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SHEAVES AND %a-BICOMPACTIFICATIONS OF MAPPINGS

V. M. ULYANOV

ABsTRACT. The paper is devoted to an investigation of relations between bi-
compactifications of mappings and sheaves of algebras. Bicompactifications of
mappings are a generalization of compactifications of topological spaces, and
sheaves of algebras take place of algebras of continuous bounded functions on
topological spaces.

The first section contains a historical review of main constructions and
notions used in the paper as well as a short introduction to the theory of
bicompactifications of mappings. In particular, we state here basic definitions
and recall some statements about bicompactifications of mappings that were
obtained earlier.

In the second section some new topological properties of the fan product
and the inverse limit are proved.

The third section contains important constructions which are used for an
upbuilding of bicompactifications of mappings. Several new properties of these
constructions are proved.

The fourth section is devoted to a definition and an investigation of al-
gebras of functions on mappings. In this section a natural topology on these
algebras is defined; the class of globally completely regular mappings is singled
out for which such algebras play a role similar to that of algebras of continuous
bounded functions on completely regular spaces; a functor from the category
of mappings to the category of perfect globally completely regular mappings
is constructed which preserves algebras of continuous “bounded” functions on
mappings; a correspondence between “mappings” of mappings and homomor-
phisms of their algebras is investigated.

In the fifth section sheaves of algebras connected with mappings are defined
and investigated.

The sixth section contains a proof of the main result of the paper: there
exists a one-to-one correspondence preserving the order between the set of
all Ta-bicompactifications of a given mapping and the set of all sheaves of a
special kind.

In the seventh section we define maximal closed ideals of sheaves of alge-
bras; relations between these ideals and points of Ta of a given mapping are
investigated.
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§ 1. BASIC CONSTRUCTIONS AND NOTIONS

1.1. This section contains a historical review of basic constructions and notions
used in the paper.

The term “mapping” will mean “continuous map”. No axioms of separability will
be assumed. The symbol [A]x stands for the closure of the set A in the topological
space X.

For mappings we write subscripts and superscripts on the left rather then on the
right, that is, we write 27 instead of 7> and so on. This is somewhat unusual but
more convenient since we can write, for example, 27# and *7 7! instead of (72)%
and (72)71 (see [35]). Analogously, [A \ B]x is shorter than Clx(A\ B).

A. Constructions

1.2. The fan product of topological spaces relative to given mappings is a topo-
logical version of the well-known fibred product in the theory of categories (see, for
example, [61], the item 1.5.4). The fan product have been described, for example,
in the book [3] (§2 of Supplement to Chapter I), but for our purposes its discus-
sion there is not sufficiently detailed, so that we shall investigate this construction
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in §2. We shall also discuss some properties of the well-known inverse limit (see,
for example, [3], §1 of Supplement to Chapter I).

1.3. In the item 3.1 a construction is described which have been investigated
in the papers [43] and [46]. This construction was used for an upbuilding of the
absolutes and compactifications of topological spaces and their mappings, for an
upbuilding of completely regular spaces which have not compactifications of special
kinds.

Two partial cases of this construction were known earlier: first, the partial topo-
logical product which was investigated in the paper [35] and can be obtained if
G, = O, for all @ € A (see the item 3.1); the partial topological product was used
for an upbuilding of universal spaces in dimension theory (see, for example, [35],
[41] or [59]); second, the construction which was described in the paper [49] and can
be obtained if |G| =1 for all « € 2; this construction was used for an upbuilding
of a great number of Hausdorff compact spaces with “pathological” properties in
dimension theory and in the theory of cardinal-valued topological invariants.

B. Properties of mappings

1.4. Definition. A class € of topological spaces will be called closed if the fol-
lowing conditions are fulfilled:
1) there exists Z € € such that |Z] = 1;
2) if Z, € €forall a € A then [[{Zy: € A} € €
3)if Ze &and Z' C Z then Z' € €.
Further on the symbol “&” will always denote a closed class of topological spaces.
1.5. Definition. A family a of locally closed subsets of a space Y will be called
closed if the following conditions are fulfilled:
1) @€ a
2) if G1, Gy € a then (G1UG2)\(GTUG§) € a where G* = [G]y\G for G C Y
3) if G C Y is a locally closed subset such that for each point y € G there
exist a neighborhood Uy C Y and a set G, € a satisfying the condition
GNUy C Gy then G € a.
Particularly, if G € a and G’ C G is a locally closed subset then G’ € a.
Further on the symbol “a” will always denote a closed family of locally closed
subsets of a topological space Y.
1.6. Definition. We shall say that a mapping f: X — Y has the property T¢a
if for an arbitrary point x € X in each of the following two cases
a) for every point 2’ € f~!fx\ {z} and
b) for every neighborhood Uz C X
there exist a neighborhood Ofx C Y, a set G € a, a space Z € € and mappings
g: Ofx\G — Z and g: f~'Ofx — Z such that [Gly NOfz =G, §li-10fa\c) =
= gflf-1(0f2\c) and, respectively,
a) gx’ # gz or
b) gz ¢ [g(f1Ofz\Ux)]z.
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1.7. If & is the class of all completely regular spaces then we shell write Ta
instead of T¢a. In this case we can always take Z = R (the space of real numbers)
or Z = [0,1] in Definition 1.6. If a is a family of all discrete (in itself) locally closed
subsets of the space Y then we shall write T¢ instead of T%a. In this case we can
always suppose that |G| < 1 in Definition 1.6. If the above assumptions are both
fulfilled, we shall write simply <.

Definition 1.6 is more general than the corresponding definition of the paper [43],
but all statements and their proves remain valid (it is possible to omit the operators
of the closure in Lemma 5 in [43]).

The property %a and the construction described in the item 3.1 are connected.
Namely, the following two statements are valid.

1.8. Assertion ([43], Lemma 5). The mapping ®m: Yo =% Y constructed in
the item 3.1 has the property T€a, where € is any closed class of topological spaces
containing {Zy : o € A} and a is any closed family of locally closed subsets of the
space Y containing {Gq : a € A}.

1.9. Assertion (a consequence of Lemma 6 of the paper [43]). If a mapping

f: X — Y has the property T¢a then there exist a mapping *m: Yy oo,y
and a homeomorphic embedding fo: X — Yy such that f = %7 fy, where Yy =
=P, {Za},{G0a}, {00}, {ga},ax € A), Zy € € and G, € a for all a € A (see
3.1-3.2).

1.10. Mappings with the property T¢a have been defined in the paper [43] and
they have been investigated in the papers [45], [47] and [42]. The property T%a is an
analog of &-regularity of topological spaces ([57]). An analog of the &-compactness
is defined for mappings in the paper [5].

Mappings with the property %a are analogous to completely regular spaces.
These mappings admit a great deal of structures which exist in completely reg-
ular spaces. For example, in the paper [42] the notion of a normal base is studied,
in the paper [25] the concept of a subordination on a mapping is defined, in the
papers [6], [53] and [56] uniformities on mappings are discussed. The weakest prop-
erty Ta can be obtained if a is the family of all locally closed subsets of the space
Y. Mappings with this property have been called Tychonoff mappings in the pa-
per [34], where a great number of properties of mappings has been defined which
are analogous to properties of topological spaces (see also [52]). Some of them are
included in the book [58]' (without direct references).

Earlier, in the paper [40], the property T has been defined for mappings of
completely regular spaces. The paper [44] is connected with the paper [40] and is
devoted to related properties. In the paper [27] subordinations on mappings with
the property ¥ have been defined.

Some of earlier defined properties of mappings are equivalent to properties T¢a
for suitable € and a. For example, the following two statements are valid.

IThe term “fibrewise topological space” in [58] corresponds to the term “mapping” in [34] and
SO on.
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1.11. Assertion. A mapping f: X — Y is dividing ([9], Definition 1) iff it
has the property T¢a where ¢ = {Z : Z is completely reqular and ind Z = 0} and
a={G CY :G is locally closed}.

1.12. Assertion ([44] - for regular X and Y). a) If a T5-mapping ([34]) f: X —
— Y is completely closed ([49]) then the mapping [ is closed and has the property
T¢ where € is the class of all topological spaces, and the set Y \ fX is discrete and
clopen in'Y.

b) If a mapping f: X — Y is closed and has the property T where € is the
class of all topological spaces, and the set Y \ fX is discrete and clopen in'Y, then
the mapping f is completely closed.

1.13. Remark. a) If a = {@} or |Z] < 1 for all Z € € then each mapping
f: X — Y with the property T%a is a homeomorphic embedding.

b) If a is a family of all locally closed subsets of the space Y and € is the class
of all topological spaces, then each mapping f: X — Y has the property T¢a.

c) If ¢ C &, and a7 C ap, then every mapping with the property T¢1a; has the
property T¢2as.

d) If a mapping f: X — Y has the property T%a, X' C X, fX' CY' CY,
GNY’' ed for all G € a where ¢ is a closed family of locally closed subsets of Y/,
then the mapping f' = f|x/: X’ — Y has the property T¢a’.

1.14. Definition ([55]). A mapping f: X — Y will be called separable if any
two distinct points z1,x9 € X such that fz; = fao have disjoint neighborhoods
in X.

1.15. Lemma ([43]). If every space Z € & is Hausdorff, then each mapping with
the property T¢a is separable.

C. Compactifications of mappings

1.16. Definition ([63]). Let f: X — Y be a mapping such that [fX]y =Y. A
mapping f,: vy X — Y will be called a compactification of the mapping f if the
following conditions are fulfilled:

1) the mapping f, is perfect;
2) X CupX,

3) fv|X =f;

4) [Xo,x = vy X.

1.17. It has been proved in the paper [63] that a mapping of a Hausdorff locally
compact space onto another such space has a compactification. An analogous state-
ment has been proved in the paper [54] for mappings of completely regular spaces
onto regular spaces. The statement that any mapping has a compactification is a
partial case of results of the paper [43]. The problem on the existence of separable
compactifications of mappings has been studied in the paper [26].2 Various prob-
lems on compactifications of mappings in the sense of Definition 1.16 have been
considered in the papers [11]-[15], [18], [21]-[23], [29]-[34], [36]-]39], [56], [60].

It is possible to obtain a definition of an extension of a mapping if one replace
the condition 1) in Definition 1.16 by another suitable condition. Such extensions
have been studied in the papers [4], [5], [11]-[13], [20].

It should be mentioned that the notion of an extension of a topological space can
be considered as a partial case of an extension of a mapping (a mapping X — {x}
onto the one-point space corresponds to the topological space X # ).

2V.A.Matveev asserts that his proof of Corollary 1 in the paper [26] is incomplete, but a
counter-example is not known. A correct condition can be found in his thesis “Crpykrypst
[OAYMHEHNH, CBsA3aHHbIX ¢ orobpaxkenusmu” (Mocksa, 1990).
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D. Covers of topological spaces

1.18. Definition ([64]). A cover of a topological space Y is a perfect irreducible
mapping f: X — oo,y
Usually it is convenient to say that the space X is the cover of the space Y.

1.19. The most important cover of a topological space is its absolute. Absolutes
for all topological spaces have been constructed in the paper [43]. Other covers have
been studied too (see, for example, the papers [1], [10], [16], [17], [62]). Different
general constructions of covers can be found in the papers [1], [2], [16], [17], [62],
[64]. The paper [24] contains a method to construct all separable (in the sense
of Definition 1.14) and all Tychonoff (in the sense of the paper [34]) covers of an
arbitrary topological space.

It is noted in the paper [64] that the notions of an extension and of a cover
of a topological space are analogous. However, the notions of a compactification
of a mapping and a cover of a topological space are much more similar (compare,
for example, the papers [26] and [24]). All these notions are partial cases of an
extension of a mapping which can be obtained if we replace the conditions 1) and 5)
of Definition 1.21 by other suitable conditions. Definition 1.21 has been formulated
in the paper [43] to unify the notions of a compactification of a mapping (and,
particularly, of a topological space) and of a cover of a topological space. This is,
probably, the best version; the condition 5) could be replaced by other conditions
to obtain bicompactifications with special properties.

E. T¢a-bicompactifications of mappings

1.20. Definition ([43]). A mapping f: X 2% Y will be called irreducible mod-
ulo X' C X if every closed set F' C X, which satisfies the conditions X’ C F' and
fF =Y, coincides with X (or, that is equivalent, if for each non-empty open set
U C X the set (UNX')U f#U is non-empty too?).

In a usual way we can prove that if a mapping f: X M0, Y and a set X’ cX
are given such that for each y € Y\ f[X']x the space f~ly is compact then the
mapping f can be reduced modulo X', that is, there is a closed set ' C X such
that fF =Y, X' C F and the mapping f|r is irreducible modulo X".

onto

1.21. Definition ([43]). A mapping f,: v;)X —> Y will be called a T%a-
bicompactification of a mapping f: X — Y if the following conditions are fulfilled:

1) the mapping f, is perfect;

2) X CupX,
3) fv|X = f;
4) the mapping f, is irreducible modulo X;
5) the mapping f, has the property T¢a.

X4>UfX

N

onto onto

1.22. Definition ([43]). Let f,: vy X —> Y and f,: w;X —— Y be T%a-
bicompactifications of a mapping f: X — Y. We shall write f, > f, if there is a
mapping ,,¢: v X — w¢X such that f, = f, ¢ and {,px =z for all z € X.

3Let us recall that f#U = {y e fX : f~ly CU}.
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v

\/

onto

1.23. Definition. ‘Iea—blcompactlﬁcatlons forvp X —

onto

— Y and f,: wy X — onto,
—— Y of a mappmg f X — Y will be called equivalent if there exists a homeo-
morphism 7 p: vy X onto, wyX such that f, = fu ¢ and j,por =z for all z € X.

In general the mapping ¢, ¢ in Definitions 1.22 and 1.23 is not unique, and there
are non-equivalent T¢a-bicompactifications f, and f,, such that f, > f,, and f, >
> f,, but this is impossible in the case of separable T*a-bicompactifications (for
example, if all spaces of the class € are Hausdorff).

1.24. The existence of T¢a-bicompactifications has been considered in the pa-
per [43]. Properties of the largest separable T€a-bicompactifications have been
investigated in the paper [45]. Constructions of all T-bicompactifications and
Ta-bicompactifications by means of subordinations have been described in the
papers [27] and [25]. The main results of the papers [43] and [45] about T¢a-
bicompactifications are following.

F. The existence of T¢a-bicompactifications

1.25. Theorem. If each space Z € €& has a compactification vZ € & then
each mapping f: X — Y with the property T%a has a T€a-bicompactification
fv va onto onto, v,

1.26. Corollary. If each space Z € & has a Hausdorff compactification vZ €
€ € then each mapping f: X — Y with the property T€a has a separable T€a-
bicompactification f,: vy X —— ooy,

onto

1.27. Lemma. Let f,: vs X — Y be a TE€qa-bicompactification and
fw' wa onto
— Y such that f, > f,,. Then the mapping ,,¢: v¢X onto, wrX satisfying the

conditions f, = fuw o and b px = x for all x € X, is perfect, “onto”, irreducible
and is determined by these conditions uniquely.

1.28. Corollary. Let f,: v¢ X Y and f: wrX 22 Y be separable T¢a-
bicompactifications of a mapping f: X — Y such that f, > fo, and f, > f,.
Then the mappings o and ¢ are mutually inverse homeomorphisms, and the
TC€a-bicompactifications f, and f, are equivalent.

1.29. Assertion. Let {f, : a € A} be any non-empty set of (separable) T¢a-

onto

bicompactifications fo: v X — Y, o € A, of a mapping f: X — Y. Then there

onto

Y be a separable T€a-bicompactification of a mapping f: X —

is a (separable) TEa-bicompactification f,: vy X ——=Y of the mapping f such that

fo = fa for all a € 2.

1.30. Proposition. For every mapping f: X — Y there exists the set €(f) of
all pairwise non-equivalent separable T€a-bicompactifications of this mapping. The
relation “=7 is a partial order on the set C(f).

Of course, it is possible that the set €(f) is empty.
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G. The largest T¢a-bicompactifications and T¢a-absolutes

1.31. Theorem. If the mapping f: X — Y has at least one separable T€a-

bicompactification then it has the largest separable T€a-bicompactification
onto

fa: By X —=Y (of course, fa is unique).
1.32. Corollary. If each space Z € € has a Hausdorff compactification vZ €
€ & then every mapping f: X — Y with the property T€a has the largest T¢a-

onto

bicompactification fg: 5 X —— Y (obviously, fs is separable).

1.33. Let us consider a mapping f: @ — Y with the empty domain. Obviously,
the identical mapping iy : Y 2y isa separable T¢a-bicompactification of the
mapping f for any closed € and a. Hence, the mapping f has the largest separable
T¢g-bicompactification p: agY M0y, The space agY is called the T¢a-absolute
of the space Y.

Ta-absolutes of topological spaces have been studied in the paper [62].

Obviously, each T¢a-bicompactification of the mapping f: @ — Y is a cover of
the space Y'; hence, we get the following statement.

1.34. Corollary. Fach topological space Y has the largest separable cover
pracY MO Y with the property T¢a.

1.35. Assertion. If a family a contains all boundaries of reqular closed subsets
of a space Y, and there is a space Z € & such, that there exists an open subset

U C Z satisfying the condition @ # U # Z, then the T¢a-absolute of the space Y
coincides with the absolute of the space Y.

1.36. Assertion ([62]). If a is the smallest closed family containing all nowhere
dense zero-sets of a completely reqular space Y, then the Ta-absolute of the space
Y coincides with the sequential absolute oY ([10]) of the space Y.

1.37. Theorem ([45]). Let a mapping fi1: X1 — Y1 has the largest separable

onto

Ty -bicompactification fig: B Xh —= Y1, for Xo onto, Y5 be a perfect separable
mapping with the property T%2as, hy: X1 — Xy and hy: Y1 — Ya be mappings such
that hof1 = faohy and h;lG € ay for all G € ay, € C &;. Then there exists a
mapping h: By, X1 — Xo such that foh = hafig and h|x, = h1. Moreover,
1) if the mapping ho is perfect or separable then the mapping h is, respectively,
perfect or separable too;
2) if for each G € a; the set G\ [f1X1]y, is nowhere dense in Yy then the
mapping h is unique.

X1 m X,
& /
fl ﬁflxl f2
/ﬁ
Yi e Ys

1.38. Corollary. Let p;: aje, Y1 onto, Y] and py: age,Ys onto, Y5 be the largest
separable covers with the properties T a; and T€2ay respectively, € C &, and
h:Y, — Ys be a mapping such that h™*G € a; for all G € ay. Then there is a
mapping h: die¢, Y1 — aog, Yo such that inL = hp1. Moreover,

1) if the mapping h is perfect or separable then the mapping h is, respectively,
perfect or separable;
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2) if each set G € ay is nowhere dense in 'Yy then the mapping h is unique.

h
are, Y1 — az¢, Y2

P1l le
e
1.39. Corollary ([50]). Let qY1 and qYa be absolutes of topological spaces Yi

and Yy respectively, q1: qY1 onto, Y1 and q3: qYs onto, Ys be their projections,
h:Y: — Yo be a mapping. Then there exists a mapping h: qYi — qYs such that
g2h = hq1. Moreover,
1) if the mapping h is perfect or separable then the mapping h is, respectively,
perfect or separable;
2) if for each regular open set U C Yy the set h™Fry,U is nowhere dense* in
Y1 then the mapping h is unique.

1.40. Corollary (it seems to be new). Let oY1 and oYa be sequential absolutes

of completely regular spaces Y1 and Yy respectively, o1: oYy onto, Y7 and

02: 0Y> onto, Y5 be their projections, h: Y1 — Y5 be a mapping such that for each
nowhere dense zero-set G C Yy the set h™'G is nowhere dense in Yy. Then there
erists a unique mapping h: oYy — oYy such that osh = hoi. Moreover, if the
mapping h is perfect or separable then the mapping h is, respectively, perfect or

separable.

1.41. Remark. It is possible to eliminate the property T¢a from statements 1.25,
1.27-1.32, 1.34 using Remark 1.13 b).

H. Sheaves

1.42. In §4 and §5 we construct and investigate an object connected with a given
mapping which corresponds to the algebra of continuous bounded functions on a
given topological space. An analogous problem has considered in the papers [19],
[18].

A required object is a sheaf. Unfortunately, a usual sheaf over a topological space
is not convenient to describe Ta-bicompactifications of a given mapping with the
property ¥a, therefore we have to use a more general definition. We re-formulate
Definition 0.31 of the book [8] in a convenient way for our special purposes.

The symbol “T” will denote further on a partially ordered set. We shall denote
the relation of the partial order by the symbol “C”. We shall also suppose that for
each t1,to € T there exists min{¢1,t2} € T which will be denoted by ¢; N ts.

1.43. Definition. We shall say that a Grothendieck pretopology is given on the
set T if for each ¢t € T a family P(t) of subsets of T is given satisfying the following
conditions:

1) ifteT,y€ P(t) and t' € v, then t' C ¢;
) if t € T, then {t} € P(t);
3) ift,t' €T, t' Ctand {t,: € A} € P(t), then {t, Nt': v € A} € P(t');
) ifteT, {to:a€ A} € P(t) and {tap : B € By} € P(t,) for all « € A, then
{tap : B € By, € A} € P(1).
Elements of P(t) are called coverings of the element t € T.

4Let us recall that Frx A = [A]x N[X \ A]x is a boundary of a set A C X.
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1.44. Definition. We shall say that a presheaf C of sets is given on the set T
if for each t € T a set C(t) is given, and for each t1,ts € T such that t; C ¢5 a
(restriction) map {*h: C(t2) — C(t1) is given satisfying the following conditions:
1) th: C(t) — C(t) is an identity map for every t € T}
2) if t1,t2,t3 € T and t; C to C t3 then h = *h 2h.
1.45. Definition ([61], the item 4.5.2). Let C be a presheaf on the set T and let
v C T and gy € C(t) for all t € v. The set {g; : t € v} will be called compatible if
for each t1,ts € 7y the equality tmg hgt, = tmﬁ; hgt, holds.

1.46. Definition. A presheaf C on the set T with a given Grothendieck pre-
topology {P(t) : t € T} will be called a sheaf if for each element ty € T, a covering
v € P(ty) and a compatible set {g; : t € v} there is a unique element g € C(ty)
such that {°hg = g, for all t € .

1.47. Example. Let Y be a topological space and T be the set of all open
subsets of the space Y (that is, T is the topology of the space Y). For each U € T
let P(U)={y CT:Uvy ="U}. Itis easy to verify that {P(U) : U € T} is a
Grothendieck pretopology and that C is a sheaf on the set T with this pretopology
iff C is a sheaf over the space Y (see [61], Definition 4.5.1, or [8], Definition 0.23).

1.48. We shall consider sheaves of topological algebras. In this case restriction
maps are supposed to be continuous homomorphisms.

In §6 we shall show that there is an order isomorphism of the set €(f) of all
Ta-bicompactifications of a given mapping f: X — Y with the property Ta onto a
set of sheaves with special properties.

In §7 we shall consider closed maximal ideals of sheaves of topological algebras
of continuous functions on Ta-bicompactifications of mappings.

§ 2. THE FAN PRODUCT AND THE INVERSE LIMIT
A. The fan product

2.1. Let mappings “7w: Y, — Y, a € A, be given. The fan product of the spaces
Y., relative to the mappings *m, a € A, is the set Yo = [[{ ({Yo}. {*7},a € A) =
={{y, iy e} e [[{Y, : v € A} : ¥y, = Pryg for all o, B € A}, equipped
with the topology of the subspace of the product [[{Ya,a € %}. Let 27: Yy — Y,
be the restriction of the projection *p: [[{Y, : v € A} — Y, of the product to
its factor for each a € 2A. Due to the definition of the fan product the equality
oy =Br %‘71‘ holds for all o, 3 € A. Therefore the equality #7 = 7 %71, a € 2,
defines the mapping #7: Yy — Y correctly. The mapping #7 will be called the fan
product of the mappings “m, o € A. We shall write #m = [[,{%7 : a € A}.

It is convenient to use the following coordinate representation of the fan product
(it follows from Proposition of the book [3], §2 of Supplement to Chapter I): Yy =
=[Iy{Yot. {7t ae ) = {{y,za :a €A} 1y €Y, 2, € *n 'y for all € A}.
Then we have the equalities *7{y, z, : @ € A} = y and %‘W{y, Zo i €A} =25 €
€lrly CYsforal B Aand {y,2,: €A} € Yy.

For each B C 2 let us define a mapping gm: Yo — You = [[y, ({Yau}, {®7},a €
€ B) by the equality Jm{y, 20 : @ € A} = {y, 24 : @ € B} for all {y,z, : €A} €
€ Yy. Of course, *m = Br {1 and 27 = Pr {7 for all a € B.



514 V. M. ULYANOV

[T{Ys : aGQl}<—Ym

RN

Yg <Yy

71'
an B

Y
Let us note that the space Y(,; is naturally homeomorphic to the space Y, for
each a € 2; we shall identify these spaces and corresponding mappings (**7 and
(0%
.
If % C 2 then we shall call the mapping Q[\%ﬂ' parallel to the mapping B

T
Yo ——Yy

A
A T
m\%”l l%w
A\ B

Yo — =Y

Further on we shall assume that Yy is the fan product, without specifying it
each time.

The following statements 2.2-2.5 can be proved by a comparison of corresponding
sets and topologies.

2.2. Proposition ([3]). For each pointy € Y the space *m =y is homeomorphic
to the space [[{*n~ty : a € A}. In particular, if 7Yy =Y for all a € A, then
mTl’Yg{ =Y.

2.3. Proposition. Let z € Yo\ and y = NBro.  Then the mapping %7‘(‘

-1 B

maps the space m\;l” z onto the space P~y homeomorphically. In particular,

if BnYs =y then Ql\;lﬂ‘YQ[ = Yaonm-

2.4. Proposition. Let A be a family of pairwise disjoint subsets of the set
such that | J{B : B € A} =A. Then the fan products Yo = [[y ({Ya}, {7}, a € A)
and Ya =[[y ({Y}, {®7},B € A) are naturally homeomorphic and (if we identify
Yo and Ya) Am =%r, fm=%w for each B € A.

2.5. Proposition. Let A be a family of subsets of the set A such that | J{B : B €
€ A} =2, and let A be directed by the relation “C”. Let S = {Yp, a7 : B, B’ €
€ A8 C B} be an inverse spectrum. Let Yg = }iLnS, Sr o= @%w and %w be
the projection of the space Ys to Yo, B € A (for the definitions see [51], §2.5).
Then the fan product Yy and the space Ys are naturally homeomorphic and (if we
identify Yo and Ys) 57 = %n, om = %7 for each B € A.

2.6. In the following seven items we shall prove statements about the existence
of mappings connected with the fan product; also we shall prove that the fan
product preserves the following properties of mappings: to be perfect, or separable,
or uniquely reducible, or to have the property T¢a. Analogous statements will be

proved for the inverse limit of mappings. Other properties of the inverse limit can
be found in the books [3] and [51].

2.7. Proposition. Let mappings f: X — Y and fo: X — Y, a € A, be given
such that *wfo, = f for all a € A. Then there is a unique map fo: X — Yy such
that 27 fo = fao for alla € A. The map fo is continuous and satisfies the condition

Anfa = f.
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Y

Proof. Obviously, the map fy has to be defined by the equality fox = {fz, foz :
a € A} for all x € X, and it satisfies the required conditions. The continuity of the
map fy follows from the definition of the topology of the fan product (see [3], §2
of Supplement to Chapter I, and [51], Proposition 2.3.6). O

2.8. Proposition. Let Xo = [[v({Xg}, {°p}, 8 € B), Tp = [[{’p, 8 € B}
and Yo = [[y ({Ya b, {*7},a € A), *rn = [[y {7, € A}. Let h: A — B be a
map, and let mappings f: X =Y and of: Xpa — Yo, @ € AU, satisfy the equality
o f = fp for all o € A. Then there exists a unique map o f : Xos — Yo such
that 2w o f = of B0 for all a € A. The map of is continuous and satisfies the
equality *mo f = f 2p.

X% Qlf Ym
w 2
By Xha L> Y., oA
hcxp x
f
X Y
Proof. We can define the mappings fPp: X3 — Y and afhgp: Xyu — Y,,
a € 2, and use Proposition 2.7. O

2.9. Theorem. a) If all mappings *n: Yo, — Y, a € A, are separable, then the
mapping * is separable too.

b) If B C A and the mapping T is separable then the parallel mapping m\gﬂ i
separable too.

Proof. a) Let x1,x9 € Yy be points such that z1 # x5 but Arzy = Arzy. Then
there exists a € 2 such that %7z, # 27ze. Since the mapping %7 is separable,
there exist disjoint neighborhoods U 27zy, U #7ze C Y,. Their preimages under
the mapping 27 are disjoint neighborhoods of the points x1 and 5.

b) Let x1,x2 € Yy be distinct points such that m\gwxl = Q[\;W{EQ. By Propo-
sition 2.3 points y; = %71’.’1?1 and yo = %ﬂxg are distinct but Pry; = Pry,. Since
the mapping P is separable, there are disjoint neighborhoods Uy, Uy, C Yis.
Then the sets {7 Uy, and {m Uy, are disjoint neighborhoods of the point x4
and x. O

2.10. Theorem. a) If each mapping ®w: Yo — Y, o € A, has the property T€a
then the mapping *m has the property T€a too.

b) Let B C 2 and the mapping Tw has the property T¢a, and let o’ be a closed
Jamily of locally closed subsets of the space Yo such that NBr-1G ¢ a for all

G € a. Then the parallel mapping m\;lﬂ has the property T¢a'.

Proof. a) We have to consider the two cases of Definition 1.6.
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Let z,2’ € Yy be distinct points such that 7z = %7z’. There exists an index
a € 2 such that 27z # 272’. Since the mapping “ has the property T€a, there are
aneighborhood O%*mx C Y, aset G € aaspace Z € € and mappings g: O%7r2\G —
— Z and Jo: *n'O%*rz — Z such that [Gly N Oz = G, Jaler—1(0%mn\q) =
= 9T |ar-1(0%ra\) and Go27x # Godmar'. Then the mapping § = Go 7|2 r—10%rg
has all necessary properties.

B <
ar 0%z \ G) 10 %z Yo

9o Ja
o o o
a 7 P .

L0\ @) / < Ar=10 ¥ e
\?) Araw\ G 0¥z

Let x € Yy be any point and Uz C Yy be its neighborhood. By the definition
of the fan product there are a finite set B C 2l and neighborhoods U 27z C Y,
a € B, such that z € N{Z7 WUz : o € B} C Uz. Since each mapping
“r, a € B, has the property T¢a, for every a € B there exist a neighborhood
021z CY, aset Gy € a, a space Z, € € and mappings go: O ma \G — Z,
and §o: 710, 1r — Z, such that [Goly N O e = Gy, Jalon—1(042ra\G) =
= 9aT|or-10,%me\G) a0d Jarmx & [fo(*m 0o w2 \ U Xnx)|z,. Then we can
take O %7rx = {0 2z :a € B}, G=U{GaNO*rz: a0 e B}, Z=[[{Za: €
€ %}7 g = A{Qa'OQ"n’x\G S %} (OB \ G — Zand g = A{gagﬂ—‘mﬂflOQ‘ﬂ'x :
a €B}: 27710 rr — Z (the diagonal mapping; see [51], §2.3).

Obviously, [Gly NO%rz = G and jla,-10 Ara\G) = 92 7la-1(0 A\ G)-

Let Vo = Zo \ [Go(®m 20z \ U2nz)|z., @ € B; then 'V, C Urx
is a neighborhood of the point 7z for all o € %B. Therefore the set V =
=37 15 WV :a € B} CN{3 7 U nz : o € B} C Uz is a neighborhood of
the point x. We have the equality V = N{*7 719, Va:a € B} = ' [[{Va:a €
€ B}, hence, gz € [[{Va : @ € B} C[[{Za: a € B}\[§(*7 10 %72\ Ux))z, that
is, the mapping %7 has the property T¢a.

b) We have to consider the two cases of Definition 1.6

[«

Let z,2' € Yy be distinct points such that m\%lwx = m\%lmc'. By Proposi-
tion 2.3 we have %ﬂx #* %mc'. Since the mapping 27 has the property T¢a,
there exist a neighborhood O%mx C Y, a set G € a, a space Z € ¢ and map-
pings g: O%nz \ G — Z and §: Pn~'O%¥7r2z — Z such that [G]y N O%*rz = G,

glwr-1(02mn\q) = g%w|%ﬂ71(om”\g) and jamr # jama’. Then the sets O' =
= Om\;lmc =MBr-10%rz, G’ = *\Pr~1G and the mappings ¢’ = g™\ r|on g
have all necessary properties.

=1 =AU
and ¢’ = gwlm\;rlo,
c c
Br=1(0%7rz\ G) = Br10%ny —> Yo
g ‘(%w l‘sﬂ'
<
O¥rz Y

An

R

[a]

c
NBr-1(0 %z \ G) AMB 1) A - Yonm
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Let = € Yy be any point and Uz C Yy be its neighborhood. By Proposition 2.4
and by the definition of the fan product there are neighborhoods U m\gwx C Yonm
and Ugéwm C Yy such that x € m\;‘W*lUm\gmc N %wilU%mc C Uz. Since the
mapping 27 has the property T€a, there exist a neighborhood O%*r2z C Y, a set
G € a, a space Z € € and mappings g: O%*rx\ G — Z and §: Pr10%7r2x — Z
such that [G]ly N O%*mz = G, gl® 10 2r2\@) = 9%l -1(0 2rz\G) and Jamr ¢
¢ [g(Br 107z \ U J7x)]z. Then the sets Om\;[m: = Um\;lﬂx NANBr=10 %Ay,

G = Um\;lﬂ'l‘ N2WBr=1G € a and the mappings ¢ = gm\%ﬂom\;‘m\@ and
J=g %ﬂm\;‘rloﬂ\;‘m have all necessary properties. ]

2.11. Theorem. a) If B C 2 and the mapping P 7 is perfect, then its parallel
mapping m\%” 18 perfect too.

b) If all mappings “w, o € A, are perfect then the mapping * is perfect too.

Proof. The mapping 2{\;[” is compact due to Proposition 2.3. Let us take
any point z € Yy and prove that the mapping m\;lw is closed at the point z.

Let us denote & = 2,y = NPy, F = Brly(= m®). Note that the
A\ B

2
a\s™

set Q[\;LWYQ[ = 7 1 B1Yy is closed since the mapping P is perfect. Hence, if

z ¢ Ql\%ﬂ'YQ[ then there exists a neighborhood Uz C Yy i3 such that Uzﬂm\gﬂYm =
= &, therefore the mapping m\;‘ﬂ' is closed at the point z.
Let us suppose that z € 91\;‘71'}/91 and let U® C Yy be any neighborhood. We

have to find a neighborhood Uz C Yy 9 such that Q{\gw_le CU®.

By the definition of the fan product, for each point x € ® there are neighborhoods
Urz C Yonm and U%m: C Yy such that x € Ux = Ql\;[71'_1Uwz N %W_IU%WI -
C U®. The set {Ux : © € ®} is an open covering of the compact set ®. Let
{Uz; : i = 1,2,...,n} be a finite subcovering, V3 = ({Uy,z : i = 1,2,...,n},
Vo = {U%nmz; i =1,2,...,n}. Thenz € V4, F C V, and ® C m\;‘w—lvl N
N %ﬂ'_lVg C U®. Since the mapping 7 is perfect, there exists a neighborhood
Vy C Y such that F C Bx~'Vy C V5. Then the set Uz = V; N\ Br—1Vy satisfies

the condition ® C m\gw_le = m\gw_lVl N m\gw_l g[\%77_11/:1/ = m\gw_lVl N

ﬂ%w‘l Br-lyy C Q‘\;‘n—lvl ﬂ%ﬂ_lVg C U®, that is, the mapping m\;‘ﬂ' is closed
at the point z.

b) The mapping * is compact due to Proposition 2.2. Note that the set 7Yy =
= [({*7Y, : a € AU} is closed since all mappings “m, o € 2, are closed, therefore the
mapping 27 is closed at any point y € Y\ *7Yy. Let us take any point y € #wYy
and prove that the mapping %7 is closed at the point y.

Let ® = *77 'y and U® C Yy be any neighborhood. For each point z € ®
there exist a finite set B, C 2 and neighborhoods Ugmc CY,, a€ B, such
that v € Uz = N{27 U %7mr : a € B,} C UP. The family {Ux : z € ®} is
an open covering of the compact set ®. Let {Uz; : ¢ = 1,2,...,n} be a finite
subcovering, V = (J{Ux; : i =1,2,...,n}, B = J{B,, : i = 1,2,...,n}. Note
that V = %ﬂ’l %WV and ‘B is a finite set, ® CV C U®.

It follows from the statement a) and Proposition 5a) of §10 of Chapter I of the
book [7] that the fan product of two perfect mappings is perfect; by Proposition 2.4,
the fan product of any finite family of perfect mappings is perfect. Therefore the
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mapping P is perfect. Hence there is a neighborhood Uy C Y such that Zx~1Uy C
- %WV, that is, ® C %7~ 1Uy = %W’l Br-lUy C %ﬁ’l %WV =V C U®. This

means that the mapping *7 is closed at the point y. O
2.12. Proposition. If X C Yy is a subset such that the set Og = Y \ 7[X]y,
is open, the mapping ®my = mﬂ—‘i’lﬂfloo: Ar=10, onto, Oy is perfect,® and for

every a € A the mapping “m can be reduced modulo *7X in a unique way, then
the mapping *m can be reduced modulo X in a unique way (that is, there exists
a unique closed subset Yo C Yy such that X C Yy, Q‘?TYQ[ =Y and the mapping
Ar, = 2[7T|K£ is irreducible modulo X).

Proof. We can assume that the mapping 7 is irreducible modulo %7 X for
every o € 2.

We shall assume that the set Op is non-empty; otherwise we could use Yy =
= [X]YQI'

Let us denote by B the family of all open dense subsets of the set Oy. For every
Ue€Blet Fy = [*7 U]y, and let Fy = {Fy : U € B}. The set Fy is closed in
Yo. We shall prove that Oy C %7 Fy.

Let Uy,Us,..., U, € B. The set ({U; : i = 1,2,...,n} is open and dense
in Op. Therefore *7({Fy, : 1 < i < n} = *7({[Pr Wiy, : 1 < i <
n} O Ax[N{*n7U; 0 1 < i < nlyy 2 2w N{Pn'U0; 2 1 < i < n}lag-10, =
Pro?r L N{Ui : 1 <i < n}lo, = [N{Ui:1<i< n}]o, = Op since the mapping
o is closed.

Therefore for each y € Op the family {37 lyNFy : U € B} is a centered family
of closed subsets of the compact space *7 =1y, hence {FyN?*7n~ly: U c B} # 2
and Ql?TFO 2 Oo.

Let us prove that the mapping *m = *7|p qa,-10,: Fo N A7 7100 20, 0y is
irreducible. To this end, let us take any point zg € Fy N *7 10, and prove that

(1) Ar#Uzy # @ for any neighborhood Uz C Ya.

Let Uzg C Yy be any neighborhood. By the definition of the topology of the
fan product there exist a finite subset 2lp C 2l and open subsets U C *7~10,
a € g, such that zg € N{H7" UL : a € Ao} C Uz N*7~ 0. For each a € Ay
let Ul = r=10, \ [U)y, and U, = “x#US U n#UL.

The sets U,, a € 2y, are dense open subsets of O, since for all a € 2 the

I /A

2

mappings “mlaz-10,: *7 'O onto, Oy, are closed and irreducible.
It suffices to prove that ({77 U : a € Ay} # 2, since

An# Uz D At ﬂ{i‘w—lUg o€} = ﬂ{aﬂ#Uao cae At

Obviously, r#UNr# UL = @. Therefore U = ({{Uy, : a € Ao} C (N{¥7# U2 :
a € Ao} U (U{*7#UL : a € Ap}) and U is an open dense subset of Op. If
we assume that N{*7#U0 : a € Ao} = @, then the set J{*77UL : a € Ay}
is an open dense subset of Op, and due to the construction of the set Fy we
have 29 € [Pa L U{n? UL : o € Ao}lyy = U{P7 177Uy, : o € Ao} C
C U7 ' Uslva » @ € Ao}

But the latter is impossible due to the choice of the sets Ul, a € 2y. Hence,

the mapping %, is irreducible. Moreover, it is obvious that if a set I C #7110

is closed in #7710, *7F = Oy and the mapping *7|p: F onto, Oy is irreducible,

then the set F contains all points zy € 7710y which satisfy the condition (1).

5Hence, all mappings aﬂ"aﬁflooi ar—10g Lonto, Op, a € 2, are perfect due to Proposition

5b) of §10 of Chapter I of the book [7].
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Therefore F' = Fy N *1~ 10y, that is, the mapping *|g,-10, can be reduced in a
unique way.
To conclude the proof it suffices to let Y = [X]y, U Fp. O

onto

2.13. Corollary. If X C Yy and all mappings *w: Y, — Y, a € 2, are
perfect and irreducible modulo 27X (or can be reduced modulo *7X in a unique
way) then the mapping *m can be reduced modulo X in a unique way.

B. The inverse limit

2.14. Further let S = {Ym%w a8 € A6 < a} be an inverse spectrum,
*mr: Y, — Y, a €2, be mappings such that “7m = 57rg7r for all o, 8 € AU, B < a.
Let Y = liLnS, Sro= 11Ln"7r and §7r: Ys — Y, be the projection of the space Y
to Yy, a € A (see [51], §2.5).

We can assume that the space Yg is a subspace of the fan product Yy =
=y ({Ya} {*7}, a0 € 2A):

Ys = {{y, 20 :a €U} € Yy : 25 = Gz, forall o, 8 € A, 8 < a}.

To prove that the limit topology of the space Ys coincides with the topology of
the subspace of the fan product Yy it suffices to observe that Yg C Yy C [[{Ya: @ €
e A}.

l\gote that 7 = 7|y, were 7 = [[{*7 : a € A}, 57 = 27|y, for all a € 2,
but %W #+ gwgﬂ for a, 8 € A, B < a, in general.

2.15. Proposition. Let all mappings “m, a € AU, be separable. Then
1) the mappings gm, o, B €A, B < a, are separable;
2) the mappings °m and 5w, a € A, are separable;
3) the space Ys is a closed subspace of the space Y.
Proof. 1) This statement is a consequence of the following fact: if f: X — Y,
g: X — Z and h: Z — Y are mappings such that f = hg and the mapping f is
separable then the mapping g is separable too.

VX
7 h

2) This follows from Theorem 2.9 a).

3) For each o, B € A, B <, let Fop = {{y, 2, 17y €A} € Y : 25 = Gmza}-

Then Ys = ({Fup : @, 3 € A, 5 < a}. Let us prove that the set Fi, 3 is closed in
Yy for every o, 0 € A, 6 < a.

Let a, 0 € A, 8 < a, © = {y,2y : v € A} € Yy \ Fog. This means that
2g = FmE # 2 = Gnze = Gmama. Since the mapping A7 is separable and Przz =
= '671'223 =y, there exist neighborhoods Uzg,Uzj; C Yj such that Uzg N Uz =
=o. Let Uz, = gw_leb; obviously, Uz, is a neighborhood of the point z, € Y.

Y
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Therefore the set Uz = 27~ Uz, N3 7~ 'U 25 is a neighborhood of the point 2 € Ya.
Moreover, if ' € Uz is an arbitrary point, then %mﬂ’ € Uzg and gm Ana € Uzg,
hence, %mc’ #+ gwi‘m’. This means that Uz N F,g = &, that is, the set F,g is
closed. Hence, the set Yy is closed too. O

2.16. Corollary. If all mappings G, o, € A, B < «, are separable, then all
s

projections 2w, a € A, are separable too.

2.17. Theorem. If each mapping “m, o € A, has the property T¢a, then the
mapping S has the property T€a too.

Proof follows from Theorem 2.10 a) and Proposition 2.15 3). O

2.18. Theorem. If each mapping ®w, o € 2, is separable and perfect (and
“onto”) then the mapping ° is also separable and perfect (and “onto”). Moreover,
the mappings S, a € A, and gm, o, €U, <, are separable and perfect too.

Proof. The mapping 7 is separable and perfect by Proposition 2.15 and The-
orem 2.11. The mappings 57, a € 2, and gm o, 3 € A, B < «a, are separable by
Proposition 2.15 and perfect by Lemma 8 of the paper [43].

Let all mappings “m, o € A, be “onto”. Let us take any point y € Y and prove
that the set 7'y = Ys N* 771y is not empty.

Let o € A, and let Iy, = {{y,zy 17 €A} : 25 = Gz, for all B €A, B < af.

Note that F, = ([{Fup : 0 € U, B < a}, where the closed sets F,g, o, 5 € ,
B < «a, were defined in the proof of the statement 3) of Proposition 2.15. Hence, the
set Fy, is closed. Moreover, the set Fyo, = Fy N* 7=y is non-empty, since we can
define a point {y, z, : 7 € A} € F, 4, if we choose any z, € *m 'y, put z3 = 3T Za
for 3 € A, B < a, and choose arbitrary elements z, € "7~ 'y # & for v € A such
that the inequality v < « does not hold.

Since Fyo C Fyg for all o, 8 € A, § < a, the family {F,, : o € 2} is a centered
family of closed subsets of the compact space #7~1y. Therefore we have S~ 1y =
=({Fyo:a €A} #. Hence, S1Yg =Y. O

2.19. Corollary. If all mappings G, o, 3 € A, B < «, are separable and perfect
(and “onto™) then all mappings S, o € A, are separable and perfect (and “onto”).

2.20. Assertion. Let “nYs =Y and X C Yy be a subset such that each map-
ping “n, o € A, is irreducible modulo SwX. Then the mapping 7 is irreducible
modulo X .

Proof. Let U C Yg be an arbitrary non-empty open set such that UN X = @.
We must prove that there is a point y € Y such that 7~y C U.

Let us choose some point & € U. By Proposition 2.2.5 of the book [51] there are
an index a € A and a neighborhood U 7z C Y, such that S7~1U 57z C U. Since
USrzrNS7X = @ and the mapping “7 is irreducible modulo 57X, there exists
a point y € Y such that 7'y C U S7rx. Then we have S~ ly = Sp~lag—ly C
C 577U Smx C U. Hence, the mapping °7 is irreducible modulo X. O

2.21. Corollary. Let X C Ys be a subset and “mw, o € U, be perfect separable
mappings onto Y which can be reduced modulo 37X in a unique way. Then the
mapping S can be reduced modulo X in a unique way.

§ 3. SOME TOPOLOGICAL CONSTRUCTIONS

3.1. Construction. Let non-empty topological spaces Y and Z,, open sets O, C
C Y, sets G, C O,, satisfying the condition [G,]y N O, = G, and mappings
Jo: Ou \ Go — Z,, a € A, be given.

For each o € U let

Yo = ‘B(Y, {Za}a {Ga}» {Oa}v {ga},a € {O‘}) = (Y \ Ga)U(Ga X Za)
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onto

and define the maps “7: Y, —> Y and ®¢: *7~ 10, — Z, as follows:
o zfor 2 € Y\ Gg, o gz for z € O, \ Ga,
T = ’(/}Z =
y for z = (y,t) € Go X Za, t for z = (y,t) € G4 X Zy.

Let us equip Y, with the smallest topology with respect to which the maps ¢
and %1 are continuous. Thus all sets of the form
V(U) =20 and V(U,U,) = 7~ U N~ 1U,,
where U C Y and U, C Z, are open subsets, constitute a base for the topology of
Y.. It is easily seen that

“Plan-1(0,\Go) = Ja " Tlon—1(0,\Gu)-

a—l a\G

NN
< g

O, \ Gao Oq Y
Let us define a space Yo = P(Y,{Zs}, {Ga}, {O0a}, {90}, a € A) as the fan
product of the spaces Y, relative to the mappings “m, a € 2. The mappings
Ar, %7‘(, B C A, and ?7, a € 2, were defined in the item 2.1. For each o € 2 let
2p: Br=10, — Z, be the mapping defined by the equality Z¢ = * 7. It is easily
seen that this construction coincides with the construction of the paper [43], §1.

10 4>Y

A0 \ Ga) — 210, — Y,

110, < / Ya
0a\ Ga = Oa = %
It is convenient to use the following coordinate representation of the space Yy

([43], §l; fory € YV let A(y) = {a € A:y € G }):
Ya={{y, 20 :a€Uy)} :y €Y, 2, € Z, for all o € Ay)}.

3.2. Construction. Let us suppose, in addition, that for all a € 2 the map g, is
defined for all points y € G, too, but it is not necessarily continuous at these points
(in other words, the map go: On — Z, is given, and gq|o,\q, is continuous).

Also let a topological space X and mappings f: X — Y and §o: f 104 — Za,
satisfying the condition go|f-1(0.\Gu) = gaflr-1(0.\G.) for all a € 2, be given.

For each o € 2 let us define the maps ¢, : Y — Y, and f,: X — Y, as follows:

yforye Y\ G,, ! faxforx € f~H(Y \ Ga),
aly = al = -
v (¥, 9ay) for y € Ga, (fz,gaw) for z € f~1Ga.
Obviously, go = *Yfalf-10,, “V@alo, = go and “mpay =y for all y € Y and
a € 2. It is easily seen that the map f, is continuous for every o € 2.

Using Proposition 2.7 we get the mapping fo: X — Yy which satisfies the con-
ditions *7 fo = f and §o = 24 fa|-10, for every a € A (see also [43], Lemma 6).
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g, €
Ya
O\ Ga £ Ou < \Y

For every o € A let X, = [fa X UwaY]y, CY,, and let Xg be the fan product
of the spaces X, relative to the mappings p, = *7|x,, o € 2. It is easily seen that

the space Xy is a closed subset of Yy, faX C Xy and #7Xg = Y; the projections
of Xg onto Y and X, coincide with #*r|y, and #r|y,, a € 2, respectively.

3.3. Proposition. If for some a € 2 every point y € G, has a neighborhood
Uy C O, such that the set [Go f Uy U goUy]z, is compact then the mapping po, is
perfect. If it is true for all o € A then the mapping *|x, is perfect too.

Proof. The second statement follows from the first one and Theorem 2.11 b).
Therefore we have to prove only the first statement.

It is obvious that the mapping p,, is perfect at all points y € Y \ G.

Let y € G,. There exists a neighborhood Uy C O, such that the set Z/, =
= [§of Uy U goUy]z, is compact. Let us consider the space

Z =PUy,{Z,},{Ga N Uy}, {Uy}, {galvpc. }> a € {a})

onto

and the projection *7’: Z —— Uy. The mapping ®7’ is perfect by Theorem 1 of
the paper [43]. It is clear that p;'Uy is a closed subset of Z and Z is a closed
subset of “r Uy, “7’ = %7|z and Palyz1py = “7'[,z1p,- Therefore the mapping
Do is perfect. O

3.4. Proposition. If for each o € A the space Z,, is compact and the set G, \

\ [fX]y is nowhere dense in'Y then the mapping ®m: Yy 2, Y can be reduced

modulo fyX in a unique way (that is, there exists a unique closed subset Yy C Yy
such that faX C Yy, Ql’]TYQT( =Y and the mapping *n vy s irreducible modulo
faX).

Proof. Let a € A and X, = [fo X U1 (Y \ ([fX]y UG4))]y,. The mapping
“7 is perfect due to Theorem 1 of the paper [43]. Moreover, “7X, =Y, fo X C
C X, and the mapping “w|x_ is irreducible modulo f,X since the mapping “7 is
one-to-one on the set “7~1(Y \ G,,) and the set G, \ [fX]y is nowhere dense in Y.

On the other hand, if FF C Y, is a closed subset such that f, X C F and “7F =
=Y then X, C F and, hence, the mapping *m can be reduced modulo f,X in a
unique way. Therefore the mapping 7 can be reduced modulo fyX in a unique
way by Corollary 2.13. O

onto

3.5. Corollary. Let f: X ==Y be a mapping with the property ¢a and X' C
C X be a subset such that the set Oy =Y \ f[X']y is open (for example, it is true
if f is closed), the mapping f|i-10,: 0y onto, Oy is perfect and for each G € a
the set G N Oy is nowhere dense in'Y. Then the mapping f can be reduced modulo
X' in a unique way.

§ 4. ALGEBRAS OF FUNCTIONS ON MAPPINGS

4.1. Further on we shall fix a mapping f: X — Y such that [fX]y =Y until
the item 4.16 (except the items 4.12-4.14 where the condition [fX]y =Y can be
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omitted). Let C*(X) be the algebra of all bounded continuous functions® §: X —
— R with the usual norm ||g|| = sup{|gz| : * € X} and let C'(X) be the algebra of
all continuous functions g: X — R.

A. Algebras of f-bounded functions

4.2. Definition. A function §: X — R will be called f-bounded if for each point
y € Y there exists a neighborhood Uy C Y such that the function g is bounded on
the set f~1Uy.

Let B(f) be the algebra (over the field R) of all f-bounded functions §: X — R,
C(f) = B(f)nC(X). Of course, C*(X) C C(f) as a subalgebra. The following
two statements are very simple (any topology on the set C'(f) is not defined).

4.3. Proposition. If the space Y is countably compact then C(f) = C*(X).

4.4. Proposition. If the mapping f is closed and f~'y is pseudocompact for
everyy € Y then C(f) = C(X).

B. Semi-norms and topologies on algebras

4.5. For every y € Y and g € B(f) let

ny§ = inf{sup{|gz| : x € f'Uy} : Uy C Y is a neighborhood of the point y}.

It is clear that n, is a seminorm on the algebra B(f) for each point y € Y, and
for every y € Y, g € B(f) and € > 0 such that n,g < ¢ the set Uz .y = {y/ €
€Y :nyg < nyg+e} is an open neighborhood of the point y.

4.6. Proposition. If the mapping f is closed then for each g € C(f) andy €'Y
the equality n,g = sup{|gz| : x € f~ 'y} holds.

Proof. Let y € Y and g € C(f). Obviously, n,g > M = sup{|jz| : € f~ly}.
We have to prove the inverse inequality.

Let us take any € > 0. Since the function § is continuous, for each point x € f~ly
there exists a neighborhood Uz C X such that |gz’ — gz| < e for all 2’ € Uzx. Let
Usy = f#J{Uz : z € f~'y}. Then Uy C Y is open since the mapping f is closed
and, hence, “onto” (see 4.1). We have the inequality sup{|gz|: x € f~1U%y} < M +
+e. Since € > 0 is arbitrary, we have n,g < inf{sup{|gz| : z € f~'U°y} : e >
>0} < M.

Thus, the equality n,g = M is valid. O

4.7. Let us take the family of the sets of the form

Vemgo =1{g € B(f) : max{ny (g — go) : y € M} < e},
where M C Y is a finite subset, e > 0 and gy € B(f), as a base of a topology of
B(f), and let us equip C(f) with the topology of a subspace.

It is easily seen (this is a standard definition) that B(f) and C(f) with these
topologies are topological algebras.

C. C(f) and other algebras

4.8. Theorem. The algebra C(f) is closed in B(f).

Proof. Let go € [C(f)]B(s)- It suffices to prove that the function g is continuous.
Let 9 € X and y = fxy. We have to prove that gy is continuous at the point x.
Let € > 0 be an arbitrary number. By the definition of the topology of the
space B(f) the set V= r,1(go) is an open neighborhood of go. Therefore there is a
continuous function g € Ve 1,3(go) N C(f). By the definition of the seminorm n,
there exists a neighborhood Uy C Y such that [gr — goz| < § for all z € ftuy.

OR is the field of all real numbers with the usual topological structure.
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Since the function § is continuous there is a neighborhood Uzy C f~'Uy such that
|gz — gzo| < § for all z € Uxo.

Hence, for any x € Uzy we have

190z — Goxo| = |Gox — gz + g — gro + §To — JoTo| <

- - - . _ ~ e € €
< [gox — gzl + |gz — gwo| + [gzo — Gozo| < 3tgtz=¢

Therefore the function gg is continuous. O

4.9. Proposition. The identity map ix: C*(X) — C(f) is continuous and
ixC*(X) is dense in C(f).

Proof. The map ix is continuous since for every g € C*(X) and any y € Y we
have 5 < |1

Let g € C(f). For every number ¢ > 0 let us set

tif gx > t,
gix =« g if |gz| < t,
—t if g < —t.

It is obvious that g € C*(X) for each ¢t > 0, therefore A = {g; : t > 0} C C*(X).
If Vo mg is any neighborhood of § then for every ¢t > max{n,g : y € M} we have
ny(ge — g) = 0 for all y € M, hence, §; € Vi ag for such ¢, and g € [A]cs) €
c [C*(X)]e)- 0

4.10. Proposition. If there exists a continuous function g: Y — [0,1] such that
the set gY is infinite then the identity mapping ix: C*(X) — C(f)
embedding.

s not an

Proof. Since the segment [0, 1] is compact and the set gY is infinite there is a
point tg € [0, 1] such that tg € [gY \ {to}]r. Let {Unto:n € N={1,2,3,...}} be
a local base of [0,1] at the point .

For every n € N let us choose a point ¢, € gY N (Uyto\ {to}) and a neighborhood
Ut, C [0,1] such that [Ut,]r C Upnto\{to}, and let h,: [0,1] — [0, 1] be a continuous
function such that h,t, = 1 and h,t =0 for all t € [0,1]\Ut,. Let A = {h,gf :n €
€ N}. It is obvious that A C C*(X).

Let go € C*(X) be a function such that gox = 0 for all z € X. We have
19— goll = l|g|| = 1 for all g € A, therefore go & [A]c+(x)-

On the other hand, for any neighborhood V; prgo C B(f) there exists a number
n € N such that M N (Unto \ {to}) = @, hence, ny(hngf — go) = ny(hngf) =0 for
all y € M, that is, hngf € Vz mgo and V argo N A # @5 therefore go € [Alor). O

4.11. Proposition. If the mapping f is closed and for each y € Y the set f~1y
is finite then the topology of the space C(f) coincides with the topology of pointwise
convergence.

Proof. Let Cp(X) be the algebra of all continuous functions g: X — R with
the topology of pointwise convergence. Due to Proposition 4.4 the sets C'(f) and
Cp(X) coincide. Let jx: C(f) onte, Cp(X) be the identity map.

It is obvious that the topology of the pointwise convergence can be defined by
the family of semi-norms

nyg = max{|gz| : x € 1y} = sup{|gz| : x € fly}
forally € fX =Y (see 4.1) and g € C,(X), because f~1y is finite for each y €

€ Y. Due to Proposition 4.6 nyjx = n, for every y € Y, hence the map jx is a
homeomorphism. O
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D. Globally completely regular mappings

4.12. Definition (|34], §7). We shall say that a mapping f: X — Y is parallel
to a completely regular space if there exist a completely regular space Z and an
embedding i: X — Y x Z such that the equality f = pyi is valid, where py : Y x
X Z — Y is the projection of the product Y x Z to its factor Y.

X—>Y><Z

A

Obviously, if a mapping f: X — Y is parallel to a completely regular space then
f is Tychonoff. On the other hand, if the space X is completely regular then the
mapping f is parallel to a completely regular space (we can take Z = X).

4.13. Definition. A mapping f: X — Y will be called globally completely regular
if for an arbitrary point x € X in each of the following two cases
a) for every point 2’ € f~!fx\ {z} and
b) for every neighborhood Ux C X
there exist a continuous function g: X — R and a neighborhood Ofx C Y such
that, respectively,
a) gr' # gx or
b) gz ¢ [9(f1Ofz \ Uz)lk.
Note that we can use the segment [0, 1] instead of R with the same result.
It is possible to generalize this definition analogously to Definition 1.6, but we
shall consider the simplest case. For the general case we can prove all results of this
paper about mappings with the properties T¢a and Ta with trivial modifications.

4.14. Proposition. A mapping f: X — Y s parallel to a completely regular
space iff it is globally completely reqular.

Proof. Necessity. Let the mapping f be parallel to a completely regular space
Z, that is, there exists an embedding i: X — Y x Z such that f = pyi, where
py: Y X Z —Y is the projection. We have to consider two cases.

a) Let z € X and o’ € f~!fx\ {z}. Let us denote z = pzixr and 2’ = pziz’,
where pz: Y X Z — Z is the projection. Then 2’ # z, therefore there is a continuous
function g: Z — [0,1] such that gz = 0 and gz’ = 1, because the space Z is
completely regular. Then the function g = gpzi has all necessary properties.

b) Let 2 € X be a point and Uz C X be its neighborhood. By the definition
of the topological product there are neighborhoods Ofx CY and Opzix C Z such
that z € f~'Ofx N i’lpglOpZix =i Y Ofx x Opzir) C Ux, since the mapping i
is embedding. Analogously there is a continuous function g: Z — [0,1] such that
gpzix = 0 and gz = 1 for all z € Z\ Opgixz. Then the function § = gpzi has all
necessary properties.

Sufficiency. Let the mapping f be globally completely regular. Let 2; =
={(z,2"):x € X,2' € f~1fz\{z}}, % = {(z,Uz) : x € X, Uz C X is a neighbor-
hood of the point z}, A = 2A;UAs.

Let o = (x,2’) € 2. By Definition 4.12 there is a continuous function g, : X —
— Zs =R (or [0,1]) such that gz’ # gaz.

Let o = (x,Uxz) € ™As. By Definition 4.12 there are a continuous function
Jo: X — Z, = R (or [0,1]) and a neighborhood Ofx C Y such that gox ¢
¢ [Ga(f 'O fx\ Us)ls.

Let Z =[[{Za:ac U}t and let i = f A(A{Ga: € A}): X =Y x [[{Za
€ A} =Y x Z be the diagonal mapping (see [51], §2.3). It is easily seen that
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the mapping 7 is an embedding, the space Z is completely regular ([51], Theorem
2.3.11) and f = pyi. O

4.15. Theorem. There exist a space X' and two mappings hi: X — X' and
ho: X' =Y such that
1) hohy = f;
2) [th]X’ = X/,'
3) hy is perfect (hence, ho X' = Y; see 4.1) and globally completely regular

(hence, ho is separable);
onto

4) the map p: C(hy) — C(f), defined by the equality ¢g = ghy for all g €
€ C(hg), is an isomorphism of topological algebras preserving all semi-norms
Ny, y €Y.
Moreover, if the mapping f is globally completely regqular (and perfect) then the
mapping hy is an embedding (a homeomorphism onto X').

X
©g
N
f X' R
e
e C(hy) ——= C(f)

Proof. Let C(f) = {ga:a €U} Let usset Z, =R, O, =Y, G, =Y for every
a € 2, and let us define a function ¢g,: Y — Z, by the equality

goy = inf{sup{gaz : 2 € f~'Uy} : Uy C Y is a neighborhood of the point y}

for each y € Y.
Using Construction 3.2 we get the mappings fo: X — Xgo C Yy = BV, {Z.},

{Ga} {0} {galonc b € A) =Y X [[{Za : a € A}, Ar = py: Yy onto y
and 2 = pg : Yo — Zo = R, a € 2, such that @7 fy = f and 2 fo = §o for
all a € 2.

Since all functions g,, o € 2, are f-bounded, the mapping *r|x, is perfect by
Proposition 3.3. Let X' = [faX]xy, ho = *7|xs, and let hy: X — X' be the
mapping which coincides with fg.

It is easily seen that the map 1: C(f) — C(hz), defined by the equality g, =
= M| x: for a € A, is inverse to the mapping ¢, and that n,G, = n,(¥g,) for all
a € A and y € Y. Therefore the map ¢ is a topological isomorphism preserving all
seminorms n,, y € Y.

C(f) — C(ha)

The mapping he is globally completely regular by Proposition 4.14.

It is easily seen that if the mapping f is globally completely regular then the
mapping h; is embedding in consequence of Definition 4.13. Moreover, if the map-
ping f is perfect then the mapping h; is perfect by Lemma 8 of [43] and, hence, hy
is a homeomorphism onto X”. O
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4.16. For the statements 4.17 and 4.18 let f1: X7 — Y1, fo: Xo = Yo, ¢1: X7 —
— X2 and ¢22 Yl — Y2 be mappings such that [lel]Yl = Yl, [fQXQ]YQ = Y2 and
P21 = f291.

4.17. Lemma. For i = 1,2 let the space X| and the mappings h;1 and hia be
such as they were constructed in Theorem 4.15 for the mapping f;. Then there
exists and is unique a mapping ¢g: X1 — X} such that poh11 = ha1¢1 and hogdy =
= ¢ohia. If the mapping ¢o is perfect (or separable) then the mapping o is perfect

(or separable) too.
&1 X
K\ /
hi1 R ha1

X1

2

f1 f2

Yy Y,

Proof. Let C(f;) = {Gia : @ € A;}, i = 1,2. For each « € s there is a unique
element o/ € A; such that g1, = §an@1; therefore we can define a map h: Ay — 2,
by setting ha = o for all @ € ;. Due to Theorem 2 of [43] there exists and is
unique a mapping ¢: Yig, — Yag, such that ¢o®1m; = #2756 and ﬁ;wgqg = %(;1/}1
for all a € A, (see 4.15). By the definition of the map h we have ¢fia, = foar, b1,
hence, éfllel C fau, Xo. Therefore QBX{ C X/, and we can define the mapping
¢o as the restriction of the mapping ¢.

The mapping d)o satisfying the conditions ¢0h11 = hgqu)l and hgg(bo = (252}7,12 is
unique since the first condition defines it on the dense subset h;;X; C X{ and the
mapping hoo is separable.

If the mapping ¢, is perfect then the mapping hoodg = ¢ohi2 also is perfect,
and hence ¢ is perfect by Lemma 8 of [43]. Analogously we can prove that ¢q is
separable if ¢5 is separable. O

E. Homomorphisms of algebras

4.18. Theorem. The map ¢: C(f2) — C(f1) defined by the formula pgs = Gah1
for all g2 € C(f2) is a continuous homomorphism of the topological algebras and
Ny (G2) < NgyyGa for ally € Y1 and § € C(f2). Moreover,

1) if [p1X1]x, = Xa then ¢ is a continuous isomorphism onto a subalgebra
of C(f1);

2) if, in addition to 1), the mapping ¢o is perfect then ¢ is a continuous iso-
morphism onto a closed subalgebra of C(f1);

3) if, in addition to 1) and 2), the set ¢p5 'y is finite for each y € Ya then ¢ is
a topological isomorphism onto a closed subalgebra of C(f1).

Proof is very simple except for the closedness of ¢C(f3) in C(f1) in the state-
ment 2).
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By Lemma 4.17 we can assume that the mappings ¢; and fo are perfect and
¢1X1 = XQ; otherwise we can replace Xl, XQ, fl, f2 and ¢1 by X{, Xé, hlg, h22
and ¢yg.

Consider a function go € [@C(f2)]lc(s). We shall show that for any points
x1,x9 € X1 such that ¢121 = dr129 we have Goxy = Joxa. Let M = {fia1, fias}.
For each & > 0 there is go € C(f2) such that g1 = pg2 € Vg mgo (see 4.7); therefore

|gox1 — goxa| = |Gor1 — G1x1 + G1x1 — Gi1®2 + J122 — Jow2| <
. B B B B . e - £
< |gor1 — izt + |11 — Grwe| +[g122 — Gow2| < 3 + G121 — Goprw2| + 5=&

since ¢121 = ¢p129. Thus, |gox1 — Joxa| < € for any € > 0, so that gox1 = goxs for
any x1,x2 € X1 such that ¢1x1 = ¢129.

Therefore we can define a function §: Xo — R by the equality gz = gox’ for
any ¢ € X5 and 2’ € (bl_lx. For every closed set I C R the set g71F = qﬁlgo_lF
is closed since ¢ is closed, hence § is continuous; by Proposition 4.4 § € C(f2).
Obviously, ¢ = go, therefore pC/(f2) is closed subalgebra of C(f1). O

4.19. Corollary. Let mappings f1: X1 — Y, fo: Xo = Y and ¢g: X1 — X5
such that f1 = fago, [poX1]x, = X2 and [f1X1]y =Y be given. Then the map

p: Cfz) = C(f1), defined by the equality ¢Gs = Gao for all G € C(f2), is a
topological isomorphism onto a closed subalgebra of C(f1), preserving all seminorms
ny, y €Y.

§ 5. SHEAVES

5.1. From now on we shall fix a mapping f: X — Y and a closed family a of
locally closed subsets of the space Y.

Let T be the family of all open subsets of the space Y.

Let us denote by T, the family of all ordered couples (O, G), where O € T and
G € a are sets such that [G]y N O = G. For (O1,G1), (02,G2) € T, we shall write
(01,G1) C (02,G2) if O1 € Oy and O1 \ G1 C O3\ Go. This relation defines a
partial order on the set 7.

5.2. Lemma. The partially ordered set T, has the following properties:

a) the couple (Y, D) is the largest element of Ty;
b) for each (O1,G1), (02,Gs) € T, there is their minimum
(017 Gl) N (02, GQ) = (01 N Oo, (Gl U Gg) N (01 n OQ)),‘
c) for each point y € Y and each set O € T the families T, = {(O,G) €
€Ty: 03y} and To ={(0',G) € Ty : O’ = O} are directed by the relation
“D7” jnverse to “C”.
Proof. The statements a) and b) are evident, the statement ¢) is a consequence
of the fact that for any (O1,Gh1),(02,G2) € T, (or Tp) their minimum belongs
to Ty, (or Tp). O

5.3. Further on we shall fix a couple (O, G) € Ty until the item 5.14.
A. Sets of couples of functions
5.4. Let us denote by Cq(O, G) the set of all ordered couples (g, §) of functions
g: O — R and §: f~'O — R which satisfy the following conditions:
1) glo\g and g are continuous;

2) gly-1o\@) = 9flf10\0)
3) for every point y € G there is a neighborhood Uy C O such that the functions
gluy and g|g-1y,, are bounded;
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4) for every point y € G the following equality holds:

gy = inf{max{sup{gy’ : v/ € Uy \ ([fX]y U E)},sup{gx : x € f~1Uy}} :
(2) Uy C O is a neighborhood of the point y,
E C Uy is a nowhere dense set}.

We shall assume that C, (&, @) = {(0,0)} is the zero-algebra.
Let C(O,G) ={(9,9) € Ca(O,G) : g and § are bounded}.
The following statement is obvious.
5.5. Proposition. If (g,9) € C.(O,G) then for every point yo € O we have
gyo = inf{sup{gy : vy € Uyo} : Uyo C O is a neighborhood of the point yo},
and for every t € R the set {y € O : gy < t} is open.

5.6. Definition. A couple (g,7) € Co(O,G) will be called factorizable if the
function g is continuous on the set O and § = gf|;-10.

The set of all factorizable couples (g, ) € Ca(O, G) will be denoted by C¢(O, G).
Let us observe that C¢(O, G) is independent of the set G since C;(O, G) “coincides”
with the set C(O) of all continuous functions on the space O.

5.7. Definition. A couple (g, ) € C4(O, G) will be called constant if there exists
a number ¢ € R such that gy = cfor all y € O and gz = c for all x € f~10.

B. Algebras of couples of functions

5.8. Let Cq(0,G) = {(9gasGa) : @ € A}. For each o € A let us set Z, = R,
Go =G, 0, =0.
Using Construction 3.1 let us construct the spaces Y, = B(Y, {Z.}, {Ga}, {Oa},

onto

{9alo\c.},a € {a}) and the mappings °7: Y, — Y, a € 2, and, after
that, the space Yo = P(Y,{Za},{Ga}, {Oa}; {9alo.\c. )@ € A) and the map-

onto

ping %7: Yo =22 Y.

Using Construction 3.2 let us construct the mappings f,: X — Y, the maps
va: Y — Y, and the closed subsets X, = [faX Up,Y]y, CY,, a €2, and, after
that, the closed subset Xo = [[y ({Xa}, {*7|x.}, o € A) C Yy and the mapping
fa: X — Xg. Due to the condition 3) of the item 5.4 and Proposition 3.3, the
mappings *7|x, and p, = “7|x,, o € 2, are perfect.

5.9. Lemma. For each a € A the mapping po: Xa MO, Y s irreducible mo-
dulo fo X.

Proof. Let a € 2; by the conditions 2) and 4) of the item 5.4 we have ¢,y €
€ [faX]y, for all y € Inty[fX]y.” Therefore in order to prove that the mapping p,,
is irreducible modulo f, it is suffices to prove that p?U = {y € Y : p;ly C U} #
# @ for an arbitrary non-empty open set U C p; (Y \ [fX]y). Moreover, we can
assume that U C p; G, since the mappings “m and p, are one-to-one on the set
Pt (Y \ Ga).

Since the set (Y \ [fX]y) is dense in the set p;*(Y \ [fX]y), there exists
yo € Y\ [fX]y such that p,yo € U. Of course, yg € G, \ [fX]y. By the definition
of the topology of the space X, there are a neighborhood Wy, C O, \ [fX]y and
a number € > 0 such that p,y0 € p;*Wyo N Y~ Usegay C U, where Usegayo =
={t € Z, =R:gayo—2c <t < gayo+ 2} is a neighborhood of the point g,y in
the space Z,.

For every t € R let Uy = {y € Wyo : gay < t}; by Proposition 5.5 the sets
Vi = Ug,yote and Vo = Uy, y,—- are open. The set £ =V \ Vj is locally closed and
yo € E C Vi C Wyg. It is impossible for the set E to be nowhere dense, since in such

If ACY thenInty A=Y \[Y\ Aly.
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a case the condition (2) (see 5.4) would not be valid for the point yy (we can take
Uyo = Vi and our E C Uy since gy < gayo—¢ for ally € Uyo\E = V). Therefore
the set V = Inty E is non-empty. We have @ # p 1V C p; Wy N [paV]y, C
S pa ' Wyo N Y gaV]z, € pa'Wyo N %~ Uaegayo € U, hence pfU CV # @
and the mapping p,, is irreducible modulo f,X. 1

5.10. Thus we have the fan product Xy of the spaces X, relative to the perfect
irreducible modulo f, X mappings ps, a € 2 (see 5.8). Due to Corollary 2.13 there
exists a unique closed subset Xj C Xy such that fo X C X, Qlﬂ'X& =Y, and the
mapping py = 37| xz is irreducible modulo fyX.

Let Xoa = py'0, X0 = f710, foc = falxo: X — Xog, fo = flxo: X0 —
— 0, poc = palxoe: Xoc — O.

N

5.11. For each « € 2 let us define the continuous function g, : Xog — R by the
equality o = glﬂxoc- Obviously, o = ga foc and gq PoL(0\G) = gapOG‘p(;lG(O\G)-

f51(0\G) - X© = X

fa

Ar—10

poc
C
c Ya
T / \Y\
< <
o

fo
A

0\G
Thus we have got the map pog: Cq(O,G) — C(pog) defined by the formula
006 (Gas Ga) = Ga for all @ € A (see 4.4).

Y

5.12. Theorem. The map pog is “onto” and one-to-one. Moreover, for each
Yo € O and o € A we have (see 4.5)

3) NyoJa = inf{max{sup{|gay| : y € Uyo}, sup{|faz|: = € FUyo}} -
Uyo C O is a neighborhood of the point yo}.

Proof. Let us define a map ¢°%: C(pog) — Ca(O, G) in the following way. For a
function g € C(poc) let § = gfoa, and for all y € O let gy = sup{gz : z € palcy}.
It is clear that the functions §: f~'O = X° — R and glong: O\ G — R are
continuous; moreover, g|r-1o\a) = 9f|f-1(0\@) since the mapping pOG|p5g(O\G)
is a homeomorphism of the set p;,(O \ G) onto O\ G.

Since the mapping po¢ is closed, it follows for every y € O that

gy = inf{sup{gz : z € p5Uy} : Uy C O is a neighborhood of the point y}

(see 4.6). Using the irreducibility of the mapping pog modulo fog X, one obtains
easily the equality (2) (in analogous way we can prove the equality (3)). Thus
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(9,3) € Ca(O,@G), and we shall get the map ¢ letting 09“g = (g,§) for all
g € C(poc).

For (g9,9) € Ca(O,G) let My = = foeX9 U (Xog N 217 1p,0),8 and for g €
€ C(pog) let My = foc X U{z € Xog : gz =sup{gz’ : 2’ € paépogz}}.

It is easily seen that both § = poa(g,7), (9,9) € Ca(O,G), and (g, ) = ¢°9g,
g € C(poc), imply the equality My; = Mj, and this set is dense in Xo¢. Using
the definitions of maps pog and ¢ and the last equality, it is easily proved that
these maps are inverse to each other. Hence the maps pog and ¢ are “onto”
and one-to-one. O

5.13. By Theorem 5.12 we can transfer the structure of the topological algebra
C(poc) onto Cq(O, G). Moreover, we can write ny (g, §) = nypoc(g, §) forally € O
and (g, 9) € Ca(O, G) (see (3)).

C. Presheaves of algebras

5.14. If (O1,G1), (OQ,GQ) (S Tu, (Ol,Gl) - (OQ,GQ), then there is the restric-
tion homomorphism h: Cq(O3z,G2) — C4(O1,G1), defined by the formula h(g, g) =

(g|01ag‘f 101) for (ga ) €Ca (027G2) Let hf = 90016'1}“0026:27 where the maps
©0,c, and ©92¢2 were defined in the items 5.11 and 5.12.

05Go
C(pO2G2) <~ Cu(OQ, GZ)
©0,Co
hfi ih
©01G1

C(pO1G1) -~ Cu(Oh Gl)
0,0,

It is easily seen that the maps C' and C, which attribute to each couple (O, G) €
€ Ty the algebras C(pog) and Cq(O, G) with the corresponding restriction homo-
morphisms hy and h are presheaves (see Definition 1.44). These presheaves are
isomorphic in a natural sense. We shall prove that the restriction homomorphisms
are continuous, and that C, (and, of course, C) is a sheaf.

5.15. Lemma. If (O1,G1),(02,Gs) € Ty, (0O1,G1) C (O2,G2), then there exists
and is unique a mapping ¢: Xo,a, — Xo0,G, such that ¢fo1.¢, = fo,a,|x0. and
D0,G>®P = Po,G,- Moreover,

1) hyg = g¢ for all g € C(po,c,);
) if [O1]y N O2 = O then the mapping ¢ is perfect;
3) if Oy = Oy then the mapping ¢ is “onto” and irreducible modulo fo,q, X©1;
) if [O1]y N O2 = O1 and G2 N Oy = Gy then the mapping ¢ is a homeomor-
phism onto the clopen set paiGzOl.

X0 X0

fo,G, fosa,
for / \ fo

X01 Gl X02 G2

8The map @, where o € U satisfies the condition (g, Ja) = (g, §), is defined in 3.2 (see 5.8).

N

01 02
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Proof. Let Cq(O2,G2) = {(ga Ga) : o € A} and Cq(O1,G1) = {98, 8) : B € B}.
Let us define the map k: % — B by the formula ka = 3, where 3 € B is the unique
element such that (g3, §3) = h(9da, Ga), o € L.

Let all objects with the index o € 2 (respectively, 5 € B) correspond to the
constructions 5.8 and 5.10 of Xop,¢, (respectively, Xo,q,)-

Let o € A and 8 = ka € B. We can define the map Zi: pglOl — X, as follows
(see Construction 3.2):

ﬁiz _ ppz for z € pgl(Ol \ Gg),
¢ (ppz,Pz) for z € p5 ' (G2 N Oy).

The map ?i is an embedding onto the set p;10; C X, because gs = galo,»
38 = Galf-10, and B¢|p51(01 \ Go) = gapg|pgl(01 \ Ga). Of course, #¢p = %9 5.

Thus for each a € 2 and 3 = ka we have the mapping fo : Xo,a, — X defined
by the equality f, = gi?ﬂxolcl. The existence of the mapping ¢: Xo,¢, —
— Xo,a, follows now from Proposition 2.7. Let us prove its uniqueness.

Let ¢;: Xo,6, — X0,6,, @ = 1,2, be mappings such that ¢; fo,c, = fo,c.|x01
and po,a, % = poic1 for i = 1,2. We have to prove that ¢1 = ¢a.

Ifx € [folalXOI]XOIGI then the equality ¢12 = ¢ox follows from pointed out
conditions and the separability of the mapping po,q,. Therefore let z € Xo,a, \
\ [fo,c: X9 x0,6, be a point such that 12 # ¢ox. Since po,c,P1& = Po,c, =
= po,aG, %22 and the mapping po,q, is separable, there are disjoint neighborhoods
Uprz, U € Xo,0, \ [f0,6:X %] x0,6,- Let us set Uz = ¢ Uiz N ¢3 ' Ugox.
Then Uz C Xo,c, \ [fo,q, X1 is a neighborhood of the point x. The map-
ping po,q, is irreducible modulo fo,g, X©*, hence, péGlU:r # @. On the other

Xo16

hand, we have pglGlUx = ngGIUx ﬂpglclUx = pﬁQG,Z(;S’fEUx ﬁpéGQ(b#Ux -
- panU(élx ﬁpngz Upox = &. This contradiction shows that ¢1x = ¢z, that
is, the mapping ¢ is unique.

Obviously, the mapping ¢ is perfect as the mapping onto ¢$Xo, s, by Lemma 8
of [43] (but not into Xo,q, in general case), and it is irreducible modulo fo,q, X
under the same condition.

Finally, if [O1]y N O2 = O7 and G1 = G2 N Oy then for each couple (g3, §3) €
€ Cq(0O1,Gq) there exists a couple (g, Jo) € Ca(O2,G2) such that h(ga, o) =
= (g8, gp), that is, ka. = § and, hence, k2 = B (for example, we can define

) gpy for y € Oy, P gpx for x € f710y,
9oY =00 for y € 02\ 04, “"TY0forz e 102\ O1);

all conditions of the definition 5.4 are obviously satisfied). Therefore the map h is
“onto” and, hence, the mapping ¢ separates points of Xo,q,; since ¢ is perfect, it
is a homeomorphism onto the clopen set p(;;Gz 0.

The remaining statements follow from the proved statements and the construc-
tion of the mapping ¢. O

5.16. Corollary. If (0O1,G1),(0O2,G2) € Ty, (01,G1) C (02, G>), then the map
h: Cq(O2,Ga) — Ca(0O1,G1) is a continuous homomorphism of topological algebras.
Moreover,

1) if [O1]y N Oy = O then h is a homomorphism onto a closed subalgebra
Ofca(OlaGl);
2) if O1 = O3 then h is a topological isomorphism onto a closed subalgebra

ofCa(Ol, Gl)
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D. Sheaves of algebras

5.17. Definition. A family {(O4,Ga) : @ € A} C Ty will be called a covering
of the couple (O,G) € T, if O = J{Oq : @ € A} and O\ G = |J{Ox \ G, : a € A}

All conditions of Definition 1.43 are obviously valid.

5.18. Theorem. The maps Cq and C; which assign to each couple (O,G) € T,
the topological algebras Co(O, G) and C¢(O, G) (see 5.4 and 5.6) are sheaves.

Proof follows from Proposition 2.1.11 of the book [51]. O
5.19. Remark. The analogous map C? (see 5.4) is a presheaf but it is not a sheaf.

5.20. We shall meet sheaves on the set T' (see 5.4) which are usual sheaves over
a topological space Y (see Example 1.47), but we shall formulate all definitions for
sheaves on the set T, and use (if it is possible) some of them for sheaves on the set
T too.

We shall consider sheaves of topological algebras only; therefore, the phrases
“sheaf C C C,” or “subsheaf C of the sheaf C,” and so on will mean, particularly,
that C(O, @) contains all constant couples and is a subalgebra of the topological
algebra C, (O, G) for every (O,G) € T,.

E. Properties of sheaves

5.21. Definition. A sheaf C C C, will be called complete if the algebra C(O, G)
is closed in C4(O, G) for any (O, G) € T,.

5.22. Let To = {(O,G,) : a € A} be the family of all couples (O, G) € T, with
a fixed set O € T (see 5.2 c)). For each a € A we have the mappings fo: X — O,

foa.: X9 - Xoa,, and pog,, : Xoa, 220, O constructed in the item 5.10. Let
Xa = [[o({Xoc.}, {poc.}, o € A) and ?p = [[p{poc. : o € A} be the fan
products. By Theorem 2.11 the mapping %p is perfect.

By Proposition 2.7 there is a mapping fo: X — Xg such that *pfo = fo and
Apfa = fog, for all a € A, where *p: Xo — Xog,, @ € 2, is the projection
of the fan product to its factor (see 2.1). By Corollary 2.13 there exists a unique
closed subset X C Xy such that fo X C X0, #pXo = O and the mapping po =
= le|XO: Xo M, 0 is irreducible modulo faX©. Let us denote by go: X© —
— X the mapping coinciding with fy.

foGca

X0 Xoa,

2A
fa aP
qgo
<

o Xo Xy

POGa

A
po %y

O

5.23. By Theorem 4.18 we can assume that for each o € 2 the algebra C,(0, G,,)
is a closed subalgebra of C(pp) (the embedding C4(O,G,) — C(po) is defined
by the formula (g,3) — (voc. (g,3))2p for each (g,3) € Ca(O,Gy) and a € U;
see 5.11). This embedding is coordinated with the restriction homomorphisms
(see 5.14), which are closed embeddings by Corollary 5.16.

By Lemma 5.2 ¢) for every sheaf C C C, the set C(0) = |J{C(O,Ga) : a € A}
is a subalgebra of the algebra C(pp). In general case this algebra is not closed in
C(po) and in C4(O) even if the sheaf C is complete.



534 V. M. ULYANOV

5.24. Definition. We shall say that the family a has the largest representative
in a set O € T if there exists an element Gop € a such that (O,Gop) € T, and
(0,Go) C (0, G) for every couple (O, G) € To.

5.25. Proposition. Let a sheaf C C Cq be complete, and let the family a have
the largest representative Go € a in the set O € T. Then the algebra (f(O) 1s closed
m C(po).

Proof. Obviously, in this case we have C(O,G) C C(O,Gp) for all (O,G) €
€ Tp, therefore the algebra C(0) = |J{C(0,G) : (0,G) € To} = C(0,Go) is
closed in C4(O,Gp); on the other hand, using Lemma 5.15, the construction 5.22
and Proposition 2.7, we can prove that the projection of Xp onto Xog, is a
homeomorphism, therefore Cq(O,Go) = C(po). O

5.26. Definition. A sheaf C C C, will be called hereditary, if for every (O, G),
(0,G3) € Tp, O € T, such that (O,G1) C (0,G3) the condition C(O,Gz2) =
=C(0,G1) NCa(0, Gy) is satisfied.”

5.27. Lemma. If a sheaf C C C, is hereditary then the map C which assigns to
each O € T the topological algebra (f(O) is a sheaf over the topological space Y. In
particular, the map éa is a sheaf.

Proof. 1t is clear that the map Cis a presheaf. It is necessary to prove the
following property only (Definition 1.46): if {O, : a € 2} is a family of open sets
of the space Y, O = | J{O, : a € A}, for each o € A a couple (gu,Ga) € C(Oy) is
given, and for all o, 3 € A the equalities go|0,n0s = 98l0.n0, and Ga|f-1(0.n04) =
= Jslf-1(0.n0,) hold, then there exists a unique couple (g,g) € é(O) such that
glo. = ga and g|s-10, = ga for all o € 2.

Such a couple (g, §) exists by Proposition 2.1.11 of [51]. We have to prove that
(9,9) € C(O). For every a € 2 let G,, € a be a set such that (O, Ga) € Ty and
(das Ga) € C(On, Gy). Let

U ={y € O: there exists a neighborhood Uy C O such that

the function g|y, is continuous and g|;-1py = gf|r-10y }-

It is clear that the set U is open and the set G = O\ U is closed in O, hence, G
is a locally closed subset of Y. Let us show that G € a. For each y € G there exists
a € A such that y € O,. Obviously, G N O, C G, by the definition of the set G.
Since the family a is closed, we have G € a (see Definition 1.5, the condition 3)).

For every oo € A let G, = G N Oy; since (g, Ga) € Ca(On,Ga)s (O, Gn) C
C (O, GL), the sheaf C is hereditary and (ga, Jo) € C(Oq, Go), we have (ga, Ga) €
€ C(Oq,Gl) for all a € A. The family {(O,,G,) : @ € A} is a covering of the
couple (O, G) and C is a sheaf. Therefore (g,§) € C(O,G) and, hence, (g, §) € C(O).
Thus, the map C is a sheaf over the topological space Y. O

5.28. Proposition. There exists a one-to-one correspondence between the set of

all hereditary subsheaves of the sheaf C, and the set of all subsheaves of the sheaf Ca
which preserves the relation “C”7.

Proof. It suffices to note that if é C éa is a subsheaf then one can define the
sheaf C by the equality C(O,G) = C(O) NCq(0,G) for all (O,G) € Ty, and this
construction is inverse to the construction 5.23. 0

5.29. It is known ([61], Theorem 4.5.3, or [8], Theorem 0.24) that a sheaf over
a space Y has a representation by a local homeomorphism p: E — Y. Therefore

9Analogously to the item 5.23 we shall assume that if (O, Gy), (0,G2) € Ty and (0,G1) C
C (0, G2), then Ca (O, G2) is a closed subalgebra of the algebra Cua (O, G1) (see Corollary 5.16).
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we can consider that hereditary subsheaves of C, have similar representations. We
shall not use these representations.

5.30. Definition. A shg:afCA C C, will be called closed if for every set O € T the
algebra C(O) is closed in C4(O).

5.31. Definition. A sheaf C C C, will be called complete if for every set O € T'
the algebra C(O) is closed in C(po) (see 5.23).

5.32. Remark. If a sheaf C C éa is complete then it is closed too, but the inverse
statement is not valid (for example, the sheaf Ca is closed but, in general case, is
not complete). It is also quite probable that a sheaf € need not be closed, even
if the sheaf C C C, is hereditary and complete (of course, if C is closed and C is
hereditary then C is complete; see 5.21).

5.33. Definition. Let C C C, be a subsheaf, (O,G) € T,. A couple (go,Jo) €
€ Cq(0, G) will be called C-separated if for any numbers a,b € R, a < b, and a point
y € O there exist couples (O',G’) € Ty, (g,9) € C(O',G’) and numbers o', b’ € R,
a’ <V, such that y € O,

O/ r_Wg()ilj_-ra g g_lHa/ g g_le’ Q gale n O/ and
fONGg'Hy Cg '"Hy C§ "Hy C gy "HyN 710,
where H. = {t e R:t < ¢} for c € R.

5.34. Definition. A sheaf C C C, will be called saturated if for each (O, G) € T,
the algebra C(O, G) contains all C-separated couples (g, §) € C4(O, G).

5.35. Theorem. If a sheaf C C Cq is saturated then it is also hereditary and
complete, C¢ C C, and the sheaf C is closed.

Proof. The sheaf C is hereditary, because if (0,G1),(0,G2) € Ty, (0,G1) C
C (0,G3) and (go, go) € C(O,G1)NCq(O, G2), then the couple (go, o) is C-separated
and, hence, (go,J0) € C(O,G2) (we can take (0',G') = (O,G1), (9,9) = (90, 90)
and (a',b') = (a,b) in Definition 5.33).

Let (g0, go) € C¢(O,G) be an arbitrary couple, where (O, G) € T,. By Definition
5.6 the function gg is continuous and go = gof|s-10. Let a,b € R, a < b. The sets
Iy = [galHa]y NO and F; = O\ g~ 'H, are disjoint and closed in O. For any
y €0 let

O\FolfyGO\Fo, blnyO\Fo,
G =9,9y =cand gr =cforally € O and x € f~10', ' = a, ¥ =b. Then all
conditions of Definition 5.33 are satisfied; therefore (go, go) € C(O,G) and, hence,
Cs(0,G) CC(0,qQ).
We shall show that the sheaf C is closed. The completeness of the hereditary
sheaf C is a consequence of the closedness of C.

Let (g0,90) € [C(O)l¢, (o) for some O € T. Let a,b € R, a < b, y € O. Let us

set € = b*T", a' =a+e, b =b—e. By the definition of the topology of the algebra

Ca(O) there exist a couple (g,7) € C(O) and a set O’ € T such that y € O’ C O

and n, ((g, ) — (g0, Jo)) < € for all y’ € O’ (see 5.13). Let G € a be a set such that

(0,G) € Ty, (9,9) € C(O,G) and (go, Jo) € Ca(O,G). Let G' =GN O'; it is easily

seen that the couple (glos,g|f-10/) € C(O',G’) satisfy all conditions of Definition

5.33. Therefore the couple (go, go) is C-separated and, hence, (go,go) € C(O,G) C

c C(0). O
5.36. Let C C C4 be a subsheaf. For each (O, G) € T, let us set

C(0,G)={(g,9) € Ca(O,G) : (g,9) is C-separated}.

o {O\FlifyeFo, {aifyeFo,
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5.37. Theorem. For every subsheaf C C Cq the map C is a saturated sheaf.
Proof. 1t suffices to note that each C-separated couple is also C-separated (we
can prove, that C(O,G) is a subalgebra of C,(O,G) for every (O,G) € T,, using
the reasonings 6.6, 6.11, 6.3). O
Let us note that this theorem is also true if C C C, is a presheaf.

§ 6. Ta-BICOMPACTIFICATIONS
6.1. From now on we shall fix a mapping f: X — Y with the property %a.

A. From a bicompactification to a sheaf

onto

6.2. Let f,: vy X —— Y be a Ta-bicompactification of the mapping f, O € T.
Let us denote Xp = £,10, X© = f710, fo = flxo, po = fulxo-
For each g € C(po) let us define functions §: X© — R and g: O — R as follows:

(4) g =glxo, gy =sup{gz : z € paly} for all y € O.
Since the mapping po is irreducible modulo X, we have (g1, 41) # (g2, g2) for
any different g1, g2 € C(po).
For every couple (O, G) € T, let
Co(0,G) ={(9,9) : (9,9) € Ca(O,G) and
there is g € C(po) such that the equalities (4) hold}.

/O\G\/

pPo
x© = X
fa A / x\
O\G = 0 = Y

6.3. Lemma. The map C, defined above is a saturated sheaf.

Proof. Tt is obvious that C, is a sheaf. We shall prove that it is saturated. Let
(0,G) eT

Let a couple (go, go) € Ca(O, G) be C,-separated. We have to show that there
exists a function gy € C(po) such that the equalities (4) hold.

ForevefybEIRletUb:{yGO:g0y<b}, Vi, = {z € X9 : goxr < b} and
Wy = J{W, : a < b}, where for all a € R

Xo E v X

O

W, ={z € Xo : there is a neighborhood Wz C Xp
such that X° N W2z C V, and ngz CU,}.

Let b € R; the sets Uy, Vi, W, and W, are open in Y, X, vy X and vy X
respectively. Let us prove the equality W, N X© = W, N X© = Vj,. Let us take
any point z € V, and a number a € R such that gor < a < b and denote y =
= fx. Since the couple (go, Jo) is C,-separated, there exist couples (O',G’) € Ty,
(9,9) € C,(O', @) and numbers a’,b’ € R, o’ < ¥, such that y € O,

O'NU,Cg'Hy Cg'Hy CU,NO" and

€ 50NV, Cg ' Hy C§ ' Hy CVoN 10"
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For a function g € C(po) satisfying the condition (4), the inverse image g~ H,/
is an open subset of X,

S f(;lO’ nv, C g_lHa/ - g_le/,
g H,NX? Cg ' Hyn X9 C fr0' NV, €V, and
P Hy =g 'Hy C g Hy CO'NU, C U,
3 Thus, z € Wa C W, C Wb and, hence, V, C W, C Wb. Since the inclusion
W, N X© C V, is obvious, we have the required equality.

Let us prove that pﬁWb = Uy. The inclusion U, C pﬁWb is obvious. Consider a
point y € ngb; since paly is compact, by the definition of the set W, there is a <
< b such that paly C W,. From the definition of the set W, and the irreducibility
of the mapping po modulo X© it follows that for every point z € paly and its
arbitrary neighborhood Wz C X at least one of the sets WzNV, and Wz ﬁpaan
is non-empty, therefore pg'y C [V, Upg'Ualx, = [Walx, (the last equality is true
since the same property holds for all points z € [W,]x,,). Since the couple (go, go) is
C,-separated, there exist couples (O, G’") € T, and (g, g) € C,(O’,G’) and numbers
a, b €R, a <V, such that y € O,

O'nNnU,Cg'H, Cg'Hy CU,NO" and
fol0'NV, Cg Hy C g7 Hy C VN f5'0".

For a function g € C(po-) satisfying the condition (4) we have

po'y € (Wa N Xolx,, € [(VaUpg'Ua) N Xorx,, C
C g 'Hy Upg Halx,, =9 'Halx,, € g "Hy,

thus, y € pﬁg—le/ =g 'Hy CU,NO' C U, and, hence, ngb =U,.

Analogously we can prove the inclusion [We]x, € W, for all a,b € R, a < b.
From that it follows that a function go: Xo — R, defined by the equality goz =
=inf{t e R:z € W;} for all z € X, is continuous (see [51], proof of Theorem
1.5.10).

Thus we have constructed the function gy € C(Pp). The equalities (4) follow
from the equalities gy ' H; N X© = Wy N X© = V; and p} gy Hy = ph W, = U, for
all ¢t € R. Hence, (go, §o) € C,(O, @) and the sheaf C, is saturated. O

6.4. Definition. A sheaf C C C, will be called dismembering if for an arbitrary
point & € X in each of the following two cases

a) for every point 2’ € f~!fz \ {z} and

b) for every neighborhood Ux C X
there exist couples (O, G) € T, and (g,g) € C(O, G) such that fx € O and, respec-
tively,

a) gr # ga’ or

b) gz ¢ [g(fO\ Ux)le.

6.5. Lemma. The sheaf C, is dismembering; moreover, for an arbitrary point

z € vy X in each of the following two cases
a) for every point 2’ € f 12\ {z} and
b) for every neighborhood Uz C v; X
there are couples (O,G) € Ty, (g,9) € C,(0,G) and a continuous function
g: f,71O — R satisfying the condition (4) such that f,z € O and, respectively,
a) gz’ # gz or
b) gz ¢ [9(f; O\ U2)Je.
Proof follows from the definition of Ta-bicompactification. O
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B. From a sheaf to a bicompactification

6.6. Let a dismembering sheaf C C C, be given. Let us denote by B the set
of all quadruplets (O, G, g,g) where (O,G) € T, and (g,g) € C(O,G). Let B =
={(00,GasGasfa) : @ € A}. For all a € A let us set Z, = R.

By analogy with the item 5.8, using Constructions 3.1 and 3.2, Proposition 3.3,
Lemma 5.9 and Corollary 2.13, we obtain the space

veX = Xg( C Xy CYy= (‘B(Ya {Zoz}’ {Ga}a {Oa}) {goz

and the mappings ic = fo: X — veX, fo = *Tlpex: veX 22,y and Jo =
= Ay 7104 fi'00 — Z, = R, a € 2, satisfying the conditions fcic = f,
ga'fgl(Oa\Ga) = gafc|fgl(oa\G(,) and Jo = gaic|f-10, for all a € A. Moreover,
the mapping fe¢ is perfect and irreducible modulo i¢ X.

Let C(O,G) ={go : a € A,0, = 0,G, = G} for all (O,G) € T,. The map C
is a sheaf which is naturally isomorphic to the sheaf C.

0u\Ga }r 0 €2A)

6.7. Lemma. The mapping fc: veX Y s a Ta-bicompactification of the
mapping f.

Proof. Since the sheaf C is dismembering, it is easily seen that the mapping ic
is an embedding. Let us identify X and i¢c X, that is, we shall assume that X C
C veX. Then we have fe|x = f. Moreover, the mapping fc has the property Ta
by Assertion 1.8. Therefore f¢ is a Ta-bicompactification of the mapping f. O

C. Bicompactifications and sheaves

6.8. Lemma. Let n € N = {1,2,3,...}, R" = {Z = (z1,29,...,&,) : x; €
€ R foralli = 1,2,...,n} with the usual topology, ® C R™ be a compact set,
F CR” be a closed set and ® N F = &. Then there exists a polynomial h: R™ — R
such that

1) hZ > f% for all Z € R™,
2) —%ghi"<0f0rallf€(1),
3) ha > 1 forallZ€F.

Proof. Let ¢ = inf{ > (z; — 20;)? : (x1,22,...,7,) € F, (201, T02, - - -,Ton) € P}

It is clear that ¢ > 0 silnce the set @ is compact, the set F' is closed and PNF = @
(of course, we assume that ® # @ and F # &).
For each point &y = (201, %02, - - -, Ton) € P let us define a polynomial hz, by the

n

formula hz,@ = % . 2:1(951 —z0i)? — % for ¥ = (x1,2,...,2,) € R, and let UZ, =
i=

= hgol [—%, 0) € R™. These neighborhoods form an open covering of the compactum

®. Let us choose a finite subcovering. Let it be formed by sets Uy, Us, ..., Upnp,

and let hy, ho, ..., hy,, be the corresponding polynomials. It is clear that for all

i =1,2,...,m the conditions h;¥ > —% for ¥ € R™, —% <hiZ<O0forZe®dnU;

and h;Z > 1 for ¥ € F are satisfied.

If m = 1 then our Lemma is proved. Let us suppose that m > 1 and show that
the number m can be made smaller.

Let us denote Uy o = Uy U Uz, M = sup{max{h &, hoZ,0} : & € ® N U2}
(0 < M € R since @ is compact and the polynomials h; and hy are continuous),
and let R 5, be a polynomial defined by the equality h} ,7 = 2 - hy@ - hod for all
# € R". This polynomial has the following properties: —M < hf ,& < % if ¥ €
E(IJQULQ and h/172f>21ff6 F.
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2k
2M41 1 Q 2M+1  M+2
Let us choose a number k& € N such that (2M+2) <3 Since ISRy > 1,

2k .
we have (%—ﬁ) > 2> % Therefore the polynomial hy 2, defined by the equality

o B, a+ M\ 2k - . . o
hi,o% = ( 1}6[“ ) — % for all £ € R", satisfies the conditions hj & > —% for

reR"”, —%<h1’25<0for:f€<1>ﬂU172 and hy o > 1 for £ € F.

In consequence, we have the covering {Uy2,Us,...,U,} consisting of m — 1
elements and the corresponding polynomials hi 2, h3, ..., hn,. Repeating these
reasonings we shall get the required polynomial. O

6.9. Lemma. For each point zy € v¢ X and each neighborhood Uzy C ve X there
exists a € A (see 6.6) such that fezo € Oy and
1) Goz 2 f% for all z € fc_lOa,
2) JaZo = _%7
3) Gaz =1 forall z € f510, \ Uz.
Proof. By the definition of the topology of the space Yy, there are a finite set
% C A and neighborhoods U feczg C Y and Ugazo C Z4 = R, a € B, such that
Zo € fc_lUfczo N WG UGaz0 : o € B} CUz. Let O = U fezg N({Oa : o € B},
G =U{GaNO :«ac B} Since C is a sheaf we can suppose that O, = O and
G, = G for all « € B (for a simplification of notations).
Let B = {a1,a9,...,a,}, and let § = A{gs : @ € B}: fc_lO — R™ be the
diagonal mapping (see [51], §2.3). Then gzo ¢ F = [g(fz 'O\ Uzo)]rn. Let us
denote ¢ = inf{>" (z; — Ja,20)* : (z1,%2,...,2,) € F}. Obviously, ¢ > 0. Since

=1
C(0,@G) is an algebra containing all constants (see the items 5.20 and 6.6), it
n

contains the function go : f; 'O — R defined by the equality goz = 2 3 (Jasz —
i=1

— Ga,20)% — % for z € fc_lO. Therefore there exists a € A such that O, = O,

Go = G and g, = go. This « is the one we were looking for. O

6.10. Lemma. Let y € Y, & C fc_ly be a compact subset, U® C veX be a

neighborhood of the set ®. Then there exists o € 2 (see 6.6) such that y € O, and
1) Goz > —% for all z € fglOa,
2) —%ggaz<0f0rallze¢>,
3) Gaz =1 foralze f;10,\UD.

Proof. Using Lemma 6.9 we can find for each z € ® a function g, € C(O,,G.)
for some (O.,G.) € T, (see 6.6) such that fez € O., §.z = —3, g.2 > 1 for all
2 € flO.\U® and g, > —1 for all 2/ € f:'0.. Let Uz = g;'[~1,0). Then
{Uz : z € ®} is an open covering of the compact set ®. Let {Uz,Uz,...,Uz,}
be its finite subcovering, O = ([{O,, : i = 1,2,...,n}, G = |H{G,, N O : i =
=1,2,...,n}. Then g; = g, fil0 € C(0,G) for 1 <i < n.

Let g=A{g;:i=1,2,...,n}: fc_lO — R™ be the diagonal mapping. Then g®
is a compact subset of R, F' = [g(f; 'O\ U®)]g~ is a closed subset and FNgd = @.
By Lemma 6.8 there exists a polynomial h: R™ — R such that —% < hiE < 0 for all
Ze€gb, ht > 1forall ¥ € F and hi > f% for all £ € R™. Then the function hg
belongs to C(O, G) since C(O, G) is an algebra containing all constants (see 5.20),
that is, there is a €  such that O, = O, G, = G and g, = hg. O

6.11. Lemma. Let C, be a sheaf constructed using the Ta-bicompactification

feive Z2%Y as in the item 6.2. Then for every (O,G) € Ty each couple (g,§) €
€ C,(0, Q) is C-separated.
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Proof. Let (O,G) € Ty, (go0,90) € C,(0,G), g € C(po) be a function satisfying
the conditions (4), a,b € R, a < b, y € O.

Let Fy = {2 € f'0 : goz < a} and Fy = {z € f;'0 : Goz > b}. The sets I,
and F) are closed in fc_lO and Fy N F} = @. Since the mapping fe is perfect, the
sets &g = Fy N fgly and &1 = F1 N fgly are compact.

By Lemma 6.10 there exists ag € 2 such that y € Ony, € O, —3 < Goyz <
< 0 for z € ®g, Goyz 2 f% for z € fc_lOa0 and go,z = 1 for z € Fy ﬂfc_lOaU.
Analogously there exists a1 € 2 such that y € O,, C O, —% < o, # < O for z € &y,
Ja, 2 = —% for z € ]”ElOa1 and o,z = 1 for z € Fy N fglOal. Since C' is a sheaf
of algebras (see 6.6), there exists an element o € 2 such that O, = Oy, N Oy,
Go = (Gao UGa,) N Oy and g, = %(gaoba +1-— §a1|0a)-

Let Uy = {2 € f:'00 ¢ Gapz < 0}, Uy = {2 € f:'04 ¢ Gayz < 0}, Uz =
= fglOa\(F0UFl)a O = f(#(UOUU1UU2)a G = O/ﬂGa, g= ga|O’7 g= ga‘f*IO’a
a’ =0,V = 1. It is easily seen that all conditions of Definition 5.33 are satisfied,
therefore the couple (go, go) is C-separated. O

6.12. Corollary. Under the assumptions of Lemma 6.11 we have C, = C (see
5.36). Particularly, if the sheaf C is saturated then C, = C.

onto

6.13. Lemma. If f,: vy X — Y is a Ta-bicompactification of the mapping f,

Cy, is a sheaf constructed using f, as in the item 6.2, and fc: veX 0y s

a Fa-bicompactification constructed using C, as in the item 6.6, then the Ta-bicom-
pactifications f, and fc are equivalent.

Proof. Let us repeat the construction 6.6 using the space v¢X instead of X and
the sheaf C/ instead of C,, where

C,(0,G) ={(9,9) : (9,9) € Co(0,G) and g € C(po) is
a function satisfying the condition (4)}

for all (O,G) € T, (the sheaf C/ is naturally isomorphic to the sheaf C,). Due to
Lemma 6.5 we obtain an embedding ¢,: v¢X — v¢X which is a homeomorphism
onto ve X, because the mapping f, is perfect, and the mapping f¢ is separable and
irreducible modulo X (see Lemma 8 of the paper [43]). O

6.14. Theorem. There exists a one-to-one correspondence between the set of all
Ta-bicompactifications of the mapping f and the set of all dismembering saturated
subsheaves of the sheaf C, which preserves the partial order.

Proof. The existence of a one-to-one correspondence follows from Corollary 6.12
onto onto

and Lemma 6.13. If f,: vy X —— Y and f,,: wy X —— Y are Ta-bicompactificati-
ons of the mapping f, f, > fw, and C,,C, C Cq4 are the corresponding subsheaves,
then C, O C, by Corollary 5.16 and the construction 6.2. If C;,Co C C, are

. . t t
dismembering subsheaves, C; D Cq, and fe, : ve, X =Y, feotve, X 222V are

the corresponding Ta-bicompactifications, then the inequality fe, > fe, can be
proved as Lemma 6.13. (|

6.15. Definition. Subsheaves Ci,Co C C, will be called equivalent if C; = Co
(see 5.36).
6.16. Proposition. Let C1,Co C Cq be dismembering subsheaves and let

feiive, X onto, Y, fe,: ve,X 2" Y be the corresponding Sa-bicompactifications.

The sheaves C1 and Co are equivalent iff the Ta-bicompactifications fe, and fc, are
equivalent.

Proof follows from Corollary 6.12 and Lemma 6.13. O
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6.17. Remark. Of course, we can use subsheaves of the sheaf Cq (see the items
5.23, 5.28 and 5.35) instead of subsheaves of the sheaf C,, but the sheaf C. is not
complete (see 5.32). This defect can make some difficulties.

This defect does not occur if the family a has the largest representative in each
set O € T (see Definition 5.24 and Proposition 5.25). For example, such situation
holds for Tychonoff mappings in the sense of paper [34] (see the item 1.10), when
a is the family of all locally closed subsets of the space Y.

§ 7. MAXIMAL IDEALS OF SHEAVES

7.1. We shall assume that the notions of an ideal and a maximal ideal of an
algebra are known (see, for example, [51], the item 3.12.21, or [28], Chapter II,
§7 (4)).

We shall consider a fixed perfect mapping f: X M0,y with the property %a.
For each couple (O,G) € Ty let fo = fl-10: f71O 22 0 and

Ca(0,G) ={g € C(fo) : there is a function
g: O — R such that (g,7) € Cq(O,G)}.
The map Cj is a sheaf which is naturally isomorphic to the sheaf C, (see 5.13).

7.2. Let C' C C, be a dismembering subsheaf. For each point y € Y and each
couple (O, G) € T, (see 5.2 ¢)) let I,(0,G) ={g € C(O,G) : n,g = 0}.

It is easily seen that I, (O, G) is a closed ideal of the algebra C'(O,G) for each
couple (O,G) € Ty. MOI‘GOVG‘I‘, if (Ol,Gl),(OQ,GQ) S Ty, (Ol,Gl) - (OQ,GQ)
and h: C(Oz,G2) — C(0O1,G1) is the restriction homomorphism (see 5.14), then
Iy(OQ, GQ) = h_lly(Ol, Gl)

7.3. Definition. Let y € Y be any point. A map M, which assign to each couple
(0, G) € T, a closed maximal ideal M (O, G) C C(O, G) of the algebra CO, G), will
be called a closed mazimal y-ideal of the sheaf C, if the following conditions are
fulfilled:

1) if (O,G) € T, then I,(0,G) C M(O,G);
2) if (Ol,Gl),(O%Gg) S Ty and (Ol,Gl) - (OQ,GQ) then M(027G2) =
= h~ M (01, G1), where h is the restriction homomorphism (see 7.2).
Let us denote by 9, the set of all closed maximal y-ideals of the sheaf C' for
yey.
7.4. Lemma. Lety €Y,z € f~ly, M,(0,G) = {g € C(O,G) : gz =0} for all
(0,G) € T,,. Then the map M, is a closed mazimal y-ideal of the sheaf C.
Proof. For each couple (O, G) € T, let us define a homomorphism
voag: C(O,G) — R by the formula pogg = gz for all g € C(O, G). This homomor-
phism is continuous and “onto”, since the algebra C(O,G) contains all constants
(see 5.20), and |gz| < nyg for all g € C(O,G). It is easily seen that M,(O,G) =
= 0560, therefore M, (O, G) is a closed ideal of the algebra C(O,G). This ideal is
maximal since the algebra R has no ideals except {0}. The conditions 1) and 2) of
Definition 7.3 are satisfied obviously. O

7.5. Lemma. For each closed mazimal y-ideal M € M,, y € Y, there exists a
point x € f~'y such that M = M,.

Proof. Let us suppose that for every point € f~1y there are a couple (O,, G,) €
€ T, and a function g, € M(Og, G;) such that gz # 0; let us denote Uz = {2’ €
€ 710, 1 |g22'| > 3|g,2|}. Then the set {Uz : x € f~1y} is an open covering of
the compact set f~1y. Let {Ux; :i =1,2,...,n} be its finite subcovering; the set

0= (f#U{U:ri:izl,Q,...,n}> N (ﬂ{OL :i:1,2,...,n}>
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is open and y € O C ({0, : @ = 1,2,...,n} since the mapping f is closed.

Let G = U{G:, N O : i =1,2,...,n}, eg = min{3(gs,2:)? : i = 1,2,...,n} >

> 0 and g; = Gy,|p-10 for i = 1,2,...,n; then (O,G) € T, and g; € M(O,G)

for all i = 1,2,...,n by the condition 2) of Definition 7.3. Therefore the function

g: f71O — R, defined by the formula gr = Y (g;z)? for all z € f~1O, belongs to
i=1

the ideal M (O, G) and satisfies the condition gz > ¢y > 0 for all z € f~10.

Let us denote by g, the function such that g.z = 1 for all z € f~1O. Of course,
ge € C(O,G) (see 5.20). The function g, is the unit of the algebra C(O,G). We
shall prove that g. € M (O, G).

Let VS, ge = Ve,43.NC(0,G) € C(O,G), where A C O is a finite set and € > 0,
be an arbitrary neighborhood of the function g. (see 4.7), B = ¢g +max{n,g:y' €

n—1 _ i
€ A}. For each n € R the function'® g, = 2 - 3 (g — %’) belongs to C'(O, G)
i=0
andge_g'gn:(ge_%)~ B
Since g9 < gr < B —¢g for all x € f~1 A, we have |1—2%| <1-22 <1 for
x € f~1A. There is a number ny € R such that (1 — 2'%)”0 < e.

y € A we have

o 25\ 260\
ny/(ge—gﬂno)—ny’((ge_B) ><(1_BO) =5

that is, g - gn, € Vnge. Hence, VE,CAge NM(O,G) # @ because § - gn, € M(O,G)
by the definition of an ideal. Therefore g. € [M (O, G)|c0,a) = M(O,G).

The latter inclusion is impossible because M(O,G) is an ideal. Hence, there
exists a point z € f~!y such that gz = 0 for all § € M(O,G). Obviously,
M(O,G) C M;(O,G), but really M (O, G) = M, (0O, G) since M (O, G) is a maximal
ideal. (]

7.6. Theorem. For each point y € Y there exists a one-to-one map
onto

(by: f_ly E— gny~

Proof. Due to Lemma 7.4 we can define the map ¢, by the formula ¢,z = M,
for all z € f~'y. By Lemma 7.5 we have ¢,f 'y = 9M,. Let us note that if
x1,m2 € f~ly and x1 # 29 then M,, # M,, because the sheaf C' is dismembering
and, hence, there exist a couple (O, G) € T, and a function g € C(O.G) such that
gr1 =0 and gza # 0 (see 5.20); then g € M., (O,G) and g ¢ M,,(O,G). O

7.7. Thanks to Theorem 7.6 for each y € Y we can define a Hausdorff compact
topology on the set 9, such that the map ¢, is a homeomorphism.

Let X' = U{Smy :y € Y}, where the symbol “U” denotes the disjunctive union,

and let f': X’ 2>, Y be the map defined by the formula f'M = y for all M € 90,
and y € Y. For each couple (O,G) € Ty and each function g € C(O,G) we can
define a function §: f'~'O — R by the equality §M = §¢JZ1MM for M € f'~1O.
Let us equip X’ with the smallest topology in which the map f’ and all functions g,
where g € |J{C(O,G) : (O,G) € T,}, are continuous.

7.8. Theorem. The map ¢: X onto, X', defined by the equality ¢px = ¢y x for
all x € X, is a homeomorphism satisfying the condition f'¢ = f.

Then for every

Proof. The map ¢ is one-to-one by the construction. It is continuous since the
map f and all functions g € [J{C(O,G) : (O,G) € Ta} are continuous. It is easily
seen that the mapping f’ is separable because for each M, M’ € X' such that

_\0
10We assume that (ge — %9) = Ge.
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# M’ and f'M = f'M’' = y there are a couple (O,G) € T, and a function § €

€ C(0, G) such that gM # gM’, and the space R is Hausdorff. Therefore by Lemma
8 of the paper [43] the mapping ¢ is perfect, that is, ¢ is a homeomorphism. O
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12The translation of this article into English contains significant errors which do not exist in
the Russian text. For the correction it is necessary
1) to omit the word “open” in the second line of §1;
2) to replace the word “continuous” by “irreducible” in Proposition 2;
3) to replace the word “compact” by “Hausdorff compact” in Corollaries 4 and 9 (the Russian
term “6uxomnakT” means “Hausdorff compact space”).
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