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PERIODIC GROUPS SATURATED BY THE GROUP U3(9)

D. V. LYTKINA

Abstract. Let M be a set of finite groups. A group G is said to be
saturated by M, if every finite subgroup of G is contained in a subgroup
isomorphic to a group from M. We prove that a periodic group saturated
by set consisting of the single finite simple group U3(9) = PSU3(81) is
isomorphic to U3(9).

Let M be a set of finite groups. A group G is said to be saturated by M, if every
finite subgroup of G is contained in a subgroup isomorphic to a group from M.

The paper [1] contains a hypothesis that a periodic group saturated by a finite set
M of finite non-abelian simple groups is finite and also confirms this hypothesis for
the case when centralizers of Sylow 2-subgroups of groups from M do not contain
elements of odd order larger than three.

In this connection, it is interesting to investigate groups saturated by one simple
group (precisely, by one-element set containing a finite simple group) in which
centralizer of Sylow 2-subgroup contains an element of odd order larger than three.
All such groups are listed in [2].

A simple group of the least order in which centralizer of Sylow 2-subgroup con-
tains an element of odd order larger than three is U3(9) ' SU3(81), and the goal
of present article is to prove the following result.

Theorem. Periodic group G saturated by group U3(9) is isomorphic to U3(9).

The proof uses the folowing well-known properties of U3(9) (see for example [3]
and [4]).

Proposition 1. Let U ' U3(9).
1. Sylow 2-subgroup T in U is semi-diedral group of order 32, i.e. T = 〈a, b|a16 =

b2 = 1, ab = a7〉.
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2. Every involution of U is a conjugate of b.
3. The centralizer C of b in U is the direct product of a group of order 5 and a

group C0 isomorphic to extension of C1 ' SL2(9) by a group of order 2. All ele-
ments of order 4 from C are contained in C1, their squares coincide with an unique
involution b in C1. The order of any maximal cyclic subgroup of C1 equals 6, 8 or 10.

4. If R is a Sylow 3-subgroup of U then R is a group of exponent 3, which center
Z is an elementary abelian group of order 9, and the factor group by center is an
elementary abelian group of order 81, NU (R) is a maximal subgroup in U which is
an extention of R by cyclic group D of order 80. Here |CD(Z)| = 10 and D/CD(Z)
acts transitively upon conjugation in NU (R) on a set of non-trivial elements of Z
and D acts regularly on R/Z. In particular, rdZ = r−1Z for any element r ∈ R and
any involution d ∈ NU (R). Every 3-local subgroup of U is contained in a subgroup
isomorphic to NU (R).

In addition we shall need the following results ([5]).

Proposition 2. Periodic group containing an involution with finite centralizer is
locally finite.

The proof will also use the following facts which can be easily checked with the
help of coset enumeration algorithm (see, for example, [6]).

Proposition 3. 1. The order of the group 〈x, y, z|x3 = y2 = z2 = (yz)3 = (yxz)3 =
(yzx)3〉 equals 54.

2. Suppose H = 〈x, y, z|x3 = y2 = z2 = (xy)4 = (yz)p = (yzx)q = ((xy)2z)r〉,
where p, q, r ∈ 3, 4, 5 and r 6= 4. Then |H| 6 24. Moreover |H| = 24 if (p, q) = (4, 4),
and |H| = 1 in other cases.

3. The order of the group 〈x, y, z|x3 = y2 = z2 = (xy)4 = (yz)2 = (yzx)4 =
((xy)2z)4 = (yxyz)4 = 1〉 equals 14400.

Proof of Theorem. Obviously the theorem is true for finite group G. Suppose
G is infinite. As shown in [1], every locally finite subgroup of group G is finite.

By assumption G contains a subgroup U ' U3(9) and we shall later on use
notations from the statement of Proposition 1.

Lemma 1. NG(Z) = NG(R) = NU (R).

Proof. By Proposition 1.4, CG(Z) contains an involution b. If c is an involution
in CG(Z) then 〈b, c, Z〉 is a finite group contained in a subgroup isomorphic to U . By
Proposition 1.4, 〈b, c, Z〉/Z contains an elementary abelian 3-subgroup of index 2.
In particular, bc ∈ Z.

Let us show that every involution d from CG(Z) inverts R/Z. Suppose r is an
element from R. By Proposition 1.4, the coset brZ contains an involution c. By
Proposition 3.1 and previous paragraph, 〈b, c, d, Z〉/Z is a finite group containing
rZ. By Proposition 1.4, rdZ = r−1Z.

Thus, all involutions from CG(Z) generate a subgroup N which is an exten-
sion of Z by a group containing an elementary abelian 3-subgroup of index 2. In
particular, N is locally finite and hence finite. By Proposition 1.4, a subgroup of
index 2 from N coincides with R. In particular, CG(Z) 6 NG(R). This implies
that NG(Z) 6 NG(R). By Proposition 1.4, CG(R) 6 R, hence NG(R) is a finite
subgroup isomorphic to a subgroup of Ё§ U . This implies that NG(R) = NU (R).
The proof is completed.
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Suppose b is an involution in CU (Z), H = CG(b) and H = H/〈b〉. Denote the
image of any element h ∈ H and any subset M ⊆ H by h and M , respectively.

Lemma 2. Every finite subgroup of H is isomorphic to some subgroup of C =
CU (b). If a and c are involutions conjugated to an involution from C1 then (ac)m = 1
for m = 3, 4 or 5. If, in addition, ac is an element of order 4 then (ac)2 is conjugated
to an involution from C1.

Proof. If F is a finite subgroup of H then 〈b, F 〉 is contained in subgroup V
isomorphic to U and F 6 CV (b) ' CU (b).

If a and c are conjugated to an involution from C1 then, by Proposition 1.3, a
and c are elements of order 4 and a2 = c2 = b. Finite subgroup 〈a, c〉 is isomorphic
to some subgroup of C1 and order of ac divides one of the numbers 6, 8 or 10. In
addition, if this order is even then b ∈ 〈ac〉 and hence equality (ac)m = 1 holds,
where m = 3, 4 or 5. If in addition the order of ac equals 4 then ac is an element of
order 8, (ac)2 is an element of order 4 and, by Proposition 1.3, (ac)2 is conjugated
in H to an element of C1. The proof is completed.

Lemma 3. If a is an involution from H not lying in C1 and conjugated to an
involution from C1, and c is an involution from C1 then (ac)4 = 1.

Proof. The subgroup C1 is isomorphic to A6 and hence contains a subgroup
S ' S4. The group S is generated by an element x of order 3 and an involution y
whose product is an element of order 4. Since all involutions of A6 are conjugated in
A6, without loss of the generality, we can assume that c = (xy)2. Denote a with z.
By Lemma 2, there exist p, q, r ∈ 3, 4, 5 such that (yz)p = (yzx)q = ((xy)2z)r = 1.
Since |〈x, y, z〉| > 24, Proposition 3.2 implies that r = 4. The proof is completed.

Lemma 4. C1 ¢ H.

Proof. Suppose the contrary. Since C1 is generated by involutions, there exists
an involution z ∈ H not contained in C1 and conjugated to an involution from C1.
Suppose again that S is a subgroup of C1 isomorphic to S4, and x, y are elements
of S generating S such that x3 = y2 = (xy)4 = 1. By Lemma 3, (yz)4 = (yzx)4 =
((xy)2z)4 = 1.

If (yz)2 = 1 then supplementary (yx · yz)4 = 1 and 〈x, y, z〉 is finite by Proposi-
tion 3.3. Since it is generated by elements of order 2 conjugated with elements of
C1, 〈x, y, z〉 is isomorphic to a subgroup of C1 ' A6. Since every subgroup of A6

isomorphic to S4 is maximal in A6, C2 = 〈x, y, z〉 ' A6. Obviously C1 ∩ C2 = S.
If now z1 is an involution from C2 ' A6 such that the order of yz1 equals 5

then z1 is conjugated with y and not lying in S, hence z1 6∈ C1 and, by Lemma 3,
(yz1)4 = 1 which contradicts the choice of z1. Thus, (yz)2 6= 1.

Let t = (yz)2. Then t is an involution conjugated by Lemma 2 with an involution
from C1. If t 6∈ C1, then whereas all involutions from C1 are conjugated in C1 we
may replace y with t. After this replacing, the equality (yz)2 = 1 will hold and
equalities (yz)4 = (yzx)4 = ((xy)2z)4 = (yx · yz)4 = 1 will be kept. As indicated
above, these equalities bring us to a contradiction. The proof is completed.

Lemma 5. H is a finite group.

Proof. By the choice of the involution b, Z is contained in C1 as a Sylow 3-
subgroup. Hence H = C1NG(Z). By Lemma 1, NG(Z) is a finite group. The proof
is completed.
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Now, by Proposition 2, G is a locally finite and hence finite group. This implies
that G is isomorphic to U . Theorem is proved.

References

[1] A. K. Shlepkin, A. G. Rubashkin, Groups saturated by a finite set of groups, Siberian Math.
J., 45:6 (2004), 1140–1142.

[2] A. S. Kondratiev, V. D. Mazurov, 2-signalizers of finite simple groups, Algebra and Logic,
42:5 (2003).

[3] J. L. Alperin, R. Brauer, D. Gorenstein, Finite groups with quasi-dihedral and wreathed Sylow
2-subgroups, Trans. Amer. Math. Soc., 151:1 (1970), 1–261.

[4] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups,
Oxford: Clarendon Press, 1985.

[5] V. P. Shunkov, On periodic groups with an almost regular involution, Algebra and Logic,
11:4 (1972), 260–272.

[6] The GAP group. GAP-Groups, Algorithms, and Programming, Version 4.4.6, 2005
(http://www.gap-system.org).

Daria Victorovna Lytkina
Novosibirsk State University,
Pirogova 2,
630090, Novosibirsk, Russia
E-mail address: d_lytkin@mail.ru


