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SHEAVES AND Ta-BICOMPACTIFICATIONS OF MAPPINGS

V. M. ULYANOV

Abstract. The paper is devoted to an investigation of relations between bi-
compactifications of mappings and sheaves of algebras. Bicompactifications of
mappings are a generalization of compactifications of topological spaces, and
sheaves of algebras take place of algebras of continuous bounded functions on
topological spaces.

The first section contains a historical review of main constructions and
notions used in the paper as well as a short introduction to the theory of
bicompactifications of mappings. In particular, we state here basic definitions
and recall some statements about bicompactifications of mappings that were
obtained earlier.

In the second section some new topological properties of the fan product
and the inverse limit are proved.

The third section contains important constructions which are used for an
upbuilding of bicompactifications of mappings. Several new properties of these
constructions are proved.

The fourth section is devoted to a definition and an investigation of al-
gebras of functions on mappings. In this section a natural topology on these
algebras is defined; the class of globally completely regular mappings is singled
out for which such algebras play a role similar to that of algebras of continuous
bounded functions on completely regular spaces; a functor from the category
of mappings to the category of perfect globally completely regular mappings
is constructed which preserves algebras of continuous “bounded” functions on
mappings; a correspondence between “mappings” of mappings and homomor-
phisms of their algebras is investigated.

In the fifth section sheaves of algebras connected with mappings are defined
and investigated.

The sixth section contains a proof of the main result of the paper: there
exists a one-to-one correspondence preserving the order between the set of
all Ta-bicompactifications of a given mapping and the set of all sheaves of a
special kind.

In the seventh section we define maximal closed ideals of sheaves of alge-
bras; relations between these ideals and points of Ta of a given mapping are
investigated.
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§ 1. Basic constructions and notions

1.1. This section contains a historical review of basic constructions and notions
used in the paper.

The term “mapping” will mean “continuous map”. No axioms of separability will
be assumed. The symbol [A]X stands for the closure of the set A in the topological
space X.

For mappings we write subscripts and superscripts on the left rather then on the
right, that is, we write A

απ instead of πA
α and so on. This is somewhat unusual but

more convenient since we can write, for example, A
απ# and A

απ−1 instead of (πA
α )#

and (πA
α )−1 (see [35]). Analogously, [A \B]X is shorter than ClX(A \B).

A. Constructions

1.2. The fan product of topological spaces relative to given mappings is a topo-
logical version of the well-known fibred product in the theory of categories (see, for
example, [61], the item 1.5.4). The fan product have been described, for example,
in the book [3] (§2 of Supplement to Chapter I), but for our purposes its discus-
sion there is not sufficiently detailed, so that we shall investigate this construction
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in §2. We shall also discuss some properties of the well-known inverse limit (see,
for example, [3], §1 of Supplement to Chapter I).

1.3. In the item 3.1 a construction is described which have been investigated
in the papers [43] and [46]. This construction was used for an upbuilding of the
absolutes and compactifications of topological spaces and their mappings, for an
upbuilding of completely regular spaces which have not compactifications of special
kinds.

Two partial cases of this construction were known earlier: first, the partial topo-
logical product which was investigated in the paper [35] and can be obtained if
Gα = Oα for all α ∈ A (see the item 3.1); the partial topological product was used
for an upbuilding of universal spaces in dimension theory (see, for example, [35],
[41] or [59]); second, the construction which was described in the paper [49] and can
be obtained if |Gα| = 1 for all α ∈ A; this construction was used for an upbuilding
of a great number of Hausdorff compact spaces with “pathological” properties in
dimension theory and in the theory of cardinal-valued topological invariants.

B. Properties of mappings

1.4. Definition. A class E of topological spaces will be called closed if the fol-
lowing conditions are fulfilled:

1) there exists Z ∈ E such that |Z| = 1;
2) if Zα ∈ E for all α ∈ A then

∏{Zα : α ∈ A} ∈ E;
3) if Z ∈ E and Z ′ ⊆ Z then Z ′ ∈ E.

Further on the symbol “E” will always denote a closed class of topological spaces.
1.5. Definition. A family a of locally closed subsets of a space Y will be called

closed if the following conditions are fulfilled:
1) ∅ ∈ a;
2) if G1, G2 ∈ a then (G1∪G2)\(G∗1∪G∗2) ∈ a where G∗ = [G]Y \G for G ⊆ Y ;
3) if G ⊆ Y is a locally closed subset such that for each point y ∈ G there

exist a neighborhood Uy ⊆ Y and a set Gy ∈ a satisfying the condition
G ∩ Uy ⊆ Gy then G ∈ a.

Particularly, if G ∈ a and G′ ⊆ G is a locally closed subset then G′ ∈ a.
Further on the symbol “a” will always denote a closed family of locally closed

subsets of a topological space Y .
1.6. Definition. We shall say that a mapping f : X → Y has the property TEa

if for an arbitrary point x ∈ X in each of the following two cases
a) for every point x′ ∈ f−1fx \ {x} and
b) for every neighborhood Ux ⊆ X

there exist a neighborhood Ofx ⊆ Y , a set G ∈ a, a space Z ∈ E and mappings
g : Ofx \G → Z and g̃ : f−1Ofx → Z such that [G]Y ∩ Ofx = G, g̃|f−1(Ofx\G) =
= gf |f−1(Ofx\G) and, respectively,

a) g̃x′ 6= g̃x or
b) g̃x /∈ [g̃(f−1Ofx \ Ux)]Z .
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1.7. If E is the class of all completely regular spaces then we shell write Ta
instead of TEa. In this case we can always take Z = R (the space of real numbers)
or Z = [0, 1] in Definition 1.6. If a is a family of all discrete (in itself) locally closed
subsets of the space Y then we shall write TE instead of TEa. In this case we can
always suppose that |G| 6 1 in Definition 1.6. If the above assumptions are both
fulfilled, we shall write simply T.

Definition 1.6 is more general than the corresponding definition of the paper [43],
but all statements and their proves remain valid (it is possible to omit the operators
of the closure in Lemma 5 in [43]).

The property TEa and the construction described in the item 3.1 are connected.
Namely, the following two statements are valid.

1.8. Assertion ([43], Lemma 5). The mapping Aπ : YA
onto−−−→ Y constructed in

the item 3.1 has the property TEa, where E is any closed class of topological spaces
containing {Zα : α ∈ A} and a is any closed family of locally closed subsets of the
space Y containing {Gα : α ∈ A}.

1.9. Assertion (a consequence of Lemma 6 of the paper [43]). If a mapping
f : X → Y has the property TEa then there exist a mapping Aπ : YA

onto−−−→ Y
and a homeomorphic embedding fA : X → YA such that f = AπfA, where YA =
= P(Y, {Zα}, {Gα}, {Oα}, {gα}, α ∈ A), Zα ∈ E and Gα ∈ a for all α ∈ A (see
3.1–3.2).

1.10. Mappings with the property TEa have been defined in the paper [43] and
they have been investigated in the papers [45], [47] and [42]. The property TEa is an
analog of E-regularity of topological spaces ([57]). An analog of the E-compactness
is defined for mappings in the paper [5].

Mappings with the property Ta are analogous to completely regular spaces.
These mappings admit a great deal of structures which exist in completely reg-
ular spaces. For example, in the paper [42] the notion of a normal base is studied,
in the paper [25] the concept of a subordination on a mapping is defined, in the
papers [6], [53] and [56] uniformities on mappings are discussed. The weakest prop-
erty Ta can be obtained if a is the family of all locally closed subsets of the space
Y . Mappings with this property have been called Tychonoff mappings in the pa-
per [34], where a great number of properties of mappings has been defined which
are analogous to properties of topological spaces (see also [52]). Some of them are
included in the book [58]1 (without direct references).

Earlier, in the paper [40], the property T has been defined for mappings of
completely regular spaces. The paper [44] is connected with the paper [40] and is
devoted to related properties. In the paper [27] subordinations on mappings with
the property T have been defined.

Some of earlier defined properties of mappings are equivalent to properties TEa
for suitable E and a. For example, the following two statements are valid.

1The term “fibrewise topological space” in [58] corresponds to the term “mapping” in [34] and
so on.
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1.11. Assertion. A mapping f : X → Y is dividing ([9], Definition 1) iff it
has the property TEa where E = {Z : Z is completely regular and indZ = 0} and
a = {G ⊆ Y : G is locally closed}.

1.12. Assertion ([44] - for regular X and Y ). a) If a T3-mapping ([34]) f : X →
→ Y is completely closed ([49]) then the mapping f is closed and has the property
TE where E is the class of all topological spaces, and the set Y \ fX is discrete and
clopen in Y .

b) If a mapping f : X → Y is closed and has the property TE where E is the
class of all topological spaces, and the set Y \ fX is discrete and clopen in Y , then
the mapping f is completely closed.

1.13. Remark. a) If a = {∅} or |Z| 6 1 for all Z ∈ E then each mapping
f : X → Y with the property TEa is a homeomorphic embedding.

b) If a is a family of all locally closed subsets of the space Y and E is the class
of all topological spaces, then each mapping f : X → Y has the property TEa.

c) If E1 ⊆ E2 and a1 ⊆ a2, then every mapping with the property TE1a1 has the
property TE2a2.

d) If a mapping f : X → Y has the property TEa, X ′ ⊆ X, fX ′ ⊆ Y ′ ⊆ Y ,
G ∩ Y ′ ∈ a′ for all G ∈ a where a′ is a closed family of locally closed subsets of Y ′,
then the mapping f ′ = f |X′ : X ′ → Y ′ has the property TEa′.

1.14. Definition ([55]). A mapping f : X → Y will be called separable if any
two distinct points x1, x2 ∈ X such that fx1 = fx2 have disjoint neighborhoods
in X.

1.15. Lemma ([43]). If every space Z ∈ E is Hausdorff, then each mapping with
the property TEa is separable.

C. Compactifications of mappings

1.16. Definition ([63]). Let f : X → Y be a mapping such that [fX]Y = Y . A
mapping fv : vfX → Y will be called a compactification of the mapping f if the
following conditions are fulfilled:

1) the mapping fv is perfect;
2) X ⊆ vfX;
3) fv|X = f ;
4) [X]vf X = vfX.

1.17. It has been proved in the paper [63] that a mapping of a Hausdorff locally
compact space onto another such space has a compactification. An analogous state-
ment has been proved in the paper [54] for mappings of completely regular spaces
onto regular spaces. The statement that any mapping has a compactification is a
partial case of results of the paper [43]. The problem on the existence of separable
compactifications of mappings has been studied in the paper [26].2 Various prob-
lems on compactifications of mappings in the sense of Definition 1.16 have been
considered in the papers [11]–[15], [18], [21]–[23], [29]–[34], [36]–[39], [56], [60].

It is possible to obtain a definition of an extension of a mapping if one replace
the condition 1) in Definition 1.16 by another suitable condition. Such extensions
have been studied in the papers [4], [5], [11]–[13], [20].

It should be mentioned that the notion of an extension of a topological space can
be considered as a partial case of an extension of a mapping (a mapping X → {∗}
onto the one-point space corresponds to the topological space X 6= ∅).

2V.A.Matveev asserts that his proof of Corollary 1 in the paper [26] is incomplete, but a
counter-example is not known. A correct condition can be found in his thesis “Структуры
подчинений, связанных с отображениями” (Москва, 1990).
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D. Covers of topological spaces

1.18. Definition ([64]). A cover of a topological space Y is a perfect irreducible
mapping f : X

onto−−−→ Y .
Usually it is convenient to say that the space X is the cover of the space Y .
1.19. The most important cover of a topological space is its absolute. Absolutes

for all topological spaces have been constructed in the paper [43]. Other covers have
been studied too (see, for example, the papers [1], [10], [16], [17], [62]). Different
general constructions of covers can be found in the papers [1], [2], [16], [17], [62],
[64]. The paper [24] contains a method to construct all separable (in the sense
of Definition 1.14) and all Tychonoff (in the sense of the paper [34]) covers of an
arbitrary topological space.

It is noted in the paper [64] that the notions of an extension and of a cover
of a topological space are analogous. However, the notions of a compactification
of a mapping and a cover of a topological space are much more similar (compare,
for example, the papers [26] and [24]). All these notions are partial cases of an
extension of a mapping which can be obtained if we replace the conditions 1) and 5)
of Definition 1.21 by other suitable conditions. Definition 1.21 has been formulated
in the paper [43] to unify the notions of a compactification of a mapping (and,
particularly, of a topological space) and of a cover of a topological space. This is,
probably, the best version; the condition 5) could be replaced by other conditions
to obtain bicompactifications with special properties.

E. TEa-bicompactifications of mappings

1.20. Definition ([43]). A mapping f : X
onto−−−→ Y will be called irreducible mod-

ulo X ′ ⊆ X if every closed set F ⊆ X, which satisfies the conditions X ′ ⊆ F and
fF = Y , coincides with X (or, that is equivalent, if for each non-empty open set
U ⊆ X the set (U ∩X ′) ∪ f#U is non-empty too3).

In a usual way we can prove that if a mapping f : X
onto−−−→ Y and a set X ′ ⊆ X

are given such that for each y ∈ Y \ f [X ′]X the space f−1y is compact then the
mapping f can be reduced modulo X ′, that is, there is a closed set F ⊆ X such
that fF = Y , X ′ ⊆ F and the mapping f |F is irreducible modulo X ′.

1.21. Definition ([43]). A mapping fv : vfX
onto−−−→ Y will be called a TEa-

bicompactification of a mapping f : X → Y if the following conditions are fulfilled:
1) the mapping fv is perfect;
2) X ⊆ vfX;
3) fv|X = f ;
4) the mapping fv is irreducible modulo X;
5) the mapping fv has the property TEa.

X

f ÂÂ?
??

??
??

?
⊆ // vfX

fv}}{{
{{

{{
{{

Y

1.22. Definition ([43]). Let fv : vfX
onto−−−→ Y and fw : wfX

onto−−−→ Y be TEa-
bicompactifications of a mapping f : X → Y . We shall write fv > fw if there is a
mapping v

wϕ : vfX → wfX such that fv = fw
v
wϕ and v

wϕx = x for all x ∈ X.

3Let us recall that f#U = {y ∈ fX : f−1y ⊆ U}.
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1.23. Definition. TEa-bicompactifications fv : vfX
onto−−−→ Y and fw : wfX

onto−−−→
onto−−−→ Y of a mapping f : X → Y will be called equivalent if there exists a homeo-
morphism v

wϕ : vfX
onto−−−→ wfX such that fv = fw

v
wϕ and v

wϕx = x for all x ∈ X.
In general the mapping v

wϕ in Definitions 1.22 and 1.23 is not unique, and there
are non-equivalent TEa-bicompactifications fv and fw such that fv > fw and fw >
> fv, but this is impossible in the case of separable TEa-bicompactifications (for
example, if all spaces of the class E are Hausdorff).

1.24. The existence of TEa-bicompactifications has been considered in the pa-
per [43]. Properties of the largest separable TEa-bicompactifications have been
investigated in the paper [45]. Constructions of all T-bicompactifications and
Ta-bicompactifications by means of subordinations have been described in the
papers [27] and [25]. The main results of the papers [43] and [45] about TEa-
bicompactifications are following.

F. The existence of TEa-bicompactifications

1.25. Theorem. If each space Z ∈ E has a compactification vZ ∈ E then
each mapping f : X → Y with the property TEa has a TEa-bicompactification
fv : vfX

onto−−−→ Y .
1.26. Corollary. If each space Z ∈ E has a Hausdorff compactification vZ ∈

∈ E then each mapping f : X → Y with the property TEa has a separable TEa-
bicompactification fv : vfX

onto−−−→ Y .

1.27. Lemma. Let fv : vfX
onto−−−→ Y be a TEa-bicompactification and

fw : wfX
onto−−−→ Y be a separable TEa-bicompactification of a mapping f : X →

→ Y such that fv > fw. Then the mapping v
wϕ : vfX

onto−−−→ wfX satisfying the
conditions fv = fw

v
wϕ and v

wϕx = x for all x ∈ X, is perfect, “onto”, irreducible
and is determined by these conditions uniquely.

1.28. Corollary. Let fv : vfX
onto−−−→ Y and fw : wfX

onto−−−→ Y be separable TEa-
bicompactifications of a mapping f : X → Y such that fv > fw and fw > fv.
Then the mappings v

wϕ and w
v ϕ are mutually inverse homeomorphisms, and the

TEa-bicompactifications fv and fw are equivalent.
1.29. Assertion. Let {fα : α ∈ A} be any non-empty set of (separable) TEa-

bicompactifications fα : vαX
onto−−−→ Y , α ∈ A, of a mapping f : X → Y . Then there

is a (separable) TEa-bicompactification fv : vfX
onto−−−→ Y of the mapping f such that

fv > fα for all α ∈ A.
1.30. Proposition. For every mapping f : X → Y there exists the set C(f) of

all pairwise non-equivalent separable TEa-bicompactifications of this mapping. The
relation “>” is a partial order on the set C(f).

Of course, it is possible that the set C(f) is empty.
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G. The largest TEa-bicompactifications and TEa-absolutes

1.31. Theorem. If the mapping f : X → Y has at least one separable TEa-
bicompactification then it has the largest separable TEa-bicompactification
fβ : βfX

onto−−−→ Y (of course, fβ is unique).
1.32. Corollary. If each space Z ∈ E has a Hausdorff compactification vZ ∈

∈ E then every mapping f : X → Y with the property TEa has the largest TEa-
bicompactification fβ : βfX

onto−−−→ Y (obviously, fβ is separable).
1.33. Let us consider a mapping f : ∅→ Y with the empty domain. Obviously,

the identical mapping iY : Y
onto−−−→ Y is a separable TEa-bicompactification of the

mapping f for any closed E and a. Hence, the mapping f has the largest separable
TEa-bicompactification p : aEY

onto−−−→ Y . The space aEY is called the TEa-absolute
of the space Y .

Ta-absolutes of topological spaces have been studied in the paper [62].
Obviously, each TEa-bicompactification of the mapping f : ∅ → Y is a cover of

the space Y ; hence, we get the following statement.
1.34. Corollary. Each topological space Y has the largest separable cover

p : aEY
onto−−−→ Y with the property TEa.

1.35. Assertion. If a family a contains all boundaries of regular closed subsets
of a space Y , and there is a space Z ∈ E such, that there exists an open subset
U ⊆ Z satisfying the condition ∅ 6= U 6= Z, then the TEa-absolute of the space Y
coincides with the absolute of the space Y .

1.36. Assertion ([62]). If a is the smallest closed family containing all nowhere
dense zero-sets of a completely regular space Y , then the Ta-absolute of the space
Y coincides with the sequential absolute oY ([10]) of the space Y .

1.37. Theorem ([45]). Let a mapping f1 : X1 → Y1 has the largest separable
TE1a1-bicompactification f1β : βf1X1

onto−−−→ Y1, f2 : X2
onto−−−→ Y2 be a perfect separable

mapping with the property TE2a2, h1 : X1 → X2 and h2 : Y1 → Y2 be mappings such
that h2f1 = f2h1 and h−1

2 G ∈ a1 for all G ∈ a2, E2 ⊆ E1. Then there exists a
mapping h : βf1X1 → X2 such that f2h = h2f1β and h|X1 = h1. Moreover,

1) if the mapping h2 is perfect or separable then the mapping h is, respectively,
perfect or separable too;

2) if for each G ∈ a1 the set G \ [f1X1]Y1 is nowhere dense in Y1 then the
mapping h is unique.

X1

f1

²²

⊆

""FFFFFFFF
h1 // X2

f2

²²

βf1X1

f1β

||xx
xx

xx
xx

x

h

<<xxxxxxxx

Y1
h2 // Y2

1.38. Corollary. Let p1 : a1E1Y1
onto−−−→ Y1 and p2 : a2E2Y2

onto−−−→ Y2 be the largest
separable covers with the properties TE1a1 and TE2a2 respectively, E2 ⊆ E1, and
h : Y1 → Y2 be a mapping such that h−1G ∈ a1 for all G ∈ a2. Then there is a
mapping h̃ : a1E1Y1 → a2E2Y2 such that p2h̃ = hp1. Moreover,

1) if the mapping h is perfect or separable then the mapping h̃ is, respectively,
perfect or separable;
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2) if each set G ∈ a1 is nowhere dense in Y1 then the mapping h̃ is unique.

a1E1Y1

p1

²²

h̃ // a2E2Y2

p2

²²
Y1

h // Y2

1.39. Corollary ([50]). Let qY1 and qY2 be absolutes of topological spaces Y1

and Y2 respectively, q1 : qY1
onto−−−→ Y1 and q2 : qY2

onto−−−→ Y2 be their projections,
h : Y1 → Y2 be a mapping. Then there exists a mapping h̃ : qY1 → qY2 such that
q2h̃ = hq1. Moreover,

1) if the mapping h is perfect or separable then the mapping h̃ is, respectively,
perfect or separable;

2) if for each regular open set U ⊆ Y2 the set h−1FrY2U is nowhere dense4 in
Y1 then the mapping h̃ is unique.

1.40. Corollary (it seems to be new). Let oY1 and oY2 be sequential absolutes
of completely regular spaces Y1 and Y2 respectively, o1 : oY1

onto−−−→ Y1 and
o2 : oY2

onto−−−→ Y2 be their projections, h : Y1 → Y2 be a mapping such that for each
nowhere dense zero-set G ⊆ Y2 the set h−1G is nowhere dense in Y1. Then there
exists a unique mapping h̃ : oY1 → oY2 such that o2h̃ = ho1. Moreover, if the
mapping h is perfect or separable then the mapping h̃ is, respectively, perfect or
separable.

1.41. Remark. It is possible to eliminate the property TEa from statements 1.25,
1.27–1.32, 1.34 using Remark 1.13 b).

H. Sheaves

1.42. In §4 and §5 we construct and investigate an object connected with a given
mapping which corresponds to the algebra of continuous bounded functions on a
given topological space. An analogous problem has considered in the papers [19],
[18].

A required object is a sheaf. Unfortunately, a usual sheaf over a topological space
is not convenient to describe Ta-bicompactifications of a given mapping with the
property Ta, therefore we have to use a more general definition. We re-formulate
Definition 0.31 of the book [8] in a convenient way for our special purposes.

The symbol “T ” will denote further on a partially ordered set. We shall denote
the relation of the partial order by the symbol “⊆”. We shall also suppose that for
each t1, t2 ∈ T there exists min{t1, t2} ∈ T which will be denoted by t1 ∩ t2.

1.43. Definition. We shall say that a Grothendieck pretopology is given on the
set T if for each t ∈ T a family P (t) of subsets of T is given satisfying the following
conditions:

1) if t ∈ T , γ ∈ P (t) and t′ ∈ γ, then t′ ⊆ t;
2) if t ∈ T , then {t} ∈ P (t);
3) if t, t′ ∈ T , t′ ⊆ t and {tα : α ∈ A} ∈ P (t), then {tα ∩ t′ : α ∈ A} ∈ P (t′);
4) if t ∈ T , {tα : α ∈ A} ∈ P (t) and {tαβ : β ∈ Bα} ∈ P (tα) for all α ∈ A, then
{tαβ : β ∈ Bα, α ∈ A} ∈ P (t).

Elements of P (t) are called coverings of the element t ∈ T .

4Let us recall that FrXA = [A]X ∩ [X \A]X is a boundary of a set A ⊆ X.
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1.44. Definition. We shall say that a presheaf C of sets is given on the set T
if for each t ∈ T a set C(t) is given, and for each t1, t2 ∈ T such that t1 ⊆ t2 a
(restriction) map t2

t1h : C(t2) → C(t1) is given satisfying the following conditions:
1) t

th : C(t) → C(t) is an identity map for every t ∈ T ;
2) if t1, t2, t3 ∈ T and t1 ⊆ t2 ⊆ t3 then t3

t1h = t2
t1h

t3
t2h.

1.45. Definition ([61], the item 4.5.2). Let C be a presheaf on the set T and let
γ ⊆ T and gt ∈ C(t) for all t ∈ γ. The set {gt : t ∈ γ} will be called compatible if
for each t1, t2 ∈ γ the equality t1

t1∩t2hgt1 = t2
t1∩t2hgt2 holds.

1.46. Definition. A presheaf C on the set T with a given Grothendieck pre-
topology {P (t) : t ∈ T} will be called a sheaf if for each element t0 ∈ T , a covering
γ ∈ P (t0) and a compatible set {gt : t ∈ γ} there is a unique element g ∈ C(t0)
such that t0

t hg = gt for all t ∈ γ.
1.47. Example. Let Y be a topological space and T be the set of all open

subsets of the space Y (that is, T is the topology of the space Y ). For each U ∈ T
let P (U) = {γ ⊆ T :

⋃
γ = U}. It is easy to verify that {P (U) : U ∈ T} is a

Grothendieck pretopology and that C is a sheaf on the set T with this pretopology
iff C is a sheaf over the space Y (see [61], Definition 4.5.1, or [8], Definition 0.23).

1.48. We shall consider sheaves of topological algebras. In this case restriction
maps are supposed to be continuous homomorphisms.

In §6 we shall show that there is an order isomorphism of the set C(f) of all
Ta-bicompactifications of a given mapping f : X → Y with the property Ta onto a
set of sheaves with special properties.

In §7 we shall consider closed maximal ideals of sheaves of topological algebras
of continuous functions on Ta-bicompactifications of mappings.

§ 2. The fan product and the inverse limit

A. The fan product

2.1. Let mappings απ : Yα → Y , α ∈ A, be given. The fan product of the spaces
Yα relative to the mappings απ, α ∈ A, is the set YA =

∏
Y ({Yα}, {απ}, α ∈ A) =

= {{yγ : γ ∈ A} ∈ ∏{Yγ : γ ∈ A} : απyα = βπyβ for all α, β ∈ A}, equipped
with the topology of the subspace of the product

∏{Yα, α ∈ A}. Let A
απ : YA → Yα

be the restriction of the projection αp :
∏{Yγ : γ ∈ A} → Yα of the product to

its factor for each α ∈ A. Due to the definition of the fan product the equality
απ A

απ = βπ A
β π holds for all α, β ∈ A. Therefore the equality Aπ = απ A

απ, α ∈ A,
defines the mapping Aπ : YA → Y correctly. The mapping Aπ will be called the fan
product of the mappings απ, α ∈ A. We shall write Aπ =

∏
Y {απ : α ∈ A}.

It is convenient to use the following coordinate representation of the fan product
(it follows from Proposition of the book [3], §2 of Supplement to Chapter I): YA =
=

∏
Y ({Yα}, {απ}, α ∈ A) = {{y, zα : α ∈ A} : y ∈ Y, zα ∈ απ−1y for all α ∈ A}.

Then we have the equalities Aπ{y, zα : α ∈ A} = y and A
β π{y, zα : α ∈ A} = zβ ∈

∈ βπ−1y ⊆ Yβ for all β ∈ A and {y, zα : α ∈ A} ∈ YA.
For each B ⊆ A let us define a mapping A

Bπ : YA → YB =
∏

Y ({Yα}, {απ}, α ∈
∈ B) by the equality A

Bπ{y, zα : α ∈ A} = {y, zα : α ∈ B} for all {y, zα : α ∈ A} ∈
∈ YA. Of course, Aπ = Bπ A

Bπ and A
απ = B

α π A
Bπ for all α ∈ B.
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∏{Yα : α ∈ A}

αp
&&LLLLLLLLLLL

YA
⊇oo

A
α π

~~~~
~~

~~
~~

Aπ

²²

A
β π ÃÃ@

@@
@@

@@
@

A
Bπ

''PPPPPPPPPPPPPPP

Yα

απ ÃÃB
BB

BB
BB

B Yβ

βπ

~~||
||

||
||

YB

B
β π
oo

Bπ
vvnnnnnnnnnnnnnnn

Y

Let us note that the space Y{α} is naturally homeomorphic to the space Yα for
each α ∈ A; we shall identify these spaces and corresponding mappings {α}π and
απ.

If B ⊆ A then we shall call the mapping A
A\Bπ parallel to the mapping Bπ.

YA

A

A\B
π

²²

Aπ

""EE
EE

EE
EE

E

A
Bπ // YB

Bπ

²²
YA\B

A\Bπ // Y

Further on we shall assume that YA is the fan product, without specifying it
each time.

The following statements 2.2–2.5 can be proved by a comparison of corresponding
sets and topologies.

2.2. Proposition ([3]). For each point y ∈ Y the space Aπ−1y is homeomorphic
to the space

∏{απ−1y : α ∈ A}. In particular, if απYα = Y for all α ∈ A, then
AπYA = Y .

2.3. Proposition. Let z ∈ YA\B and y = A\Bπz. Then the mapping A
Bπ

maps the space A
A\Bπ−1z onto the space Bπ−1y homeomorphically. In particular,

if BπYB = y then A
A\BπYA = YA\B.

2.4. Proposition. Let A be a family of pairwise disjoint subsets of the set A
such that

⋃{B : B ∈ A} = A. Then the fan products YA =
∏

Y ({Yα}, {απ}, α ∈ A)
and YA =

∏
Y ({YB}, {Bπ}, B ∈ A) are naturally homeomorphic and (if we identify

YA and YA) Aπ = Aπ, A
Bπ = A

Bπ for each B ∈ A.
2.5. Proposition. Let A be a family of subsets of the set A such that

⋃{B : B ∈
∈ A} = A, and let A be directed by the relation “⊆”. Let S = {YB, B

B′π : B, B′ ∈
∈ A, B′ ⊆ B} be an inverse spectrum. Let YS = lim←−S, Sπ = lim←−

Bπ and S
Bπ be

the projection of the space YS to YB, B ∈ A (for the definitions see [51], §2.5).
Then the fan product YA and the space YS are naturally homeomorphic and (if we
identify YA and YS) Sπ = Aπ, S

Bπ = A
Bπ for each B ∈ A.

2.6. In the following seven items we shall prove statements about the existence
of mappings connected with the fan product; also we shall prove that the fan
product preserves the following properties of mappings: to be perfect, or separable,
or uniquely reducible, or to have the property TEa. Analogous statements will be
proved for the inverse limit of mappings. Other properties of the inverse limit can
be found in the books [3] and [51].

2.7. Proposition. Let mappings f : X → Y and fα : X → Yα, α ∈ A, be given
such that απfα = f for all α ∈ A. Then there is a unique map fA : X → YA such
that A

απfA = fα for all α ∈ A. The map fA is continuous and satisfies the condition
AπfA = f .



SHEAVES AND Ta-BICOMPACTIFICATIONS OF MAPPINGS 515

YA

A
α π~~||

||
||

||

Aπ

²²

X

f
((PPPPPPPPPPPPPPP

fα

//

fA

66nnnnnnnnnnnnnnn
Yα

απ

!!B
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B

Y

Proof. Obviously, the map fA has to be defined by the equality fAx = {fx, fαx :
α ∈ A} for all x ∈ X, and it satisfies the required conditions. The continuity of the
map fA follows from the definition of the topology of the fan product (see [3], §2
of Supplement to Chapter I, and [51], Proposition 2.3.6). ¤

2.8. Proposition. Let XB =
∏

X({Xβ}, {βp}, β ∈ B), Bp =
∏

X{βp, β ∈ B}
and YA =

∏
Y ({Yα}, {απ}, α ∈ A), Aπ =

∏
Y {απ, α ∈ A}. Let h : A → B be a

map, and let mappings f : X → Y and αf : Xhα → Yα, α ∈ A, satisfy the equality
απ αf = f hαp for all α ∈ A. Then there exists a unique map Af : XB → YA such
that A

απ Af = αf B
hαp for all α ∈ A. The map Af is continuous and satisfies the

equality Aπ Af = f Bp.

XB

Bp

²²

B
hαp

""EE
EE

EE
EE

Af // YA
A
α π

~~||
||

||
||

Aπ

²²

Xhα
hαp

||xxxxxxxx

αf // Yα
απ

!!B
BB

BB
BB

B

X
f // Y

Proof. We can define the mappings f Bp : XB → Y and αf B
hαp : XB → Yα,

α ∈ A, and use Proposition 2.7. ¤
2.9. Theorem. a) If all mappings απ : Yα → Y , α ∈ A, are separable, then the

mapping Aπ is separable too.
b) If B ⊆ A and the mapping Bπ is separable then the parallel mapping A

A\Bπ is
separable too.

Proof. a) Let x1, x2 ∈ YA be points such that x1 6= x2 but Aπx1 = Aπx2. Then
there exists α ∈ A such that A

απx1 6= A
απx2. Since the mapping απ is separable,

there exist disjoint neighborhoods U A
απx1, U

A
απx2 ⊆ Yα. Their preimages under

the mapping A
απ are disjoint neighborhoods of the points x1 and x2.

b) Let x1, x2 ∈ YA be distinct points such that A
A\Bπx1 = A

A\Bπx2. By Propo-
sition 2.3 points y1 = A

Bπx1 and y2 = A
Bπx2 are distinct but Bπy1 = Bπy2. Since

the mapping Bπ is separable, there are disjoint neighborhoods Uy1, Uy2 ⊆ YB.
Then the sets A

Bπ−1Uy1 and A
Bπ−1Uy2 are disjoint neighborhoods of the point x1

and x2. ¤
2.10. Theorem. a) If each mapping απ : Yα → Y , α ∈ A, has the property TEa

then the mapping Aπ has the property TEa too.
b) Let B ⊆ A and the mapping Bπ has the property TEa, and let a′ be a closed

family of locally closed subsets of the space YA\B such that A\Bπ−1G ∈ a′ for all
G ∈ a. Then the parallel mapping A

A\Bπ has the property TEa′.

Proof. a) We have to consider the two cases of Definition 1.6.
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Let x, x′ ∈ YA be distinct points such that Aπx = Aπx′. There exists an index
α ∈ A such that A

απx 6= A
απx′. Since the mapping απ has the property TEa, there are

a neighborhood OAπx ⊆ Y , a set G ∈ a a space Z ∈ E and mappings g : OAπx\G →
→ Z and g̃α : απ−1OAπx → Z such that [G]Y ∩ OAπx = G, g̃α|απ−1(OAπx\G) =
= g απ|απ−1(OAπx\G) and g̃α

A
απx 6= g̃α

A
απx′. Then the mapping g̃ = g̃α

A
απ|Aπ−1OAπx

has all necessary properties.
απ−1(O Aπx \G)

απ

¤¤¨̈
¨̈

¨̈
¨̈

¨̈
¨̈

¨̈
¨̈

¨̈
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¨̈
¨̈

¨̈ g̃α
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⊆ // απ−1O Aπx
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rreeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
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¯̄
¯̄
¯̄
¯̄
¯̄
¯

⊆ // Yα

απ
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··
··
··
··
··
··
··
·

Z

Aπ−1(O Aπx \G)
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⊆ //

g̃
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A
α π
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Aπ−1O Aπx
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A
α π
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YA

Aπ
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A
α π

<<xxxxxxxxxxxxxxxxxxxxx

O Aπx \G
⊆ //

g

77ooooooooooooooooooooooooooooooo
O Aπx

⊆ // Y

Let x ∈ YA be any point and Ux ⊆ YA be its neighborhood. By the definition
of the fan product there are a finite set B ⊆ A and neighborhoods U A

απx ⊆ Yα,
α ∈ B, such that x ∈ ⋂{A

απ−1U A
απx : α ∈ B} ⊆ Ux. Since each mapping

απ, α ∈ B, has the property TEa, for every α ∈ B there exist a neighborhood
Oα

Aπx ⊆ Y , a set Gα ∈ a, a space Zα ∈ E and mappings gα : Oα
Aπx \ G → Zα

and g̃α : απ−1Oα
Aπx → Zα such that [Gα]Y ∩ Oα

Aπx = Gα, g̃α|απ−1(Oα
Aπx\G) =

= gα
απ|απ−1(Oα

Aπx\G) and g̃α
A
απx /∈ [g̃α(απ−1Oα

Aπx \ U A
απx)]Zα . Then we can

take O Aπx =
⋂{Oα

Aπx : α ∈ B}, G =
⋃{Gα ∩O Aπx : α ∈ B}, Z =

∏{Zα : α ∈
∈ B}, g = ∆{gα|O Aπx\G : α ∈ B} : O Aπx \ G → Z and g̃ = ∆{g̃α

A
απ|Aπ−1O Aπx :

α ∈ B} : Aπ−1O Aπx → Z (the diagonal mapping; see [51], §2.3).
Obviously, [G]Y ∩O Aπx = G and g̃|Aπ−1(O Aπx\G) = g Aπ|Aπ−1(O Aπx\G).
Let Vα = Zα \ [g̃α(απ−1Oα

Aπx \ U A
απx)]Zα , α ∈ B; then g̃−1

α Vα ⊆ U A
απx

is a neighborhood of the point A
απx for all α ∈ B. Therefore the set V =

=
⋂{A

απ−1g̃−1
α Vα : α ∈ B} ⊆ ⋂{A

απ−1U A
απx : α ∈ B} ⊆ Ux is a neighborhood of

the point x. We have the equality V =
⋂{A

απ−1g̃−1
α Vα : α ∈ B} = g̃−1

∏{Vα : α ∈
∈ B}, hence, g̃x ∈ ∏{Vα : α ∈ B} ⊆ ∏{Zα : α ∈ B} \ [g̃(Aπ−1O Aπx \Ux)]Z , that
is, the mapping Aπ has the property TEa.

b) We have to consider the two cases of Definition 1.6
Let x, x′ ∈ YA be distinct points such that A

A\Bπx = A
A\Bπx′. By Proposi-

tion 2.3 we have A
Bπx 6= A

Bπx′. Since the mapping Bπ has the property TEa,
there exist a neighborhood O Aπx ⊆ Y , a set G ∈ a, a space Z ∈ E and map-
pings g : O Aπx \ G → Z and g̃ : Bπ−1O Aπx → Z such that [G]Y ∩ O Aπx = G,
g̃|Bπ−1(O Aπx\G) = g Bπ|Bπ−1(O Aπx\G) and g̃ A

Bπx 6= g̃ A
Bπx′. Then the sets O′ =

= O
A

A\Bπx = A\Bπ−1O Aπx, G′ = A\Bπ−1G and the mappings g′ = g A\Bπ|O′\G′
and g̃′ = g̃ A

Bπ| A

A\B
π−1O′ have all necessary properties.

Bπ−1(O Aπx \G)

Bπ

²²
g̃

ÁÁ<
<<

<<
<<

<<
<<

<<
<<

<<
<

⊆ // Bπ−1O Aπx

g̃

wwpppppppppppppppppppppppppppppp
Bπ

²²

⊆ // YB

Bπ

²²
O Aπx \G

g

&&NNNNNNNNNNNN
⊆ // O Aπx

⊆ // Y

Z

Aπ−1(O Aπx \G)

A

A\B
π

²²

⊆ //

g̃′
22fffffffffffffffffffffffffffff

A
Bπ

@@¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢
Aπ−1O Aπx

A

A\B
π

²²

⊆ //

A
Bπ

CC©©©©©©©©©©©©©©©©©©©©©©©©©©

g̃′
eeLLLLLLLLLLL

YA

A

A\B
π

²²

A
Bπ

GG±±±±±±±±±±±±±±±±±±±±±±±±

A\Bπ−1(O Aπx \G)
⊆ //

g′

66mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

A\Bπ

@@¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢
A\Bπ−1O Aπx

⊆ //

A\Bπ

CC©©©©©©©©©©©©©©©©©©©©©©©©©©
YA\B

A\Bπ

GG±±±±±±±±±±±±±±±±±±±±±±±±



SHEAVES AND Ta-BICOMPACTIFICATIONS OF MAPPINGS 517

Let x ∈ YA be any point and Ux ⊆ YA be its neighborhood. By Proposition 2.4
and by the definition of the fan product there are neighborhoods U

A
A\Bπx ⊆ YA\B

and U A
Bπx ⊆ YB such that x ∈ A

A\Bπ−1U
A

A\Bπx ∩ A
Bπ−1U A

Bπx ⊆ Ux. Since the
mapping Bπ has the property TEa, there exist a neighborhood O Aπx ⊆ Y , a set
G ∈ a, a space Z ∈ E and mappings g : O Aπx \ G → Z and g̃ : Bπ−1O Aπx → Z
such that [G]Y ∩ O Aπx = G, g̃|Bπ−1(O Aπx\G) = g Bπ|Bπ−1(O Aπx\G) and g̃ A

Bπx /∈
/∈ [g̃(Bπ−1O Aπx \U A

Bπx)]Z . Then the sets O
A

A\Bπx = U
A

A\Bπx∩ A\Bπ−1O Aπx,

G′ = U
A

A\Bπx ∩ A\Bπ−1G ∈ a and the mappings g′ = g A\Bπ|
O

A

A\B
πx\G′ and

g̃′ = g̃ A
Bπ| A

A\B
π−1O

A

A\B
πx

have all necessary properties. ¤

2.11. Theorem. a) If B ⊆ A and the mapping Bπ is perfect, then its parallel
mapping A

A\Bπ is perfect too.
b) If all mappings απ, α ∈ A, are perfect then the mapping Aπ is perfect too.

Proof. The mapping A
A\Bπ is compact due to Proposition 2.3. Let us take

any point z ∈ YA\B and prove that the mapping A
A\Bπ is closed at the point z.

Let us denote Φ = A
A\Bπ−1z, y = A\Bπz, F = Bπ−1y(= A

BπΦ). Note that the

set A
A\BπYA = A\Bπ−1 BπYB is closed since the mapping Bπ is perfect. Hence, if

z /∈ A
A\BπYA then there exists a neighborhood Uz ⊆ YA\B such that Uz∩ A

A\BπYA =

= ∅, therefore the mapping A
A\Bπ is closed at the point z.

Let us suppose that z ∈ A
A\BπYA and let UΦ ⊆ YA be any neighborhood. We

have to find a neighborhood Uz ⊆ YA\B such that A
A\Bπ−1Uz ⊆ UΦ.

By the definition of the fan product, for each point x ∈ Φ there are neighborhoods
Uxz ⊆ YA\B and U A

Bπx ⊆ YB such that x ∈ Ux = A
A\Bπ−1Uxz ∩ A

Bπ−1U A
Bπx ⊆

⊆ UΦ. The set {Ux : x ∈ Φ} is an open covering of the compact set Φ. Let
{Uxi : i = 1, 2, . . . , n} be a finite subcovering, V1 =

⋂{Uxiz : i = 1, 2, . . . , n},
V2 =

⋃{U A
Bπxi : i = 1, 2, . . . , n}. Then z ∈ V1, F ⊆ V2 and Φ ⊆ A

A\Bπ−1V1 ∩
∩ A

Bπ−1V2 ⊆ UΦ. Since the mapping Bπ is perfect, there exists a neighborhood
V y ⊆ Y such that F ⊆ Bπ−1V y ⊆ V2. Then the set Uz = V1 ∩A\Bπ−1V y satisfies
the condition Φ ⊆ A

A\Bπ−1Uz = A
A\Bπ−1V1 ∩ A

A\Bπ−1 A\Bπ−1V y = A
A\Bπ−1V1 ∩

∩A
Bπ−1 Bπ−1V y ⊆ A

A\Bπ−1V1∩A
Bπ−1V2 ⊆ UΦ, that is, the mapping A

A\Bπ is closed
at the point z.

b) The mapping Aπ is compact due to Proposition 2.2. Note that the set AπYA =
=

⋂{απYα : α ∈ A} is closed since all mappings απ, α ∈ A, are closed, therefore the
mapping Aπ is closed at any point y ∈ Y \ AπYA. Let us take any point y ∈ AπYA

and prove that the mapping Aπ is closed at the point y.
Let Φ = Aπ−1y and UΦ ⊆ YA be any neighborhood. For each point x ∈ Φ

there exist a finite set Bx ⊆ A and neighborhoods U A
απx ⊆ Yα, α ∈ Bx, such

that x ∈ Ux =
⋂{A

απ−1U A
απx : α ∈ Bx} ⊆ UΦ. The family {Ux : x ∈ Φ} is

an open covering of the compact set Φ. Let {Uxi : i = 1, 2, . . . , n} be a finite
subcovering, V =

⋃{Uxi : i = 1, 2, . . . , n}, B =
⋃{Bxi : i = 1, 2, . . . , n}. Note

that V = A
Bπ−1 A

BπV and B is a finite set, Φ ⊆ V ⊆ UΦ.
It follows from the statement a) and Proposition 5a) of §10 of Chapter I of the

book [7] that the fan product of two perfect mappings is perfect; by Proposition 2.4,
the fan product of any finite family of perfect mappings is perfect. Therefore the
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mapping Bπ is perfect. Hence there is a neighborhood Uy ⊆ Y such that Bπ−1Uy ⊆
⊆ A

BπV , that is, Φ ⊆ Aπ−1Uy = A
Bπ−1 Bπ−1Uy ⊆ A

Bπ−1 A
BπV = V ⊆ UΦ. This

means that the mapping Aπ is closed at the point y. ¤
2.12. Proposition. If X ⊆ YA is a subset such that the set O0 = Y \ Aπ[X]YA

is open, the mapping Aπ0 = Aπ|Aπ−1O0 : Aπ−1O0
onto−−−→ O0 is perfect,5 and for

every α ∈ A the mapping απ can be reduced modulo A
απX in a unique way, then

the mapping Aπ can be reduced modulo X in a unique way (that is, there exists
a unique closed subset Y r

A ⊆ YA such that X ⊆ Y r
A,

AπY r
A = Y and the mapping

Aπr = Aπ|Y r
A
is irreducible modulo X).

Proof. We can assume that the mapping απ is irreducible modulo A
απX for

every α ∈ A.
We shall assume that the set O0 is non-empty; otherwise we could use Y r

A =
= [X]YA

.
Let us denote by B the family of all open dense subsets of the set O0. For every

U ∈ B let FU = [Aπ−1U ]YA
and let F0 =

⋂{FU : U ∈ B}. The set F0 is closed in
YA. We shall prove that O0 ⊆ AπF0.

Let U1, U2, . . . , Un ∈ B. The set
⋂{Ui : i = 1, 2, . . . , n} is open and dense

in O0. Therefore Aπ
⋂{FUi : 1 6 i 6 n} = Aπ

⋂{[Aπ−1Ui]YA
: 1 6 i 6

6 n} ⊇ Aπ[
⋂{Aπ−1Ui : 1 6 i 6 n}]YA

⊇ Aπ0[
⋂{Aπ−1Ui : 1 6 i 6 n}]Aπ−1O0 =

= [Aπ0
Aπ−1

⋂{Ui : 1 6 i 6 n}]O0 = [
⋂{Ui : 1 6 i 6 n}]O0 = O0 since the mapping

Aπ0 is closed.
Therefore for each y ∈ O0 the family {Aπ−1y∩FU : U ∈ B} is a centered family

of closed subsets of the compact space Aπ−1y, hence
⋂{FU ∩ Aπ−1y : U ∈ B} 6= ∅

and AπF0 ⊇ O0.
Let us prove that the mapping Aπ1 = Aπ|F0∩Aπ−1O0 : F0 ∩ Aπ−1O0

onto−−−→ O0 is
irreducible. To this end, let us take any point z0 ∈ F0 ∩ Aπ−1O0 and prove that

(1) Aπ#Uz0 6= ∅ for any neighborhood Uz0 ⊆ YA.

Let Uz0 ⊆ YA be any neighborhood. By the definition of the topology of the
fan product there exist a finite subset A0 ⊆ A and open subsets U0

α ⊆ απ−1O0,
α ∈ A0, such that z0 ∈

⋂{A
απ−1U0

α : α ∈ A0} ⊆ Uz0 ∩ Aπ−1O0. For each α ∈ A0

let U1
α = απ−1Oα \ [U0

α]Yα and Uα = απ#U0
α ∪ απ#U1

α.
The sets Uα, α ∈ A0, are dense open subsets of O0, since for all α ∈ A the

mappings απ|απ−1O0 : απ−1O0
onto−−−→ O0, are closed and irreducible.

It suffices to prove that
⋂{απ#U0

α : α ∈ A0} 6= ∅, since
Aπ#Uz0 ⊇ Aπ#

⋂
{A

απ−1U0
α : α ∈ A0} =

⋂
{απ#U0

α : α ∈ A0}.
Obviously, απ#U0

α∩απ#U1
α = ∅. Therefore U =

⋂{Uα : α ∈ A0} ⊆ (
⋂{απ#U0

α :
α ∈ A0}) ∪ (

⋃{απ#U1
α : α ∈ A0}) and U is an open dense subset of O0. If

we assume that
⋂{απ#U0

α : α ∈ A0} = ∅, then the set
⋃{απ#U1

α : α ∈ A0}
is an open dense subset of O0, and due to the construction of the set F0 we
have z0 ∈ [Aπ−1

⋃{απ#U1
α : α ∈ A0}]YA

=
⋃{[Aπ−1 απ#U1

α]YA
: α ∈ A0} ⊆

⊆ ⋃{[Aαπ−1U1
α]YA

: α ∈ A0}.
But the latter is impossible due to the choice of the sets U1

α, α ∈ A0. Hence,
the mapping Aπ1 is irreducible. Moreover, it is obvious that if a set F ⊆ Aπ−1O0

is closed in Aπ−1O0, AπF = O0 and the mapping Aπ|F : F
onto−−−→ O0 is irreducible,

then the set F contains all points z0 ∈ Aπ−1O0 which satisfy the condition (1).

5Hence, all mappings απ|απ−1O0
: απ−1O0

onto−−−→ O0, α ∈ A, are perfect due to Proposition
5b) of §10 of Chapter I of the book [7].
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Therefore F = F0 ∩ Aπ−1O0, that is, the mapping Aπ|Aπ−1O0 can be reduced in a
unique way.

To conclude the proof it suffices to let Y r
A = [X]YA

∪ F0. ¤
2.13. Corollary. If X ⊆ YA and all mappings απ : Yα

onto−−−→ Y , α ∈ A, are
perfect and irreducible modulo A

απX (or can be reduced modulo A
απX in a unique

way) then the mapping Aπ can be reduced modulo X in a unique way.

B. The inverse limit

2.14. Further let S = {Yα,αβ π : α, β ∈ A, β 6 α} be an inverse spectrum,
απ : Yα → Y , α ∈ A, be mappings such that απ = βπ α

βπ for all α, β ∈ A, β 6 α.
Let YS = lim←−S, Sπ = lim←−

απ and S
απ : YS → Yα be the projection of the space YS

to Yα, α ∈ A (see [51], §2.5).
We can assume that the space YS is a subspace of the fan product YA =

=
∏

Y ({Yα}, {απ}, α ∈ A):

YS = {{y, zα : α ∈ A} ∈ YA : zβ = α
βπzα for all α, β ∈ A, β 6 α}.

To prove that the limit topology of the space YS coincides with the topology of
the subspace of the fan product YA it suffices to observe that YS ⊆ YA ⊆

∏{Yα : α ∈
∈ A}.

Note that Sπ = Aπ|YS
were Aπ =

∏
Y {απ : α ∈ A}, S

απ = A
απ|YS

for all α ∈ A,
but A

β π 6= α
βπ A

απ for α, β ∈ A, β 6 α, in general.

YS

Sπ

$$IIIIIIIIIIIIIIIIIIIIIIII

S
β π

&&NNNNNNNNNNNNN
S
απ

++WWWWWWWWWWWWWWWWWWWWWWWWWWWW
⊆ // YA

A
α π

xxppppppppppppp

Aπ

zzuuuuuuuuuuuuuuuuuuuuuuuu

Yβ

βπ

ÃÃ@
@@

@@
@@

Yαα
β π

oo

απ

~~~~
~~

~~
~~

Y

2.15. Proposition. Let all mappings απ, α ∈ A, be separable. Then
1) the mappings α

βπ, α, β ∈ A, β 6 α, are separable;
2) the mappings Sπ and S

απ, α ∈ A, are separable;
3) the space YS is a closed subspace of the space YA.
Proof. 1) This statement is a consequence of the following fact: if f : X → Y ,

g : X → Z and h : Z → Y are mappings such that f = hg and the mapping f is
separable then the mapping g is separable too.

X
g

~~~~
~~

~~
~

f

ÃÃ@
@@

@@
@@

Z
h // Y

2) This follows from Theorem 2.9 a).
3) For each α, β ∈ A, β 6 α, let Fαβ = {{y, zγ : γ ∈ A} ∈ YA : zβ = α

βπzα}.
Then YS =

⋂{Fαβ : α, β ∈ A, β 6 α}. Let us prove that the set Fαβ is closed in
YA for every α, β ∈ A, β 6 α.

Let α, β ∈ A, β 6 α, x = {y, zγ : γ ∈ A} ∈ YA \ Fαβ . This means that
zβ = A

β πx 6= z′β = α
βπzα = α

βπ A
απx. Since the mapping βπ is separable and βπzβ =

= βπz′β = y, there exist neighborhoods Uzβ , Uz′β ⊆ Yβ such that Uzβ ∩ Uz′β =
= ∅. Let Uzα = α

βπ−1Uz′β ; obviously, Uzα is a neighborhood of the point zα ∈ Yα.
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Therefore the set Ux = A
απ−1Uzα∩A

β π−1Uzβ is a neighborhood of the point x ∈ YA.
Moreover, if x′ ∈ Ux is an arbitrary point, then A

β πx′ ∈ Uzβ and α
βπ A

απx′ ∈ Uz′β ,
hence, A

β πx′ 6= α
βπ A

απx′. This means that Ux ∩ Fαβ = ∅, that is, the set Fαβ is
closed. Hence, the set YS is closed too. ¤

2.16. Corollary. If all mappings α
βπ, α, β ∈ A, β 6 α, are separable, then all

projections S
απ, α ∈ A, are separable too.

2.17. Theorem. If each mapping απ, α ∈ A, has the property TEa, then the
mapping Sπ has the property TEa too.

Proof follows from Theorem 2.10 a) and Proposition 2.15 3). ¤
2.18. Theorem. If each mapping απ, α ∈ A, is separable and perfect (and

“onto”) then the mapping Sπ is also separable and perfect (and “onto”). Moreover,
the mappings S

απ, α ∈ A, and α
βπ, α, β ∈ A, β 6 α, are separable and perfect too.

Proof. The mapping Sπ is separable and perfect by Proposition 2.15 and The-
orem 2.11. The mappings S

απ, α ∈ A, and α
βπ, α, β ∈ A, β 6 α, are separable by

Proposition 2.15 and perfect by Lemma 8 of the paper [43].
Let all mappings απ, α ∈ A, be “onto”. Let us take any point y ∈ Y and prove

that the set Sπ−1y = YS ∩A π−1y is not empty.
Let α ∈ A, and let Fα = {{y, zγ : γ ∈ A} : zβ = α

βπzα for all β ∈ A, β 6 α}.
Note that Fα =

⋂{Fαβ : β ∈ A, β 6 α}, where the closed sets Fαβ , α, β ∈ A,
β 6 α, were defined in the proof of the statement 3) of Proposition 2.15. Hence, the
set Fα is closed. Moreover, the set Fyα = Fα ∩A π−1y is non-empty, since we can
define a point {y, zγ : γ ∈ A} ∈ Fyα, if we choose any zα ∈ απ−1y, put zβ = α

βπzα

for β ∈ A, β 6 α, and choose arbitrary elements zγ ∈ γπ−1y 6= ∅ for γ ∈ A such
that the inequality γ 6 α does not hold.

Since Fyα ⊆ Fyβ for all α, β ∈ A, β 6 α, the family {Fyα : α ∈ A} is a centered
family of closed subsets of the compact space Aπ−1y. Therefore we have Sπ−1y =
=

⋂{Fyα : α ∈ A} 6= ∅. Hence, SπYS = Y . ¤
2.19. Corollary. If all mappings α

βπ, α, β ∈ A, β 6 α, are separable and perfect
(and “onto”) then all mappings S

απ, α ∈ A, are separable and perfect (and “onto”).
2.20. Assertion. Let SπYS = Y and X ⊆ YS be a subset such that each map-

ping απ, α ∈ A, is irreducible modulo S
απX. Then the mapping Sπ is irreducible

modulo X.
Proof. Let U ⊆ YS be an arbitrary non-empty open set such that U ∩X = ∅.

We must prove that there is a point y ∈ Y such that Sπ−1y ⊆ U .
Let us choose some point x ∈ U . By Proposition 2.2.5 of the book [51] there are

an index α ∈ A and a neighborhood U S
απx ⊆ Yα such that S

απ−1U S
απx ⊆ U . Since

U S
απx ∩ S

απX = ∅ and the mapping απ is irreducible modulo S
απX, there exists

a point y ∈ Y such that απ−1y ⊆ U S
απx. Then we have Sπ−1y = S

απ−1 απ−1y ⊆
⊆ S

απ−1U S
απx ⊆ U . Hence, the mapping Sπ is irreducible modulo X. ¤

2.21. Corollary. Let X ⊆ YS be a subset and απ, α ∈ A, be perfect separable
mappings onto Y which can be reduced modulo S

απX in a unique way. Then the
mapping Sπ can be reduced modulo X in a unique way.

§ 3. Some topological constructions

3.1. Construction. Let non-empty topological spaces Y and Zα, open sets Oα ⊆
⊆ Y , sets Gα ⊆ Oα, satisfying the condition [Gα]Y ∩ Oα = Gα, and mappings
gα : Oα \Gα → Zα, α ∈ A, be given.

For each α ∈ A let

Yα = P(Y, {Zα}, {Gα}, {Oα}, {gα}, α ∈ {α}) = (Y \Gα)∪̇(Gα × Zα)
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and define the maps απ : Yα
onto−−−→ Y and αψ : απ−1Oα → Zα as follows:

απz =

{
z for z ∈ Y \Gα,
y for z = (y, t) ∈ Gα × Zα,

αψz =

{
gz for z ∈ Oα \Gα,
t for z = (y, t) ∈ Gα × Zα.

Let us equip Yα with the smallest topology with respect to which the maps απ
and αψ are continuous. Thus all sets of the form

V (U) = απ−1U and V (U,Uα) = απ−1U ∩ αψ−1Uα,

where U ⊆ Y and Uα ⊆ Zα are open subsets, constitute a base for the topology of
Yα. It is easily seen that

αψ|απ−1(Oα\Gα) = gα
απ|απ−1(Oα\Gα).

απ−1(Oα \Gα)

απ

²²

αψ
&&MMMMMMMMMMM
⊆ // απ−1Oα

αψ

{{vvvvvvvvv

απ

²²

⊆ // Yα

απ

²²

Zα

Oα \Gα
⊆ //

gα

88qqqqqqqqqqq
Oα

⊆ // Y

Let us define a space YA = P(Y, {Zα}, {Gα}, {Oα}, {gα}, α ∈ A) as the fan
product of the spaces Yα relative to the mappings απ, α ∈ A. The mappings
Aπ, A

Bπ, B ⊆ A, and A
απ, α ∈ A, were defined in the item 2.1. For each α ∈ A let

A
αψ : A

απ−1Oα → Zα be the mapping defined by the equality A
αψ = αψ A

απ. It is easily
seen that this construction coincides with the construction of the paper [43], §1.
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A
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Oα \Gα
⊆ //

gα

77ppppppppppppppppppppppppppppp
Oα

⊆ // Y

It is convenient to use the following coordinate representation of the space YA

([43], §1; for y ∈ Y let A(y) = {α ∈ A : y ∈ Gα}):
YA = {{y, zα : α ∈ A(y)} : y ∈ Y, zα ∈ Zα for all α ∈ A(y)}.

3.2. Construction. Let us suppose, in addition, that for all α ∈ A the map gα is
defined for all points y ∈ Gα too, but it is not necessarily continuous at these points
(in other words, the map gα : Oα → Zα is given, and gα|Oα\Gα

is continuous).
Also let a topological space X and mappings f : X → Y and g̃α : f−1Oα → Zα,

satisfying the condition g̃α|f−1(Oα\Gα) = gαf |f−1(Oα\Gα) for all α ∈ A, be given.
For each α ∈ A let us define the maps ϕα : Y → Yα and fα : X → Yα as follows:

ϕαy =

{
y for y ∈ Y \Gα,
(y, gαy) for y ∈ Gα,

fαx =

{
fx for x ∈ f−1(Y \Gα),
(fx, g̃αx) for x ∈ f−1Gα.

Obviously, g̃α = αψfα|f−1Oα
, αψϕα|Oα = gα and απϕαy = y for all y ∈ Y and

α ∈ A. It is easily seen that the map fα is continuous for every α ∈ A.
Using Proposition 2.7 we get the mapping fA : X → YA which satisfies the con-

ditions AπfA = f and g̃α = A
αψfA|f−1Oα

for every α ∈ A (see also [43], Lemma 6).
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For every α ∈ A let Xα = [fαX ∪ ϕαY ]Yα
⊆ Yα, and let XA be the fan product

of the spaces Xα relative to the mappings pα = απ|Xα
, α ∈ A. It is easily seen that

the space XA is a closed subset of YA, fAX ⊆ XA and AπXA = Y ; the projections
of XA onto Y and Xα coincide with Aπ|XA

and A
απ|XA

, α ∈ A, respectively.
3.3. Proposition. If for some α ∈ A every point y ∈ Gα has a neighborhood

Uy ⊆ Oα such that the set [g̃αf−1Uy ∪ gαUy]Zα is compact then the mapping pα is
perfect. If it is true for all α ∈ A then the mapping Aπ|XA

is perfect too.
Proof. The second statement follows from the first one and Theorem 2.11 b).

Therefore we have to prove only the first statement.
It is obvious that the mapping pα is perfect at all points y ∈ Y \Gα.
Let y ∈ Gα. There exists a neighborhood Uy ⊆ Oα such that the set Z ′α =

= [g̃αf−1Uy ∪ gαUy]Zα is compact. Let us consider the space

Z = P(Uy, {Z ′α}, {Gα ∩ Uy}, {Uy}, {gα|Uy\Gα
}, α ∈ {α})

and the projection απ′ : Z
onto−−−→ Uy. The mapping απ′ is perfect by Theorem 1 of

the paper [43]. It is clear that p−1
α Uy is a closed subset of Z and Z is a closed

subset of απ−1Uy, απ′ = απ|Z and pα|p−1
α Uy = απ′|p−1

α Uy. Therefore the mapping
pα is perfect. ¤

3.4. Proposition. If for each α ∈ A the space Zα is compact and the set Gα \
\ [fX]Y is nowhere dense in Y then the mapping Aπ : YA

onto−−−→ Y can be reduced
modulo fAX in a unique way (that is, there exists a unique closed subset Y r

A ⊆ YA

such that fAX ⊆ Y r
A,

AπY r
A = Y and the mapping Aπ|Y r

A
is irreducible modulo

fAX).
Proof. Let α ∈ A and Xα = [fαX ∪ απ−1(Y \ ([fX]Y ∪Gα))]Yα . The mapping

απ is perfect due to Theorem 1 of the paper [43]. Moreover, απXα = Y , fαX ⊆
⊆ Xα and the mapping απ|Xα is irreducible modulo fαX since the mapping απ is
one-to-one on the set απ−1(Y \Gα) and the set Gα \ [fX]Y is nowhere dense in Y .

On the other hand, if F ⊆ Yα is a closed subset such that fαX ⊆ F and απF =
= Y then Xα ⊆ F and, hence, the mapping απ can be reduced modulo fαX in a
unique way. Therefore the mapping Aπ can be reduced modulo fAX in a unique
way by Corollary 2.13. ¤

3.5. Corollary. Let f : X
onto−−−→ Y be a mapping with the property TEa and X ′ ⊆

⊆ X be a subset such that the set O0 = Y \ f [X ′]Y is open (for example, it is true
if f is closed), the mapping f |f−1O0 : f−1O0

onto−−−→ O0 is perfect and for each G ∈ a
the set G ∩O0 is nowhere dense in Y . Then the mapping f can be reduced modulo
X ′ in a unique way.

§ 4. Algebras of functions on mappings

4.1. Further on we shall fix a mapping f : X → Y such that [fX]Y = Y until
the item 4.16 (except the items 4.12–4.14 where the condition [fX]Y = Y can be
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omitted). Let C∗(X) be the algebra of all bounded continuous functions6 g̃ : X →
→ R with the usual norm ‖g̃‖ = sup{|g̃x| : x ∈ X} and let C(X) be the algebra of
all continuous functions g̃ : X → R.

A. Algebras of f-bounded functions

4.2. Definition. A function g̃ : X → R will be called f-bounded if for each point
y ∈ Y there exists a neighborhood Uy ⊆ Y such that the function g̃ is bounded on
the set f−1Uy.

Let B(f) be the algebra (over the field R) of all f -bounded functions g̃ : X → R,
C(f) = B(f) ∩ C(X). Of course, C∗(X) ⊆ C(f) as a subalgebra. The following
two statements are very simple (any topology on the set C(f) is not defined).

4.3. Proposition. If the space Y is countably compact then C(f) = C∗(X).
4.4. Proposition. If the mapping f is closed and f−1y is pseudocompact for

every y ∈ Y then C(f) = C(X).

B. Semi-norms and topologies on algebras

4.5. For every y ∈ Y and g̃ ∈ B(f) let

ny g̃ = inf{sup{|g̃x| : x ∈ f−1Uy} : Uy ⊆ Y is a neighborhood of the point y}.
It is clear that ny is a seminorm on the algebra B(f) for each point y ∈ Y , and

for every y ∈ Y , g̃ ∈ B(f) and ε > 0 such that ny g̃ < ε the set Ug̃,εy = {y′ ∈
∈ Y : ny′ g̃ < ny g̃ + ε} is an open neighborhood of the point y.

4.6. Proposition. If the mapping f is closed then for each g̃ ∈ C(f) and y ∈ Y
the equality ny g̃ = sup{|g̃x| : x ∈ f−1y} holds.

Proof. Let y ∈ Y and g̃ ∈ C(f). Obviously, ny g̃ > M = sup{|g̃x| : x ∈ f−1y}.
We have to prove the inverse inequality.

Let us take any ε > 0. Since the function g̃ is continuous, for each point x ∈ f−1y
there exists a neighborhood Ux ⊆ X such that |g̃x′ − g̃x| < ε for all x′ ∈ Ux. Let
Uεy = f#

⋃{Ux : x ∈ f−1y}. Then Uεy ⊆ Y is open since the mapping f is closed
and, hence, “onto” (see 4.1). We have the inequality sup{|g̃x| : x ∈ f−1Uεy} 6 M +
+ ε. Since ε > 0 is arbitrary, we have ny g̃ 6 inf{sup{|g̃x| : x ∈ f−1Uεy} : ε >
> 0} 6 M .

Thus, the equality ny g̃ = M is valid. ¤
4.7. Let us take the family of the sets of the form

Vε,M g̃0 = {g̃ ∈ B(f) : max{ny(g̃ − g̃0) : y ∈ M} < ε},
where M ⊆ Y is a finite subset, ε > 0 and g0 ∈ B(f), as a base of a topology of
B(f), and let us equip C(f) with the topology of a subspace.

It is easily seen (this is a standard definition) that B(f) and C(f) with these
topologies are topological algebras.

C. C(f) and other algebras

4.8. Theorem. The algebra C(f) is closed in B(f).
Proof. Let g̃0 ∈ [C(f)]B(f). It suffices to prove that the function g̃0 is continuous.
Let x0 ∈ X and y = fx0. We have to prove that g̃0 is continuous at the point x0.
Let ε > 0 be an arbitrary number. By the definition of the topology of the

space B(f) the set V ε
3 ,{y}(g̃0) is an open neighborhood of g̃0. Therefore there is a

continuous function g̃ ∈ V ε
3 ,{y}(g̃0) ∩ C(f). By the definition of the seminorm ny

there exists a neighborhood Uy ⊆ Y such that |g̃x − g̃0x| < ε
3 for all x ∈ f−1Uy.

6R is the field of all real numbers with the usual topological structure.
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Since the function g̃ is continuous there is a neighborhood Ux0 ⊆ f−1Uy such that
|g̃x− g̃x0| < ε

3 for all x ∈ Ux0.
Hence, for any x ∈ Ux0 we have

|g̃0x− g̃0x0| = |g̃0x− g̃x + g̃x− g̃x0 + g̃x0 − g̃0x0| 6
6 |g̃0x− g̃x|+ |g̃x− g̃x0|+ |g̃x0 − g̃0x0| < ε

3
+

ε

3
+

ε

3
= ε.

Therefore the function g̃0 is continuous. ¤
4.9. Proposition. The identity map iX : C∗(X) → C(f) is continuous and

iXC∗(X) is dense in C(f).
Proof. The map iX is continuous since for every g̃ ∈ C∗(X) and any y ∈ Y we

have ny g̃ 6 ‖g̃‖.
Let g̃ ∈ C(f). For every number t > 0 let us set

g̃tx =





t if g̃x > t,
g̃x if |g̃x| < t,
−t if g̃x 6 −t.

It is obvious that g̃t ∈ C∗(X) for each t > 0, therefore A = {g̃t : t > 0} ⊆ C∗(X).
If Vε,M g̃ is any neighborhood of g̃ then for every t > max{ny g̃ : y ∈ M} we have
ny(g̃t − g̃) = 0 for all y ∈ M , hence, g̃t ∈ Vε,M g̃ for such t, and g̃ ∈ [A]C(f) ⊆
⊆ [C∗(X)]C(f). ¤

4.10. Proposition. If there exists a continuous function g : Y → [0, 1] such that
the set gY is infinite then the identity mapping iX : C∗(X) → C(f) is not an
embedding.

Proof. Since the segment [0, 1] is compact and the set gY is infinite there is a
point t0 ∈ [0, 1] such that t0 ∈ [gY \ {t0}]R. Let {Unt0 : n ∈ N = {1, 2, 3, . . . }} be
a local base of [0, 1] at the point t0.

For every n ∈ N let us choose a point tn ∈ gY ∩(Unt0 \{t0}) and a neighborhood
Utn ⊆ [0, 1] such that [Utn]R ⊆ Unt0\{t0}, and let hn : [0, 1] → [0, 1] be a continuous
function such that hntn = 1 and hnt = 0 for all t ∈ [0, 1]\Utn. Let A = {hngf : n ∈
∈ N}. It is obvious that A ⊆ C∗(X).

Let g̃0 ∈ C∗(X) be a function such that g̃0x = 0 for all x ∈ X. We have
‖g̃ − g̃0‖ = ‖g̃‖ = 1 for all g̃ ∈ A, therefore g̃0 /∈ [A]C∗(X).

On the other hand, for any neighborhood Vε,M g̃0 ⊆ B(f) there exists a number
n ∈ N such that M ∩ (Unt0 \ {t0}) = ∅, hence, ny(hngf − g̃0) = ny(hngf) = 0 for
all y ∈ M , that is, hngf ∈ Vε,M g̃0 and Vε,M g̃0 ∩A 6= ∅; therefore g̃0 ∈ [A]C(f). ¤

4.11. Proposition. If the mapping f is closed and for each y ∈ Y the set f−1y
is finite then the topology of the space C(f) coincides with the topology of pointwise
convergence.

Proof. Let Cp(X) be the algebra of all continuous functions g̃ : X → R with
the topology of pointwise convergence. Due to Proposition 4.4 the sets C(f) and
Cp(X) coincide. Let jX : C(f) onto−−−→ Cp(X) be the identity map.

It is obvious that the topology of the pointwise convergence can be defined by
the family of semi-norms

n′y g̃ = max{|g̃x| : x ∈ f−1y} = sup{|g̃x| : x ∈ f−1y}
for all y ∈ fX = Y (see 4.1) and g̃ ∈ Cp(X), because f−1y is finite for each y ∈
∈ Y . Due to Proposition 4.6 n′yjX = ny for every y ∈ Y , hence the map jX is a
homeomorphism. ¤
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D. Globally completely regular mappings

4.12. Definition ([34], §7). We shall say that a mapping f : X → Y is parallel
to a completely regular space if there exist a completely regular space Z and an
embedding i : X → Y × Z such that the equality f = pY i is valid, where pY : Y ×
× Z → Y is the projection of the product Y × Z to its factor Y .

X

f ÃÃ@
@@

@@
@@

@
⊆
i

// Y × Z

pY
{{xx

xx
xx

xx
x

Y

Obviously, if a mapping f : X → Y is parallel to a completely regular space then
f is Tychonoff. On the other hand, if the space X is completely regular then the
mapping f is parallel to a completely regular space (we can take Z = X).

4.13.Definition. Amapping f : X → Y will be called globally completely regular
if for an arbitrary point x ∈ X in each of the following two cases

a) for every point x′ ∈ f−1fx \ {x} and
b) for every neighborhood Ux ⊆ X

there exist a continuous function g̃ : X → R and a neighborhood Ofx ⊆ Y such
that, respectively,

a) g̃x′ 6= g̃x or
b) g̃x /∈ [g̃(f−1Ofx \ Ux)]R.
Note that we can use the segment [0, 1] instead of R with the same result.
It is possible to generalize this definition analogously to Definition 1.6, but we

shall consider the simplest case. For the general case we can prove all results of this
paper about mappings with the properties TEa and Ta with trivial modifications.

4.14. Proposition. A mapping f : X → Y is parallel to a completely regular
space iff it is globally completely regular.

Proof. Necessity. Let the mapping f be parallel to a completely regular space
Z, that is, there exists an embedding i : X → Y × Z such that f = pY i, where
pY : Y × Z → Y is the projection. We have to consider two cases.

a) Let x ∈ X and x′ ∈ f−1fx \ {x}. Let us denote z = pZix and z′ = pZix′,
where pZ : Y ×Z → Z is the projection. Then z′ 6= z, therefore there is a continuous
function g : Z → [0, 1] such that gz = 0 and gz′ = 1, because the space Z is
completely regular. Then the function g̃ = gpZi has all necessary properties.

b) Let x ∈ X be a point and Ux ⊆ X be its neighborhood. By the definition
of the topological product there are neighborhoods Ofx ⊆ Y and OpZix ⊆ Z such
that x ∈ f−1Ofx ∩ i−1p−1

Z OpZix = i−1(Ofx×OpZix) ⊆ Ux, since the mapping i
is embedding. Analogously there is a continuous function g : Z → [0, 1] such that
gpZix = 0 and gz = 1 for all z ∈ Z \ OpZix. Then the function g̃ = gpZi has all
necessary properties.

Sufficiency. Let the mapping f be globally completely regular. Let A1 =
= {(x, x′) : x ∈ X, x′ ∈ f−1fx\{x}}, A2 = {(x,Ux) : x ∈ X,Ux ⊆ X is a neighbor-
hood of the point x}, A = A1∪̇A2.

Let α = (x, x′) ∈ A1. By Definition 4.12 there is a continuous function g̃α : X →
→ Zα = R (or [0, 1]) such that g̃αx′ 6= g̃αx.

Let α = (x,Ux) ∈ A2. By Definition 4.12 there are a continuous function
g̃α : X → Zα = R (or [0, 1]) and a neighborhood Ofx ⊆ Y such that g̃αx /∈
/∈ [g̃α(f−1Ofx \ Ux)]R.

Let Z =
∏{Zα : α ∈ A} and let i = f ∆(∆{g̃α : α ∈ A}) : X → Y ×∏{Zα : α ∈

∈ A} = Y × Z be the diagonal mapping (see [51], §2.3). It is easily seen that
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the mapping i is an embedding, the space Z is completely regular ([51], Theorem
2.3.11) and f = pY i. ¤

4.15. Theorem. There exist a space X ′ and two mappings h1 : X → X ′ and
h2 : X ′ → Y such that

1) h2h1 = f ;
2) [h1X]X′ = X ′;
3) h2 is perfect (hence, h2X

′ = Y ; see 4.1) and globally completely regular
(hence, h2 is separable);

4) the map ϕ : C(h2)
onto−−−→ C(f), defined by the equality ϕḡ = ḡh1 for all ḡ ∈

∈ C(h2), is an isomorphism of topological algebras preserving all semi-norms
ny, y ∈ Y .

Moreover, if the mapping f is globally completely regular (and perfect) then the
mapping h1 is an embedding (a homeomorphism onto X ′).

X

f

²²

h1 ÃÃB
BB

BB
BB

B
ϕḡ

((RRRRRRRRRRRRRRRRR

X ′

h2~~~~
~~

~~
~~

ḡ
// R

Y C(h2)
ϕ // C(f)

Proof. Let C(f) = {g̃α : α ∈ A}. Let us set Zα = R, Oα = Y , Gα = Y for every
α ∈ A, and let us define a function gα : Y → Zα by the equality

gαy = inf{sup{g̃αx : x ∈ f−1Uy} : Uy ⊆ Y is a neighborhood of the point y}
for each y ∈ Y .

Using Construction 3.2 we get the mappings fA : X → XA ⊆ YA = P(Y, {Zα},
{Gα}, {Oα}, {gα|Oα\Gα

}, α ∈ A) = Y × ∏{Zα : α ∈ A}, Aπ = pY : YA
onto−−−→ Y

and A
αψ = pZα : YA → Zα = R, α ∈ A, such that AπfA = f and A

αψfA = g̃α for
all α ∈ A.

Since all functions g̃α, α ∈ A, are f -bounded, the mapping Aπ|XA
is perfect by

Proposition 3.3. Let X ′ = [fAX]XA
, h2 = Aπ|X′ , and let h1 : X → X ′ be the

mapping which coincides with fA.
It is easily seen that the map ψ : C(f) → C(h2), defined by the equality ψg̃α =

= A
αψ|X′ for α ∈ A, is inverse to the mapping ϕ, and that ny g̃α = ny(ψg̃α) for all

α ∈ A and y ∈ Y . Therefore the map ϕ is a topological isomorphism preserving all
seminorms ny, y ∈ Y .

X

f

²²

h1 ÃÃA
AA

AA
AA

A
fA

((QQQQQQQQQQQQQQQQ
g̃α // Zα = R

X ′

h2

~~~~
~~

~~
~~

⊆
//

ψg̃α

55kkkkkkkkkkkkkkkkk
XA

⊆ // YA

Aπ
sshhhhhhhhhhhhhhhhhhhhhhhhhhh

A
α ψ

OO

Y C(f)
ψ // C(h2)

The mapping h2 is globally completely regular by Proposition 4.14.
It is easily seen that if the mapping f is globally completely regular then the

mapping h1 is embedding in consequence of Definition 4.13. Moreover, if the map-
ping f is perfect then the mapping h1 is perfect by Lemma 8 of [43] and, hence, h1

is a homeomorphism onto X ′. ¤
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4.16. For the statements 4.17 and 4.18 let f1 : X1 → Y1, f2 : X2 → Y2, φ1 : X1 →
→ X2 and φ2 : Y1 → Y2 be mappings such that [f1X1]Y1 = Y1, [f2X2]Y2 = Y2 and
φ2f1 = f2φ1.

4.17. Lemma. For i = 1, 2 let the space X ′
i and the mappings hi1 and hi2 be

such as they were constructed in Theorem 4.15 for the mapping fi. Then there
exists and is unique a mapping φ0 : X ′

1 → X ′
2 such that φ0h11 = h21φ1 and h22φ0 =

= φ2h12. If the mapping φ2 is perfect (or separable) then the mapping φ0 is perfect
(or separable) too.

X1
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h11

¼¼3
33

33
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33
33

33
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((RRRRRRRRRRRRRRRR
φ1 // X2

g̃2α
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®

f2A2

ªªµµ
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µµ
µµ

f2

²²

R

X ′
1

h12

§§¯̄
¯̄
¯̄
¯̄
¯̄
¯̄
¯̄
¯ ⊇

²²

φ0 //

ḡ1hα

=={{{{{{{{
X ′

2

⊇
²²

h22

»»2
22

22
22

22
22

22
22

ḡ2α

aaCCCCCCCC

Y1A1

A1π1||zz
zz

zz
zz

φ̄ //

A1
hαψ1

FF°°°°°°°°°°°°°°°
Y2A2

A2π2 ""DD
DD

DD
DD

A2
αψ2

XX111111111111111

Y1
φ2 // Y2

Proof. Let C(fi) = {g̃iα : α ∈ Ai}, i = 1, 2. For each α ∈ A2 there is a unique
element α′ ∈ A1 such that g̃1α′ = g̃2αφ1; therefore we can define a map h : A2 → A1

by setting hα = α′ for all α ∈ A2. Due to Theorem 2 of [43] there exists and is
unique a mapping φ̄ : Y1A1 → Y2A2 such that φ2

A1π1 = A2π2φ̄ and A2
αψ2φ̄ = A1

hαψ1

for all α ∈ A2 (see 4.15). By the definition of the map h we have φ̄f1A1 = f2A2φ1,
hence, φ̄f1A1X1 ⊆ faA2X2. Therefore φ̄X ′

1 ⊆ X ′
2, and we can define the mapping

φ0 as the restriction of the mapping φ̄.
The mapping φ0 satisfying the conditions φ0h11 = h21φ1 and h22φ0 = φ2h12 is

unique since the first condition defines it on the dense subset h11X1 ⊆ X ′
1 and the

mapping h22 is separable.
If the mapping φ2 is perfect then the mapping h22φ0 = φ2h12 also is perfect,

and hence φ0 is perfect by Lemma 8 of [43]. Analogously we can prove that φ0 is
separable if φ2 is separable. ¤

E. Homomorphisms of algebras

4.18. Theorem. The map ϕ : C(f2) → C(f1) defined by the formula ϕg̃2 = g̃2φ1

for all g̃2 ∈ C(f2) is a continuous homomorphism of the topological algebras and
ny(ϕg̃2) 6 nφ2y g̃2 for all y ∈ Y1 and g̃ ∈ C(f2). Moreover,

1) if [φ1X1]X2 = X2 then ϕ is a continuous isomorphism onto a subalgebra
of C(f1);

2) if, in addition to 1), the mapping φ2 is perfect then ϕ is a continuous iso-
morphism onto a closed subalgebra of C(f1);

3) if, in addition to 1) and 2), the set φ−1
2 y is finite for each y ∈ Y2 then ϕ is

a topological isomorphism onto a closed subalgebra of C(f1).
Proof is very simple except for the closedness of ϕC(f2) in C(f1) in the state-

ment 2).
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By Lemma 4.17 we can assume that the mappings φ1 and f2 are perfect and
φ1X1 = X2; otherwise we can replace X1, X2, f1, f2 and φ1 by X ′

1, X ′
2, h12, h22

and φ0.
Consider a function g̃0 ∈ [ϕC(f2)]C(f1). We shall show that for any points

x1, x2 ∈ X1 such that φ1x1 = φ1x2 we have g̃0x1 = g̃0x2. Let M = {f1x1, f1x2}.
For each ε > 0 there is g̃2 ∈ C(f2) such that g̃1 = ϕg̃2 ∈ V ε

2 ,M g̃0 (see 4.7); therefore

|g̃0x1 − g̃0x2| = |g̃0x1 − g̃1x1 + g̃1x1 − g̃1x2 + g̃1x2 − g̃0x2| 6
6 |g̃0x1− g̃1x1|+ |g̃1x1− g̃1x2|+ |g̃1x2− g̃0x2| < ε

2
+ |g̃2φ1x1− g̃2φ1x2|+ ε

2
= ε,

since φ1x1 = φ1x2. Thus, |g̃0x1 − g̃0x2| < ε for any ε > 0, so that g̃0x1 = g̃0x2 for
any x1, x2 ∈ X1 such that φ1x1 = φ1x2.

Therefore we can define a function g̃ : X2 → R by the equality g̃x = g̃0x
′ for

any x ∈ X2 and x′ ∈ φ−1
1 x. For every closed set F ⊆ R the set g̃−1F = φ1g̃

−1
0 F

is closed since φ1 is closed, hence g̃ is continuous; by Proposition 4.4 g̃ ∈ C(f2).
Obviously, ϕg̃ = g̃0, therefore ϕC(f2) is closed subalgebra of C(f1). ¤

4.19. Corollary. Let mappings f1 : X1 → Y , f2 : X2 → Y and φ0 : X1 → X2

such that f1 = f2φ0, [φ0X1]X2 = X2 and [f1X1]Y = Y be given. Then the map
ϕ : C(f2) → C(f1), defined by the equality ϕg̃2 = g̃2φ0 for all g̃2 ∈ C(f2), is a
topological isomorphism onto a closed subalgebra of C(f1), preserving all seminorms
ny, y ∈ Y .

§ 5. Sheaves

5.1. From now on we shall fix a mapping f : X → Y and a closed family a of
locally closed subsets of the space Y .

Let T be the family of all open subsets of the space Y .
Let us denote by Ta the family of all ordered couples (O,G), where O ∈ T and

G ∈ a are sets such that [G]Y ∩O = G. For (O1, G1), (O2, G2) ∈ Ta we shall write
(O1, G1) ⊆ (O2, G2) if O1 ⊆ O2 and O1 \ G1 ⊆ O2 \ G2. This relation defines a
partial order on the set Ta.

5.2. Lemma. The partially ordered set Ta has the following properties:
a) the couple (Y,∅) is the largest element of Ta;
b) for each (O1, G1), (O2, G2) ∈ Ta there is their minimum

(O1, G1) ∩ (O2, G2) = (O1 ∩O2, (G1 ∪G2) ∩ (O1 ∩O2));

c) for each point y ∈ Y and each set O ∈ T the families Ty = {(O, G) ∈
∈ Ta : O 3 y} and TO = {(O′, G) ∈ Ta : O′ = O} are directed by the relation
“⊇” inverse to “⊆”.

Proof. The statements a) and b) are evident, the statement c) is a consequence
of the fact that for any (O1, G1), (O2, G2) ∈ Ty (or TO) their minimum belongs
to Ty (or TO). ¤

5.3. Further on we shall fix a couple (O, G) ∈ Ta until the item 5.14.

A. Sets of couples of functions

5.4. Let us denote by Ca(O,G) the set of all ordered couples (g, g̃) of functions
g : O → R and g̃ : f−1O → R which satisfy the following conditions:

1) g|O\G and g̃ are continuous;
2) g̃|f−1(O\G) = gf |f−1(O\G);
3) for every point y ∈ G there is a neighborhood Uy ⊆ O such that the functions

g|Uy and g̃|f−1Uy are bounded;
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4) for every point y ∈ G the following equality holds:

(2)





gy = inf{max{sup{gy′ : y′ ∈ Uy \ ([fX]Y ∪ E)}, sup{g̃x : x ∈ f−1Uy}} :
Uy ⊆ O is a neighborhood of the point y,
E ⊆ Uy is a nowhere dense set}.

We shall assume that Ca(∅,∅) = {(0, 0)} is the zero-algebra.
Let C∗a(O,G) = {(g, g̃) ∈ Ca(O,G) : g and g̃ are bounded}.
The following statement is obvious.
5.5. Proposition. If (g, g̃) ∈ Ca(O,G) then for every point y0 ∈ O we have

gy0 = inf{sup{gy : y ∈ Uy0} : Uy0 ⊆ O is a neighborhood of the point y0},
and for every t ∈ R the set {y ∈ O : gy < t} is open.

5.6. Definition. A couple (g, g̃) ∈ Ca(O,G) will be called factorizable if the
function g is continuous on the set O and g̃ = gf |f−1O.

The set of all factorizable couples (g, g̃) ∈ Ca(O,G) will be denoted by Cf (O,G).
Let us observe that Cf (O,G) is independent of the set G since Cf (O, G) “coincides”
with the set C(O) of all continuous functions on the space O.

5.7.Definition. A couple (g, g̃) ∈ Ca(O, G) will be called constant if there exists
a number c ∈ R such that gy = c for all y ∈ O and g̃x = c for all x ∈ f−1O.

B. Algebras of couples of functions

5.8. Let Ca(O, G) = {(gα, g̃α) : α ∈ A}. For each α ∈ A let us set Zα = R,
Gα = G, Oα = O.

Using Construction 3.1 let us construct the spaces Yα = P(Y, {Zα}, {Gα}, {Oα},
{gα|Oα\Gα

}, α ∈ {α}) and the mappings απ : Yα
onto−−−→ Y , α ∈ A, and, after

that, the space YA = P(Y, {Zα}, {Gα}, {Oα}, {gα|Oα\Gα
}, α ∈ A) and the map-

ping Aπ : YA
onto−−−→ Y .

Using Construction 3.2 let us construct the mappings fα : X → Yα, the maps
ϕα : Y → Yα and the closed subsets Xα = [fαX ∪ ϕαY ]Yα ⊆ Yα, α ∈ A, and, after
that, the closed subset XA =

∏
Y ({Xα}, {απ|Xα}, α ∈ A) ⊆ YA and the mapping

fA : X → XA. Due to the condition 3) of the item 5.4 and Proposition 3.3, the
mappings Aπ|XA

and pα = απ|Xα , α ∈ A, are perfect.

5.9. Lemma. For each α ∈ A the mapping pα : Xα
onto−−−→ Y is irreducible mo-

dulo fαX.
Proof. Let α ∈ A; by the conditions 2) and 4) of the item 5.4 we have ϕαy ∈

∈ [fαX]Yα for all y ∈ IntY [fX]Y .7 Therefore in order to prove that the mapping pα

is irreducible modulo fα it is suffices to prove that p#
α U = {y ∈ Y : p−1

α y ⊆ U} 6=
6= ∅ for an arbitrary non-empty open set U ⊆ p−1

α (Y \ [fX]Y ). Moreover, we can
assume that U ⊆ p−1

α Gα since the mappings απ and pα are one-to-one on the set
p−1

α (Y \Gα).
Since the set ϕα(Y \ [fX]Y ) is dense in the set p−1

α (Y \ [fX]Y ), there exists
y0 ∈ Y \ [fX]Y such that ϕαy0 ∈ U . Of course, y0 ∈ Gα \ [fX]Y . By the definition
of the topology of the space Xα there are a neighborhood Wy0 ⊆ Oα \ [fX]Y and
a number ε > 0 such that ϕαy0 ∈ p−1

α Wy0 ∩ αψ−1U2εgαy ⊆ U , where U2εgαy0 =
= {t ∈ Zα = R : gαy0 − 2ε < t < gαy0 + 2ε} is a neighborhood of the point gαy0 in
the space Zα.

For every t ∈ R let Ut = {y ∈ Wy0 : gαy < t}; by Proposition 5.5 the sets
V1 = Ugαy0+ε and V0 = Ugαy0−ε are open. The set E = V1 \V0 is locally closed and
y0 ∈ E ⊆ V1 ⊆ Wy0. It is impossible for the set E to be nowhere dense, since in such

7If A ⊆ Y then IntY A = Y \ [Y \A]Y .
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a case the condition (2) (see 5.4) would not be valid for the point y0 (we can take
Uy0 = V1 and our E ⊆ Uy0 since gαy < gαy0−ε for all y ∈ Uy0\E = V0). Therefore
the set V = IntY E is non-empty. We have ∅ 6= p−1

α V ⊆ p−1
α Wy0 ∩ [ϕαV ]Yα

⊆
⊆ p−1

α Wy0 ∩ αψ−1[gαV ]Zα ⊆ p−1
α Wy0 ∩ αψ−1U2εgαy0 ⊆ U , hence p#

α U ⊆ V 6= ∅
and the mapping pα is irreducible modulo fαX. ¤

5.10. Thus we have the fan product XA of the spaces Xα relative to the perfect
irreducible modulo fαX mappings pα, α ∈ A (see 5.8). Due to Corollary 2.13 there
exists a unique closed subset Xr

A ⊆ XA such that fAX ⊆ Xr
A,

AπXr
A = Y , and the

mapping pA = Aπ|Xr
A
is irreducible modulo fAX.

Let XOG = p−1
A O, XO = f−1O, fOG = fA|XO : XO → XOG, fO = f |XO : XO →

→ O, pOG = pA|XOG
: XOG → O.

XO

fO

²²

fOG ""EEEEEEEE
⊆ // X

fA

ttiiiiiiiiiiiiiiiiiiiiiiii

f

²²

XOG

pOG

||xx
xx

xx
xx

x

⊆ // Xr
A

pA

**VVVVVVVVVVVVVVVVVVVVVVVV
⊆// XA

Aπ

((PPPPPPPPPPPPPPP
⊆ // YA

Aπ

ÃÃA
AA

AA
AA

A

O
⊆ // Y

5.11. For each α ∈ A let us define the continuous function ḡα : XOG → R by the
equality ḡα = A

αψ|XOG . Obviously, g̃α = ḡαfOG and ḡα|p−1
OG(O\G) = gαpOG|p−1

OG(O\G).
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Thus we have got the map ϕOG : Ca(O, G) → C(pOG) defined by the formula
ϕOG(gα, g̃α) = ḡα for all α ∈ A (see 4.4).

5.12. Theorem. The map ϕOG is “onto” and one-to-one. Moreover, for each
y0 ∈ O and α ∈ A we have (see 4.5)

(3)

{
ny0 ḡα = inf{max{sup{|gαy| : y ∈ Uy0}, sup{|g̃αx| : x ∈ f−1Uy0}} :

Uy0 ⊆ O is a neighborhood of the point y0}.
Proof. Let us define a map ϕOG : C(pOG) → Ca(O,G) in the following way. For a

function ḡ ∈ C(pOG) let g̃ = ḡfOG, and for all y ∈ O let gy = sup{ḡz : z ∈ p−1
OGy}.

It is clear that the functions g̃ : f−1O = XO → R and g|O\G : O \ G → R are
continuous; moreover, g̃|f−1(O\G) = gf |f−1(O\G) since the mapping pOG|p−1

OG(O\G)

is a homeomorphism of the set p−1
OG(O \G) onto O \G.

Since the mapping pOG is closed, it follows for every y ∈ O that

gy = inf{sup{ḡz : z ∈ p−1
OGUy} : Uy ⊆ O is a neighborhood of the point y}

(see 4.6). Using the irreducibility of the mapping pOG modulo fOGXO, one obtains
easily the equality (2) (in analogous way we can prove the equality (3)). Thus
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(g, g̃) ∈ Ca(O,G), and we shall get the map ϕOG letting ϕOGḡ = (g, g̃) for all
ḡ ∈ C(pOG).

For (g, g̃) ∈ Ca(O, G) let Mgg̃ = fOGXO ∪ (XOG ∩ A
απ−1ϕαO),8 and for ḡ ∈

∈ C(pOG) let Mḡ = fOGXO ∪ {z ∈ XOG : ḡz = sup{ḡz′ : z′ ∈ p−1
OGpOGz}}.

It is easily seen that both ḡ = ϕOG(g, g̃), (g, g̃) ∈ Ca(O,G), and (g, ḡ) = ϕOGḡ,
ḡ ∈ C(pOG), imply the equality Mgg̃ = Mḡ, and this set is dense in XOG. Using
the definitions of maps ϕOG and ϕOG and the last equality, it is easily proved that
these maps are inverse to each other. Hence the maps ϕOG and ϕOG are “onto”
and one-to-one. ¤

5.13. By Theorem 5.12 we can transfer the structure of the topological algebra
C(pOG) onto Ca(O, G). Moreover, we can write ny(g, g̃) = nyϕOG(g, g̃) for all y ∈ O
and (g, g̃) ∈ Ca(O, G) (see (3)).

C. Presheaves of algebras

5.14. If (O1, G1), (O2, G2) ∈ Ta, (O1, G1) ⊆ (O2, G2), then there is the restric-
tion homomorphism h : Ca(O2, G2) → Ca(O1, G1), defined by the formula h(g, g̃) =
= (g|O1 , g̃|f−1O1) for (g, g̃) ∈ Ca(O2, G2). Let hf = ϕO1G1hϕO2G2 , where the maps
ϕO1G1 and ϕO2G2 were defined in the items 5.11 and 5.12.

C(pO2G2)

hf

²²

ϕO2G2
// Ca(O2, G2)

ϕO2G2

oo

h

²²
C(pO1G1)

ϕO1G1
// Ca(O1, G1)

ϕO1G1

oo

It is easily seen that the maps C and Ca which attribute to each couple (O, G) ∈
∈ Ta the algebras C(pOG) and Ca(O, G) with the corresponding restriction homo-
morphisms hf and h are presheaves (see Definition 1.44). These presheaves are
isomorphic in a natural sense. We shall prove that the restriction homomorphisms
are continuous, and that Ca (and, of course, C) is a sheaf.

5.15. Lemma. If (O1, G1), (O2, G2) ∈ Ta, (O1, G1) ⊆ (O2, G2), then there exists
and is unique a mapping φ : XO1G1 → XO2G2 such that φfO1,G1 = fO2G2 |XO1 and
pO2G2φ = pO1G1 . Moreover,

1) hf ḡ = ḡφ for all ḡ ∈ C(pO2G2);
2) if [O1]Y ∩O2 = O1 then the mapping φ is perfect;
3) if O1 = O2 then the mapping φ is “onto” and irreducible modulo fO1G1X

O1 ;
4) if [O1]Y ∩O2 = O1 and G2 ∩O1 = G1 then the mapping φ is a homeomor-

phism onto the clopen set p−1
O2G2

O1.
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8The map ϕα, where α ∈ A satisfies the condition (gα, g̃α) = (g, g̃), is defined in 3.2 (see 5.8).
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Proof. Let Ca(O2, G2) = {(gα, g̃α) : α ∈ A} and Ca(O1, G1) = {gβ , g̃β) : β ∈ B}.
Let us define the map k : A → B by the formula kα = β, where β ∈ B is the unique
element such that (gβ , g̃β) = h(gα, g̃α), α ∈ A.

Let all objects with the index α ∈ A (respectively, β ∈ B) correspond to the
constructions 5.8 and 5.10 of XO2G2 (respectively, XO1G1).

Let α ∈ A and β = kα ∈ B. We can define the map β
αi : p−1

β O1 → Xα as follows
(see Construction 3.2):

β
αiz =

{
pβz for z ∈ p−1

β (O1 \G2),
(pβz, βψz) for z ∈ p−1

β (G2 ∩O1).

The map β
αi is an embedding onto the set p−1

α O1 ⊆ Xα, because gβ = gα|O1 ,
g̃β = g̃α|f−1O1 and βψ|p−1

β
(O1 \G2) = gαpβ |p−1

β
(O1 \G2). Of course, βψ = αψ β

αi.

Thus for each α ∈ A and β = kα we have the mapping f̄α : XO1G1 → Xα defined
by the equality f̄α = β

αi B
β π|XO1G1

. The existence of the mapping φ : XO1G1 →
→ XO2G2 follows now from Proposition 2.7. Let us prove its uniqueness.

Let φi : XO1G1 → XO2G2 , i = 1, 2, be mappings such that φifO1G1 = fO2G2 |XO1

and pO2G2φi = pO1G1 for i = 1, 2. We have to prove that φ1 = φ2.
If x ∈ [fO1G1X

O1 ]XO1G1
then the equality φ1x = φ2x follows from pointed out

conditions and the separability of the mapping pO2G2 . Therefore let x ∈ XO1G1 \
\ [fO1G1X

O1 ]XO1G1
be a point such that φ1x 6= φ2x. Since pO2G2φ1x = pO1G1x =

= pO2G2φ2x and the mapping pO2G2 is separable, there are disjoint neighborhoods
Uφ1x,Uφ2x ⊆ XO2G2 \ [fO2G2X

O2 ]XO2G2
. Let us set Ux = φ−1

1 Uφ1x ∩ φ−1
2 Uφ2x.

Then Ux ⊆ XO1G1 \ [fO1G1X
O1 ]XO1G1

is a neighborhood of the point x. The map-
ping pO1G1 is irreducible modulo fO1G1X

O1 , hence, p#
O1G1

Ux 6= ∅. On the other
hand, we have p#

O1G1
Ux = p#

O1G1
Ux ∩ p#

O1G1
Ux = p#

O2G2
φ#

1 Ux ∩ p#
O2G2

φ#
2 Ux ⊆

⊆ p#
O2G2

Uφ1x ∩ p#
O2G2

Uφ2x = ∅. This contradiction shows that φ1x = φ2x, that
is, the mapping φ is unique.

Obviously, the mapping φ is perfect as the mapping onto φXO1G1 by Lemma 8
of [43] (but not into XO2G2 in general case), and it is irreducible modulo fO1G1X

O1

under the same condition.
Finally, if [O1]Y ∩ O2 = O1 and G1 = G2 ∩ O1 then for each couple (gβ , g̃β) ∈

∈ Ca(O1, G1) there exists a couple (gα, g̃α) ∈ Ca(O2, G2) such that h(gα, g̃α) =
= (gβ , g̃β), that is, kα = β and, hence, kA = B (for example, we can define

gαy =

{
gβy for y ∈ O1,
0 for y ∈ O2 \O1,

g̃αx =

{
g̃βx for x ∈ f−1O1,
0 for x ∈ f−1(O2 \O1);

all conditions of the definition 5.4 are obviously satisfied). Therefore the map h is
“onto” and, hence, the mapping φ separates points of XO1G1 ; since φ is perfect, it
is a homeomorphism onto the clopen set p−1

O2G2
O1.

The remaining statements follow from the proved statements and the construc-
tion of the mapping φ. ¤

5.16. Corollary. If (O1, G1), (O2, G2) ∈ Ta, (O1, G1) ⊆ (O2, G2), then the map
h : Ca(O2, G2) → Ca(O1, G1) is a continuous homomorphism of topological algebras.
Moreover,

1) if [O1]Y ∩ O2 = O1 then h is a homomorphism onto a closed subalgebra
of Ca(O1, G1);

2) if O1 = O2 then h is a topological isomorphism onto a closed subalgebra
of Ca(O1, G1).
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D. Sheaves of algebras

5.17. Definition. A family {(Oα, Gα) : α ∈ A} ⊆ Ta will be called a covering
of the couple (O,G) ∈ Ta if O =

⋃{Oα : α ∈ A} and O \G =
⋃{Oα \Gα : α ∈ A}.

All conditions of Definition 1.43 are obviously valid.
5.18. Theorem. The maps Ca and Cf which assign to each couple (O,G) ∈ Ta

the topological algebras Ca(O, G) and Cf (O,G) (see 5.4 and 5.6) are sheaves.
Proof follows from Proposition 2.1.11 of the book [51]. ¤
5.19. Remark. The analogous map C∗a (see 5.4) is a presheaf but it is not a sheaf.
5.20. We shall meet sheaves on the set T (see 5.4) which are usual sheaves over

a topological space Y (see Example 1.47), but we shall formulate all definitions for
sheaves on the set Ta and use (if it is possible) some of them for sheaves on the set
T too.

We shall consider sheaves of topological algebras only; therefore, the phrases
“sheaf C ⊆ Ca” or “subsheaf C of the sheaf Ca” and so on will mean, particularly,
that C(O,G) contains all constant couples and is a subalgebra of the topological
algebra Ca(O,G) for every (O,G) ∈ Ta.

E. Properties of sheaves

5.21. Definition. A sheaf C ⊆ Ca will be called complete if the algebra C(O, G)
is closed in Ca(O, G) for any (O,G) ∈ Ta.

5.22. Let TO = {(O, Gα) : α ∈ A} be the family of all couples (O,G) ∈ Ta with
a fixed set O ∈ T (see 5.2 c)). For each α ∈ A we have the mappings fO : XO → O,
fOGα : XO → XOGα and pOGα : XOGα

onto−−−→ O constructed in the item 5.10. Let
XA =

∏
O({XOGα}, {pOGα}, α ∈ A) and Ap =

∏
O{pOGα : α ∈ A} be the fan

products. By Theorem 2.11 the mapping Ap is perfect.
By Proposition 2.7 there is a mapping fA : XO → XA such that ApfA = fO and

A
αpfA = fOGα for all α ∈ A, where A

αp : XA → XOGα , α ∈ A, is the projection
of the fan product to its factor (see 2.1). By Corollary 2.13 there exists a unique
closed subset XO ⊆ XA such that fAXO ⊆ XO, ApXO = O and the mapping pO =
= Ap|XO : XO

onto−−−→ O is irreducible modulo fAXO. Let us denote by qO : XO →
→ XO the mapping coinciding with fA.

XO
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5.23. By Theorem 4.18 we can assume that for each α ∈ A the algebra Ca(O,Gα)
is a closed subalgebra of C(pO) (the embedding Ca(O, Gα) → C(pO) is defined
by the formula (g, g̃) → (ϕOGα(g, g̃))A

αp for each (g, g̃) ∈ Ca(O,Gα) and α ∈ A;
see 5.11). This embedding is coordinated with the restriction homomorphisms
(see 5.14), which are closed embeddings by Corollary 5.16.

By Lemma 5.2 c) for every sheaf C ⊆ Ca the set Ĉ(O) =
⋃{C(O, Gα) : α ∈ A}

is a subalgebra of the algebra C(pO). In general case this algebra is not closed in
C(pO) and in Ĉa(O) even if the sheaf C is complete.
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5.24. Definition. We shall say that the family a has the largest representative
in a set O ∈ T if there exists an element GO ∈ a such that (O, GO) ∈ Ta and
(O, GO) ⊆ (O, G) for every couple (O, G) ∈ TO.

5.25. Proposition. Let a sheaf C ⊆ Ca be complete, and let the family a have
the largest representative GO ∈ a in the set O ∈ T . Then the algebra Ĉ(O) is closed
in C(pO).

Proof. Obviously, in this case we have C(O, G) ⊆ C(O, GO) for all (O, G) ∈
∈ TO, therefore the algebra Ĉ(O) =

⋃{C(O, G) : (O, G) ∈ TO} = C(O, GO) is
closed in Ca(O, GO); on the other hand, using Lemma 5.15, the construction 5.22
and Proposition 2.7, we can prove that the projection of XO onto XOGO is a
homeomorphism, therefore Ca(O,GO) = C(pO). ¤

5.26. Definition. A sheaf C ⊆ Ca will be called hereditary, if for every (O,G1),
(O, G2) ∈ TO, O ∈ T , such that (O, G1) ⊆ (O, G2) the condition C(O,G2) =
= C(O, G1) ∩ Ca(O,G2) is satisfied.9

5.27. Lemma. If a sheaf C ⊆ Ca is hereditary then the map Ĉ which assigns to
each O ∈ T the topological algebra Ĉ(O) is a sheaf over the topological space Y . In
particular, the map Ĉa is a sheaf.

Proof. It is clear that the map Ĉ is a presheaf. It is necessary to prove the
following property only (Definition 1.46): if {Oα : α ∈ A} is a family of open sets
of the space Y , O =

⋃{Oα : α ∈ A}, for each α ∈ A a couple (gα, g̃α) ∈ C(Oα) is
given, and for all α, β ∈ A the equalities gα|Oα∩Oβ

= gβ |Oα∩Oβ
and g̃α|f−1(Oα∩Oβ) =

= g̃β |f−1(Oα∩Oβ) hold, then there exists a unique couple (g, g̃) ∈ Ĉ(O) such that
g|Oα = gα and g̃|f−1Oα

= g̃α for all α ∈ A.
Such a couple (g, g̃) exists by Proposition 2.1.11 of [51]. We have to prove that

(g, g̃) ∈ Ĉ(O). For every α ∈ A let Gα ∈ a be a set such that (Oα, Gα) ∈ Ta and
(gα, g̃α) ∈ C(Oα, Gα). Let

U = {y ∈ O : there exists a neighborhood Uy ⊆ O such that
the function g|Uy is continuous and g̃|f−1Uy = gf |f−1Uy}.

It is clear that the set U is open and the set G = O \U is closed in O, hence, G
is a locally closed subset of Y . Let us show that G ∈ a. For each y ∈ G there exists
α ∈ A such that y ∈ Oα. Obviously, G ∩ Oα ⊆ Gα by the definition of the set G.
Since the family a is closed, we have G ∈ a (see Definition 1.5, the condition 3)).

For every α ∈ A let G′α = G ∩ Oα; since (gα, g̃α) ∈ Ca(Oα, Gα), (Oα, Gα) ⊆
⊆ (Oα, G′α), the sheaf C is hereditary and (gα, g̃α) ∈ C(Oα, Gα), we have (gα, g̃α) ∈
∈ C(Oα, G′α) for all α ∈ A. The family {(Oα, G′α) : α ∈ A} is a covering of the
couple (O, G) and C is a sheaf. Therefore (g, g̃) ∈ C(O, G) and, hence, (g, g̃) ∈ Ĉ(O).
Thus, the map Ĉ is a sheaf over the topological space Y . ¤

5.28. Proposition. There exists a one-to-one correspondence between the set of
all hereditary subsheaves of the sheaf Ca and the set of all subsheaves of the sheaf Ĉa

which preserves the relation “⊆”.
Proof. It suffices to note that if Ĉ ⊆ Ĉa is a subsheaf then one can define the

sheaf C by the equality C(O,G) = Ĉ(O) ∩ Ca(O, G) for all (O, G) ∈ Ta, and this
construction is inverse to the construction 5.23. ¤

5.29. It is known ([61], Theorem 4.5.3, or [8], Theorem 0.24) that a sheaf over
a space Y has a representation by a local homeomorphism p : E → Y . Therefore

9Analogously to the item 5.23 we shall assume that if (O, G1), (O, G2) ∈ Ta and (O, G1) ⊆
⊆ (O, G2), then Ca(O, G2) is a closed subalgebra of the algebra Ca(O, G1) (see Corollary 5.16).
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we can consider that hereditary subsheaves of Ca have similar representations. We
shall not use these representations.

5.30. Definition. A sheaf Ĉ ⊆ Ĉa will be called closed if for every set O ∈ T the
algebra Ĉ(O) is closed in Ĉa(O).

5.31. Definition. A sheaf Ĉ ⊆ Ĉa will be called complete if for every set O ∈ T
the algebra Ĉ(O) is closed in C(pO) (see 5.23).

5.32. Remark. If a sheaf Ĉ ⊆ Ĉa is complete then it is closed too, but the inverse
statement is not valid (for example, the sheaf Ĉa is closed but, in general case, is
not complete). It is also quite probable that a sheaf Ĉ need not be closed, even
if the sheaf C ⊆ Ca is hereditary and complete (of course, if Ĉ is closed and C is
hereditary then C is complete; see 5.21).

5.33. Definition. Let C ⊆ Ca be a subsheaf, (O,G) ∈ Ta. A couple (g0, g̃0) ∈
∈ Ca(O, G) will be called C-separated if for any numbers a, b ∈ R, a < b, and a point
y ∈ O there exist couples (O′, G′) ∈ Ta, (g, g̃) ∈ C(O′, G′) and numbers a′, b′ ∈ R,
a′ < b′, such that y ∈ O′,

O′ ∩ g−1
0 Ha ⊆ g−1Ha′ ⊆ g−1Hb′ ⊆ g−1

0 Hb ∩O′ and

f−1O′ ∩ g̃−1
0 Ha ⊆ g̃−1Ha′ ⊆ g̃−1Hb′ ⊆ g̃−1

0 Hb ∩ f−1O′,
where Hc = {t ∈ R : t < c} for c ∈ R.

5.34. Definition. A sheaf C ⊆ Ca will be called saturated if for each (O, G) ∈ Ta

the algebra C(O,G) contains all C-separated couples (g, g̃) ∈ Ca(O,G).
5.35. Theorem. If a sheaf C ⊆ Ca is saturated then it is also hereditary and

complete, Cf ⊆ C, and the sheaf Ĉ is closed.
Proof. The sheaf C is hereditary, because if (O,G1), (O, G2) ∈ Ta, (O, G1) ⊆

⊆ (O,G2) and (g0, g̃0) ∈ C(O, G1)∩Ca(O, G2), then the couple (g0, g̃0) is C-separated
and, hence, (g0, g̃0) ∈ C(O, G2) (we can take (O′, G′) = (O, G1), (g, g̃) = (g0, g̃0)
and (a′, b′) = (a, b) in Definition 5.33).

Let (g0, g̃0) ∈ Cf (O, G) be an arbitrary couple, where (O, G) ∈ Ta. By Definition
5.6 the function g0 is continuous and g̃0 = g0f |f−1O. Let a, b ∈ R, a < b. The sets
F0 = [g−1

0 Ha]Y ∩ O and F1 = O \ g−1Hb are disjoint and closed in O. For any
y ∈ O let

O′ =

{
O \ F1 if y ∈ F0,
O \ F0 if y ∈ O \ F0,

c =

{
a if y ∈ F0,
b if y ∈ O \ F0,

G′ = ∅, gy′ = c and g̃x = c for all y′ ∈ O′ and x ∈ f−1O′, a′ = a, b′ = b. Then all
conditions of Definition 5.33 are satisfied; therefore (g0, g̃0) ∈ C(O, G) and, hence,
Cf (O, G) ⊆ C(O, G).

We shall show that the sheaf Ĉ is closed. The completeness of the hereditary
sheaf C is a consequence of the closedness of Ĉ.

Let (g0, g̃0) ∈ [Ĉ(O)]Ĉa(O) for some O ∈ T . Let a, b ∈ R, a < b, y ∈ O. Let us
set ε = b−a

3 , a′ = a + ε, b′ = b− ε. By the definition of the topology of the algebra
Ĉa(O) there exist a couple (g, g̃) ∈ Ĉ(O) and a set O′ ∈ T such that y ∈ O′ ⊆ O
and ny′((g, g̃)− (g0, g̃0)) < ε for all y′ ∈ O′ (see 5.13). Let G ∈ a be a set such that
(O, G) ∈ Ta, (g, g̃) ∈ C(O, G) and (g0, g̃0) ∈ Ca(O, G). Let G′ = G ∩O′; it is easily
seen that the couple (g|O′ , g̃|f−1O′) ∈ C(O′, G′) satisfy all conditions of Definition
5.33. Therefore the couple (g0, g̃0) is C-separated and, hence, (g0, g̃0) ∈ C(O, G) ⊆
⊆ Ĉ(O). ¤

5.36. Let C ⊆ Ca be a subsheaf. For each (O, G) ∈ Ta let us set

C̄(O, G) = {(g, g̃) ∈ Ca(O, G) : (g, g̃) is C-separated}.



536 V. M. ULYANOV

5.37. Theorem. For every subsheaf C ⊆ Ca the map C̄ is a saturated sheaf.
Proof. It suffices to note that each C̄-separated couple is also C-separated (we

can prove, that C̄(O, G) is a subalgebra of Ca(O,G) for every (O, G) ∈ Ta, using
the reasonings 6.6, 6.11, 6.3). ¤

Let us note that this theorem is also true if C ⊆ Ca is a presheaf.

§ 6. Ta-bicompactifications

6.1. From now on we shall fix a mapping f : X → Y with the property Ta.

A. From a bicompactification to a sheaf

6.2. Let fv : vfX
onto−−−→ Y be a Ta-bicompactification of the mapping f , O ∈ T .

Let us denote XO = f−1
v O, XO = f−1O, fO = f |XO , pO = fv|XO .

For each ḡ ∈ C(pO) let us define functions g̃ : XO → R and g : O → R as follows:

(4) g̃ = ḡ|XO , gy = sup{ḡz : z ∈ p−1
O y} for all y ∈ O.

Since the mapping pO is irreducible modulo XO, we have (g1, g̃1) 6= (g2, g̃2) for
any different ḡ1, ḡ2 ∈ C(pO).

For every couple (O,G) ∈ Ta let

Cv(O, G) = {(g, g̃) : (g, g̃) ∈ Ca(O, G) and
there is ḡ ∈ C(pO) such that the equalities (4) hold}.
p−1

O (O \G)
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⊆ // Y

6.3. Lemma. The map Cv defined above is a saturated sheaf.
Proof. It is obvious that Cv is a sheaf. We shall prove that it is saturated. Let

(O, G) ∈ Ta.
Let a couple (g0, g̃0) ∈ Ca(O, G) be Cv-separated. We have to show that there

exists a function ḡ0 ∈ C(pO) such that the equalities (4) hold.
For every b ∈ R let Ub = {y ∈ O : g0y < b}, Vb = {x ∈ XO : g̃0x < b} and

Wb =
⋃{W̃a : a < b}, where for all a ∈ R

W̃a = {z ∈ XO : there is a neighborhood Wz ⊆ XO

such that XO ∩Wz ⊆ Va and p#
OWz ⊆ Ua}.

Let b ∈ R; the sets Ub, Vb, W̃b and Wb are open in Y , X, vfX and vfX

respectively. Let us prove the equality Wb ∩ XO = W̃b ∩ XO = Vb. Let us take
any point x ∈ Vb and a number a ∈ R such that g̃0x < a < b and denote y =
= fx. Since the couple (g0, g̃0) is Cv-separated, there exist couples (O′, G′) ∈ Ta,
(g, g̃) ∈ Cv(O′, G′) and numbers a′, b′ ∈ R, a′ < b′, such that y ∈ O′,

O′ ∩ Ua ⊆ g−1Ha′ ⊆ g−1Hb′ ⊆ Ub ∩O′ and

x ∈ f−1
O O′ ∩ Va ⊆ g̃−1Ha′ ⊆ g̃−1Hb′ ⊆ Vb ∩ f−1O′.
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For a function ḡ ∈ C(pO) satisfying the condition (4), the inverse image ḡ−1Ha′

is an open subset of XO,

x ∈ f−1
O O′ ∩ Va ⊆ ḡ−1Ha′ ⊆ ḡ−1Hb′ ,

ḡ−1Ha′ ∩XO ⊆ ḡ−1Hb′ ∩XO ⊆ f−1
O O′ ∩ Vb ⊆ Vb and

p#
O ḡ−1Ha′ = g−1Ha′ ⊆ g−1Hb′ ⊆ O′ ∩ Ub ⊆ Ub.

Thus, x ∈ W̃a ⊆ Wb ⊆ W̃b and, hence, Vb ⊆ Wb ⊆ W̃b. Since the inclusion
W̃b ∩XO ⊆ Vb is obvious, we have the required equality.

Let us prove that p#
OWb = Ub. The inclusion Ub ⊆ p#

OWb is obvious. Consider a
point y ∈ p#

OWb; since p−1
O y is compact, by the definition of the set Wb there is a <

< b such that p−1
O y ⊆ W̃a. From the definition of the set W̃a and the irreducibility

of the mapping pO modulo XO it follows that for every point z ∈ p−1
O y and its

arbitrary neighborhood Wz ⊆ XO at least one of the sets Wz∩Va and Wz∩p−1
O Ua

is non-empty, therefore p−1
O y ⊆ [Va ∪ p−1

O Ua]XO = [W̃a]XO (the last equality is true
since the same property holds for all points z ∈ [W̃a]XO

). Since the couple (g0, g̃0) is
Cv-separated, there exist couples (O′, G′) ∈ Ta and (g, g̃) ∈ Cv(O′, G′) and numbers
a′, b′ ∈ R, a′ < b′, such that y ∈ O′,

O′ ∩ Ua ⊆ g−1Ha′ ⊆ g−1Hb′ ⊆ Ub ∩O′ and

f−1
O O′ ∩ Va ⊆ g̃−1Ha′ ⊆ g̃−1Hb′ ⊆ Vb ∩ f−1

O O′.
For a function ḡ ∈ C(pO′) satisfying the condition (4) we have

p−1
O y ⊆ [W̃a ∩XO′ ]XO′ ⊆ [(Va ∪ p−1

O Ua) ∩XO′ ]XO′ ⊆
⊆ [g̃−1Ha′ ∪ p−1

O′ Ha′ ]XO′ = [ḡ−1Ha′ ]XO′ ⊆ ḡ−1Hb′ ,

thus, y ∈ p#
O ḡ−1Hb′ = g−1Hb′ ⊆ Ub ∩O′ ⊆ Ub and, hence, p#

OWb = Ub.
Analogously we can prove the inclusion [Wa]XO ⊆ Wb for all a, b ∈ R, a < b.

From that it follows that a function ḡ0 : XO → R, defined by the equality ḡ0z =
= inf{t ∈ R : z ∈ Wt} for all z ∈ XO, is continuous (see [51], proof of Theorem
1.5.10).

Thus we have constructed the function ḡ0 ∈ C(PO). The equalities (4) follow
from the equalities ḡ−1

0 Ht ∩XO = Wt ∩XO = Vt and p#
O ḡ−1

0 Ht = p#
OWt = Ut for

all t ∈ R. Hence, (g0, g̃0) ∈ Cv(O, G) and the sheaf Cv is saturated. ¤
6.4. Definition. A sheaf C ⊆ Ca will be called dismembering if for an arbitrary

point x ∈ X in each of the following two cases
a) for every point x′ ∈ f−1fx \ {x} and
b) for every neighborhood Ux ⊆ X

there exist couples (O, G) ∈ Ta and (g, g̃) ∈ C(O, G) such that fx ∈ O and, respec-
tively,

a) g̃x 6= g̃x′ or
b) g̃x /∈ [g̃(f−1O \ Ux)]R.
6.5. Lemma. The sheaf Cv is dismembering; moreover, for an arbitrary point

z ∈ vfX in each of the following two cases
a) for every point z′ ∈ f−1

v z \ {z} and
b) for every neighborhood Uz ⊆ vfX

there are couples (O, G) ∈ Ta, (g, g̃) ∈ Cv(O, G) and a continuous function
ḡ : f−1

v O → R satisfying the condition (4) such that fvz ∈ O and, respectively,
a) ḡz′ 6= ḡz or
b) ḡz /∈ [ḡ(f−1

v O \ Uz)]R.
Proof follows from the definition of Ta-bicompactification. ¤
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B. From a sheaf to a bicompactification

6.6. Let a dismembering sheaf C ⊆ Ca be given. Let us denote by B the set
of all quadruplets (O, G, g, g̃) where (O,G) ∈ Ta and (g, g̃) ∈ C(O,G). Let B =
= {(Oα, Gα, gα, g̃α) : α ∈ A}. For all α ∈ A let us set Zα = R.

By analogy with the item 5.8, using Constructions 3.1 and 3.2, Proposition 3.3,
Lemma 5.9 and Corollary 2.13, we obtain the space

vCX = Xr
A ⊆ XA ⊆ YA = P(Y, {Zα}, {Gα}, {Oα}, {gα|Oα\Gα

}, α ∈ A)

and the mappings iC = fA : X → vCX, fC = Aπ|vCX : vCX
onto−−−→ Y and ḡα =

= A
αψ|f−1

C Oα
: f−1

C Oα → Zα = R, α ∈ A, satisfying the conditions fCiC = f ,
ḡα|f−1

C (Oα\Gα) = gαfC |f−1
C (Oα\Gα) and g̃α = ḡαiC |f−1Oα

for all α ∈ A. Moreover,
the mapping fC is perfect and irreducible modulo iCX.

Let C(O, G) = {ḡα : α ∈ A, Oα = O,Gα = G} for all (O,G) ∈ Ta. The map C
is a sheaf which is naturally isomorphic to the sheaf C.

6.7. Lemma. The mapping fC : vCX
onto−−−→ Y is a Ta-bicompactification of the

mapping f .
Proof. Since the sheaf C is dismembering, it is easily seen that the mapping iC

is an embedding. Let us identify X and iCX, that is, we shall assume that X ⊆
⊆ vCX. Then we have fC |X = f . Moreover, the mapping fC has the property Ta
by Assertion 1.8. Therefore fC is a Ta-bicompactification of the mapping f . ¤

C. Bicompactifications and sheaves

6.8. Lemma. Let n ∈ N = {1, 2, 3, . . . }, Rn = {~x = (x1, x2, . . . , xn) : xi ∈
∈ R for all i = 1, 2, . . . , n} with the usual topology, Φ ⊆ Rn be a compact set,
F ⊆ Rn be a closed set and Φ∩F = ∅. Then there exists a polynomial h : Rn → R
such that

1) h~x > − 1
2 for all ~x ∈ Rn,

2) − 1
2 6 h~x < 0 for all ~x ∈ Φ,

3) h~x > 1 for all ~x ∈ F .

Proof. Let c = inf{
n∑

i=1

(xi − x0i)2 : (x1, x2, . . . , xn) ∈ F, (x01, x02, . . . , x0n) ∈ Φ}.
It is clear that c > 0 since the set Φ is compact, the set F is closed and Φ∩F = ∅
(of course, we assume that Φ 6= ∅ and F 6= ∅).

For each point ~x0 = (x01, x02, . . . , x0n) ∈ Φ let us define a polynomial h~x0 by the

formula h~x0~x = 3
2c ·

n∑
i=1

(xi − x0i)2 − 1
2 for ~x = (x1, x2, . . . , xn) ∈ Rn, and let U~x0 =

= h−1
~x0

[− 1
2 , 0) ⊆ Rn. These neighborhoods form an open covering of the compactum

Φ. Let us choose a finite subcovering. Let it be formed by sets U1, U2, . . . , Um,
and let h1, h2, . . . , hm be the corresponding polynomials. It is clear that for all
i = 1, 2, . . . ,m the conditions hi~x > − 1

2 for ~x ∈ Rn, − 1
2 6 hi~x < 0 for ~x ∈ Φ ∩ Ui

and hi~x > 1 for ~x ∈ F are satisfied.
If m = 1 then our Lemma is proved. Let us suppose that m > 1 and show that

the number m can be made smaller.
Let us denote U1,2 = U1 ∪ U2, M = sup{max{h1~x, h2~x, 0} : ~x ∈ Φ ∩ U1,2}

(0 6 M ∈ R since Φ is compact and the polynomials h1 and h2 are continuous),
and let h′1,2 be a polynomial defined by the equality h′1,2~x = 2 · h1~x · h2~x for all
~x ∈ Rn. This polynomial has the following properties: −M 6 h′1,2~x 6 1

2 if ~x ∈
∈ Φ ∩ U1,2 and h′1,2~x > 2 if ~x ∈ F .



SHEAVES AND Ta-BICOMPACTIFICATIONS OF MAPPINGS 539

Let us choose a number k ∈ N such that
(

2M+1
2M+2

)2k

< 1
2 . Since

2M+1
2M+2 · M+2

M+1 > 1,

we have
(

M+2
M+1

)2k

> 2 > 3
2 . Therefore the polynomial h1,2, defined by the equality

h1,2~x =
(

h′1,2~x+M

M+1

)2k

− 1
2 for all ~x ∈ Rn, satisfies the conditions h1,2~x > − 1

2 for

~x ∈ Rn, − 1
2 6 h1,2~x < 0 for ~x ∈ Φ ∩ U1,2 and h1,2~x > 1 for ~x ∈ F .

In consequence, we have the covering {U1,2, U3, . . . , Um} consisting of m − 1
elements and the corresponding polynomials h1,2, h3, . . . , hm. Repeating these
reasonings we shall get the required polynomial. ¤

6.9. Lemma. For each point z0 ∈ vCX and each neighborhood Uz0 ⊆ vCX there
exists α ∈ A (see 6.6) such that fCz0 ∈ Oα and

1) ḡαz > − 1
2 for all z ∈ f−1

C Oα,
2) ḡαz0 = − 1

2 ,
3) ḡαz > 1 for all z ∈ f−1

C Oα \ Uz0.
Proof. By the definition of the topology of the space YA, there are a finite set

B ⊆ A and neighborhoods UfCz0 ⊆ Y and Uḡαz0 ⊆ Zα = R, α ∈ B, such that
z0 ∈ f−1

C UfCz0 ∩
⋂{ḡ−1

α Uḡαz0 : α ∈ B} ⊆ Uz0. Let O = UfCz0 ∩
⋂{Oα : α ∈ B},

G =
⋃{Gα ∩ O : α ∈ B}. Since C is a sheaf we can suppose that Oα = O and

Gα = G for all α ∈ B (for a simplification of notations).
Let B = {α1, α2, . . . , αn}, and let ḡ = ∆{ḡα : α ∈ B} : f−1

C O → Rn be the
diagonal mapping (see [51], §2.3). Then ḡz0 /∈ F = [ḡ(f−1

C O \ Uz0)]Rn . Let us

denote c = inf{
n∑

i=1

(xi − ḡαiz0)2 : (x1, x2, . . . , xn) ∈ F}. Obviously, c > 0. Since

C(O, G) is an algebra containing all constants (see the items 5.20 and 6.6), it

contains the function ḡ0 : f−1
C O → R defined by the equality ḡ0z = 3

2c ·
n∑

i=1

(ḡαiz −
− ḡαiz0)2 − 1

2 for z ∈ f−1
C O. Therefore there exists α ∈ A such that Oα = O,

Gα = G and ḡα = ḡ0. This α is the one we were looking for. ¤
6.10. Lemma. Let y ∈ Y , Φ ⊆ f−1

C y be a compact subset, UΦ ⊆ vCX be a
neighborhood of the set Φ. Then there exists α ∈ A (see 6.6) such that y ∈ Oα and

1) ḡαz > − 1
2 for all z ∈ f−1

C Oα,
2) − 1

2 6 ḡαz < 0 for all z ∈ Φ,
3) ḡαz > 1 for all z ∈ f−1

C Oα \ UΦ.
Proof. Using Lemma 6.9 we can find for each z ∈ Φ a function ḡz ∈ C(Oz, Gz)

for some (Oz, Gz) ∈ Ta (see 6.6) such that fCz ∈ Oz, ḡzz = − 1
2 , ḡzz

′ > 1 for all
z′ ∈ f−1

C Oz \ UΦ and ḡ′z > − 1
2 for all z′ ∈ f−1

C Oz. Let Uz = ḡ−1
z [− 1

2 , 0). Then
{Uz : z ∈ Φ} is an open covering of the compact set Φ. Let {Uz1, Uz2, . . . , Uzn}
be its finite subcovering, O =

⋂{Ozi : i = 1, 2, . . . , n}, G =
⋃{Gzi ∩ O : i =

= 1, 2, . . . , n}. Then gi = gzi |f−1
C O ∈ C(O, G) for 1 6 i 6 n.

Let ḡ = ∆{ḡi : i = 1, 2, . . . , n} : f−1
C O → Rn be the diagonal mapping. Then ḡΦ

is a compact subset of Rn, F = [ḡ(f−1
C O\UΦ)]Rn is a closed subset and F ∩ḡΦ = ∅.

By Lemma 6.8 there exists a polynomial h : Rn → R such that − 1
2 6 h~x < 0 for all

~x ∈ ḡΦ, h~x > 1 for all ~x ∈ F and h~x > − 1
2 for all ~x ∈ Rn. Then the function hḡ

belongs to C(O,G) since C(O, G) is an algebra containing all constants (see 5.20),
that is, there is α ∈ A such that Oα = O, Gα = G and ḡα = hḡ. ¤

6.11. Lemma. Let Cv be a sheaf constructed using the Ta-bicompactification
fC : vC

onto−−−→ Y as in the item 6.2. Then for every (O, G) ∈ Ta each couple (g, g̃) ∈
∈ Cv(O,G) is C-separated.
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Proof. Let (O,G) ∈ Ta, (g0, g̃0) ∈ Cv(O,G), ḡ ∈ C(pO) be a function satisfying
the conditions (4), a, b ∈ R, a < b, y ∈ O.

Let F0 = {z ∈ f−1
C O : ḡ0z 6 a} and F1 = {z ∈ f−1

C O : ḡ0z > b}. The sets F0

and F1 are closed in f−1
C O and F0 ∩ F1 = ∅. Since the mapping fC is perfect, the

sets Φ0 = F0 ∩ f−1
C y and Φ1 = F1 ∩ f−1

C y are compact.
By Lemma 6.10 there exists α0 ∈ A such that y ∈ Oα0 ⊆ O, − 1

2 6 ḡα0z <

< 0 for z ∈ Φ0, ḡα0z > − 1
2 for z ∈ f−1

C Oα0 and ḡα0z > 1 for z ∈ F1 ∩ f−1
C Oα0 .

Analogously there exists α1 ∈ A such that y ∈ Oα1 ⊆ O, − 1
2 6 ḡα1z < 0 for z ∈ Φ1,

ḡα1z > − 1
2 for z ∈ f−1

C Oα1 and ḡα1z > 1 for z ∈ F0 ∩ f−1
C Oα1 . Since C is a sheaf

of algebras (see 6.6), there exists an element α ∈ A such that Oα = Oα0 ∩ Oα1 ,
Gα = (Gα0 ∪Gα1) ∩Oα and ḡα = 1

2 (ḡα0 |Oα
+ 1− ḡα1 |Oα

).
Let U0 = {z ∈ f−1

C Oα : ḡα0z < 0}, U1 = {z ∈ f−1
C Oα : ḡα1z < 0}, U2 =

= f−1
C Oα\(F0∪F1), O′ = f#

C (U0∪U1∪U2), G′ = O′∩Gα, g = gα|O′ , g̃ = g̃α|f−1O′ ,
a′ = 0, b′ = 1. It is easily seen that all conditions of Definition 5.33 are satisfied,
therefore the couple (g0, g̃0) is C-separated. ¤

6.12. Corollary. Under the assumptions of Lemma 6.11 we have Cv = C̄ (see
5.36). Particularly, if the sheaf C is saturated then Cv = C.

6.13. Lemma. If fv : vfX
onto−−−→ Y is a Ta-bicompactification of the mapping f ,

Cv is a sheaf constructed using fv as in the item 6.2, and fC : vCX
onto−−−→ Y is

a Ta-bicompactification constructed using Cv as in the item 6.6, then the Ta-bicom-
pactifications fv and fC are equivalent.

Proof. Let us repeat the construction 6.6 using the space vfX instead of X and
the sheaf C′v instead of Cv, where

C′v(O, G) = {(g, ḡ) : (g, g̃) ∈ Cv(O, G) and ḡ ∈ C(pO) is
a function satisfying the condition (4)}

for all (O, G) ∈ Ta (the sheaf C′v is naturally isomorphic to the sheaf Cv). Due to
Lemma 6.5 we obtain an embedding iv : vfX → vCX which is a homeomorphism
onto vCX, because the mapping fv is perfect, and the mapping fC is separable and
irreducible modulo X (see Lemma 8 of the paper [43]). ¤

6.14. Theorem. There exists a one-to-one correspondence between the set of all
Ta-bicompactifications of the mapping f and the set of all dismembering saturated
subsheaves of the sheaf Ca which preserves the partial order.

Proof. The existence of a one-to-one correspondence follows from Corollary 6.12
and Lemma 6.13. If fv : vfX

onto−−−→ Y and fw : wfX
onto−−−→ Y are Ta-bicompactificati-

ons of the mapping f , fv > fw, and Cv, Cw ⊆ Ca are the corresponding subsheaves,
then Cv ⊇ Cw by Corollary 5.16 and the construction 6.2. If C1, C2 ⊆ Ca are
dismembering subsheaves, C1 ⊇ C2, and fC1 : vC1X

onto−−−→ Y , fC2 : vC2X
onto−−−→ Y are

the corresponding Ta-bicompactifications, then the inequality fC1 > fC2 can be
proved as Lemma 6.13. ¤

6.15. Definition. Subsheaves C1, C2 ⊆ Ca will be called equivalent if C̄1 = C̄2

(see 5.36).
6.16. Proposition. Let C1, C2 ⊆ Ca be dismembering subsheaves and let

fC1 : vC1X
onto−−−→ Y , fC2 : vC2X

onto−−−→ Y be the corresponding Ta-bicompactifications.
The sheaves C1 and C2 are equivalent iff the Ta-bicompactifications fC1 and fC2 are
equivalent.

Proof follows from Corollary 6.12 and Lemma 6.13. ¤
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6.17. Remark. Of course, we can use subsheaves of the sheaf Ĉa (see the items
5.23, 5.28 and 5.35) instead of subsheaves of the sheaf Ca, but the sheaf Ĉa is not
complete (see 5.32). This defect can make some difficulties.

This defect does not occur if the family a has the largest representative in each
set O ∈ T (see Definition 5.24 and Proposition 5.25). For example, such situation
holds for Tychonoff mappings in the sense of paper [34] (see the item 1.10), when
a is the family of all locally closed subsets of the space Y .

§ 7. Maximal ideals of sheaves

7.1. We shall assume that the notions of an ideal and a maximal ideal of an
algebra are known (see, for example, [51], the item 3.12.21, or [28], Chapter II,
§7 (4)).

We shall consider a fixed perfect mapping f : X
onto−−−→ Y with the property Ta.

For each couple (O, G) ∈ Ta let fO = f |f−1O : f−1O
onto−−−→ O and

Ca(O, G) = {ḡ ∈ C(fO) : there is a function
g : O → R such that (g, ḡ) ∈ Ca(O,G)}.

The map Ca is a sheaf which is naturally isomorphic to the sheaf Ca (see 5.13).
7.2. Let C ⊆ Ca be a dismembering subsheaf. For each point y ∈ Y and each

couple (O, G) ∈ Ty (see 5.2 c)) let Iy(O, G) = {ḡ ∈ C(O, G) : ny ḡ = 0}.
It is easily seen that Iy(O,G) is a closed ideal of the algebra C(O,G) for each

couple (O, G) ∈ Ty. Moreover, if (O1, G1), (O2, G2) ∈ Ty, (O1, G1) ⊆ (O2, G2)
and h : C(O2, G2) → C(O1, G1) is the restriction homomorphism (see 5.14), then
Iy(O2, G2) = h−1Iy(O1, G1).

7.3.Definition. Let y ∈ Y be any point. A map M , which assign to each couple
(O, G) ∈ Ty a closed maximal ideal M(O, G) ⊆ C(O,G) of the algebra CO, G), will
be called a closed maximal y-ideal of the sheaf C, if the following conditions are
fulfilled:

1) if (O, G) ∈ Ty then Iy(O,G) ⊆ M(O, G);
2) if (O1, G1), (O2, G2) ∈ Ty and (O1, G1) ⊆ (O2, G2) then M(O2, G2) =

= h−1M(O1, G1), where h is the restriction homomorphism (see 7.2).
Let us denote by My the set of all closed maximal y-ideals of the sheaf C for

y ∈ Y .
7.4. Lemma. Let y ∈ Y , x ∈ f−1y, Mx(O,G) = {ḡ ∈ C(O,G) : ḡx = 0} for all

(O, G) ∈ Ty. Then the map Mx is a closed maximal y-ideal of the sheaf C.
Proof. For each couple (O,G) ∈ Ty let us define a homomorphism

ϕOG : C(O, G) → R by the formula ϕOGḡ = ḡx for all ḡ ∈ C(O, G). This homomor-
phism is continuous and “onto”, since the algebra C(O, G) contains all constants
(see 5.20), and |ḡx| 6 ny ḡ for all ḡ ∈ C(O, G). It is easily seen that Mx(O, G) =
= ϕ−1

OG0, therefore Mx(O, G) is a closed ideal of the algebra C(O,G). This ideal is
maximal since the algebra R has no ideals except {0}. The conditions 1) and 2) of
Definition 7.3 are satisfied obviously. ¤

7.5. Lemma. For each closed maximal y-ideal M ∈ My, y ∈ Y , there exists a
point x ∈ f−1y such that M = Mx.

Proof. Let us suppose that for every point x ∈ f−1y there are a couple (Ox, Gx) ∈
∈ Ty and a function ḡx ∈ M(Ox, Gx) such that ḡxx 6= 0; let us denote Ux = {x′ ∈
∈ f−1Ox : |ḡxx′| > 1

2 |ḡxx|}. Then the set {Ux : x ∈ f−1y} is an open covering of
the compact set f−1y. Let {Uxi : i = 1, 2, . . . , n} be its finite subcovering; the set

O =
(
f#

⋃
{Uxi : i = 1, 2, . . . , n}

)
∩

(⋂
{Oxi : i = 1, 2, . . . , n}

)
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is open and y ∈ O ⊆ ⋂{Oxi
: i = 1, 2, . . . , n} since the mapping f is closed.

Let G =
⋃{Gxi

∩ O : i = 1, 2, . . . , n}, ε0 = min{1
4 (ḡxi

xi)2 : i = 1, 2, . . . , n} >
> 0 and ḡi = ḡxi

|f−1O for i = 1, 2, . . . , n; then (O, G) ∈ Ty and ḡi ∈ M(O, G)
for all i = 1, 2, . . . , n by the condition 2) of Definition 7.3. Therefore the function

ḡ : f−1O → R, defined by the formula ḡx =
n∑

i=1

(ḡix)2 for all x ∈ f−1O, belongs to

the ideal M(O,G) and satisfies the condition ḡx > ε0 > 0 for all x ∈ f−1O.
Let us denote by ḡe the function such that ḡex = 1 for all x ∈ f−1O. Of course,

ḡe ∈ C(O, G) (see 5.20). The function ḡe is the unit of the algebra C(O, G). We
shall prove that ḡe ∈ M(O, G).

Let V C
ε,Aḡe = Vε,Aḡe∩C(O, G) ⊆ C(O, G), where A ⊆ O is a finite set and ε > 0,

be an arbitrary neighborhood of the function ḡe (see 4.7), B = ε0 +max{ny′ ḡ : y′ ∈
∈ A}. For each n ∈ R the function10 ḡn = 2

B ·
n−1∑
i=0

(
ḡe − 2ḡ

B

)i
belongs to C(O, G)

and ḡe − ḡ · ḡn =
(
ḡe − 2ḡ

B

)n
.

Since ε0 6 ḡx 6 B − ε0 for all x ∈ f−1A, we have
∣∣1− 2ḡx

B

∣∣ 6 1 − 2ε0
B < 1 for

x ∈ f−1A. There is a number n0 ∈ R such that
(
1− 2ε0

B

)n0
< ε. Then for every

y′ ∈ A we have

ny′(ḡe − ḡ · ḡn0) = ny′

((
ḡe − 2ḡ

B

)n0
)

6
(

1− 2ε0

B

)n0

< ε,

that is, ḡ · ḡn0 ∈ V C
ε,Aḡe. Hence, V C

ε,Aḡe ∩M(O,G) 6= ∅ because ḡ · ḡn0 ∈ M(O, G)
by the definition of an ideal. Therefore ḡe ∈ [M(O, G)]C(O,G) = M(O, G).

The latter inclusion is impossible because M(O,G) is an ideal. Hence, there
exists a point x ∈ f−1y such that ḡx = 0 for all ḡ ∈ M(O, G). Obviously,
M(O, G) ⊆ Mx(O,G), but really M(O,G) = Mx(O, G) since M(O,G) is a maximal
ideal. ¤

7.6. Theorem. For each point y ∈ Y there exists a one-to-one map
φy : f−1y

onto−−−→ My.
Proof. Due to Lemma 7.4 we can define the map φy by the formula φyx = Mx

for all x ∈ f−1y. By Lemma 7.5 we have φyf−1y = My. Let us note that if
x1, x2 ∈ f−1y and x1 6= x2 then Mx1 6= Mx2 because the sheaf C is dismembering
and, hence, there exist a couple (O, G) ∈ Ty and a function ḡ ∈ C(O.G) such that
ḡx1 = 0 and ḡx2 6= 0 (see 5.20); then ḡ ∈ Mx1(O,G) and ḡ /∈ Mx2(O, G). ¤

7.7. Thanks to Theorem 7.6 for each y ∈ Y we can define a Hausdorff compact
topology on the set My such that the map φy is a homeomorphism.

Let X ′ =
⋃̇{My : y ∈ Y }, where the symbol “

⋃̇
” denotes the disjunctive union,

and let f ′ : X ′ onto−−−→ Y be the map defined by the formula f ′M = y for all M ∈ My

and y ∈ Y . For each couple (O,G) ∈ Ta and each function ḡ ∈ C(O, G) we can
define a function ĝ : f ′−1O → R by the equality ĝM = ḡφ−1

f ′MM for M ∈ f ′−1O.
Let us equip X ′ with the smallest topology in which the map f ′ and all functions ĝ,
where ḡ ∈ ⋃{C(O, G) : (O,G) ∈ Ta}, are continuous.

7.8. Theorem. The map φ : X
onto−−−→ X ′, defined by the equality φx = φfxx for

all x ∈ X, is a homeomorphism satisfying the condition f ′φ = f .
Proof. The map φ is one-to-one by the construction. It is continuous since the

map f and all functions ḡ ∈ ⋃{C(O,G) : (O,G) ∈ Ta} are continuous. It is easily
seen that the mapping f ′ is separable because for each M,M ′ ∈ X ′ such that

10We assume that
(
ḡe − 2ḡ

B

)0
= ḡe.
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M 6= M ′ and f ′M = f ′M ′ = y there are a couple (O,G) ∈ Ty and a function ḡ ∈
∈ C(O, G) such that ĝM 6= ĝM ′, and the space R is Hausdorff. Therefore by Lemma
8 of the paper [43] the mapping φ is perfect, that is, φ is a homeomorphism. ¤

Acknowledgement. The paper was written while the author was visiting War-
saw University. The author takes the opportunity to thank professor R.Engelking
for his attention and some corrections of English text.

References

[1] С.М.Агеев. Абсолюты в категории G-пространств. “Сообщения Академии наук
Грузинской ССР. Bulletin of the Academy of sciences of the Georgian SSR”, 122, №2 (1986),
245–248.

[2] С.М.Агеев. Прообразы, определяемые σ-идеалами множеств. Сборник “Кардинальные
инварианты и отображения топологических пространств”. Ижевск, 1984, 63–68.

[3] П.С.Александров, Б.А.Пасынков. Введение в теорию размерности. Москва, 1973.
[4] И.В.Блудова. О E-компактификациях непрерывных отображений. Москва, 1990.

Рукопись депонирована в ВИНИТИ 27 августа 1990 года, №4796-В90. РЖМат,11 1991,
1А618ДЕП.

[5] И.В.Блудова. О E-компактных отображениях. Москва, 1990. Рукопись депонирована
в ВИНИТИ 17 апреля 1990 года, №2074-В90. РЖМат, 1990, 8А448ДЕП.

[6] А.А.Борубаев. Геометрия равномерно непрерывных отображений. “Сообщения
академии наук Грузинской ССР. Bulletin of the Academy of sciences of the Georgian SSR”,
137, №3 (1990), 497–500.

[7] Н.Бурбаки. Общая топология. Основные структуры. “Элементы математики”. Москва,
1968. = N.Bourbaki. Topologie générale. Chapitre 1. Structures topologiques. Chapitre 2.

Structures uniformes. “Éléments de mathématique”. Paris, 1965; English translation: Paris,
1966.

[8] П.Т.Джонстон. Теория топосов. Москва, 1986. = P.T.Johnstone. Topos theory. London,
New York, San Francisco, 1977.

[9] А.В.Зарелуа. О равенстве размерностей. “Математический сборник”, 62 (104), №3
(1963), 295–319.

[10] В.К.Захаров, А.В.Колдунов. Секвенциальный абсолют и его характеризации.
“Доклады Академии наук СССР”, 253, №2 (1980), 280–284.

[11] Н.И.Ильина.Построение раширений βf и νf непрерывного отображения f при помощи
вполне регулярных концов открытых множеств. Омск, 1990. Рукопись депонирована
в ВИНИТИ 19 апреля 1990 года, №2113-В90. РЖМат, 1990, 8А454ДЕП.

[12] Н.И.Ильина. Построение расширений βf и νf непрерывного отображения f при
помощи ультрафильтров. Омск, 1990. Рукопись депонирована в ВИНИТИ 19 апреля
1990 года, №2114-В90. РЖМат, 1990, 8А455ДЕП.

[13] Н.И.Ильина. Построение расширений ωf и νωf непрерывного отображения f при
помощи ультрафильтров. Омск, 1990. Рукопись депонирована в ВИНИТИ 19 апреля
1990 года, №2115-В90. РЖМат, 1990, 8А456ДЕП.

[14] К.Ишмахаметов. Бикомпактификации и наросты конечного порядка тихоновских
отображений. Сборник “Исследования по топологии и геометрии”. Фрунзе, 1985, 47–
53.

[15] К.Ишмахаметов. О бикомпактификациях почти локально совершенных отображений.
Фрунзе, 1987. Рукопись депонирована в Киргизском ИНТИ 14 января 1987 года, №257-
Ки87. РЖМат, 1987, 6А604ДЕП.

[16] А.В.Колдунов. Непрерывные функции на (M, I)-абсолютах. “Известия высших учебных
заведений”, Математика, №10 (305) (1987), 63–66.

[17] А.В.Колдунов. Функциональная характеризация (M, I)-абсолютов. Сборник
“Приближения функций специальными классами операторов”. Вологда, 1987, 87–
95.

[18] Л.Т.Крежевских. О максимальных подалгебрах на отображениях. Глазов, 1990.
Рукопись депонирована в ВИНИТИ 11 сентября 1990 года, №4991-В90. РЖМат, 1991,
1А617ДЕП.

[19] Л.Т.Крежевских, Б.А.Пасынков. Об аналоге для отображения банаховой алгебры
непрерывных функций на пространстве. “Геометрия погруженных многообразий”.
Москва, 1986, 47–52.

11Реферативный журнал “Математика”.



544 V. M. ULYANOV

[20] Б.Й.Лазаров. О локально совершенных продолжениях непрерывного отображения.
“Доклады Болгарской академии наук. Comptes rendus de l’Academie bulgare des Sciences”,
39, №6 (1986), 13–16.

[21] М.Эльх.Р.Мазроа. О пунктиформных бикомпактификациях непрерывных
отображений. Сборник “Общая топология. Пространства и отображения”. Москва,
1989, 80–84.

[22] М.Эльх.Р.Мазроа. О совершенных бикомпактификациях непрерывных отображений.
“Вестник Московского университета”, Серия 1, математика, механика, №1 (1990), 23–26.

[23] М.Эльх.Р.Мазроа. Периферически бикомпактные отображения и их
бикомпактификации. Сборник “Общая топология. Пространства и отображения”.
Москва, 1989, 148–152.

[24] В.А.Матвеев. О совершенных неприводимых прообразах топологических пространств.
“Вестник Московского университета”, Серия 1, математика, механика, №4 (1988), 80–82.

[25] В.А.Матвеев. О Ta-бикомпактификациях отображений. Сборник “Топологические
пространства и их кардинальные инварианты”. Устинов, 1986, 43–45.

[26] В.А.Матвеев. Об отделимых бикомпактификациях отображений. “Вестник
Московского университета”, Серия 1, математика, механика, №1 (1988), 94–95.

[27] В.А.Матвеев, В.М.Ульянов. О T-бикомпактификациях отображений. “Успехи
математических наук”, 37, №2 (224) (1982), 211–212.

[28] М.А.Наймарк. Нормированные кольца. Москва, 1968.
[29] В.П.Норин. О близостях для отображений. “Вестник Московского университета”,

Серия 1, математика, механика, №4 (1982), 33–36.
[30] В.П.Норин. О m-близостях и теореме Смирнова. Сборник “Отображения и функторы”.

Москва, 1984, 59–66.
[31] Р.Н.Ормоцадзе. Отображения, совершенные в n-й бесконечности. “Сообщения

Академии наук Грузинской ССР. Bulletin of the Academy of sciences of the Georgian
SSR”, 136, №3 (1989), 529–532.

[32] Б.А.Пасынков. Близости на отображениях. Сборник “Общая топология. Пространства
и отображения”. Москва, 1989, 99–113.

[33] Б.А.Пасынков. О близостях на отображениях. “Доклады Болгарской академии наук.
Comptes rendus de l’Academie bulgare des Sciences”, 42, №4 (1989), 5–6.

[34] Б.А.Пасынков. О распространении на отображения некоторых понятий и
утверждений, касающихся пространств. Сборник “Отображения и функторы”.
Москва, 1984, 72–102.

[35] Б.А.Пасынков. Частичные топологические произведения. “Труды Московского
математического общества”, 13 (1965), 136–245. = B.A.Pasynkov. Partial topological prod-
ucts. “Transactions of the Moscow Mathematical Society”, 1965, 153–272.

[36] Ю.П.Першин. Смежности на непрерывных отображениях. Москва, 1989. Рукопись
депонирована в ВИНИТИ 3 ноября 1989 года, №6699-В89. РЖМат, 1990, 3А484ДЕП.

[37] Ю.П.Першин. θ-близости и бикомпактные расширения отделимо
бикомпактифицируемых θ-прообразов для непрерывных отображений. Москва,
1989. Рукопись депонирована в ВИНИТИ 19 сентября 1989 года, №5936-В89. РЖМат,
1990, 2А501ДЕП.

[38] Ю.П.Першин. θ-предблизости и бикомпактификации тихоновских θ-прообразов для
непрерывных отображений. Москва, 1989. Рукопись депонирована в ВИНИТИ 19
сентября 1989 года, №5935-В89. РЖМат, 1990, 2А500ДЕП.

[39] Н.С.Стреколовская. О максимальной бикомпактификации непрерывных отображений
вполне регулярных пространств. “Вестник Московского университета”, Серия 1,
математика, механика, №1 (1991), 24–27.

[40] В.М.Ульянов. Бикомпактные расширения с первой аксиомой счётности и непрерывные
отображения. “Математические заметки”, 15, №3 (1974), 491–499. = V.M.Ul’janov. Bi-
compact extensions with the first axiom of countability and continuous mappings. “Mathe-
matical Notes”, 15 (1974), 287–291.

[41] В.М.Ульянов. Бикомпактные расширения с первой аксиомой счётности, не
повышающие веса и размерности. “Доклады Академии наук СССР, 217, №6 (1974),
1263–1265. = V.M.Ul’janov. First countable compactifications that do not raise weight or
dimension. “Soviet Mathematics Doklady”, 14, No 4 (1974), 1218–1222.

[42] В.М.Ульянов. Внутренняя характеристика отображений со свойством Ta. Сборник
“Материалы научно-технической конференции Новомосковского филиала Московского
химико-технологического института. Новомосковск, 19–23 мая 1986. Часть 2”. Москва,
1987, 250–253. Рукопись депонирована в ВИНИТИ 28 января 1987 года, №669-В87.
РЖМат, 1987, 5А585ДЕП.



SHEAVES AND Ta-BICOMPACTIFICATIONS OF MAPPINGS 545

[43] В.М.Ульянов. О бикомпактных расширениях счётного характера и абсолютах.
“Математический сборник”, 98 (140)б №2 (10) (1975), 223–254. = V.M.Ul’janov. On com-
pactifications satisfying the first axiom of countability and absolutes. “Mathematics of the
USSR Sbornik”, 27, No 2, 199–226.12

[44] В.М.Ульянов. О вполне замкнутых и близких к ним отображениях. “Успехи
математических наук”, 30, №3 (183) (1975), 177–178.

[45] В.М.Ульянов. О максимальной отделимой TEa-бикомпактификации. Сборник
“Семинар по общей топологии”. Москва, 1981, 156–161.

[46] В.М.Ульянов. О метризуемости пространства YA = P(Y, {Zα}, {Gα}, {Oα}, {gα}, α ∈
∈ A). Сборник “Материалы научно-технической конференции Новомосковского филиала
Московского химико-технологического института. Новомосковск, 6–11 февраля 1984.
Часть 3”. Москва, 1984, 163–166. Рукопись депонирована в ВИНИТИ 28 ноября 1984
года, №7581-84. РЖМат, 1985, 3А530ДЕП.

[47] В.М.Ульянов. Отображение, обладающее свойством Ta, но не обладающее свойством
Taнп. Сборник “Материалы научно-технической конференции Новомосковского филиала
Московского химико-технологического института. Новомосковск, 6–11 февраля 1984.
Часть 3”. Москва, 1984, 167–169. Рукопись депонирована в ВИНИТИ 28 ноября 1984
года, №7581-84. РЖМат, 1985, 3А540ДЕП.

[48] В.М.Ульянов. Решение основной задачи о бикомпактных расширениях волмэновского
типа. “Доклады Академии наук СССР”, 223, №6 (1977), 1056–1059. = V.M.Ul’janov.
Solution of a basic problem on compactifications of Wallman type. “Soviet Mathematics
Doklady”, 18, No 2 (1977), 567–571.

[49] В.В.Федорчук. О бикомпактах с несовпадающими размерностями. “Доклады
Академии наук СССР”, 213, №4 (1973), 795–797. = V.V.Fedorčuk. Bicompacta with non-
coinciding dimensionalities. “Soviet Mathematics Doklady”, 9 (1968), 1148–1150.

[50] Л.Б.Шапиро Об абсолютах топологических пространств и непрерывных
отображений. “Доклады Академии наук СССР”, 226, №3 (1976), 523–526.

[51] Р.Энгелькинг. Общая топология. Москва, 1986. = Ryszard Engelking. General topology.
Warsaw, 1977; Berlin, 1989.

[52] Leonid Bobkov. About the coincidence of weight and network weight for mappings. “Zbornik
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2) to replace the word “continuous” by “irreducible” in Proposition 2;
3) to replace the word “compact” by “Hausdorff compact” in Corollaries 4 and 9 (the Russian

term “бикомпакт” means “Hausdorff compact space”).
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