7.8) W'(t) = 2-wat +4-wyt® -+ + (2m — 2) - wap ot 3 + 2m - wo, t2" 1.

PRrROOF OF LEMMA 7.1. Let
(7.9) P(t) = M(it), A(t) = (*M)(it), B(t)=i""-("M)(it),

P(t) = A(t) +iB(t).
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A and B are polynomials with real coefficients:

Aty = Y (-D'mat”, B(t)=t (1) margt?.
o<i<[2] 0<i<[252]

Moreover,
(7.10) B'(0)A(0) — A’(0)B(0) = mgmy .
From (7.9) it is evident that

(AH roots of A are real and simple) 4 (The polynomial SM is conservative)

(All roots of B are real and simple) =4 (The polynomial O.ZW is Conservative)
(All roots of P lie in {z: Imz > 0}) - (The polynomial M is dissipative)

and under condition that all roots of A and B are real,
(The roots of A and B interlace) =4 (The roots of M and °M interlace)

Thus, Lemma 7.1 is an immediate consequence of Hermite-Bieler Theorem it the
above stated form. The inequality (7.6) is ensured automatically by (7.10) since the
coefficients my, are assumed to be positive.

Q.E.D.
PROOF OF LEMMA 7.2. It is clear that the polynomials W and W' are the even
and the odd parts of M =W + W'

W==¢:M, W =°M.

Let M be dissipative. Then, according to Lemma 7.1, W is conservative. Conversely,
let W be conservative. According to Rolle theorem, the polynomial W’ is conser-
vative as well, and the sets of roots of W and W' interlace. By Lemma 7.1, the
polynomial M is dissipative. Q.E.D.

Remark 7.1. The claim of Lemma 7.1 remains true if to replace the assumption
posed on the coefficients my, of of M with a weaker assumption. It enough to as-
sume that only the coefficients mg and my are strictly positive, whereas the other
coefficients my, k=2,3, ..., n, are real.

PROOF OF THEOREM 2.1. The relation (1.34) means that the polynomial tW3,,(t)
is the odd part of the Minkowski polynomial My . Thus, we are in the situation of
Lemma 7.1. Since the polynomial My is dissipative, the point z = 0 is not a root
of M, that is mo(V) # 0. According to (1.23), this means that Vol,, (V') # 0. Thus,
the set V' is solid. By Proposition 8.1, all the coefficients my (V') of the polynomial
My the are strictly positive. According to Lemma 7.1, the polynomial O(My) is
conservative. Since 9(My)(0) = 0, the polynomial t~1 - O(My)(t) = Wi, (¢) is
conservative as well. Q.E.D.

PROOF OF THEOREM 5.2. In the course of the proof we shall refer to some facts
from the theory of entire functions which usually are formulated in literature for
functions whose roots are in the upper rather then in the left half-plane. Therefore,
it is convenient pass from the variable ¢ to the variable ¢t. Given a function H(t) of
the Hurwitz class H, let f(¢) = H(it). Then f is an entire function of exponential
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type, all roots of f are in the upper half-plane, and moreover, the defect d; of f is
non-negative, where
2dy = rl{r-ll-,loo (—ir) — Tll)r_{loof(—zr) .

(It is clear that df = dg, where dy is the same as in (5.1).) Thus the function f is
in the class P as this class was defined in [37], Chapter VII, Section 4. Let

f{t) = A@t) +iB(t)

where A and B be real entire functions. Combining Lemma 1 from [37], Chapter
VII, Section 4 with Theorem 4 from [37], Chapter VII, Section 2, we obtain that
the functions A and B possess the properties:

1. A and B are real entire functions of exponential type;

2. A(0)B'(0) — B(0)A’(0) > 0;

3. For every 6 € R, all roots of the linear combination Cy, where Cy(t) =
cos B A(t) +sinB(t), are simple and real. (The entire functions A and B are
a real pair in the terminology of N.G.Chebotarev, [13].)

According to Hadamard’s factorization theorem, the entire function Cy is in the
Laguerre-Polya class. According to Jensen-Csordas-Williamson Theorem (Theorem
5.1), for each n, all roots of the Jensen polynomial Cy,,(t) = J,,(Cs;t) are real and
simple. Thus, the real polynomials A,,(t) = J.(A;t) and B, (t) = J.(B;t) possess
the property: For every 6 € R, all roots of the linear combination cos A, (t) +
sin @B, (t), are real and simple. (The polynomials A,, and B,, are real pair as well.)
From the property of the polynomials A,, and B,, > 0 to be a real pair together with
the property A, (0)B.(0) — B,(0)A/,(0) it follows that all roots of the polynomial
fn(t) = Ay (t) +iB,(t) are in the upper half-plane. Thus, all roots of the polynomial
H,(t) = fn(—it) are in the left half-plane. In other words, the polynomial H,, is
a Hurwitz polynomial. On the other hand, from the construction it follows that

8. PROPERTIES OF MINKOWSKI POLYNOMIALS
OF A CONVEX SET.

MOTION INVARIANCE: Let V, V. C R", be a compact convez set, T be a motion®?
of the space R™, and 7(V) be the image of the set V under he motion 7. Then

Mzr(v)(t) = My ().
CONTINUITY: The correspondence V.— My, between compact convex sets V in R™
and their Minkowski polynomials My is continuous 3.

A sketch of the proof of the continuity property can be found in [10], section 29;
[12], section 19.2; [54], section 5.1; [66],

22The motion of the space R™ is an affine transformation of R"™ which preserves the Euclidean
distance in R™.

23The set of compact convex sets in R™ is equipped by the Hausdorff metric, the set of all
polynomials is equipped by the topology of the locally uniform convergence in C.
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MONOTONICITY: Let Vi and Vo be compact conver sets in R™, and My,, My,
be the appropriate Minkowski polynomials. If Vi C Vi, then the coefficients
mi(V1), mi(Va) of the polynomials My, , My,, defined as in (1.21), satisfy the in-
equalities

(81) mk(Vl) §m;€(Vg), OS]{SH
Explanation. According to the definition of the mized volumes,
n!
8.2 Vy=——Vol(V,V, ..., V; B*,B", ... ,B™).
( ) mk( ) (n—k‘)‘k' 0( s Vo s Vo 5 3 ) )
n—=k k

Inequalities (8.1) follow from the monotonicity of the mized volumes (8.2) with
respect to V. (Concerning the monotonicity of the mixed volumes see, for example,
[10], section 29; [12], section 19.2; [66], Theorem 6.4.11; [54], section 5.1, formula
(5.1.23).) Q.E.D.

Lemma 8.1. a). For any compact convex set V, V. C R™, the coefficients my(V)
of its Minkowski polynomial, defined as in (1.21), are non-negative:

(8.3a) 0<mp(V), 0<k<n.

(According to (1.23), the coefficient m.,, (V) is strictly positive.)
b). If moreover the set V is solid, then all coefficients my (V') are strictly positive:

(8.3b) 0<mg(V), 0<k<n.

The Weyl coefficients koi(0V), 0 < 1 < ["T_l], defined by Definition 1.10,
are strictly positive as well.

PRrROOF. Taking V' as V, and an one-point subset of V as V; in (8.1), we obtain
(8.3a). If the set V' is solid, then there exist a ball g+ pB"™ of some positive radius
p: g + pB™ C V. Taking the ball 2o + pB™ as V; and V as V5 in (8.1), we obtain
the inequalities mg(zg + pB™) < mi(V), 0 < k < n. Moreover, my(xog + pB™) =
my(pB™) = p" Fmy(B") = p”_kﬁikﬂ Vol,,(B™) > 0. 0
Remark 8.1. The notion of the interior point of a set V depend on the space in
which V is embedded. The set V., V. C R™, which is non-solid with respect to the
‘original’ space R™, is solid if V is considered as be embedded in the space R of
the ‘right’ dimension d, d < n. The dimension dimV' of the set V should be taken
as such d.

Definition 8.1. Let V, V C R", be a convex set. The dimension dimV of V is the
dimension of the smallest affine subspace of R™ which contains V.

Lemma 8.2. Let V, V C R"”, be a compact convex set of the dimension d:
(8.4) dimV =d, 0<d<n.

Then

(8.5) my (V)=0 for 0<k<n—d; mi (V)>0 for n—d<k<n.

This lemma is a consequence of Lemma 8.1 and of the following
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Lemma 8.3. Let V, V. C R", be a convex set of dimension d, d < n, and let

M () = > mR (V)tF and®* M@d(t) = > mﬂlﬁd(V)tk be the Minkouvski
0<k<n 0< k<d

polynomials of the set V with respect to the ambient spaces R™ and R® respectively.

Then

n— —|— 1) d
0<k<d 2t 1)

Lemma 8.3 appears in slightly different notation as Theorem 11.1 in Section 11,
where proof is presented.

Definition 8.2. The mized volumes appearing in (8.2) are said to be cross-sectional
measures of the set V and are denote as v,—(V):

(8.7) Vol(V,V, ..., V; B",B", ... ,.B") = v,_(V), 0<k<n.

n—k k

Thus, the coefficients of the Minkovski polynomials My, which appear in (1.21),
can be presented as

|
(8.8) mi(V) = (Z) Uk (V), <Z> = m are binomial coefficients,

and the Minkowski polynomial itself can be presented as

(8.9) My(t)= (Z) Uni (V)"

0<k<n

The following fact will be used essentially in Section 10:

ALEXANDROV -FENCHEL INEQUALITY. Let V, V. C R", be a compact convez set.

Then its cross-sectional measures v, (V') satisfy the inequalities
(8.10) VE(V) > vp 1 (V)opga(V), 1<k<n-—1.

A.D. Alexandrov published two proofs of this inequality in [3] and [4]. The first of
them, a combinatorial one, is carried out for the convex polyhedra. The second proof
is more analytical. It uses the theory of self-adjoint elliptic operators depending on
parameter. This proof is carried out for smooth convex bodies. To the general case,
both proofs are generalized by limit arguments. The first proof is developed in de-
tail in the textbook [36]. The second proof is reproduced in Busemann [11]. It has
become customary to talk on ‘Alexandrov-Fenchel inequality’, because Fenchel [22]
also stated the inequality and sketched the proof. Its detailed exposition was never
published. At the end of 1978 independently Tessier in Paris and A.G.Khovanskit
in Moscow obtained an algebraic-geometrical proof of the Alexandrov-Fenchel in-
equality using the Hodge index theorem. This proof is developed in §27 of the
English translation of [12] and was written by A.G.Khovanskii. (In the Russian
original of [12] an erroneous algebraic proof of the Alexandrov-Fenchel inequality
was included which has been excluded in the English translation.) Regarding the
Alexandrov-Fenchel inequality see also [12], § 20 and Section 6.3 of [54].

d
24Deﬁning the Minkowski polynomial M§ , we can assume that the smallest affine subspace
of R™ which contains V is the space R%.
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Definition 8.3. A sequence {pi}o<r<n of non-negative numbers:

(8.11) p>0, 0<k<n,
is said to be logarithmic concave, if the following inequalities hold:
(8.12) Pr > pro1Phy1, 1<k<n—1.

Thus, the Alexandrov-Fenchel inequalities can be formulated in the form:

For any convex set V, the sequence {vi(V)}o<k<n of its cross sectional
measures is logarithmic concave.

Under the extra condition (8.11), the logarithmic concavity inequalities (8.12) for
the coefficients of the polynomial

(8.13) Pity=" (Z) pt®,

0<k<n
or for the coefficients of the entire function

(8.14) P(t) = % th,

0<k<oo
have been considered in connection with distribution roots of P. In this setting,
such (and analogous) inequalities are commonly known as Turan Inequalities

(Turén-like Inequalities). Concerning Turdn inequalities see, for example, [30] and
[15].

Remark 8.2. The Turdn inequalities (8.12) for the coefficients of the polynomial
(8.13) or entire function (8.14) impose some restrictions on location of roots of P.
However, these inequalities alone do not ensure that all roots of P are located in the
left half-plane {z : Rez < 0}.

For example, given m € N let
(8.15) pr=1 for k=0,1,...,m and pr =0 for k> m.

Such py, satisfy the Turdn inequalities (8.12). The function (8.14) corresponding to
these py is the polynomial
tm
(8.16) Pu(t)= Y —
0<k<m

This polynomial is a section of the exponential series. It is known that already for
m = 5 the polynomial (8.16) has two roots located in the half-plane {z : Rez >
0}. G.Szeg’o, [60], studied the limiting distribution of roots of the sequence of
polynomials P,,, (8.16), as m — oo. From his results on the limiting distributions
of the roots it follows that for large m the polynomial P, not only has roots in the
half-plane {z : Re z > 0}, but that the total number of its roots located there has a
positive density as m — oco. Regarding roots of sections of power series we address
to the book [21] and to the survey [44]. For m < n, the polynomial (8.13) with py
as in (8.15) takes the form

(8.17) Pua®)= (Z) £

0<k<m
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L.V. Ostrovskii, [45], studied the limiting distribution of roots of the sequence of the
polynomials P, ,, as m,n — oo, m/n — a, a € (0,1). From his results it follows
that for large m,n: n/m = O(1), n/(n —m) = O(1) the polynomial P, ,, not only
has roots in the half-plane Re z > 0, but that the total number of its roots located
there has a positive density as m,n — oo, m/n — « € (0,1).

9. ROUTH-HURWITZ CRITERION.

Of course it is desirable to obtain an information about the location of roots of the
Weyl and Minkowski polynomials directly from geometrical considerations. At the
moment we are not able to do this. The only general tool from geometry which
we can use are the Alexandrov-Fenchel inequalities (8.10) for cross-sectional mea-
sures v (V) of convex sets. Therefore one should express all polynomials which we
investigate in terms of this cross-sectional measures.

As it was explained in (8.9), the expression of the Minkowski polynomial M?}" for
the convex set V, V' C R™, in terms of the cross-sectional measures v (V) is

(9.1) ME ()= > <Z) Un_ i (V).

0<k<n

Lemma 9.1. Let M be a closed convex surface, dimM = n, and let V, V C R**H1,
be a generating convex set: M = OV.

Then the Weyl Wit can be expressed as

(9.2) Wat) = 3 mvnzl(vn%

o<i<[2]

where v (V') are the cross-sectional measures of the generating convex set V.

PRrROOF. The expression (9.2) is a consequence of (1.41), (1.38) and (8.8). 0

To extract an information about the location of roots of the Minkowski
polynomial M{lﬁn from (9.1), we may use the Alexandrov-Fenchel inequalities
(8.10). The Alexandrov-Fenchel inequalities relate the cross-sectional measures
ve(V), vp—1(V), vk41(V). To extract such an information about the roots of the
Weyl polynomial Wxf from (9.2), we need the analogous inequalities which relate
the cross-sectional measures vy (V), vp—2(V), vg2(V).

Lemma 9.2. Let V, V C R"!, be a compact convex set. Then its cross-sectional
measures satisfy the inequalities

(93) U,%(V) Z ’Uk,Q(V)’Uk+2(V), 2 § k S n — 1.

PrOOF. We derive (9.3) from (8.10). Rising the inequality (8.10) to square, we
obtain that v} (V) > v2 (V)v,2,(V). Inequalities (8.10) with k replaced with
k—1and k+1 are:

UI%*I(V) > Vo (V)i (V) and UI%H(V) > 0 (V)vg (V)
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respectively. The inequality (9.3) is the consequence of the last three inequalities.
Q.E.D.

The inequalities (8.10) and (9.3) for the coefficients of the polynomials (9.1) and
(9.2) respectively is one of two general tools which will be used in the study of the
location of roots of these polynomials. The second general tool is the criteria which
express the properties of polynomials to be dissipative (or conservative respectively)
in terms of their coefficients. Such criteria are formulated as the positivity of certain
determinants constructed from the coefficients of the tested polynomials.

Theorem 5 ([Routh-Hurwitz|). Let

(9.4) P(t)=apt" +ait" "+ ... +a,_1t+a,
be a polynomial with strictly positive coefficients:
(95) ag>0,a1>0,...,a,-1>0,a, >0.

For the polynomial P to be dissipative, it is necessary and sufficient that all the
determinants Ay, k=1, 2, ..., n — 1, n, be strictly positive:

(96) A1>Oa A2>07"'7An—1>07 An>07
where
) a1 az as
9.7 Ay =a1, A= a3 , Az=lap a2 a4,
ap az
0 a1 a3
ay a3 as 0
a1 a3 as az
a o a ag ag a2 a4 0
A4=S) 2 04 , , Ap=|0 a1 a3 0
a1 a3 as
0 ap az aa| |
.................. an

This result, as well as many relative results, can be found in [24], Chapter XV. See
also [32].

Remark 9.1. Actually, to prove that the polynomial P, (9.4), of degree n with
positive coefficients ax, k = 1, 2, ..., n, is dissipative, there is no need to inspect
all Hurwitz determinants A, k=1, 2, ..., n, for positivity. It is enough to inspect
either the determinants Ay only with even k, or the determinants Ay only with
even k. (See [24], Chapter XV, §13.)

Applying the Routh-Hurwitz criterion to investigate whether the Minkowski poly-
nomial M‘Bn is dissipative, we should take, according to (9.1),

n!
El(n — k)!
From the criterion of dissipativity, the criterion of conservativity can be derived
easily.

(9.8) ap = ve(V), 0<k<n, ar=0, k>n.

Theorem 6 (|Criterion of conservativity|). Let
(9.9) P(t) = aogt®™ + agt®™ % 4 ...

be a polynomial with strictly positive coefficients ag;, 0 <1 < m:
(9.10)

+ a2m_2t2 + agm

ag>0,a2>0,...,am_2>0,a,>0.



208 VICTOR KATSNELSON

For the polynomial P to be conservative, it is necessary and sufficient that all the
determinants Dy, k=1, 2, ... ,2m — 1, 2m, be strictly positive:

(911) D1 >0,Dy>0,D3>0, ..., Dsy,_1>0, Dy, >0,

where the determinants Dy are constructed from the coefficients of the polynomial
P according to the following rule. Determinant Dy, are the determinant Ay, (9.7),
whose entries ag, 0 <1< m, are the coefficients of the polynomial P, and ag41 =
(m—10ay, 0<I<m-—1:

mag (m—1)az (m—2)as
ao a2 a4 5
0 mao (m —1)az

mao (m—1)ag
ag as

Dy = mag, D2 = , D3 =

mag (m—1)az (m—2)as (m—4)as

ao a2 a4 ag
12 Dy =
(9-12) 4 0 mao (m—1)az (m—2)aq|’
0 ag a2 aq
mag (m—1)az (m—2)as 0
ao az aq 0
Doy =1 0 mag (m —1)az 0

PROOF. This theorem is the immediate consequence of Hermite-Bieler theorem and
Lemma 7.2. Q.E.D.

Applying the Conservativity criterion to investigate whether the Weyl polynomial
W3e is dissipative, we should take, according to (9.2) and (9.9),

(n+1)!
n—mV7
2m—l(m—l)!(2l+n—2m)!v2l+ 2m (V)
0<i<m, ay=0, [>m, wherem= [%]

(913) ag] =

10. THE CASE OF LOW DIMENSION:
PROOF OF THEOREMS 2.2 AND 2.3.

PROOF OF THEOREM 2.2. We apply the Routh-Hurwitz criterion of dissipativity
to the Minkowski polynomial M H%,n. ‘Opening’ the Hurwitz determinants Ay, (9.7)
, and taking into account that ax = 0 for £ > n, we obtain that for n <5,

(10.1.1) Al =aq
(10.1.2) Ay = ajaz — apas,
(10.1.3) A3 = ajasas + agaias — a0a§ — a%a4,
(10.1.4)
A4 = ajasazay + agasazas + 2apaiaqgas — a%ai — a%ag — a0a§a4 - a1a§a5,
(10.1.5) As = a5y,

where we should take a as in (9.8).

According to Routh-Hurwitz criterion, we have to prove that A; > 0, Ay >
, Ay, > 0. The cases n = 2, 3, 4, 5 will be considered separately. Since V'
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is solid, vx(V) > 0, 0 < k < n. (Corollary 8.1.b and (8.8) .)
Thus, the determinant Ay = (1)v1(V) is always positive.

The cases n = 2, 3, 4, 5 will be considered separately. To shorten notation, we right
v, instead v (V).

n = 2. In this case,
ap = v, ap = 201, az = va,
AQ = 2’[]2’[)1 .

The inequality Ay > 0 is evident. Thus, the Minkowski polynomial M{1§2 is dissipa-
tive.

n = 3. In this case,
ag = v, a1 =3vy, ag =3V, az=v3, ap=0,k>3.
Substituting these expressions for ay into (10.1), we obtain
Ao = Yvivg —vgu3, Az =v3ls5.

Thus, the property of M{%g to be dissipative is equivalent to the inequality
(10.2) Yuivg > Vovs,

n = 4. In this case,

ag = vy, a1 =4vy, ag=06vy, az=4vs ag=1v4, ar=0,k>4.

Substituting these expressions for ay into (10.1), we obtain

Ay = 24vivy — dvgus, Az = 96vivev3 — 16v9vs — 16vivy, Ay = v4A3.

Thus, the property of M§4 to be dissipative is equivalent to the pair of inequalities

(10.3.2) 6vivy > voUs,
(10.3.3) 6v1v9v3 > vovg + va4 .
n = 5. In this case,
ag = vg, a1 = dvy, as = 10vy, ag = 10v3, ag = dvy, a5 =vs, ar =0,k > 5.
Substituting these expressions for aj into (10.1), we obtain
Ao = 500109 — 10vgvs, Az = 50001 v9v3 + Svguivs — 100v9vs — 125030, ,
Ay = 250001 v2v3v4 + 100vgUav3V5 + 50VoU1V4V5

— 6250203 — vgvg — 500110032)114 — 500uvivs, As = uv5Ay.

Thus, the property of M§5 to be dissipative is equivalent to the triple of inequalities

(10.4.2) dU1VU2 > VoU3,
(10.4.3) 10001 v9v3 4 vov1vs > 2009v3 + 250V,
(10.4.4) 250001 vov3v4 + 10009v2v3v5+50vgvov4v5 >

> 625viv; + 50000v3v4 + 500V V35 + ViVE .

As it is claimed in Lemma 10.1 below, the inequalities (10.2), (10.3), (10.4), where
vy = vE(V) are the cross-sectional measures of the solid compact set V' of the
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appropriate dimension, are the consequences of the Alexandrov-Fenchel inequalities.
This completes the proof. Q.E.D.

Remark 10.1. All this business works up to certain n, but it does not work for all
n. If n is large enough, then the conditions ’U% > Vg—1Vk+1, 1< k<n-—1, posed
on positive numbers vy, does not imply the inequalities A, > 0 for allk =1, ..., n,
where Ay is constructed from ay = (Z)vk, Already by n = 30, As < 0 for certain
v satisfying these conditions. Moreover, as we will see later, for n large enough,
there exist examples of such compact convex sets V.C R™ for which the Minkowski
polynomial My, is not dissipative, and the Weyl polynomial Wév is not conservative.
In such examples the sets V are although solid, but ‘almost degenerated’.

Lemma 10.1. Let vi, 0 < k < n, be strictly positive numbers satisfying the in-
equalities

(10.5) V> vp1vps1, 1<k<n-—1.
Then:

1. If n = 3, then the inequality (10.2) holds;

2. If n =4, then the inequalities (10.3) holds;

3. If n =5, then the inequalities (10.4) holds.

PrROOF OF LEMMA 10.1. Given k, 1 < k < n — 2, multiplying the inequalities
VR > Vg 1Uk+1, v2+1 > VgUk42,
an then cancelling on v vi41, we obtain the inequality
(10.6) VkUka1 > Vp_1Vka2, 1<k<n-—2.
In particular, forn =3, k=1, aswellasforn =4, k=1andn =25, k=1.
V1V > VU3 .

This inequality implies the inequality (10.2), (10.3.2) and (10.4.2). Multiplying the
inequality v1ve > vovs with the positive number vs, we obtain

(10.7a) V1V203 > vov§
For n = 4, k = 2, the inequality (10.6) means

VU3 > V1V4.
Multiplying the inequality vovs > v1v4 with vy, we get
(10.7b) v1v9v3 > vivy.

The inequalities (10.7) imply the inequality (10.3.3) and (10.4.3) .
Multiplying the inequality vevs > vivy (this is (10.6) for k = 2,n = 5) with vivy, we
obtain

(10.8a) V1V2V3Vy > VIVE .

Multiplying the inequality vive > vovs (this is (10.6) for k = 1,n = 5) with vzvy, we
obtain

(10.8b) V1V2V3V4 > VoUEVy -



ON HWEYL AND H.MINKOWSKI POLYNOMIALS 211

Multiplying the inequality wsvy > wevs (this is (10.6) for k = 3,n = 5) with the

positive number v;v2, we obtain
(10.8¢) V1VaU3V4 > vlvgvg) .

Further, multiplying the inequalities v1vy > vouvs (this is (10.6) for K = 1,n = 5) and
v3vy > vovs (this is (10.6) for k = 3,n = 5), we obtain that v;vs > vovs. Rising it to
square, we obtain

v%vi > vgvg .
Multiplying this inequality with the inequality vevs > wvyvy (this is (10.6) for k =
2,n = 5), we obtain that

(10.8d) V1VU3V4 > vgvg .

Since 2500 > 625 4+ 500 + 500 + 1, the inequality (10.4.4) it the consequence of
the inequalities (10.8). (The number 2500 is the coefficient before the monomial
v102v3v4 in the left hand side of (10.4.4), the numbers 625, 500, 500, 1 are the
coefficients before the monomials v?v3, vovivy, v1vivs and v3v? in the right hand
side of (10.4.4) respectively.) Q.E.D.

PROOF OF THEOREM 2.3. We apply the Criterion of conservativity, which was for-
mulated in the previous section, to the Weyl polynomial W3?. Opening the deter-
minants Ag, (9.12) , and taking into account that ag, = 0 for [ > [%], we obtain
that for n <5, that is* for m = [%] < 2,

(10.9.1) D1 = mag

(10.9.2) Dy = apaz,

(10.9.3) D3 = ag((m — 1)aj — 2magas) ,
(10.9.4) Dy = apay(a3 — 4apay) .

where we should take ag; as in (9.13).

According to the Conservativity criterion, we have to prove that D; > 0, Dy >
0, ..., Doy, >0, where m = [g]

Since V is solid, vg(V) > 0, 0 < k < n + 1. (Corollary 8.1.b and (8.8).) Thus, the
determinants Dy, Dy are always positive.

Therefore, if n = 2, or if n = 3, that is if m = 1, the Weyl polynomial W3¢ is
conservative. Of course, this fact is evident without referring to the conservativity
criterion:

In the case n = 2, according to (9 8) or (9.2),
Wi (t) = 3vg + 3upt?.
In the case n = 3, according to (9 8) or (9.2),
Wi (t) = vz + 3v1t2.
Evidently, in both cases, n = 2 or n = 3, the polynomial W3¢ is conservative.

In the cases n =4, n =5, to what corresponds m = 2,

D3 = Qg (CL2 4&0&4) D4 = (14D3 .

25Recall that n = dim M,n+1=dimV :M=09V.
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According to (9.13), we have to take in the cases:
In the case n = 4
ag = 15vg, a9 = 30v2, a4 = 5vy.
Thus,
D3 = 15v0(900v3 — 300vgvy) .
The conditions Dg > 0, D4 > 0 take the form

(10.10) 303 > vguy .
In the case n = 5
ap = 90v1, a9 =60v3, a4 =06v;5.
Thus,
D3 = 90v1 (90002 — 300vgvy) -
The conditions D3 > 0, D4 > 0 take the form
(10.11) 505 > 3vyvs .

So, in the cases n = 4 and n = 5 the property of the Weyl polynomial Wji be
conservative is equivalent to the inequality (10.10) and (10.11) respectively, where
vg = vg (V) are the cross-sectional measures of the solid compact set V' generating
the surface M : M = JV. In its turn, the inequalities (10.10) and (10.11) are evident
consequences of the inequalities v3 > vgvy and v3 > vivs respectively. The latter
inequalities are special cases of the inequalities (9.3). (See Lemma 9.2.) Thus, in the
cases n = 4 and n = 5 the Weyl W3¢ polynomial of infinite index is conservative.
By Lemma 2.1, all Weyl polynomials Wy, p = 1,2, 3, ... , are conservative as
well. 0

11. EXTENDING OF THE AMBIENT SPACE.

Adjoint convex sets. Let V' be a compact convex set, V' C R"™. However we may
consider the space R™ as a subspace of the space R™t9 of a higher dimension
g=1,2,3,.... The embedding R" to R"*9 is standard:

R™ — R™ . (&, ..., &) = (&, ..., &;0,...,0).
—_——

q

Thus, the set V', which originally was considered as a subset of R™, may also be
considered as a subset of R""4. In other words, we identify the set V' C R™ with
the set V' x 04, which is the Cartesian product of the set V' and the zero point 07
of the space R%: V x 09 ¢ R(*+9),

Definition 11.1. Given a compact conver set V, V. C R™, and a number q, ¢ =
0,1,2,3,..., the g-th adjoint to V set V9 is defined as:

(11.1) V@ &y o y@ c Rt

where 07 is the zero point of the space RY, and the space R4 is considered as the
Cartesian product: R"T4 = R™ x RY,
The Minkowski polynomial M{%;Oi of the q-th adjoint set V9,

(11.2) ME 5y = Vol q(V x 07 + tB"H9),
is said to be the g-th adjoint Minkowski polynomial for the set V.
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For ¢ = 0, the set V() coincides with V', and the polynomial M ]5”:50 coincides with

M R{,". For g = 1, the set V(! is what we are called the squeezed cylinder with the
base V.

Minkowski polynomials for adjoint sets. Let us answer the natural question:

How the polynomials M%" (t) and M® 5, (t) are related?

The answer this question will be done by an inductive reasoning. Lemma 11.1 below
provides the step of the induction.

Lemma 11.1. Let V be a compact convex set in R™, and
(11.3) MY ()= Y mi (V)
0<k<n
be the Minkowski polynomial with respect to the ambient space R™. Then the
Minkowski polynomial M%"); (t) is equal to:

/2T 4+1)  gn
—_— V) th.
ren Y

RPHL

(11.4) MY () =t
0<k<n

The following theorem completes the inductional reasoning;:

Theorem 11.1. Let V be a compact conver set in R™, and
(11.5) MY ()= > mi (V)k
0<k<n
be the Minkowski polynomial of the set V.. Then the q-th adjoint Minkowski poly-
nomial ME 4 (t) of the set V is equal to:

n+q n
(11.6) MEG® = S mE (V)4 e,
0<k<n
where
Ik +1
(11.7) y(lf):wqﬂ‘%, k=0,1,2,...; ¢=0,1,2,
(=% +1)

A sketch of proof of this theorem can be found in [28], Chapter VI, Section 6.1.9.
A detailed proof is presented below.

Remark 11.1. Theorem 11.1 means that the sequence of the coefficients
{mﬂ}inﬂ (V x 09) }o<k<n+q Of the polynomial M]%{}T:rgq :
(11.8) M= > mi{ (V<00
0<k<n+q
are obtained from the sequence of the coefficients {my(V)}o<r<n of the polynomial
M]%n, (11.5), by means of shift and multiplication:

(11.9a) mE N (V x 09) = 0, 0<k<g

R1L+q

(11.9b) mi (Vo 00) =mE (V)4 0<k<n.
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Remark 11.2. According to Theorem 11.1, the transformation which maps the
polynomial M]%z}" into the polynomial Mnén:gq is essentially of the form

(11.10) Do omtt = Y et

0<k<n 0<k<n

where v, s a certain sequence of multipliers. (The factor t? before the sum in (11.6)
is not essential). The transformations of the form (11.10) were already discussed
is Section 5. There such transformations were considered in relation with location
of roots of polynomials and entire functions.

Lemma 11.2. For any q, ¢ = 1, 2, 3, ..., the sequence {’y(,CQ)}k:071727___ is not a
multiplier sequence in the sense of Definition 5.3.

PROOF. In Section 13 we explain that the entire function
i (kQ) k
(11.11) MOEESY et

has infinitely many non-real roots. The entire function u,(¢), (11.11), appears
as the function Mpny¢(t) in Section 5. (Up to a constant factor which is not
essential for study the roots.) According to the Polya-Schur Theorem, which was

formulated in Section 5, the sequence {’Y(;f)}k:o, 1,2,... is not a multiplier sequence.

Remark 11.3. In Section 5 we study the function pq(t) in much more details that
it is needed to prove Lemma 11.2. The study of section 5 is aimed to clarify for
which q the roots of the function in question are located in the left half plane. The
question whether there are non-real roots is much more rough. This question may
be answered from very general considerations. The function pq admits the integral
representation:

1
(11.12) palt) = s, [(1- €)1 et ae.
0

(Expanding the exponential e into the Taylor series, we see that the Taylor
coefficients of the function in the right hand side of (11.12) are the numbers

%) From (11.12) it follows that the function pue(t) is an entire function of
exponential type, and that its indicator diagram is the interval [0, 1]. Moreover,
SUP_ o ctwoo |Hq(it)] < 00. In particular, the function pg(it) belongs to the class
of entire functions which is denoted by C in [38], Lecture 17. From Theorem of
Cartwright-Levinson (Theorem 1 of the Lecture 17 from [38]) it follows that the
function pq(t) has infinitely many roots, these roots have positive density, and the

‘magjority’ of these roots is located ‘near’ the rays argt = 3 and argt = —3. In
particular, the function uq(t) has infinitely many non-real roots. (We already used
this reasoning proving Statement 2 of Theorem 6.2.) 0

PROOF OF LEMMA 11.1. Let (x,s) € R"! where 2 € R”, and s € R. Then by
Pythagorean theorem,

distZns1 ((z, 8),V x 0) = distg, (z, V) + s°.
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Therefore, the equivalence holds:

(11.13) (distRn+1((:C,s),V X 0) < t) — (distRn (z,V) < V2 — 32)
Let
(11.14) TR (1) = {(z,5) € R™ : distpas ((2,5), V x 01) < £}

be the t-neighborhood of the set V x 0! with respect to the ambient space R*+1.
Thus,

Rn+1

(11.15) Vol 41 (Zy 01 (1) = M1 (1)-

For fixed s € R, let &(s) be the ‘horizontal section’ of the set TVXOl(t) on the
‘vertical level” s

S(s)={z eR": (z,5) e TE ()}
It is clear that

(11.16) Vol 41 (T 01 () / Vol,,(
The equivalence (11.13) means that
S(s) = TR (V2 — s2) = {x € R" : distgn (2, V) < V12 — s2}.
Thus,
(11.17) Vol,, (6(s)) = ME" (V12 — s2).
From (11.16) and (11.17) it follows that

n+1 n
§x01 /MV - 32)d
Changing variable s — ts'/2, we obtain
Rn+1 /Mvn 1/2) _1/2d8.

Substituting the expression (1.31) for M into the last formula, we obtain

1

n+1

M§ o (t) =t Z my(V tk/l—sk/2 ~12(s.
0<k<n 0

According to Euler,

1
r(r+1) r'(k+1)
k/2 s /240 — B(ﬁ +1, ;) —-\2)"\2 ') L1/2 "2 T ) |
O/ 2 2 I(EL 4+1) I(EL 4+1)
Thus, (11.4) holds. 0

ProOOF oOoF THEOREM 11.1. For ¢ = 0, the statement of the Theorem is self-
evident. Let us show how to pass from ¢ to ¢ + 1. Since V x 0971 = (V x 0%) x 0},
and R"T9t! = R"*+7 x R we can apply Lemma 11.1 to the convex set V x 09
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whose Minkowski polynomial is (11.6) by the induction assumption. The induction
assumption can be formulated as

(11.18a) m% " (V x 07) =0, 0<k<g
(11.18b) mi (V< 00) = mE (V)W g <k<q+n.
By Lemma 1.2,
(11.19a)

mE TV x 07) x 01) =0, k=0;
(11.19b)

m (V) 07) x 01) = mf (V< 00) 40, 1<k <ntgtl
In view of the identity

NOBNORENCDY

(11.19) takes the form (11.18) with ¢ replaced by ¢ + 1. 0
Remark 11.4. From (1.6) and (11.7) it follows that
(11.20) A = “%q

Thus, the equalities (11.9b) can be rewritten as

WV X0 ¥ (V)

(11.21) - . q=0,1,2,....
Wk+4q Wk
The equality (11.21) holds for k = 0, 1, ..., n. For other k, the value my (V) is
not yet defined. Let us agree that
(11.22) wp=1 for k<0, myf (V)=0 for k<0 and for k>n.

Under this agreement, the equality (11.21) holds for every k € Z: for k > n or for
k < —q (11.21) is trivial, for —q < k < —1 it coincides with (11.9a), for0 <k <mn
~ with (11.9b).

The Minkowski polynomials for the g-th adjoint to the ball B™. In particular, ap-
plying Theorem 11.1 to the case V = B", B™ C R", we obtain:

(11.23) MEY 0 (£) = wawg "M pn e (nt) |
where the normalized Minkowski polynomial M gn ¢ is defined as

nl T(E+DI(E+1)¢r
(11.24) Mpnxoa(t) = Z (n — k)Ink (F(’“J’)‘I—(kl) )E

0<k<n

The polynomial M pgn e is the Jensen polynomial associated with the entire func-
tions MB"x0%;

(11.25) Mpnxoa(t) = Jn(Mpe xod; t),

where

(11.26) Mpssoi(t) = >

0<k<o0
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Comparing with (11.12), we obtain Comparing with (11.12), we obtain

1
(11.27) Moo on(t) = q/(l _eyi-le et ge

0
For every ¢ =0, 1, 2, ..., the function M g «gq¢ is an entire function of the expo-

nential type one.

Lemma 11.3.

1. For q =0, 1, 2, 4, the entire function M e xga is in the Hurwitz class H;
2. For q > 5, the entire function MpBo e 18 not in the Hurwitz class: it has
infinitely many roots in the open right half plane {z : Imz > 0}..

Proof of this Lemma is presented in Section 13. Statement 2 is a consequence of
the asymptotic calculation of the function M peoyga. (See Lemma 13.1.)

For ¢ = 0, the function M pgeeygo = €, thus it is of type I in the Laguerre-Polya
class: Mpooygo € L-P-I. For ¢ = 2 and ¢ = 4 the functions Mgy« can be
calculated explicitly and investigated by elementary methods. The case ¢ = 1 is
more involved. The case ¢ = 3 remains open. 0

PROOF OF STATEMENT 1 OF THEOREM 2.7. Let ¢ > 5 be given. According to state-
ment 2 of Lemma 11.3, the function M g~ »o¢ has infinitely many roots in the open
right half-plane. In view of the approximation property of the Jensen polynomials
(Lemma 4.1), for n > n(g) some roots of the Jensen polynomial §,,(Mpeexoq;t)
are located in the open right half-plane. In view of (11.23) and (11.25), some
roots of the Minkovski polynomial Mpn s of the (non-solid) convex set B™ x 09,
B™ x 09 C R™"4, are located in the open right half-plane. Fix n : n > n(q). Con-
sider the ellipsoids E,, 4 . defined in (2.9), E, , . C R""%. For £ > 0, the ellipsoid
E, 4 ¢ is a solid convex set with respect to the ambient space R"*%. The family of
the convex sets {E, 4 ¢}->0 is monotonic, (See Remark 1.6 and footnote 7), and

. o oa
(11.28) lim B, 0= B" x 0.

It is known that the Minkowski polynomials My (t) depends on the set V' continu-
ously: see Section 8 and footnote 23. Therefore,

(11.29) lim ME™"(8) = Mo (1)

locally uniformly in C. Hence, there exists e(q,n), £(¢,n) > 0 such that the
Minkowski polynomial MER:TE has roots located in the open right half-plane.

0
The Weyl polynomials for the surfaces of the adjoint convex sets. Passing to define

the so-called adjoint Weyl polynomials W7 ., we do this following Definition 1.9
as a sample.

Definition 11.2. Given a convex compact set V., V. C R™, and a number q, ¢ =
0,1,2,3,...,, the g-th adjoint Weyl polynomial WBI(VXOQ) of the index 1 for the



218 VICTOR KATSNELSON

convex surface O(V x 07) is defined by means of the odd part of the g-th adjoint
Minkowskii polynomial M ]%‘}n:gq :

def n+gq n+q
(11'30) 2tW6%V><Oq)( ) Mﬂéxoq( ) *Mﬂ\%XOLI(*t)v
where Mv(q)q is the g-th adjoint Minkowskii polynomial which was introduced in
Definition 11.1. In more detail®®,
(11.31) Wty som () = > m5y 7 (V x 09)2.
IEZ

From (11.31) we may define the Weyl coefficients kq;(0(V x 0%)) according to Def-
inition 1.10:
Rrta (2m)lw;
(11.32) kor(O(V x 0%)) = mig; 1 (V x 09)———.
Wi+21

Then we define the Weyl polynomials Wg( with higher p according to 27 Defi-

nition 1.11:

V' x09)

Definition 11.3.

(11.33) Svon () Y kar(D(V x 0%)) (2m) T EE2 2
leZ p
Thus,
RrR7ta
May, 1 (V x 07)
(11.34) Wpt?WE o0y (B) = D —2E = gy 777
ez W2i+1

Let us clarify how the Weyl polynomials for the convex surfaces 9V and 9(V x 09)
are related. Here we also have to distinguish the cases even and odd gq.

Lemma 11.4. Let V, V C R", be a solid compact convex set, and let p > 0, ¢ > 0
be integers. Then

1. For even q

(11.35) Wt - W00y (E) = wpgt? - WEF(2)
2. For odd q
1
(11.36) wpt? - Wap(onq)(t) = u)17-&-q—1tp+q 1Wp—é_\g'><01)(t)

PROOF OF LEMMA 11.4. We distinguish cases of even and odd g¢.
1. ¢ is even. The equality (11.21) with k = 21 + 1 — ¢ takes the form

+ n
m%?-;—i(v x 07) _ mﬂéukq(v)
Wai+41 W2i+1—¢q

26 According to the agreement (11.22), mg{l:lq (Vx09) =0for2l+1<0o0r2l+1>n+gq.

—1
F(g + 1) o (271_) lwzl+p )

2TRemark that - =
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From this and (11.34) it follows that

Rn,
Moy 1—g(V)
(t) = Z s’ AMEA W1W2l4p T

wpﬂ W
Wol+1—
l€Z 2l+1—q

A(V x09)

Changing the summation variable: [ — [ + £, we obtain

R’Vl
mayy1(V)
Wptpr(qu)(t) = Z .

21
5 w1w2l+p+q t +p+q .
= 20+1

The expression in the right hand side of the last equality has the same structure
that the expression in the right hand side of (11.34), with V' x 09 replaced to V, p
replaced by p + ¢, ¢ replaced by 0. So, (11.35) is proved.

2. ¢ is odd. The equality (11.21) implies the equality

]Rn+q Rn+1 1
My, (V x07) Mgy (g—1)(V x 0F)
W2r+1 Wal4+1—(g—1)

From this and (11.34) it follows that

R+ 1
Mgy 1 (g—1)(V X 0Y) ol
wptpWé’(Vqu)(t) = Z o wiwap tHTP
lez 20+1-(q=1)

Changing the summation variable: [ — [ 4 %, we obtain
m]g::(v x 0')

2l+p+g—1
w1w21+p+q_1t prq .
W2i+1

ot Wiion (®) = 2

lez

The expression in the right hand side of the last equality has the same structure
that the expression in the right hand side of (11.34), with V x 09 replaced to V x 0,
p replaced by p + g — 1, ¢ replaced by 1. So, (11.36) is proved. 0

The meaning of Lemma 11.4 lies in the following. Studying the location of roots
of Weyl polynomials related to convex surfaces there is no need to consider the
boundary surfaces 9(V x 0%) of ¢g-th adjoint convex sets V' x 07 for arbitrary large
q. It is enough to restrict the consideration to the cases ¢ = 0 and ¢ = 1 only, that
is to the case of the set V itself and to the case of the squeezed cylinder with the
base V.

PROOF OF STATEMENT 2 OF THEOREM 2.7. By Statement 2 of Theorem 6.4,
the entire function Wg(gq; >1<0) has infinitely many non-real roots which. (We have
assumed that p + ¢ — 1 > 5.) If n is large enough, the Jensen polynomial
Wg?_g;jlxo) (t)=02n/2) (Wgagq;io); t) also has non-real roots. According to (4.12b)
and (4.13b), the Weyl polynomial W2 4~1 (#) has roots which do not belong to

d(B™x0)
the imaginary axis. By Statement 2 of Lemma 11.4,
p _ Wptq—1yq—1yx/PHg—1
Wosrxon) = ui=t7 Wygn o) -

Thus, the Weyl polynomial Wap( Bnx09) has roots which do not belong to the imag-
inary axis. For fixed ¢, n and a positive €, consider the ellipsoid F,, 4 . defined by

(2.9). Since Ey g, — B" x 07 as € — +0, also W — Wgp., . as € — +0.
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Hence, if € is small enough: 0 < € < &(n,p, q), the polynomial Wg has roots

n,q,¢&

which do not belong to the imaginary axis. 0

12. THE MINKOWSKI POLYNOMIAL OF THE CARTESIAN
PRODUCT OF CONVEX SETS.

Let V1 and V5 be compact convex sets,
Vi cR™, V, CR™.

Then the Cartesian product V7 x V5 is a compact convex set embedded into the
Cartesian product R™ x R™2. Since R™* x R™* can be naturally identified with
R™*72 we can consider V; x V5 as being embedded into R™tT72;

Vi x Vo C R™MH72,

The natural question arises:
How to express the Minkowski polynomial M H%/T;‘Z) for the Cartesian product Vi x Vs

in terms of the Minkowski polynomials®® M]%Zl and MD%ZQ for the Cartesian factors
Viand Vy ¢

To answer this question, we introduce a special multiplication in the set of polyno-
mials, the so-called M-multiplication, which is suitable for this goal.

Definition 12.1. The M-product t* - t! of two monomials t* and t' is defined as

(12 1) tkotl d:‘3f F(§+1)F(é+l) tk+l
' I(5H +1) ’

k>0,1>0.

It is clear that
(12.2) a). t0oth =% b). thotl =tloth o). (tFoth)ot™ =tFo(tot™).

The M-multiplication (12.1) of monomials can be extended to the multiplication of poly-
nomials by linearity:

(12.3a) For A(t)= Y at", B@t)= Y bt,

0<k<n, 0<I<n,
L&+ +1
(A-B)(t) = Z apby(tF ot = Z anby (2+k+)l (5 + )tk+l7
0<k<nq, 0<k<ny,0<I<n, F(T + 1)

0<i<ns

and finally, the M-product Ao B of the polynomials A and B is defined as

(123b)  (A-B)t)= > ( > akblr(gﬂ)T(éH))tr.

k+1
0<r<ni+ns k>0,1>0,k+l=r F( 2 +1)

From (12.2.b) and (12.2.c) it follows that
AeB=DBeA, (AB)-C=A<(B-C)

28The Minkowski polynomials My, , My, , My, xv, are considered with respect to the ambient
spaces R™1, R™2, R™177"2 respectively.
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for every polynomials A, B, C. In particular, the ‘triple product’ A- B C is well
defined. This triple product can be explicitly expressed in terms of the coefficients
of the factors: if

Ay = > at®, Bity= Y bt Clt)y= > cmt™,
0<k<n; 0<i<no 0<m<ng
then
rE+0Dr(+1)0(2 +1
(Ao B-C)(t) = Z ( Z ar by e (2+ ) (2+ ) (2+ ))tr.

k+l4+m
0<r<ni+na+ng * k>0,1>0,m>0 F( 2 + 1)
k+l4+m=r

It is clear, that for every number A and for every polynomials A and B,
(M)oB = X(A-B).

Moreover, if

then
I-A=A.

Thus, the polynomial 1 is the unity with respect to the M -Multiplication.
It is worthy to mention that

of = ————1

k
(12.4) pomydety o W2
— 4 +1)

Remark 12.1. The M-multiplication by the polynomial T is related to the trans-
formation of the form (11.10):

(12.5a) If At) = > atk,
0<k<n
(12.5b) then (To ---oToA)(t) =27PtP Z ay Dtk
p 0<k<n

where the ‘multipliers’ 'y(,f) are defined by (11.7).

Lemma 12.1. The M-product Ao B of polynomials A and B admits the integral?®
representation®®

(12.6a) (A= B)(t) = A(0)B(t) + /A((t2 —r)12) 4B(r),
0

as well as

(A« B)(t) = A(t)B(0) + /B((t2 — )Y dA(T).
0

29The integrals in the right hand sides of (12.6) are Stieltjes integrals.
3044 least, for t > 0.
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PRrOOF. First of all, the expressions in the right hand sides of (12.6) are equal:
Integrating by parts and replacing the variable 7 — (2 — 72)1/2, we obtain

A(0)B(t) + /A((t2 —7mHY2)dB(1) = A(t)B(0) + /B((t2 —HY2) dA(T).
0 0

So, the expressions in the right hand sides of (12.6) which at the first glance are
asymmetric with respect to A and B actually are symmetric. Let

> att, B)= > bt
0<k<n, 0<i<n,

be the expressions for the polynomials A and B in terms of their coefficients. Let
us substitute these polynomials into the right hand side of (12.6a):

)+ [ A((#* — %)) dB(1) =
o[

> blt“r/( S a7 ’“/2)-( S bt ) o

0<i<n, 0<k<n, 1<i<n,

> aobhit' + Y arb- z/ S

0<i<n, 0<k<ni
1<1<ns

1/2

Changing variable 7 — t7'/4 we get

1
l/(t2 — TQ)k/QTl_ldT = tk+l(l/2) /(1 — T)k/QTl/Q_ldT =
0 0

t'““(l/Q)B(g +1; %) :

Now, according to Euler,

t2B(5+1:1) = rd+0ir) _ré+yri+1
2 "2/ F(%+1) - F(%Jrl) .

Thus, the right hand side of (12.6a) can be transformed into the right hand side
of (12.3b). s

Theorem 12.1. Given the compact convex sets Vi and Vo, Vi C R™ Vo C R"2,
let M%(t), M %(t) be the Minkowski polynomials for the sets Vi and Va. Then

the Minkowsk:i polynomial M D%jl;vn; of the Cartesian product Vi x Vo is equal to the

M-product of the polynomials M?};l and M?gllz:

(12.7) MY = MY MY

A sketch of proof of this theorem can be found in [28], Chapter VI, Section 6.1.9.
A detailed proof is presented below.
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Remark 12.2. Let S be ‘the origin’ of R, that is the one-point set:
S ={t:t=0}. Then Mg(t) = 2t, that is
(12.8) Mg(t) =2T(t).

Let V' be a compact convex set embedded into R™. The Cartesian product V x
S x --- x S can be identified with the convex set V x 0P, V x 0P C R"P. Thus,
| ———

p
n+p
My sx ... x S(t) = MH%/XOP(t) )
——
p
or
(12.9) (T o T)e MY = MY

p

In view of (12.5) and (12.8), the equality (12.9) is another form of the equality
(11.6).

PROOF OF THEOREM 12.1. Denote
V= V1 X V2 .

According to the identification R™ 172 = R™ x R"2, we present a point x € R™1 172
as a pair = (x1, x2), where z; € R", x5 € R™2. It is clear that

(12.10) distR o, +ny (2, V) = distaa, (21, V1) + distia, (22, Va).

For 7 >0, 7" >0, 7" > 0, let V(7),Vi(7") and V2(7") be the T-neighborhood of V'
with respect to R™*"2 the 7/-neighborhood of V; w.r.t. R™ and 7”-neighborhood
of Vo w.r.t. R™2 respectively:

V(T) =V +7Bntny, Vi(r) =Vi+7'Bn,, Va(v") =Va+ 7" By,;
‘/a BTL1+TL2 C Rnl+n2; ‘/1a Bn1 C Rn17 V27 Bng C an'

Here B™ be the Euclidean ball of the radius one in R™. (With n = ny 4 na,ny, no
respectively.)

Given a number ¢, ¢t > 0, consider the t-neighborhood V() of V.= V; x V,, and let
O=mp<mn<...<Tn1<7Tn=t

be a partition of the interval [0, ¢]. From (12.10) it follows that

(A xa)U( U () \Vilren) x Va((2 - 7))

1<k<N
V(t)

cvE)C
(Vi(0) x V2(t))U< U (Vi(m) \ Vi(m1)) x Va (£ — 7,3,1)1/2)> )

1<k<N
Since Vi (1) 2 Vi(mk—1),
Vol, (Vi () \ Vi (1) = Vol, (Vi (&) = Voln, (Vi (1)),

(12.11)
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thus
VOlnl-‘rnz ((%(Tk) \ ‘/I(Tk—l)) X ‘/2 ((tQ - Tl2)1/2)) =

(Volm (Vi(7x)) — Vol,, (Vl(T,H))) Vol (1/2((t2 - T%)W)),
l=k—1lorl=k.
Moreover
Vol 4, (vl(()) x Vg(t)) = Vol n, (V1(0)) - Vol ,, (Va(t)) .
In the notation of Minkowski polynomials, the last equalities take the form
Vol 4, ((Vl(Tk) \Vi(7i-1)) x Va ((£* = 712)1/2)> -
(12.12a) (le () — My, (Tk_l)) My, (2 —7)Y2), I=k—1lorl=Fk,

(12.12b) Vol 4, (Vl(o) X Vg(t)) — My, (0) - My, (1),
and also
(12.12¢) Vol 4, (V(8)) = My ().

Since the sets Vi (7y) \ Vi(7x—1) for different k& do not intersect, and none of these
sets intersects with the set V7 (0), it follows from (12.11) and (12.12) that

My, (0) - My, (t) + > (le ) — My, (Tk—l)) - My, (£ = 7%)'?)
1<k<N
(12.13) < My (t) <
My, (0) - My, (t Z (le Tk) le(Tk—1)> My, (2 = 7-)'?).
1<k<N

Passing to the limit as max (1 — 7,—1) — 0 in the last inequality, we express the
Minkowski polynomial My (t) as the Stieltjes integral

(12.14) My (t) = My, (0) - My, (t /MV2 722 dMy, (7).

According to Lemma 12.1, the expression in the right hand side of (12.14) is equal
to (My, « My, )(t). Q.E.D.

13. PROPERTIES OF ENTIRE FUNCTIONS GENERATING
THE MINKOWSKI AND WEYL POLYNOMIALS
FOR THE DEGENERATED CONVEX SETS B! x 07.

In this section we investigate location of roots of the entire functions generating the
Minkowski and Weyl polynomials related to the ‘degenerated’ convex sets B"+1x 04,
These are:

e The entire functions Mpgnxg« which appears in (11.26), in particular for
g=11in (4.7b) .
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e The entire function Wg( 1 < p < oo, which appears in (4.11c).

B x0)
e The entire function )/Va"(oBoc 0) which appears in (4.11d) .

X

The functions M pgnyga, W&Bw %0)?
(except a very special values of the parameters p or ¢), but they can be calculated
asymptotically.

1 < p < oo can not be calculated explicitly

The above mentioned functions admit integrable representations:
1

(13.1) Mpnxoa(t) :q/(1—§2)%—1§eft d¢;
0
1

(13.2) W e 0y (1) p/ — &) ¢ costE de ;
0

These integral representation can be used for the asymptotic calculation of the
functions M pgn x4, Wg(Boc x0)*
Another way to to calculate the functions (13.1), (13.2) asymptotically is to use the
structure of their Taylor series. The Taylor coefficients of each of these functions
are ratios of factorials: these functions belong to the so-called Foz- Wright function,
[17].

The Fox-Wright function is defined as
I(a; k+ 5;)

p k
x

13.3 v {‘““2 Op, p1 P2 P } T

( ) S A O<kz<oo pjk+0]) it

Comparing (13.3) with the Taylor expansions (11.26), (4.11c), (4.11d), we see that

(134)  Mpoon® =T (5 +1) 0 {5, 7,5t} 1<q<o0,

2
t2
(13.5) wg(Bxxol)(t):r(;).r(g+1)-1\112{};1 gil;—4}, 1<p<oo,

Asymptotic behavior of the functions ,%,(z) has been studied by E.Barnes, [7],
G.N. Watson, [64], G.Fox, [23]), E.M. Wright, [71], [72].

Analysis of the function Mpnye(t): We would like to investigate for which
q this function belongs to the Hurwitz class H. According to (13.4), we may

readdress the question to the proportional function V¥, { 33 1+q, } From the

Taylor expansion it is clear that this function is an entire functlon of exponential
type. Since the Taylor coefficients of the function are positive, its defect®! is
non-negative. So, the function MBnX()q (t) is in the Hurwitz class H is and only if

all roots of the function 1V { } are situated in the open left half plane.

1 1+q )
To investigate the location of roots of the last function, we use the following

asymptotic approximation, which can be derived from the results stated in [71],

31We recall that the defect of an entire function H of exponential type is defined by (5.1).
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232 3¢ (1+711(2)), largz| < § —¢;
= F(Q%)Z_Z +7ra(2), largz — 7| < 5 —¢;
2%2’%ez+r(2%)z*2+r3(z), largz F 5| <e.

The reminders admit the estimates:
(137) ()| < el ™ |argz] < 5 — e
[ra(2)] < Ca(e)le] 2, Jargz — | < 5 — e
ra(2)| < G (I 72+ lella1 =340 | Jargz ¥ o] <,
where the values C1(g) < 400, Ca(g) < 400, C5(e) < +00 do not depend on z.

From (13.6), (13.7) it follows that for any ¢ > 0 the function 1% { %; 15% ; z} has
not more that finitely many roots outside the angular domain {z : |argz F §| <
¢. Inside this domain the analyzed function ¥, { %; 1_%%;
roots, and these roots are asymptotically close to the roots of the approximating
function f,(z):

z} has infinitely many

Investigating the location of roots of the approximating function f,(z), one should
distinguish several cases:

g = 4. In this case, the equation f;(z) = 0 is the equation ez—&—% = 0, so, the roots of
the approximating function can be found explicitly: these root form an arithmetical
progression located on the straight line {z =z +iy: 2 = —In2, —00 < y < oo}
From this and (13.6)-(13.7) it follows that the roots of the the analyzed function

1
19, { %; 1j% ; z} function are asymptotically close to the above appeared straight

line. Thus, for ¢ = 4 all roots of the function 1V, { %; 151;

2
disposed in the open left half plane. Actually, for ¢ = 4 all roots of this function are
disposed in the open left half plane. To establish this, one need the further analysis.
This will be done a little bit later.

g # 4. In this case, the equation f,(z) = 0 is the equation

z} but finitely many are

z 4_9 0 217%
e +cqz2 = Cq = =77
bl F(%) ’
where the exponent 4 — 2 is different from zero. The last equation has infinitely
many roots which have no finite accumulation points and which are asymptotically
close to the ‘logarithmic parabola’

(13.8) r= (2 -1)In(ly| +1) +in|c|, —oo <y < o0, (z=ux+1iy).
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From this and from (13.6)-(13.7) it follows that the roots of the function
1 1
10y {

2. 2 .
171427
we should dizstinguish the cases ¢ < 4 and ¢ > 4.

g < 4. In this case, the logarithmic parabola, (13.8) except may by its compact
subset, is located inside the left half plane. Since the roots of the analyzed function
are asymptotically close to this parabola, all roots but finitely many are located in
the left half plane.

q > 4. In this case, the logarithmic parabola, (13.8) except may by its com-

pact subset, is located inside the right half plane. So, all roots of the function
1

19, { %; 15% ; z}, except finitely many, are located in the right half plane.

z} are asymptotically close to the logarithmic parabola (13.8). Now

Let us formulate this result as

Lemma 13.1. If ¢ > 4, then the entire function Mpnxoa has infinitely many
roots within the right half plane. In particular, this function does not belong to the
Hurwitz class 3.

Claim 2 of Lemma 11.3 is a consequence of Lemma 13.1.
Lemma 13.2. For q: 0 < q < 2, the function Mpnxga belongs to the Hurwitz
class 3.

PrOOF. For ¢ = 0, the assertion is evident: the function in question is equal to e*.
To investigate the case ¢ > 0, we use the integral representation

11 q
(13.9) 17y { 13 1j%;z} = m Iq(2),
where
1
(13.10) I,(2) = /(1 — )3 1g bt e
0

1

The defect of the entire function ¥, { %; e z} is non-negative. So it is enough
2

to prove that this function has no roots in the closed right half plane. The function
I,(#) is of the form

1
(13.11) I,(2) = / pal)eS7de |
0
where
(13.12) cal€) = (1-€)F e, 0<e<1.

The crucial circumstance is:
For q : 0 < ¢ < 2, the function (&) is positive and strictly increasing on the
interval (0,1).
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Lemma 13.3. [Polya] If () is a non-negative increasing function on the interval
[0,1], then the entire function
1

(13.13) 16) = [ e@)esc
0
has no zeros in the closed right half plane.

This lemma is a continual analog of one Theorem of one theorem of S.Kakeya.
Proof of this Lemma and the reference to the paper of S. Kakeya could be found in
[48], § 1. We give another proof. We have learned the idea of this proof from [46].
(See Lemma 4 there.)

PrROOF OF LEMMA 13.3. Let z = x + 4y. Since f(z) > 0 for z > 0, f(x) has no
zeros for 0 < z < oco. Let us show that f(z) has no zeros for 0 < z < 0o, y # 0.
It is enough to consider the case y > 0 only. We prove that Im (e *f(z)) < 0 for
z=x+iy, >0,y >0, thus f(z) # 0 for z = x+1iy, x > 0, y > 0. To prove this,
we use the integral representation

(13.14) e " f(z P(§)e Ve,
= [
where
CJe(l=ge ", 0<e<T,
(13.15) 1/}(5)—{07 <€ <o

In particular,
(13.16) —(Ime 7 f(2)) = /1/)(5) sinéyd¢, z=xz+iy, >0,y>0,

where the function (&) is non-negative and decreasing on [0, 00), strictly decreasing
on some non-empty open interval, and ¢ (o0) = 0. Further,

(k+1)m
[e%e] v

(13.17) /¢( &) sin&y d¢ :i / &) sinéydé =

0 km
Y

/ (Z(l)k1/)(f + ky”)) sinyd§ >0 :

o \k=0

The series under the last integral is a Leibnitz type series. Thus the sum of this
series is non-negative on the interval of integration, and is strictly positive on some
subinterval. 0

Lemma 13.4. For q = 4, the function Mpnxoa« belongs to the Hurwitz class H.

PROOF. For ¢ = 4, the integral in (13.10) can be calculated explicitly:
(222 — 62 + 6)e* + (2% — 6)

(13.18) L(z) = =
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Our goal is to prove that the function (222 _62+6)€ +("=6) 1125 110 roots in the closed
right half plane. Instead to investigate this functlon we will investigate the function

(13.19) f(z) = (22 —62+6) + (2 —6)e *

We prove that the function f(z) has no roots in the closed right half plane other
than the root at the point z = 0 of multiplicity four. The function f is of the form

(13.20)  f(2) = g(2) + h(2), where g(z) = (22> — 62 +6), h(z) = (2* —6)e”

In the right half plane the function h is subordinate to the function ¢ in the following
sense. For R > 0, let us consider the contour I'p which consists of the interval Ig
of the imaginary axis and of the semicircle Cr located in the right half plane:

(13.21) Tr=1IgUCg, where I =[—iR,iR], Cr ={z: |2/ =R, Rez > 0.

It is clear that |g(2)| > 1.75|z|?, |h(2)| < 1.25]2|? if 2z € Cg and R is large enough.
In particular, |g(2)] > |h(2)| if z € Cr and R is large enough. On the imaginary
axis,

(13.22)  |g(iy)|* = 36 + 12y* + 4y*, |h(iy)|*> = 36 + 12y% + y*, —00 <y < o0,
In particular, |g(2)| > |h(2)| for z € Ig, and the inequality is strict for z # 0. Thus,
(13.23) lg(2)| > |h(2)] for zeTgr and R is large enough.

For 0 < € < 1, consider the function
(13.24) fe(z) =g(2) + (1 —e)h(2).

The function g, which is a polynomial, has two simple roots: z; 5 = % They
are located in the open right half plane. In view of (13.24) and Rouche’s theorem,
for € > 0 the function f.(z) has precisely two roots z1(g), 22(¢) in the open right
half plane. For € positive an very small, the roots z1 (), z2(¢) are located very close
to the boundary point z = 0. This can be shown by the asymptotic calculation.
Since f.(z) = 6e + 1722% + o(|z|*) as z — 0, the equation f.(z) = 0 has the roots
z1(g), z2(e) which behave as

210(e) =€1245¢FF (14 0(c)) ase — +0.

Since for € > 0 the function f. has only two roots in the open right half plane,
there are no roots other than z;(g), z2(¢) there. Since f(z) = lim._ 10 fo(2),
the function f(z) has no roots in the open right half plane. (We apply Hur-
witz’s theorem.) From (13.22) it follows that the function f does not vanish on
the imaginary axis except the point z = 0. At this point the function f has the
root of multiplicity four. Thus, for ¢ = 4 the function /() is in the Hurwitz class.

Claim 1 of Lemma 11.3 is a consequence of Lemma 13.2 and Lemma 13.4.

Remark 13.1. From (13.9) and (13.18), the explicit expression follows:

s 222 — 62 + 6)e® + (22 — 6
(13.25) 1\1:1{1;1+5%;z}:2(z z+z)4€+(z ) for g—4.

This expression agrees with the asymptotic (13.6).



230 VICTOR KATSNELSON

Analysis of the function Wg( B x0)’ We may calculate the function

Wap( B x0) asymptotically expressing it in terms of the appropriate Fox-Wright
function, (13.5), and then refer to the asymptotic expansion of this Fox-Wright
function. However, we derive the asymptotic of the function

WS o) from the asymptotic of the function M pn s (t). From (13.1) and (13.1)
it follows that

1 . .
(13.26) W (oo xoy () = i(Manop(zt) + Mpnxor(—it)) .
Comparing (13.26) with (13.6), we see that
(13.27) W gy (8) =

2% t73 cos ( —%)—i—F(QE)t_Q—l—rl(t), |argt| < e,
2
= {23 (te™"™) "% cos (t + L)+ F(QE)t’2 +ra(t), |argt—mw| <e,
) ) 2
25 (teFT) 7% eF(1 + r3(t)), largt = 5| < T —¢,
where the reminders r1(t), r2(t), r2(t) admit the estimates
(13.28) r1 ()] < Co(e) (I~ 0Dty =) . Jargt] <,
(13.28b) I (8)] < Cale) (|t|*<1+%>e“mt\ + |t\*3) . Jargt — 7| <e,
1 T,
(13.28c¢) [rs(t)] < Cs(e) |t] 71, |argt §| < 576

and C1(e) < oo, Cz(g) < 00, C3(e) < oo for every € : 0 < & < 5. Moreover, the
function Wap( B x0) (t) is even function of ¢, and takes real values at real t.

From (13.27), (13.28) it follows that for every £ > 0 the function Wg(wao)(t) may
have not more that finitely many roots within the angles {t : [arg (tF 5| < § —¢}.
Within the angle {¢ : |argt| < e}, the function W&wao)(t) has infinitely many
roots, and these roots are asymptotically close to the roots of the approximating
function

%

2
t% cos (t — ™) + t72, |argt|<e.

(Since the function Wg’( B x0) (t) is even, there is no need to study its behavior

within the angle {¢ : |argt — 7| < €}.) The behavior of roots of the approximating
equation f,(t) = 0, that is the equation

21-%
(%)

(13.29) cos (t — 72) + t572 =0, |argt|<e,

depends on p.

If 0 < p < 4, then all but finitely many roots of the equation (13.29) are
real and simple, and these roots are asymptotically close to the roots of the
equation cos (t — 7F).

If p = 4, then all but finitely many roots of the equation (13.29) are real and
simple, and these roots are asymptotically close to the roots of the equation

cos(t—m)+3=0=0.
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If p > 4, then all but finitely many roots of the equation (13.29) are non-real
and simple, they are located symmetrically with respect to the real axis, and
are asymptotically close to the ‘logarithmic parabola’

21-%
yl= (2 —Dn(z|+1)+Inc,, ==, 0<z<00.

Thus we prove the following

Lemma 13.5. For each p: 0 < p < oo, the function W&Bmxo) (t) has infinitely
many roots. All but finitely many these roots are simple. They lie symmetric with
respect to the point z = 0.
1. If 0 < p < 4, then all but finitely many these roots are real ;
2. If 4 < p, then all but finitely many these roots are non-real. In particular,
the function Wg(BOOXO) (t) does not belong to the Laguerre-Polya class L-P.

Lemma 13.6. For 0 < p <2, as well as for p =4, the function W&Bmxo) belongs
to the Laguerre-Polya class.

PrOOF. The equality (13.26) is a starting point of our reasoning. If the function
Mpnxor(t) is in the Hurwitz class 3, then the function

(13.30) Q(t) = Mpnxor(it)
is in the class P in the sense of of [37].

Definition 13.1. [B.Levin, [37],Chapter VII, Section 4.] An entire function Q(t)
of exponential type belongs to the class P if:

1. Q(t) has no roots in the closed lower half-plane {t : Imt < 0}.
2. The defect dq of the function w is non-negative, where

odo — T In [Q(—ir)| T ln|Q(zr)|.

r—400 r r——400 T

In the book [37] of B.Ya.Levin, the following version of the Hermite-Bieler Theorem
is proved:

Theorem 7. [[37], Chapter VII, Section 4, Theorem 7| If an entire function Q(t)
is in class P, then its real and imaginary parts XQ(t) and JQ(t):

Q)+ Q(t)
2 9

Q) — ()

o) = T

() =
possess the properties:
1. The roots of each of the functions XQ(t) and 'Q(t) are real and simple;
2. The root sets of the functions ®*Q(t) and Q(t) interlace.
Let us apply this theorem to the function Q(¢) defined by (13.30):

Qt) = Mpnyor(it),
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taking into account that the function M pgn e is real:
Mpnxor(t) = Mpnyor(t), or what is the same, Mpnyxor(—it) = Mpnxor(it).
Hence,

1 ‘ :
RQ(t) = 3 (Mpnxor (it) + Mpnxor (—it))

or taking (13.26) into account,
FQUt) = W geo oy (1) -
Thus, the following result holds:

Lemma 13.7. If the function Mpnxor(t) belongs to the Hurwitz class 3, then the
function W&wao)(t) belongs to the Laguerre-Polya class L-P.

Combining Lemma 13.7 with Lemmas 13.2 and 13.4, we obtain Lemma 13.6. 0

Remark 13.2. For the function Q(t) of the form (13.30), its real part *Q(t) 'Q(t)
has infinitely many non-real roots if p > 4. Nevertheless, all roots of the imaginary
part 7Q(t) are real for every p > 0.

Indeed, according to (13.1) and (13.30),

1
(13.31) IO(t) :p/(l — 257 ¢ sin &t d€ .
0

According to A.Hurwitz (see [64], section 15.27), for every v > — 1, all roots of the

entire function
t\ v R (-1)! £\
(5) Io(0) *; UT(v+1+1) (Z)

are real. (J,(t) is the Bessel function of the index v.) For v > 1

5, the function
(£)7¥J,(t) admits the integral representation

(13.32) S8 = F(+12)r(2) Ja-erteostcac.
0

1
Thus, for v > —% all roots of the entire function [(1 — 52)”’% cos t€ d€ are real.
0

If all roots of a real entire function of exponential type are real, then all roots of
1

its derivative are real as well. Thus, for v > —% all roots of the function [(1 —
0

52)”_%5 sinté d€ are real. However, for v = p—;l, the last function coincides with
the function % IQ(t). 0
For p = 3, we do not know whether the function Wap(wao) (t) belongs to the
Laguerre-Polya class or not. Our conjecture is that YES. Let us formulate our
conjectures more precisely. Let us formulate our conjectures in terms of the Fox-
Wright functions.
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CONJECTURE 1. For 0 < A <2, all roots of the Fox-Wright function

L Dk 1) ¢k
(13.33) = Y
0§k<wr(§+1+/\)k!

lie in the open left half plane.
We proved that the answer is affirmative for 0 < A < 1, and for A\ = 2.

CONJECTURE 2. For 0 < A < 2, all roots of the Fox-Wright function

(13.34) A {};

Wl =

. r(+1) t
.t — —
127 } 2 LI+ QI +14 ) 1!

0<Il<o0

are negative and simple.
We proved that the answer is affirmative for 0 < A <1, and for A = 2.

From Hermite-Bieler theorem it follows that if Conjecture 1 holds for some A, then
for this A Conjecture 2 holds as well.

The conjectures 1 and 2 are related to some deep questions related to ‘meromorphic
multiplier sequences’. (See [17], Problem 1.1.)

14. CONCLUDING REMARKS.

1. In the present paper we use geometric consideration to a small extent. The
only general geometric tool which we used was the Alexandrov-Fenchel inequalities.
We did not use the monotonicity properties of the coefficients of the Minkowski
polynomials. If Vg, V1, V4 are convex sets, such that

MWl
and My, (t), My, (t), My, (t) are their Minkowskii polynomials,
My,(t)= Y me(V)t*, j=0,1,2,
0<k<n
then for the coefficients of these polynomials the inequalities
mi(V1) <mp(Vo) <mp(Va), 0<k<n.

hold. In this connection, the use of the Kharitonov criterion of stability may be
helpful. (Concerning the Haritonov criterion see Chapters 5 and 7 of the book [9]
and the literature quoted there.) The Kharitonov criterion deals with the ‘interval
stability’ of polynomials. In its simplest form, this criterion allow to determine
whether the polynomial

(14.1) f&) =Y at
0<k<n

with the real coefficients a; is stable from the information that these coefficients
belongs to some intervals:

(14.2) a,ggakga;, 0<k<n.
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Applying this criterion, one need to construct certain polynomials from the given
numbers a,, a;r, 0 < k < n. (There are finitely many such polynomials.) If all
these polynomials are stable, then the arbitrary polynomial f(¢), (14.1), whose
coefficients satisfy the inequalities (14.2), is stable.

2. In the example of a convex set V' whose Minkowski polynomial is not dissipative,
the set V are very ‘flattened’ in some direction. (See Theorem 2.7.)

What one can say about Minkowski polynomials of those convex set V. which are
‘isotropic’?

The notion of isotropy may be defined in the following way.

Definition 14.1. The solid convex set V., V. C R", is said to be isotropic (with
respect to the point 0), if the integral

/ (&, ) Pdun ()
174

takes the same value (i.e. is constant with respect to e) for every vector e € R™ such
that (e,e) = 1. Here (., .) 1is the standard scalar product in R™, and dv,(x) is the
standard n-dimensional element on volume.
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