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O. V. BORODIN, A. O. IVANOVA, A. V. KOSTOCHKA, N. N. SHEIKH

Abstract. The M-degree of an edge xy in a graph is the maximum of
the degrees of x and y. The minimax degree of a graph G is the minimum
over M -degrees of its edges. In order to get upper bounds on the game
chromatic number, W. He et al showed that every planar graph G without
leaves and 4-cycles has minimax degree at most 8. This was improved
by Borodin et al to the best possible bound 7. Answering a question by
D. West, we show that every plane graph G without leaves and 4-faces
has minimax degree at most 15. The bound is sharp. Similar results are
obtained for graphs embeddable on the projective plane, torus and Klein
bottle.

1. Introduction

By quasiplane graphs we mean those embedded on a surface with nonnegative
Euler characteristics, i.e., the plane, the projective plane, the torus or the Klein
bottle. For an edge xy in a graph G, the maximum degree (for short, M -degree)
M(xy) is the maximum of the degrees of x and y. The minimax degree (for short,
M -degree) of a graph G is M∗(G) = min{M(xy)|xy ∈ E(G)}. Let δ(G) and ∆(G)
denote the minimum and maximum degrees of a graph G, respectively.

Wernicke [11] proved that M∗(G) ≤ 6 for every planar graph G with δ(G) ≥ 5.
Kotzig [10] proved that M∗(G) ≤ 7 for every planar graph G with δ(G) ≥ 4.
Borodin [4] showed that M∗(G) ≤ 10 for every planar graph G with δ(G) ≥ 3,
extending Kotzig’s similar result [9] on 3-polytopes. (This last upper bound was
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conjectured by P. Erdös and announced by D. Barnette (see Grünbaum [7], p. 454)
to be true but seems to have never been published.) All these bounds are tight.

The M -degree of planar graphs with δ(G) ≥ 2 is not bounded from above. For
example, M∗(K2,n) = n. Note that every cycle in K2,n has length four.

By d(v) denote the degree of a vertex v. An induced cycle C = v1v2 . . . v2k in
a graph G is called 2-alternating if d(v1) = d(v3) = . . . = d(v2k−1) = 2. Note that
every cycle in K2,n is 2-alternating. Suppose G is a planar graph with δ(G) ≥ 2.
If it has no 2-alternating 4-cycles, then M∗(G) ≤ 15 (see [2]), and if G has no
2-alternating cycles at all, then M∗(G) ≤ 13 (see [3]), where both bounds are tight.

He, Hou, Lih, Shao, Wang and Zhu [8] found upper bounds on M -degrees of
planar graphs with δ(G) ≥ 2 and restrictions on girth. They used these bounds
to estimate from above the game chromatic number (introduced by Bodlander [1])
and the game coloring number of such graphs. In particular, one of the main results
in [8], Theorem 2.2, says that M∗(G) ≤ 8 for planar graphs G having no leaves
and 4-cycles. This result yields that every C4-free planar graph can be decomposed
into a forest and a graph with maximum degree at most 7, which in turn implies
that the game chromatic number, χg(G), and the game coloring number of every
C4-free planar graph G are at most 11. (Indeed, the game chromatic number of a
tree is at most 4, as proved in [6], and it is easy to see that if the edges of G are
partitioned into a tree and a graph H, then χg(G) ≤ 4+∆(H).) It is also mentioned
in [8] that it is not known whether 8 is the exact bound and that the M -degree of
dodecahedron is 3.

In [5], Borodin et al determined the exact upper bounds on M -degrees for C4-
free graphs G with δ(G) ≥ 2 embeddable into the plane and projective plane to be
7, and those embeddable into the torus and the Klein bottle to be 8.

Douglas West asked for similar upper bounds for M -degrees of quasi-planar
graphs without 4-faces. The main result of this paper is

Theorem 1. Let G be a graph without leaves. If G can be embedded into the plane
or the projective plane without 4-faces, then M∗(G) ≤ 15. If G can be embedded
into the torus or the Klein bottle without 4-faces, then M∗(G) ≤ 18. Both bounds
are sharp.

We do not allow loops and multiple edges because otherwise M∗ may be arbi-
trarily large under the absence of 4-faces.

Let N(S) denote the Euler characteristics of a surface S. Recall that N(S) = 2
if S is the plane, N(S) = 1 if S is the projective plane, and N(S) = 0 if S is the
torus or the Klein bottle; for the other surfaces N(S) < 0.

In [5], we prove that any graph G without 4-cycles and leaves embedded into a
surface S, where N(S) < 0, and having more than −72N(S) edges has M∗(G) ≤ 8.

From the proof of Theorem 1, we deduce the following fact.

Theorem 2. Every graph G without leaves embedded without 4-faces into a surface
S with N(S) < 0 and having more than −342N(S) edges has M∗(G) ≤ 18.

Thus, a large graph without 4-faces on a fixed surface S with N(S) < 0 behaves
in terms of M∗ as a graph embedded into the torus or the Klein bottle.

2. Proof of Theorem 1

We first show that the bounds on M∗(G) are sharp. Let G′ be either the icosa-
hedron graph embedded into the plane or a 6-regular triangulation of the torus or
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the Klein bottle. For every edge e = ab in G′, we add 2-vertices u and w adjacent
with a and b so that e becomes the common edge of 3-faces abu and abw. Clearly,
the graph G obtained has only 3- and 6-faces, and M∗(G) is 15 when G′ is the
icosahedron and 18 otherwise.

Let G be a counterexample to Theorem 1; i.e., a graph embedded on a surface
S (with N(S) ≥ 0) without 4-faces with M∗(G) ≥ 16 if N(S) > 0 and M∗(G) ≥
19 if N(S) = 0. We want to construct from G another counterexample, H, with
additional structural properties.

Let B denote the set of vertices in G of degree at least M∗(G). By a B-vertex
we mean a vertex in B. By definition, every edge of G is incident with a B-vertex.
A vertex is minor if it is neither a 2-vertex nor a B-vertex.

We first exclude all minor vertices from our counterexample G to obtain the
counterexample G′, as follows. Let a minor vertex v be adjacent to B-vertices
v1, v2, v3, . . . , vd(v) clockwise. Then we delete v and, for i = 1, . . . , d(v), add a new
2-vertex vi,i+1 adjacent to vi and vi+1 so that in the embedding we have a new
≥ 6-face (v1v1,2v2v2,3 . . . vd(v),1), while the sizes of old faces do not change. Observe
that in G′ each edge is still incident with a B-vertex.

Next, we exclude 3-faces incident with three B-vertices. If uvw is such a 3-face, we
simply insert three new 2-vertices inside the face, connecting one of them to u and
v, the second to v and w, and the third to w and u. The resulting counterexample
to Theorem 1 is denoted by G′′.

Finally, for each nontriangular face f in G′′ and each edge uv on the boundary
of f with u, v ∈ B, we add a new vertex into f and connect it by edges with u and
v. The resulting graph H embedded into S is still a counterexample to Theorem 1
and has the following properties:
(a) every vertex of H is either a 2-vertex or a B-vertex;
(b) every 3-face of H is incident with exactly one 2-vertex;
(c) for every nontriangular face f of H, the vertices on the boundary of f are
alternately 2-vertices and B-vertices. In particular, every nontriangular face has an
even size.

If H has no edges, we have nothing to prove; otherwise, we can assume that H
is connected. By Euler’s formula |V (H)| − |E(H)|+ |F (H)| ≥ N(S), we have

(1)
∑

x∈V (H)∪F (H)

(d(x)− 4) =
∑

x∈V (H)∪F (H)

µ(x) ≤ −4N(S).

We will use discharging to obtain a contradiction with the properties of H. Let
the initial charge of every x ∈ V (H) ∪ F (H) be µ(x) = d(x)− 4. The vertices and
faces of H discharge their initial charge by the following rules:

Rule 1. Each triangular face gets 5
6 from each incident B-vertex.

Rule 2. Every face f gives every incident 2-vertex charge 2
3 .

Rule 3. Every B-vertex gives 1
3 to each adjacent 2-vertex.

It remains to show that the final charge µ∗(y) is nonnegative for each y ∈ V (H)∪
F (H), and that the final charge of every vertex of degree at least 19 is strictly
positive. This yields a contradiction to (1), since the total charge does not change,
and hence should be strictly negative when H is projective-plane and non-positive
when G is embedded into the torus or the Klein bottle.
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If y is a 3-face, then µ∗(y) = 3− 4 + 2× 5
6 − 2

3 = 0 by Rules 1 and 2.
Suppose y is a face with d(y) ≥ 5. By Property (c) of H, d(y) ≥ 6 and y has

exactly d(y)/2 incident 2-vertices. Hence µ∗(y) ≥ d(y)−4− d(y)
2 × 2

3 = 2d(y)
3 −4 ≥ 0

by Rule 2.
Now suppose that y is a vertex.
If d(y) = 2, then it gets 2

3 from the adjacent vertices by Rule 3 and 4
3 from the

incident faces by Rule 2. Hence, µ∗(y) = 0.
Suppose y is a B-vertex. We want to estimate the maximum total expenditure

of y by Rules 1 and 3. Let f1, f2, f3, . . . , fd(y) be consecutive faces at y. Note that
3-faces at y appear in pairs: if f2 = xyz is a triangle, then precisely one of f1, f3

is a triangle, too. Indeed, by Properties (a)–(c) of H, either d(x) = 2 and z is a
B-vertex, or vice versa. Suppose f1 is adjacent to f2 along a BB-edge. Then by (c),
f1 is a 3-face, while f3 cannot be a 3-face since H has no multiple edges. In turn,
f1 is incident with a 2-vertex, hence f1 cannot be adjacent to a 3-face other than
f2.

So, let y be incident with k couples of triangular faces and l nontriangular edges.
Of course, 3k + l = d(y). Every couple causes y the loss of charge at most 2 ×
1
3 + 2 × 5

6 = 7
3 by Rules 1 and 3; i.e., each of the three edges in a couple takes 7

9
away from y on the average. Recall that a nontriangular edge takes at most 1/3
away from y. This implies that the total expenditure of y is at most 7d(y)

9 , so that
µ∗(y) ≥ d(y)− 4− 7d(y)

9 = 2(d(y)−18)
9 .

Thus, we have proved that µ∗(y) ≥ 0 if d(y) ≥ 18 and µ∗(y) > 0 if d(y) ≥ 19.
For d(y) = 17 we have µ∗(y) ≥ 17 − 4 − 15 × 7

9 − 2 × 1
3 > 0, while µ∗(y) ≥

16− 4− 15× 7
9 − 1× 1

3 = 0 if d(y) = 16.
This completes the proof of Theorem 1.

3. Proof of Theorem 2

Let H be a modified counterexample to Theorem 2 (see the proof of Theorem 1).
Then, as shown a few lines above, each B-vertex v in H has µ∗(v) ≥ 2(d(v)−18)

9 > 0.
For each B-vertex v, we distribute µ∗(v) evenly among the edges incident with v,
i.e. by 2(d(y)−18)

9d(y) ≥ 2
171 .

Let ν(x) denote the new charge of an element x ∈ V (H) ∪ E(H) ∪ F (H). Then
ν(v) = 0 for every v ∈ V (H). Since the charges of faces did not change, we have
ν(f) = µ∗(f) ≥ 0 for every f ∈ F (H). Note that every edge e of H is incident with
a B-vertex, and hence ν(e) ≥ 2

171 . Now (1) implies

|E(H)| × 2
171

≤
∑

x∈E(H)∪F (H)

ν(x) =
∑

x∈V (H)∪F (H)

µ∗(x) ≤ −4N(S),

which contradicts the assumption that |E(H)| > −342N(S).
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