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THE WHITEHEAD CONJECTURE – AN OVERVIEW

STEPHAN ROSEBROCK

Abstract. These notes are an elaboration of a talk held November 3,
2006 at the ”Metzler Fest” in honour of Wolfgang Metzler’s 65-th birthday
at the university of Frankfurt. The aim is to give an overview of results
concerning Whitehead’s asphericity conjecture.

1. Introduction to the Whitehead Conjecture

A 2-complex K is called aspherical if its second homotopy group is trivial
(π2(K) = 0). This means, every continuous map f : S2 → K is homotopy
equivalent to the trivial map where the 2-sphere S2 is mapped to a single point.

Whitehead Conjecture [1941]:

(WH): Let L be an aspherical 2-complex. Then K ⊂ L is also aspherical.

Whitehead posed this 1941 as a question (see [17]). A more algebraic introduc-
tion to the Whitehead Conjecture than the one given here may be found in [3].

Motivation at the time was the asphericity of knot complements:
Given any knot k ⊂ S3, the space S3 − k is the knot complement. What is

π2(S3 − k)?

Theorem 1.1. (WH) implies the asphericity of knot complements.

Proof. Glue a (thickened) meridian disk into S3−k to get a 3-ball which collapses to
an aspherical 2-complex. So if (WH) were true than the subcomplex which collapses
from S3 − k has to be aspherical and the asphericity of knot complements were
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shown. ¤

The asphericity of knot complements was shown 1957 by Papakyriakopoulos
with 3-manifold techniques but the Whitehead Conjecture remains open.

Equivalent to the Whitehead question is the following: Can we create π2 by
taking away a 2-cell?

Closely related is intuitively the following observation: We can make π2 ”bigger”
by taking away a 2-cell:

Take K = S2 ∨ S1 and let L = K ∪S1 D2
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a

Рис. 1. K = S2 ∨ S1

Let s be the element of π2(K) generated by the 2-sphere and a the element of
π1(K) generated by S1. Then (a− 1)[s] is nontrivial in π2(K) but trivial in π2(L).
The inclusion K ⊂ L does not induce an injective homomorphism π2(K) → π2(L).

Another elementary and interesting example is the following: Define K to be
the projective plane modeled on the presentation < x |x2 >. The second homotopy
group of K is non-trivial and generated by g = (1 − x)[r] where r corresponds
to the relator x2. Define L to be the 2-complex modeled on < x |x2, x >. K is a
subcomplex of L. The element g and therefore the whole second homotopy group of
K is killed in L. This is certainly not a counterexample to (WH) since π2(L) 6= 0.
New elements of the second homotopy group arise when the old ones are killed.

2. Elementary Results

Throughout this section we assume K ⊂ L2 and π2(L) = 0.

Theorem 2.1. (WH) is true if:

• K has at most one 2-cell (Cockcroft 1954)
• π1(L) is finite and non-trivial, abelian or free

(WH) is homologically true: Certainly H2(L) = 0 ⇒ H2(K) = 0 because L is
2-dimensional.

More general: The Hurewicz homomorphism π2(K) → H2(K) is trivial, because
π2(K) → H2(K) ½ H2(L) factors through π2(L) = 0.
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This means, every spherical map f : S2 → K is homologically trivial. Any 2-
complex K with this property is called Cockcroft.

Theorem 2.2. (Cockcroft 1954 [4]): If π1(K) → π1(L) is injective then π2(K) = 0.

Proof. Let L̃ be the universal cover of L and p : L̃ → L the corresponding covering
projection. K is a subcomplex of L, so we can consider K, a component of p−1(K).

K ⊂ L̃
↓ ↓ p
K ⊂ L

First observe: K is a regular covering of K. If p] : π1(K) → π1(K) is the corre-
sponding map for the fundamental group, then

p](π1(K)) = ker(π1(K) → π1(L)) = 0

since any loop in the kernel survives as loop in K. This implies that K → K is the
universal cover.

The fundamental group of the universal cover is always trivial, so we have
π2(K) ∼= H2(K) < H2(L̃) ∼= π2(L) = 0. ¤

So it is natural to ask: When is π1(K) → π1(L) injective? There we have a
connection to equations over groups.

There is a stronger result:

Theorem 2.3. (Howie 1979 [7]): If ker(π1(K) → π1(L)) has no nontrivial perfect
subgroups then π2(K) = 0.

Let K → K be the covering corresponding to the commutator subgroup. Then
it is easy to see that H2(K) = 0. This result can be sharpened in the following way:

A 2-complex K∗ is called acyclic, if H2(K∗) = H1(K∗) = 0.

Theorem 2.4. (Adams 1955 [1]): There is an acyclic regular covering:

K∗ → K → K.

So a counterexample to (WH) can be covered by an acyclic complex but not by
a contractible one.

3. Is the Whitehead Conjecture false?

There are some hints that (WH) may be false. One is from Geometric Group
Theory:

The cohomological dimension cd(G) of a group G is the smallest number n such
that there exists a projective resolution

0 → Pn → Pn−1 → . . . → P0 → Z→ 0

over the trivial ZG-module Z. Each Pi is a finitely generated projective ZG-module.

The geometric dimension gd(G) of a group G is the smallest number n such there
exists a n-dimensional Eilenberg-McLane space K(G, 1). The Eilenberg-McLane



THE WHITEHEAD CONJECTURE – AN OVERVIEW 443

space K = K(G, 1) satisfies π1(K) = G and πi(K) = 0 for all i > 1.

It is easy to see that gd(G) ≥ cd(G) because the universal cover of a K(G, 1)
gives rise to a projective resolution.

Now the Eilenberg-Ganea Conjecture states gd(G) = cd(G). This is only open
for cd(G) = 2.

Theorem 3.1. (Bestvina/Brady 1997 [2]): Either (WH) or the Eilenberg-Ganea
Conjecture is false.

Another result of Howie characterizes Whitehead Counterexamples.
Observe first, if we had a Whitehead Counterexample K ⊂ L2 and π2(L) = 0 it

can be assumed:
• L is obtained from K by attaching 2-cells

since we can always add the 1-skeleton of L to K without changing its
asphericity.

• K is finite.
If K would be infinite and non-aspherical, then restrict K to the image of
a nontrivial S2-map.

• L is contractible.
If L is not contractible take instead of L the universal cover L̃. We know
π2(L) = π2(L̃).

Theorem 3.2. (Howie 1983 [8]): If (WH) is false then there exists a counterex-
ample K ⊂ L such that either:

(a): L is finite and contractible and K = L− e for one 2-cell e.
(b): L is the union of an infinite chain of finite nonaspherical subcomplexes

K = K0 ⊂ K1 ⊂ K2 ⊂ . . .

where each Ki ⊂ Ki+1 is nullhomotopic.

This is easy to prove, if the word ”contractible” is replaced by ”aspherical”:

Proof. Assume (WH) is false and

1. L is finite. Add to K 2-cells of L as long as it stays non-aspherical. Define a new
2-complex, for simplicity also called L having only one 2-cell more. Then K = L−e.

2. Now assume (WH) is false but
(*) connected subcomplexes of finite aspherical 2-complexes are aspherical.

Select Y = Y 2 aspherical and X ⊂ Y connected and non-aspherical. Let Ỹ be
the universal cover of Y and p : Ỹ → Y the corresponding covering projection. X
is a subcomplex of Y , so we can consider X, a component of p−1(X).

X ⊂ Ỹ
↓ ↓ p
X ⊂ Y
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Since X is a component of p−1(X) we know π2(X) 6= 0. So we have a K0 ⊂ X
which is non-aspherical and finite.

Because Ỹ is contractible it follows K0 ⊂ Ỹ is nullhomotopic. So the cone CK0

over K0 is finite and there is a map CK0 → Ỹ . The image K1 under this map is a
finite connected 2-complex and K0 ⊂ K1 is nullhomotopic.
(*) and π2(K0) 6= 0 implies π2(K1) 6= 0.

Repeat the arguments with K1 instead of K0. End up with:

K = K0 ⊂ K1 ⊂ K2 ⊂ . . .

and define L =
⋃

Ki. ¤

This result was strengthened by Luft ([13]):

Theorem 3.3. (Luft 1996): If (WH) is false then there is a counterexample of type
(b) of theorem 3.2.

4. Labelled Oriented Graphs

Let P = < x1, . . . , xn | R1, . . . , Rm > be a finite presentation where each relator
is of the form xixj = xjxk, i.e. is a Wirtinger relation. Such a presentation is
called a labelled oriented graph presentation, or short, LOG-presentation because
it is represented by a labelled oriented graph TP in the following way: For each
generator xi of P , TP has a vertex labelled xi and for each relator xixj = xjxk

(or, equivalently, xi = xjxkx−1
j ), TP has an oriented edge from the vertex xi to the

vertex xk labelled by xj . If TP is a tree we call it a labelled oriented tree or LOT
and P a LOT-presentation. The 2-complex modeled on P will be called a LOG (or
LOT)-complex.

LOTs are of importance for the Whitehead Conjecture because of the following
theorem (see [8]):

Theorem 4.1. (Howie 1983): Let L be a finite 2-complex and e ⊂ L a 2-cell. If

L
3

�↘ ∗ (i.e. L 3-deforms to a single vertex) then L − e
3

�↘ K and K is a
LOT complex.

As an example we consider the presentation
< a, b, c, d, e | ac = cb, bd = dc, db = bc, da = ae > which encodes to

a b
c

c
abd

d e

Рис. 2. Example of a LOT
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Andrews-Curtis Conjecture (AC): Let L be a finite, contractible 2-complex.

Then L
3

�↘ ∗.
Corollary 4.2. If (AC) is true and LOTs are aspherical then there is no coun-
terexample of type (a) of theorem 3.2 to (WH).

On the other hand, any nonaspherical LOT is a counterexample to (WH):
A LOT is a subcomplex of an aspherical 2-complex because if one adds x1 = 1 as a
relator then one has a balanced presentation of the trivial group which 3-deforms
to a point. Hence LOTs are interesting for (WH).

Рис. 3. A ribbon singularity

A ribbon-disc is a proper embedding f : D2 → D4 which can be immersed in
the boundary i : D2 → S3 having only ribbon singularities (see Figure 3). The
complement of a properly embedded ribbon-disc in the 4-ball D4 − i(D2) collapses
to a LOT-complex. Each LOT-complex can be realized as a spine of a complement
of a properly embedded ribbon-disc in the 4-ball.

Ribbon-disc Conjecture: ribbon-disc complements (and hence LOT-
complexes) are aspherical.

If K is a 2-complex and g ∈ π1(K) a nontrivial element of finite order, then
π2(K) 6= 0. If gk = 1 and gk is trivialized by r in π1(K) then (1− g)[r] is nontrivial

g g
g

g
g

g  k = 1r

Рис. 4. An element of finite order

in π2(K).

Is there a LOT-group with a nontrivial element of finite order? This also is still
open.
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Several classes of aspherical LOTs are known:

(1) Wirtinger presentations of knots are LOTs. They are aspherical by the result
of Papakyriakopulos cited in chapter 1.

(2) Howie 1985 [9]: LOTs of Diameter ≤ 3 are aspherical.

(3) LOT-complexes, which satisfy some kind of curvature condition like the
small cancellation conditions C(4), T(4) or the weight test (Gersten 1987 [5]) or
the cycle test (Huck/Rosebrock 1992 [10]) are aspherical.

(4) A LOT is called injective if each generator occurs at most once as an edge
label (this corresponds to alternating knots).
A LOT is called compressed if every relator contains 3 different generators.
A LOT is called reducible if there is a generator that occurs exactly once upon the
set of relators and reduced otherwise.
Any LOT can be homotoped into a compressed reduced LOT.

Theorem 4.3. (Huck/Rosebrock 2001 [11]): If a LOT is compressed and injective
and does not contain a reducible Sub-LOT then it is aspherical.

(5) Generalized knot-theory (Harlander/Rosebrock 2003 [6]):

A knot-projection on a 2-sphere leads to a LOT via its Wirtinger-presentation.
An arc between undercrossing and undercrossing leads to a generator. Any crossing
gives rise to a relator (see Figure 5).

a

b

c

a b = b c

Рис. 5. A crossing

It is also possible to realize a given LOT as a knot-projection but only on ori-
entable surfaces instead of a 2-sphere. First, a LOT can be homotoped to a LOI
(labelled oriented interval, where the corresponding tree is just an interval). Any
LOI can then be realized on an oriented surface such that reading off its Wirtinger
presentation gives back the LOI. This projection can be realized as a projection
from an embedding of an arc in a singular 3-manifold:

Let P be a LOI and KP its corresponding 2-complex. There is a singular 3-
manifold X = F × [0, 1]/F × {1} (F is an orientable surface) and a link L ⊂ X,
such that X − L ↘ KP .

Let F ′ be the cell decomposition of F dual to the one induced by L̄, where L̄
is the projection of L on F . The definition of a prime knot is generalized from the
classical case:
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Definition 4.4. An alternating link-projection L̄ on an orientable surface F is
prime if the 1-skeleton of F ′ does not contain cycles of length shorter than four
except for cycles made up of boundary edges.

Theorem 4.5. (Harlander/Rosebrock 2003 [6]) If L has a prime and alternating
link projection on F then KP is aspherical.

(6) LOTs of complexity two (Rosebrock [16]):

Given a LOT P = < x1, . . . , xn | R1, . . . , Rm−1 >, we say that P has complexity
n, provided there is a subset S = {xi1 , . . . , xin

} of the set of generators X consisting
of n elements, such that the following inductive process defines every generator of
P to be good and there is no such set consisting of n− 1 elements:

(1) The elements of S are good.
(2) If xy = yz or zy = yx is a relator of P and x, y are good then so is z.

We say that P is derived by S.

Theorem 4.6. (Rosebrock 2007 [16]) LOTs of complexity 2 are aspherical.

The idea of the proof is as follows: For a LOT of complexity 2 it is shown
that it can be transformed into a 1-relator presentation without changing the
homotopy-type of the corresponding 2-complex. Since LOT-groups abelianize
to the infinite cyclic group, one can show that the corresponding 2-complex is
aspherical.

There are some other classes of aspherical LOTs which are not mentioned here.
See for example [15] or [12].

5. Spherical Diagrams

f : C → K2 is a spherical diagram over the 2-complex K2, if C is a cell de-
composition of the 2-sphere and open cells are mapped homeomorphically. If K
is non-aspherical then there exists a spherical diagram which realizes a nontrivial
element of π2(K). So in order to check whether a 2-complex is aspherical or not it
is enough to check spherical diagrams.

A spherical diagram f : C → K2 is reducible, if there is a pair of 2-cells in C
with a common edge t, such that both 2-cells are mapped to K by folding over t.

A 2-complex K is said to be diagrammatically reducible (DR), if each spherical
diagram over K is reducible. Certainly if K is (DR) then K is aspherical since any
spherical diagram over a DR 2-complex can be reduced to the trivial diagram. So
there was the hope to show that any LOT can be homotoped to a diagrammatically
reducible LOT, but:

Theorem 5.1. (Rosebrock 1990 [14]) There are reduced and compressed LOT-
complexes, which are aspherical but not DR.

Let P =< x1, . . . , xn | R1, . . . , Rm > be any finite presentation and KP the
corresponding standard 2-complex.

The Whitehead graph WP of KP is the boundary of a regular neighborhood
of the only vertex of KP . It is, in general, a non-oriented graph consisting of a
pair of vertices x+

i and x−i for each generator xi of P , which correspond to the
beginning and the end of the oriented loop labelled xi in KP . The edges of WP ,
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also called corners, are the intersections of the polygonal 2-cells with the boundary
of a regular neighborhood of the vertex of KP . The left graph LP ⊂ WP is the full
subgraph on the vertices x+

1 , . . . , x+
n , the right graph RP ⊂ WP is the full subgraph

on the vertices x−1 , . . . , x−n .

The following theorem was observed by several people and gives a new class of
aspherical LOTs:

Theorem 5.2. If the left graph or the right graph of a LOT does not contain a
cycle then the corresponding 2-complex is DR.

Proof. If G is the fundamental group of a LOT-complex K then G abelianizes
to the infinite cyclic group. So the levels of the corresponding covering space K̄
may be enumerated by the integers. Any spherical diagram f : C → K lifts into K̄.
The maximum level in the image of this map f̄ : C → K̄ comes from a sink in the
preimage. Since there is no cycle in the left graph a reduction must be possible at
such a sink. The same happens with the minimum level reached by the image and
the right graph. ¤

This theorem is generalized to a wider class of LOTs in [12]. There the left and
the right graph may contain cycles but some subtile conditions on the Whitehead
graph still guarantee asphericity.

Let P = < x1, . . . , xn | r1, . . . , rm > be a LOT. To change the orientation of
the edge corresponding to one of its relations rt : xi = xjxkx−1

j will mean to
replace rt by r′t : xk = xjxix

−1
j . This is the same as changing the orientation of

the corresponding edge in TP . An orientation of a LOT P is a LOT which arises
from P by changing the orientations of a (possibly empty) subset of edges of TP .

Theorem 5.3. (Huck/Rosebrock 2001 [11]) For any LOT P there is an orientation
Q of P such that KQ is diagrammatically reducible.

In order to prove this, for any LOT P orientations are chosen such that the left
graph is a tree and then Theorem 5.2 gives the desired result.
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