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Abstract. We outline theoretical foundations for the recurrent al-
gorithms of computational linear algebra based on counter orthogonal-
ization processes over an ordered system of vectors; we also show the
importance of these processes for analysis and applications. We present
some important applications of counter orthogonalization processes re-
lated to some approximation problems and signal processing as well as
recent applications related to the so called homogeneous structures and
Toeplitz systems. In particular, these applications contain operators and
inversion of matrices, QDR– and QDL–decompositions, RDL– and LDR–
factorizations, solutions of integral equations and of systems of algebraic
equations, signal estimation on based on approximation models in the
form of differential and difference equations and variational identification
(coefficients estimation) of the latter.

1. Introduction

1. Structure of the article. In section 2, we show that the recurrent equations
of the Gram–Schmidt process of counter orthogonalization over a set of vectors in
an inner product (Hilbert) space can be used to obtain the following well–known re-
current algorithms of linear algebra: the inversion, factorization, and decomposition
algorithms for matrices, which not require the knowledge on eigenvectors.

In Section 2, we mainly discuss the methodological aspects. By this, we give the
proofs for main facts and assertions only.
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In sections 3 and 4, we apply the Gram–Schmidt counter orthogonalization
scheme to homogeneous sets of vectors in a Hilbert space and deduce the new
recurrent algorithms for the counter orthogonalization (Theorem 3). This Theorem
for the Hardy space H2 was earlier published by the author in [1,2] without a proof.

It was noted there that the equations of the Gram–Schmidt counter orthogo-
nalization process give rise to a new class of recurrent algorithms without Riccati
equation in various theoretical and practical fields: orthogonalization of polynomi-
als on the unit circle, the (block) Toeplitz matrix inversion, solving integral equa-
tions of some types, and some others. These equations also arise in the theory of
wave propagation in a homogeneous medium (astro– and geophysics), in stationary
systems signal processing, etc.

In section 4, we describe the author’s numerical solution to the variational prob-
lem of optimization of coefficients of the mathematical model approximating given
data.

The consideration is carried out in the Euclidean space of rows of elements of
a Hilbert space H. This construction is a direct generalization of matrices and
operators acting on a finite–dimensional unitary space.

2. Premises. In the first part of the theory under consideration, the important
sequential procedures of computational algebra (inversions and matrix triangular
factorizations) are shown to have a general fundamental basis, namely the Gram–
Schmidt orthogonalization procedures of some (block in general case) system of
independent vectors in an abstract Hilbert space. Here the counter (forward and
backward) orthogonalization procedures play an important role. In the paper we
present a concise scheme of basic algorithms of computational algebra based on the
above–mentioned orthogonalization procedure.

In particular, we consider the inference schemes for the well–known recurrent
inversion algorithms for bordered matrices (Frobenius formulas) and summarized
matrices (Riccati matrix equations), QDR– and QDL–decompositions, as well as for
the sequential RDL– and LDR–factorization formulas. For certainty, they are called
the Frobenius factorization (because they result from the Frobenius inversion of the
bordered matrix) and the Cholessky factorization (because they originate from the
Cholessky algorithms) correspondingly. Here R, L, D denote, in general, sets of
block right–(upper–), left– (lower–) triangular and diagonal matrix respectively.

The most interesting applications (both in theory, e.g., orthogonal polynomials
on the circumference calculation, and in practice, e.g., geophysics, signal process-
ing, (block) Toeplitz matrix inversion) are associated with homogeneous systems
of vectors. This name was given to systems of vectors which are obtained from a
given set of vectors by means of a power of an isometric or of a partially isometric
operator.

The specific property of the Gram–Schmidt orthogonalization procedures which
explains their fundamental significance is that they are triangular, i.e. they are
equivalent to transformations of some systems of vectors. These transformations
preserve the (forward or backward) chains of embedded subspaces related to this
system. Finite segments of the generating system of vectors form the bases in these
subspaces. By this, they are preserved by equivalent right– and left– triangular
transformations.

The fundamental importance of the triangular transformations is explained by
the fact that they are abstract mathematical models of causal (i.e. physically
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realized) transformations of a given system under direct or reverse change of an
independent variable. This variable can be considered to be time (in dynamic
systems) or some other coordinate, e.g., a spacial one (in geo– or astrophysics).

As it was mentioned, homogeneous systems and counter processes in such sys-
tems are regarded to be the important applications of the theory under considera-
tion. These systems are abstract mathematical models of homogeneous (stationary,
isotropic) systems (media). In systems like these, propagations (transformations)
conditions do not depend on the independent variable (coordinate) shift.

The second part of the paper is devoted to the applications of the “general”
results of the first part to the homogeneous systems. Here both well–known and
relatively new (variational identification) applications of the theory under discussion
are briefly described.

3. Remarks about the bibliography. Some elements of recurrent algorithms
in computational linear algebra (both for continuous and discrete variables) were
studied in papers [3,4] by T. Kailath and his coauthors.

Whereas in our paper abstract mathematical objects and their formal transfor-
mations (namely, systems of vectors and their orthogonalization or, more general,
biorthogonalization based on the Gram–Schmidt procedure) are considered to be
the initial object of the theory, in [3,4] the authors study mathematical models of
more “perceptible” objects: layer structures, media, and applied problems of prop-
agating in them. The latter ones are solved by using Redheffer’s composition (see,
for example, [5] or [6]). This model is also particulary interesting, especially for
homogeneous structures (for instance, for isotropic media and stationary systems).

Equations for the problems of propagating in homogeneous structures have been
known for a long time. They were obtained by different authors in various fields.
We think the first such papers here were written by the astrophysicists V. Ambart-
sumian [7] and C. Chandrasekhar [8].

In geophysics, we can point out the E. Robinson’s papers [9,10].
In the field of signal processing, we could mention A. Lindquist’s papers on

integral equations and filters [11,12], T. Kailath′s papers on “fast” algorithms of
Kalman’s filtration [13,14,15], and the papers on variational approach to the filtra-
tion in identification problems [1,2,16,17] by the author of the present paper.

It is worth to mention some “mathematical” applications of the theory of homo-
geneous structures and counter processes in them. First we mention the polynomial
orthogonalization on the unit circle [18,19], on homogeneous system of vectors in
a Hilbert space (see the current paper) and, in particular, in a Hardy space [1,2].
Secondly we mention the method of solving the integral equations with a kernel
depending on the difference of a variable [20,21].

The well–known N. Levinson’s article [21] can be considered to be historically
important. Here the author gave the method of solving integral Wiener–Hopf
equations with discrete variable, and actually described the inversion algorithm
for Toeplitz matrices. For the case of continuous variable, one should list Krein’s
fundamental papers [20,22,23] (see also [24,25]).

The papers by N. Levinson, S. Chandrasekhar, and M. Krein were the starting
point for a series of papers on the so called “fast”, “lattice”, and “ladder” recurrent
computational algorithms and schemes (see, for example, [11,26,27]). Only some of
these papers were listed above, but they can serve as sources for references to other
papers in this field.
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2. Elements of Computational Algebra

1. Systems of vectors. Consider a system of vectors

X = XN = |x0, · · · , xN | = {xi}N
0 ∈ H ⊗ E,

E = EN = ⊗N
0 E(i)

with elements xi (i = 0, N) in a Hilbert space H. An element is a sequence
consisting of mi vectors xij , j = 1,mi

xi = |xi1, · · · , ximi
|;

the number mi is called its size.
A system is called one–sized if all the numbers mi = m are the same; in case

m = 1, a system is called one–dimensional.
A system X and an element xi are viewed as rows. Then the Gram matrices of

system X and its elements xi are written in the form:

Γ = Γ(X) = (X,X), Γ(xi) = γii = (xi, xi).

If det γii = 0 then the corresponding element is called singular. If det Γ = 0 then
the system of vectors X is called singular as well. The segment |xl, · · · , xk| of a
sequence X is denoted by Xl,k, (k = 0, N , l = 0, k), its initial segment |x0, · · · , xk|
is denoted by Xk.

Denote the linear span of vectors x, · · · , y by S(x, · · · , y); in particular,

S = S(X), Sk = S(Xk), Sl,k = S(Xl,k), S(k) = S(xk).

Let Pl,k = P (Si,k) be a projection operator on Sl,k, and Πl,k = I − Pl,k be a
projection operator on S⊥

l,k = H ⊖ Sl,k, which is an orthogonal supplement of
subspace Sl,k. In particular, Π0,k = Πk. We will assume for the convenience that

Π−1 = Π1,0 = I.

2. Counter orthogonalization processes.

Definition 1 (of the elements f and f̃ of counter orthogonalization processes). Let

a) fk = Πk−1xk, hk = (fk, fk)

— forward process;

b) fi/k = Π1+i,kxi, hi/k = (fi/k, fi/k),

f̃k = Π1,kx0 = f0/k, h̃k = (f̃k, f̃k) = h0/k

— backward process;

k = 0, N i = k, 0

fk/k = xk, Π−1 = I, Πk+1,k = I.

Lemma 1. Let X be a nonsingular system of vectors. Then the following condi-
tions are satisfied:

1. the elements fl and f̃l of orthogonalization processes from Definition 1 are

nonsingular: dethl 6= 0, h̃l 6= 0, l = 0, N ;.
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2. the operators Πl can be calculated with the use of elements fl and f̃l by means
of recurrent formulas from the initial conditions

Π−1 = Π1,0 = I;

3. the following equalities hold for k = −1, N − 1:

Πk+1(·) = Πk(·) − fk+1ak+1( · , fk+1), ak+1 = h−1
k+1;

Πk+1(·) = Π1,k+1(·) − f̃k+1ãk+1( · , f̃k+1), ãk+1 = h̃−1
k+1.

3. Auxiliary results. Hereinafter we will discuss the block constructions only.
Definition 2. Two systems of vectors are called equivalent (backward–equivalent)
if they define the same forward (or backward) chain of subspaces.
Definition 3. We let R to be the set of all upper– (right–) triangular matrices
(operators in E) with unit (or mixed–zero) diagonal blocks, L to be the set of all
lower– (left–) triangular matrices (operators in E) with unit (or mixed–zero) diag-
onal blocks, and D to be the set of all block diagonal matrices (operators in E), i.e.,
matrices of kind A = diag{ak}N

0 .
We write C = FAG ∈ RDL, if F ∈ R, A ∈ D, and G ∈ L; similar notations will

be used for other combinations as well.
We will denote an arbitrary unitary or isometric operator by Q.

Definition 4. We consider the rows of Xk to be elements of Ek. We can also
consider the natural row operators Xk : Ek → H. Their zero extension in E are
defined as

Xk = Xk/N = |Xk, 0N−k| : E → H; X = XN/N : E → H.

Define some further notations, which will be referred to as notation (a), (b), etc.
a) We denote by KF = KerF the kernel of an operator F and we denote by

TF = K⊥

F its effective domain, which is the orthogonal complement of it; SF = ImF
stands for its image domain.

b) In particular,

TXk
= Tk=(Ker Xk)⊥=Ek⊂E, T = TN=E,

Sk = Im Xk⊂H, S = SN=H.

c) By Ik = Ik/N : Ek → E, Ik = |e0, · · · , ek| we denote the row operator of
orthos in E.

d) The composite indices of the form “k/l” defined earlier, denote inessential
(zero) operator extension from Ek into El (for k<l, see, e.g., Definition 4), or its
narrowing (for k>l). The former means rows and matrices complement via zero
blocks, the latter means blocks removal.

e) Changing an operator symbol to semibold face denotes its extension to EN

(see Definition 4).
f) An index k of the (k+1)×(k+1)–matrix (of the operator) {Fij}k

0 in parenthesis
denotes its last column (corresponding to ortho ek/k): F·k=F(k). An index in square
brackets is the first column (corresponding to e0/k+1): F·0=F[k]. A composite index
k+1/k means that there is no diagonal block in these block–vectors: Fkk and F00

respectively (see (d)).
g) Ak = diag{ai}k

0 ∈ D.
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h) Ãk = diag{ai/k}k
0 = diag{ãk, {ai/k}k

1} ∈ D.

i) A−∗ = (A−1)∗.

Remark 1. One can easily show that the subspaces TA = K⊥

A and SA are
isomorphic. It is also known that (KerA)⊥ = ImA∗, i.e., K⊥

A = SA∗ .
The following important statement follows from Lemma 1.

Theorem 1. Two nonsingular systems of vectors are equivalent (backward–equi-
valent) if and only if they are related via a non singular upper–triangular (lower–
triangular) transformation.

By the above, such transformations will be called equivalent (backward equiv-
alent) transformations. This statement is well known, at least for direct chains

Ck = {Si}k
0 . Its generalization for backward chains C̃k = {Sk−i,k}k

0 = {S̃i/k}k
0 is

quite obvious.

Definition 1 describes two counter processes of a sequential orthogonalization.
For any k, k steps of a backward orthogonalization starting from element xk cor-
respond to the single kth step of a direct one (for this element xk). As result, for
every k, k = 0, N , we obtain two orthogonal systems

Φk = {f∗i }k∗
0 = |f0 = x0, · · · , fk−1, fk|, and

Φ̃k = {f∗i/k}k∗
i=0 = |f0/k = f̃k, · · · , fk/k = xk|

equivalent, in their own way, to system X. Here

Φk = |Φk−1, fk|,
whereas the system

Φ̃k = |Φ̃k−1/k, xk| = |f̃k, Φ̃1,k−1/k, xk|,
in general case could be completely restored at every step. Any of “utmost” of

k–step orthogonalization vectors, fk or f̃k , determine projectors Pk and Πk on Sk

and S⊥

k by recurrent equations of Lemma 1.
Before we prove an intermediate result (Theorem 2), consider some auxiliary

propositions.

Lemma 2. Let
1. a linear operator X : H2 → H, where H and H2 are separable unitary spaces,

be completely continuous;
2. H be a separable unitary space which is isomorphic to each of the following

subspaces

T = K⊥ = (Ker X)⊥ ⊂ H2 and S = Im X ⊂ H;

3. V and W be linear invertible (i.e. KV = ∅, and KW = ∅) operators such that

V : H1 → ImV = T and W : H1 → ImW = S;

4. the domains of operators V and W are everywhere dense in H1.
Then
1. the operator W ∗

XV is one–to–one invertible and
2. the Moore–Penrose generalized inverse operator can be written in the form

X
(−1) = V (W ∗

XV )−1W ∗.
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Lemma 3. Let X : E → H. Denote a scalar product in H by ( · , · )H = ( · , · ).
Let a scalar product in E be defined by means of a positive matrix RE:

(λ, µ)E = µT RE λ.

Then the operator X
∗ conjugated to the row operator X has the form

X
∗ = R−1

E ( · ,X).

Now we can formulate the following
Corollaries (of Lemmas 2 and 3).

1. Γ(X) = R−1
E (X,X) = X

∗
X;

2. X
(−1) = (X,X)−1( · ,X) = (X∗

X)−1
X

∗;
3. P (S) = X(X,X)( · ,X) = X(X∗

X)−1
X

∗.

Prove (3). First recall that S = ImX.
Here Lemma 2 (where H1 = H2 = E) and auxiliary operators are applied with

W = X, V = I. We also take into account that P (ImX) = XX
(−1). If RE = I

then X
∗ = ( ·X), Γ = (X,X). Thereafter RE = I.

Lemma 4. Let F ∈ R, (F̃ ∈ L) and Q ∈ Q be a unitary operator in E. Then

{FQ,QF} ∈ R ({F̃Q,QF̃} ∈ L) if and only if Q = I.

In what follows, we discuss corollaries from Lemma 1.

4. Orthogonal decompositions.

First we summarize corollaries to Definition 1, Lemma 1, and auxiliary Lem-
mas 2,3,4. This will supplement and specify the results of Theorem 1.

Theorem 2. Let X be a linearly independent system of vectors in a unitary space
H and let Xk, k = 0, N be its subsystems, initial segments of system X, which are

simultaneously the base of line Ck and of counter C̃k of chains of subspaces Si and
Si/k = Sk−i,k, i = 0, k.

Then
1. systems of vectors

Φk = |f0, · · · , fk| = |Φk, fk| = XkFk, ΦN = Φ;

Φ̃k = |f0/k, f1/k, · · · , fk/k|

= |f̃k, f1/k, · · · , fk/k| = XkF̃k, Φ̃N = Φ̃;

k = 0, N , are orthogonal equivalents (direct and backward) of systems Xk, i.e.,

they are orthogonal bases of chains Ck and C̃k, and elements fi, fi/k, i = 0, k, are
bases of orthogonal chain elements

∆Sk = Sk ⊖ Sk−1, ∆Si/k = Si,k ⊖ Si+1,k

of these chains respectively;
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2. The corresponding equivalent transformations are upper– (F ∈ R) and lower–

(F̃ ∈ L) triangular:

Fk = |Fk−1/k, F(k)| = (Xk,Φk)−1A−1
k ∈ R,

F̃k = |F̃[k], F̃1,k/k| = (Xk, Φ̃k)−1Ã−1
k ∈ L,

Ak = (Φk,Φk)−1, Ãk = (Φ̃k, Φ̃k)−1.

3. If diagonal blocks of matrices Fk and F̃k of these QR– and QL– representations
of the system X are unity blocks then these representations are unique. The same
holds for the equivalent orthonormal systems

Φn = XG, Φ̃n = XG̃, where

G = FA1/2 ∈ R, G̃ = F̃ Ã1/2 ∈ L; also

Φ̃n = ΦnQ, where

Q = (Φ̃n,Φn) = G−1G̃ ∈ Q

is a unitary operator in E.
Proof. The first and the second statements follow from the recursive equation

for projectors from Lemma 1. Let us elucidate this for elements fi = xi − Pi−1xi

(analogously for elements fi/k = xi −Pi+1,kxi). From Lemmas 2,3 and their corol-
laries we deduce

P (Im Xk)(·) = Xk/NΓ
(−1)
k/N ( · ,Xk/N ) = XkΓ−1

k ( · ,Xk).

The generalized inverse operators X
(−1)
k are obtained from Lemma 2 by letting

W = Xk, V = Ik. Then X
(−1)
k = Ik(X∗

kXkIk)−1X∗

k and Theorem 2 follows from
Lemma 4.

Now, applying Theorem 2 to corollaries based on Lemma 1, one can deduce other
important corollaries of this Lemma.

Corollary 1. Counter orthogonalization processes of bases Xk for subspace chains
Sk generate one–valued QR– and QL– decompositions of the corresponding matrices
Xk and operators Xk. They are unique.

While calculating operators X
(−1)
k = X

(−1)
k/N in the proof of Theorem 2, we have

applied auxiliary operators W = Xk (Lemma 2). Row operators of Φk and Φ̃k

satisfy the conditions of Lemma 2 for the operator W in accordance with (1) of
Theorem 2. Using these operators, we obtain the other formulas for generalized

inverse operator X
(−1)
k : with a right– (upper–) and left– (under–) triangular in-

vertible matrices. Thus we have
Corollary 2.

a. X
(−1)
k = (Φ∗

kXk)(−1)Φ∗

k,

b. X
(−1)
k = (Φ̃

∗

kXk)(−1)Φ̃
∗

k,

where

Φ∗

kXk = A
(−1)
k F

(−1)
k ∈ DR, Φ̃

∗

kXk = Ã
(−1)
k F̃

(−1)
k ∈ DL,

and Φ, Φ̃ are orthogonal system of vectors.
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Here we use notations (g) and (h) for operators Ak and the result of Lemma 3

for the operator X
∗ = ( · ,X). A generalized inversion of the Φ∗

kXk and Φ̃
∗

kXk in
this corollary is handled by Lemma 2 with W = V = Ik.

5. Factorizations and inversions. Here we give some more corollaries from
Lemma 1.

Corollary 3.

(a) Invertible self–conjugate operators in E have unique RDL– and LDR– de-
compositions.

(b) They are defined by the processes of direct and backward orthogonalization
of the initial system.

Proof. From Theorem 2 we have:

Γ = (X,X) = F−∗(Φ,Φ)F−1 = F̃−∗(Φ̃, Φ̃)F−1

= F−∗A−1F−1 (∈ LDR)

= F̃−∗Ã−1F̃−1 (∈ RDL);

Γ−1 = (X,X)−1 = FAF ∗ (∈ RDL)

= F̃ ÃF̃ ∗ (∈ LDR),
where

F = (X,Φ)−1A−1 ∈ RD, F̃ = (X, Φ̃)−1Ã−1 ∈ LD.

Remark 2. It is known that, if a matrix in some orthonormal basis defines a
positive operator then it is a Gram matrix of a certain basis (i.e., of a nonsingular
systems of vectors). In Corollary 4, we show that one can calculate decompositions
from Corollary 3 without knowing the mentioned basis. Then the statement (a) of
Corollary 3 follows from Lemma 1. Corollaries 6 and 8 show how to construct such
bases. Therefore, the mentioned proposition on the “origins” of positive operators
also follows from Lemma 1.

By virtue of notations (d), (f) and Lemma 3, the equalities of Lemma 1 can be
written in the following form:

fk+1 = Πkxk+1 = Xk+1F(k+1)

= xk+1 −XkΓ−1
k (xk+1,Xk),

f̃k+1 = Π1,k+1x0 = Xk+1F̃[k+1]

= x0 −X1,k+1Γ
−1
k (x0,X1,k+1),

where (xk+1,Xk) = Γ(k+1/k), (x0,X1,k+1) = Γ[k+1/k].

Corollary 4. Sequential inversion of bordered invertible matrices Γk, k = 0, N
(essentially extending the invertible operators Ek → Ek+1), can be realized by the
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following recurrent formulas:

Γ−1
k+1 = Γ−1

k/k+1 + F(k+1)ak+1F
∗

(k+1),

F(k+1) = ek+1/k+1 − Γ
(−1)
k/k+1Γ(k+1);

Γ−1
k+1 = Γ−1

1,k+1/k+1 + F̃[k+1]ãk+1F̃
∗

[k+1],

F̃[k+1] = e0/k+1 − Γ
(−1)
1,k+1/k+1Γ[k+1];

ak+1 = (xk+1, fk+1)
−1 = (fk+1, fk+1)

−1 = F ∗

(k+1)Γ(k+1),

ãk+1 = (xk+1, f̃k+1)
−1 = (f̃k+1, f̃k+1)

−1 = F̃ ∗

(k+1)Γ(k+1).

They are two well–known Frobenius formulas for inverting bordered block ma-
trices.

Let as unite these formulas by equating their expressions for a single block of
inverse matrices. We obtain a qualitatively new result. From formulas of the direct
orthogonalization of Corollary 4 we have

Γ−1
k+1/k = Γ−1

k + F(k+1/k)ak+1F
∗

(k+1/k),

F(k+1/k) = −Γ−1
k Γ(k+1/k),

ak+1 =
[
γk+1,k+1 − Γ∗

(k+1/k)Γ
−1
k Γ(k+1/k)

]−1

=
[
(xk+1, xk+1) − (Xk, xk+1)Γ

−1
k (xk+1,Xk)

]−1
.

To calculate this block (Γ−1
k+1/k) from the backward orthogonalization process,

we apply it for the system Xk+1 = |Xk, xk+1| consisting of two elements:

Γ−1
k+1/k = ã1 = (Xk,Π(xk+1)Xk)

−1

=
[
(Xk,Xk) − (xk+1,Xk)(xk+1, xk+1)

−1(Xk, xk+1)
]−1

.

Corollary 5. The following formula for inverting matrices with factorized additive
increment is valid:

[
Γk − Γ(k+1/k)γ

−1
k+1,k+1Γ

∗

(k/k+1)

]−1

= Γ−1
k + F(k+1/k)ak+1F

∗

(k+1/k).

This formula (matrix type Riccati discrete equation) is widely used as well as its
continuous analogs; in particular, it is used in the least–square and in the Kalman
filtration methods.

Thus, the Frobenius formulas from Corollary 4 are formulas of RDL–factorization
of the matrix Γ−1 = FAF (Frobenius factorization). This matrix having a trian-
gular inverse could be calculated quite easily:

F−1
(k+1) = ek+1/k+1 − F

(−1)
k/k+1F(k+1).

By applying this formula, we can obtain a LDR–factorization Γ = F−∗A−1F−1 from
Frobenius factorization. Thus, we arrive at the well–known Cholessky factorization
algorithms of this type.
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Corollary 6. The Cholessky formulas of LDR–factorization of a nonsingular pos-

itive matrix Γ could be written in the form:

F−1
k+1 = ek+1/k+1 +Ak/k+1F

∗

k/k+1Γ(k+1),

a−1
k+1 = γk+1,k+1 − F−∗

(k+1/k)A
−1
k+1F

−1
(k+1/k).

Here we take into consideration the following formulas derived from those men-
tioned above:

F(k+1) = ek+1/k+1 − Γ−1
k/k+1Γ(k+1) and

Γ−1
k = FkAkF

∗

k .

Now we apply this reasoning to the backward factorization. We obtain

Corollary 7.

a) The Frobenius (RDL) and the Cholessky (LDR) factorization algorithms
generated by one of the orthogonalization processes are mutually dual and
mutually inverse.

b) Processes of counter factorization correspond to counter orthogonalization
processes.

Remark 3. Inversion and factorization equations for arbitrary (nonsingular) ma-
trices can be obtained from the analysis of biorthogonalization of two systems X
and Y . Let P (X⊥‖Y ) denote a projector onto the orthogonal supplement of the
linear span of X parallel to the linear span of Y . (The orthoprojector onto X⊥ is
P (X⊥‖X).) An aim of biorthogonalization is to construct systems Φn = XG and

Φ̂n = Y Ĝ so that (Φn, Φ̂n) = Φ̂∗

n
Φn = I.

Let X = |Xk, xk+1|, Y = |Yk, yk+1|. Then for a step of the direct biorthogonal-
ization we have

Pk+1(·) = Pk(·) − fk+1(fk+1, gk+1)
−1(·, gk+1),

fk+1 = Pk xk+1, gk+1 = P ∗

k yk+1,

where f0 = x0, g0 = y0, P−1 = I.

Thus, the method above yields us the general Frobenius and Cholessky equations
for nonsingular matrices.

6. Some statements for Gram matrices. To formulate Corollary 8, we will
need two auxiliary statements.

Lemma 5. Nonsingular systems X ∈ H1 and Y ∈ H2 have the same Gram matrix
if and only if there exists an isometric operator U : H1 → H2 such that

a) Y = UX;
b) S ⊂ TU (Here S = SX = ImX; T = K⊥, K = KerU , see notation (a)).

To prove the necessity, one can use the following simple fact.

Lemma 6. The systems X ∈ H1 and Y ∈ H2 have the same nonsingular Gram
matrix if (and only if ) U = Y X(−1) : H1 → H2 is an isometric operator.

Corollary 8 (from Lemma 1) The systems X and Y have similar orthogonalization

matrices (direct F and backward F̃ ) if and only if they satisfy the conditions of
Lemma 5.
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Let Γc be a positive operator, Γ−1
c = FcAcF

∗

c = GcG
∗

c , where Gc = FcA
1/2
c

is a normalized matrix. It could be, for instance, an RDL–factorization of Γ−1
c

calculated by Corollary 4. Let Φn = ΦA1/2 = XFA1/2 = XG be an orthonormal
system equivalent to the given system X (see statement (3) of Theorem 2) and
hence Γ = Γ(X) = G−∗G−1. Then the system Y = ΦnG

−1
c equivalent to the

system X will have the given Gram matrix Γc = Γ(Y ) = G−∗

c G−1
c . Note that

G−1G̃ = Q is a unitary operator in E and that Φ̃n = ΦnQ.

Corollary 9 (from Lemma 1) In a chain of subspaces one can construct the unique
basis with the given Gram matrix.

The case of Toeplitz Gram matrices is of a particular interest.

3. Homogeneous Systems

7. The principal result.

Definition 5. A system of vectors X is called homogeneous (U–homogeneous) if
it is

1) one–sized, i.e., mi = m, for all i = 0, N ,
2) its elements are related isometrically, and hold xi+1 = Uxi, xi = U∗xi+1,

i = 0, N − 1.

Here U is a partially isometric operator: U : (KerU)⊥ = TU −→ SU = ImU ,
S(XN−1) ⊂ TU , S(X1,N ) ⊂ SU .

Lemma 7. A system of vectors has a Toeplitz Gram matrix if and only if it is
homogeneous.

Now we can formulate the principal result:

Theorem 3. Assume that systems X are U–homogeneous and nonsingular. Then
for k = 0, N − 1 the following conditions are satisfied:

1. the orthogonalization elements f and f̃ satisfy the following equations:

fk+1 = Ufk − f̃kθ̃k+1,

f̃k+1 = f̃k − Ufkθk+1,

f0 = f̃0 = x0,

where θk+1 = akµk+1, θ̃k+1 = ãkµ
∗

k+1, µk+1 = (gk, Ufk),

and the factors a and ã are defined as follows:

al = h−1
l , ãl = h̃−1

l , l = 0, N.

2. The Gram matrices h and h̃ are nonsingular and satisfy the following non-

linear recurrent equations: h0 = h̃0 = (x0, x0) and

hk+1 = hk − µk+1h̃
−1
k µ∗

k+1,

h̃k+1 = h̃k − µ∗

k+1h
−1
k µk+1.

3. The corresponding recurrent equations for normalizing factors a and ã can be
written in the form: a0 = ã0 = h−1

0 and

ak+1 = (I − θk+1θ̃k+1)
−1ak,

ãk+1 = (I − θ̃k+1θk+1)
−1ãk,
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where all the inverse matrices exist.

4. Moreover, if the system of vectors X is one–dimensional (m = 1) then θ = θ̃
are scalars less than 1 and factors ak = ãk, k = 0, N , are positive quantities. This
means that a0 = ã0 = (x0, x0)

−1 and ak+1 = (1 − θ2k+1)
−1ak, 1 − θ2k+1 > 0.

Remark 4. Formulas of types (2) and (3) are encountered in various applications
related to the inverse problems for homogeneous media and dynamic systems. Ex-
amples of them can be inversion and block-triangular factorization of block–Toeplitz
matrices, as well as solving the corresponding equation systems [21] and recurrent
calculations of polynomials which are orthogonal on the unit circumference [18].

Let us mention some related applied problems: theories of propagation in isotropic
space (astrophysics) [7,8], in homogeneous layer structures [5], the P. Gupillo model
(geophysics) [9], and estimation and control problems in constant information
systems (stationary process analysis): their restoration, modeling, identification
[13,12,28].

Theorem 3 gives us the basis for these and other similar results. Lemma 1 is also
the basis for many important results like the Frobenius formulas, matrix inversion
lemmas, their block-triangular factorizations, QDR– and QDL– decompositions,
etc.

These results could be formulated for two systems of vectors biorthogonalization
processes similar to those discussed in this paper. For some problems mentioned
above, there are solutions of their continual analogs (see a fundamental M. Krein’s
paper [20]).

8. Proof of Theorem 3. To prove it, we need some auxiliary facts. The
essential one is the following

Theorem 4. Elements fi/k, i = 0, k of the orthogonal system

Φ̃k = |f0/k, f1/k, · · · , fk/k|, k = 0, N

(see assertion 1 of Theorem 2) backward equivalent to U–homogeneous system X
are determined by the elements

f̃j = f0/j , j = 0, k

via the formulas

fi/k = U if̃k−i, i = 0, k.

Theorem 4 follows from

Lemma 8. In a homogeneous system, the following equations hold for k = 0, N ,
i = 0, N − k:

(1) Pi,k+ix = U iPkU
−ix, ∀x ∈ Si,N ;

(2) Πi,k+i = U iΠkU
−ix, ∀x ∈ Si,N .

Here we take into account that U iU−i = I in Si,N .

Proof of Theorem 4. By Lemma 8, for k = 0, N , i = 0, k, we have:

fi/k = Πi+1/kxi = (UiU
∗

i − U iP1,k−iU
−i)xi =

= U iΠ1,k−iU
−ixi = U iΠ1,k−ix0 = U if̃k−i.

Theorem 4 is complete.
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Here we turn back to Theorem 3. To prove it, we need two more statements. We
obtain the first one from Lemma 8 (2). This is a key fact for homogeneous systems:

Corollary (from Lemma 8) For k = 0, N − 1, the following equality holds:

Π1,kxk+1 = Π1,kUxk = Ufk.

The second statement follows from Lemma 8 (1) and the first equation of Lemma 1.

Lemma 9. For k = 0, N − 1, the following equality holds:

Π1,k+1 = UΠkU
∗ = Π1,k − P (Ufk).

It follows from the corollary above that

Π1,k+1 = I − UPkU = I − U (Pk−1 + P (fk))U∗.

Proof of Theorem 3. We calculate the element

fk+1 = Πkxk+1

by applying the second equation for the projector from Lemma 1. As a result, we
obtain the first equation of Theorem 3. We assume that the projector of Lemma 9
affects the element x0. Then we obtain the second equation of Theorem 3.

Formulas of the second statement are obtained by applying the equations of the

first statement to the equations hk = (fk, xk) and h̃k = (f̃k, x0).
The equations of the third statement follow from the definitions of coefficients

µ and parameters θ. The formulas of the fourth statement are obvious. The
nonsingularity of the invertible matrix follows from the nonsingularity of X, the
first statement of Lemma 1, and RDL– and LDR– Gram matrix factorizations of
X obtained above. From here we obtain that

det Γ(X) = ΠN
0 hi = ΠN

0 h̃i.

8. Examples of homogeneous systems. From Theorem 3 we obtain, for
instance, some procedures of block Toeplitz matrices inversions [21], synthesis of
orthogonal polynomials on the unit circumference [18] and a Hardy space [1,2], fast
algorithms for signal filtration [13] and variational identification of difference and
differential equations [29]. These applications can be obtained by the construction
in H described below as well as by the similar construction in a Hardy space [1,2],
which is considered as a particular case.

Example 1. Let Y = YN+n = {U iy0}N+n
0 be a homogeneous and orthonormal

system of vectors in H (i.e., (Y, Y ) = IN+n), and let the polynomial

x0 = p =

n∑

0

yipi =

n∑

0

U iy0pi = p(U, y0) = p(y0)

be an initial vector of the homogeneous system

X = {U jx0}N
0 = XN = X(p) = pYN .
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Then Γ = C = (X,X) = G−∗G−1, G = FA1/2 ∈ R is a Toeplitz matrix. Theorem 3
and Frobenius algorithms in Corollary 4 yield us the known effective technique of
its inversion (see [21]).

Example 2. Let the columns of the matrix

G = FA1/2 = {gij}N
0 ∈ R

be the coefficients of orthonormal polynomials [2]

pk(U) =
k∑

0

U ix0gik = fka
1/2
k .

From the orthonormal system Φn=XG we easily obtain the algorithms calcu-
lating these polynomials (i.e., gik, see [18]), which are similar to the algorithms of
Toeplitz matrices inversion [21].

Example 3. Block–vector F(k+1/k) from Frobenius procedure of the inversion of
the self–conjugate nonsingular matrix (Corollary 4) is also known to be an optimal
linear predictor of length k for x̆k+1 of the random process Xk+1 with covariational

matrix Γk+1 according to the visualized value X̆k.
It is easily seen that the vector components F[k+1/k] are coefficients of the revert-

ible (backward) predictor, i.e., of the restorer of the former (initial) value x̆0 of this
process due to he fact that we know covariational matrix Γk+1 and the observable

values X̆1,k+1.

Example 4. Now we give a pure mathematical example. Let H be a Hilbert
space of Gauss random values. Then the norm is the dispersion of random values
and the scalar product is the covariational of two random values. The ordered
system of vectors X in H is a process consisting of random elements xi, i = 1, N .
A covariational matrix of this process is the matrix Γ = (X,X) = E(X̆, X̆), where
E is the symbol for the mathematical expectation.

The minimized value for the least–mean–square predictor for x̆k+1 equals to
J = E‖x̆k+1 − x̂k+1/k‖2.

The linear prediction value is computed as the element x̂k+1/k = X̆kλk+1. Let
us now differentiate J with respect to λ. The derivative vector can be written
in the form E((X̆kλk+1 − x̆k+1), X̆k). After equating it to zero we obtain λk+1 =
(Xk,Xk)−1(xk+1,Xk). Comparing the latter with the second equation of Corollary
4, we see that λk+1 = −F(k+1/k) (see notation (f)).

It follows from Corollary 4 that the complete vector F(k+1) is a prediction vector
for the error coefficient x̆k+1 − x̂k+1/k.

Thus, optimal predictors (direct and backward) are calculated by means of equal-
ities from Corollary 4.

Example 5. This example is associated with the homogeneous construction under
consideration. If H is the space of random values then any orthonormal homo-
geneous system Y in H is a process of independent random values with a unit
dispersion (basis in S(Y ) ⊂ H).

The system X is a random process formed as the moving average of process
Y with coefficients α. A covariation matrix of this process is a Toeplitz matrix
Γ = C = (X,X). The optimal predictors are calculated like in Examples 3,4 with
the use of Frobenius formulas in Corollary 4 and Theorem 3.
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Example 6. Now we give two more examples associated with signal estimation
and their modeling. Whereas in the previous case, there is used a signal model in
the regressive form of moving average X = pY (model subspace S(X) = S(pY )),
in the ensuing cases a model conjugated to X is applied. This is an auto–regression
model X⊥. Consider a model subspace

M = S(X⊥) = S⊥(X) = S ⊖ S(X), S = S(Y ).

This subspace is a set of its transient processes. It is the orthogonal complement
S⊥(X) to the subspace S(X) of the regression–moving–average model. The Gram
matrix of the basis X = pY = S ⊖M in S(X) is Γ(X) = C.

Example 7. Let p(U) : S(YN ) → S(Y ) (see Example 1) and let

M = M(x0) = S⊥(X) = S(Y ) ⊖ S(X).

Then the following fact takes place.

Theorem 5. An element ϕ is in M if and only if ϕ ∈ Ker p∗(U), i.e., p(U)ϕ = 0
or p̃ϕ = r(n−1). (Here p̃ = Unp∗ and r(n−1) = r(n−1)(U) is an (n−1)–polynomial.)

Corollary. Let ϕ =
∑N+n

0 ykϕk ∈ M . Then the sequence of coordinates ϕk =
(ϕ, yk) of this function in the basis Y ∈ H is a solution to the difference equation∑n

0 ϕi+jp
∗

i = 0, j = 0, N .

The projection h from H onto M(x0), for a given x0, is a smoothing and a filtra-
tion of a problem. Theorem 1 yields us symmetric fast algorithms for a numerical
solution of such a problem.

Example 8. The search for an x0 whose distance ρ(h,M) between the function h
and the subspace M is minimal, is a variational problem of approximated modeling
by a difference equation for a function or a sequence. This method is also used
for identifying differential equations with their corresponding discretization. For
details and references see [29,30].

Remark 5. The last point to be stressed here is that, given a positive Toeplitz
matrix C, its decomposition (X,X), where X = X(α) is a homogeneous systems
of above–mentioned type, can be obtained by a vector–matrix analog of the well–
known procedure of calculating square roots. Therefore, it follows from Corollary 9
that the subspace chain has a set of bases where a chain of its orthoprojectors
satisfies equations from Theorem 3 with different initial conditions and operators
U .

4. Variational Identification

Here we develop and explain the ideas of Examples 6,7,8 in p. 8 of the previous
section.

1. Theory. Theorem 5 and its Corollary may be successfully adapted to the
approximating identification problem in a finite interval for a complex dynami-
cal object via a linear constant model. We call it a piecewise linear (dynamical)
approximation [29].

According to this Corollary, projecting of an arbitrary function ψ ∈ S(Y ) = S
onto the subspace M = S ⊖ S(pYN ) which was described in the Examples 1 and
6 of p. 8 of section 3 is equivalent to projecting an arbitrary element (column
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(N + n + 1)–vector) [ψ] = {ψi}N+n
0 = |ψ∗

0 , · · · , ψ∗

N+n|∗ in spaces l2[0, N + n] = l2

or E = EN+n+1 = E[0, N + n] onto the kernel of the following difference operator

D = Dα =

n∑

0

siαi : E → E[0, N ],

where s is a shift operator such that sψi = ψi+1, and αi = p∗i . This means that if

ψ =

N+n∑

0

U iy0ψi ∈ S ⇐⇒ [ψ] ∈ EN or l2N then

Dψk =

N+n∑

0

ψk+iαi ∈ E[0, N ], i.e. k = 0, N.

We recall here that if ψ ∈ S = S(Y ) ⊂ H (Y is an orthonormal system from
Example 1 in point 8 of section 3) then ψi = (ψ, yi) = (ψ, yi)H . The kernel of
operator D is a vector of coefficients for the function ϕ ∈ M , therefore Dϕk = 0.
In E we have an important equation [31,28]:

A∗·[ϕ] = 0, A = Aα,

where A is the matrix of the operator D∗ in E[0, N ] and A∗ is the matrix of the
operator D in E.

We consider the special Toeplitz (N+n+1)×(N+1)–matrix, a matrix of the slid-
ing vector [16]:

A =

α∗

0 0
...

. . .

α∗

n · · · α∗

0

. . .
...

0 α∗

0

=

p0 0
...

. . .

pn · · · p0

. . .
...

0 pn

.

Its first column is denoted by x0.

One can easily see that, if a function ψ is in Sn then the vector of coefficients
for the function ξ = pψ is [ξ] = A·[ψ].

This means that the matrix A in the basis Y is an operator matrix of multiplying
by a polynomial [1,2].

Now it is not difficult to see that the columns of the matrix A form a homogeneous
basis X in the subspace S(X) = S(pY ) described above (Examples 1,6,7 of p. 8,
section 3). This means that the projector Π onto the orthogonal complement to
S(X) can be calculated via the formulas of Theorem 3, Lemma 1, and Definition
1.

In these common results, it is necessary to assume that

H = E, x0 = η0, X = A, and U = {δ(i, j+1)}N+n
0 ,

where U is “down–shift” operator in E and δ(i, j) is the Kronecker symbol. The
matrix of the partially isometric shift operator U in basis E is

U =

0 0

1
. . .

. . .
. . .

0 1 0

.
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Now we have A = |x0, x1, · · · , xN |, xi = U ix0. We see that the equation A∗·[ϕ] = 0
is equivalent to the difference equation with operator D for the components of the
vector [ϕ] ∈ KerD. We can consider the variational identification problem for this
equation. We will see that this is an approximating identification.

2. Application. Any estimation problem can be reduced to some projecting
problem. Let [ψ] ∈ E be a reference vector of some recorded or desired dynamical
process. The problem is to find a linear constant difference equation, i.e., to estimate
its coefficients whose transient process with suitable (optimal) initial conditions
would describe the given process in the best way.

The possible formulation of this problem is to find the minimum of the functional

J = ‖[ψ] − [ϕ]‖2
E if A∗

α[ϕ] = 0

with respect to α (see [29,30]).

Special case. If α is given, then the formulated problem is a smoothing problem
for the sequence of the components of the vector [ψ] via a constant difference
equation (model). This optimization step of the variational functional J is the
search for the best initial conditions of the approximating transient process of the
given model. The solution to this problem is

[ϕ̂] = Π[ψ], Π = Π(A) = ΠN = I−PN (A)=I−P ,

where

Π = I−A(A∗A)−1A∗, P=A(A∗A)−1A∗.

Lemma 1 and Theorem 3 yield us fast calculation algorithms without Riccati equa-
tion for projector Π and the projection [ϕ̂].

Common case. Assume that the vector α is unknown. Then the value is
calculated as

ρ2 = Ĵ = ‖[ψ] − [ϕ̂]‖2.

i.e., ρ2 = ρ2(α) = [ψ]∗A(A∗A)−1A∗[ψ] = [ψ]∗P [ψ], which is the square of the per-
pendicular from the given process vector ψ onto the kernel of the desired difference
operator Dα.

The solution of the approximating identification is α̂ = arg min ρ2(α). Lemma 1
and Theorem 3 provide us the fast calculation algorithms for value ρ2(α). In addi-
tion, the author has found the effective iterative procedure with wide fast conver-
gency domain for minimizing the value ρ2(α) with respect to α.

3. Example 9. On Figures 1 and 2, we represent the identification problem
described above in the trivariate case [2,29].
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Figure 1: The approximation of the three references by solving the
first order difference equation and by solving corresponding

differential equation with complex–valued coefficients:

ẏ + a0y = 0, a0 = ln
√

2 + i · π.

Figure 2: Variational projection in the trivariate case.
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Figure 1 illustrates three references composing the trivariate vector y = [ψ]. We
wish to approximate these three references via a suitable transient process of the
first order model. It means that in this example we have N+n = 3, n = 1. The
model equation has the form

yk+1+α yk = 0.

On Figure 1, the transient process of the corresponding differential equation is
represented. It is obtained by the “dediscretization” of the difference equation
obtained via the identification method described above.

Figure 2 illustrates the property that the set of the subspaces Mα = Ψα, which
are the kernels of the difference operators

Dα = yk+1+α yk = 0, α ∈ (−∞,+∞),

in this case is the cone surface denoted on Figure 2 by Ω. The set of all projection

points [ϕ̂] = ŷ is denoted by Ω̂.

5. Conclusion

One of the results of the theory discussed above is the variational approach to
the function approximation consisting of solving of an ordinary linear differential
equation with constant coefficients (Examples 6,7,8 of p. 8, section 3; see also
[17,29]).

This approach to the approximation is a generalization of a classical problem
of finding an approximation for some function y by means of a polynomial ŷ of a
degree (n− 1), i.e., by the solution to the common stationary differential equation

ŷ(n) = 0

(see [30]). All the coefficients in this simplest approximating equation are known.
It is a possible case when the coefficients of an arbitrary approximating equation
are not specified; here we come to the problem of finding the best equation in this
class which minimizes the least squares functional. Therein lies the essence of the
variational method of identification proposed by the author of this paper in due
time [31,32].

Variational approach to identification is highly error resistable both in the orig-
inal data and in the model structure. Therefore it would be most appropriate to
apply it for approximating complex objects by a simplified model of the described
type on the short path segment [33]. In addition, due to the “fast” orthogonalization
algorithms described here and due to the special iterative optimization procedures
for equation parameters [2,17,30] proposed by the author of current paper, this
approach can be also used in the real time feedback systems. This is essential for
a number of problems of adaptive control with an identifier [29].
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