СИБИРСКИЕ ЭЛЕКТРОННЫЕ MAТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports http://semr.math.nsc.ru

SHEAVES AND $\mathfrak{T a - B I C O M P A C T I F I C A T I O N S ~ O F ~ M A P P I N G S ~}$

V. M. ULYANOV

Abstract. The paper is devoted to an investigation of relations between bicompactifications of mappings and sheaves of algebras. Bicompactifications of mappings are a generalization of compactifications of topological spaces, and sheaves of algebras take place of algebras of continuous bounded functions on topological spaces.

The first section contains a historical review of main constructions and notions used in the paper as well as a short introduction to the theory of bicompactifications of mappings. In particular, we state here basic definitions and recall some statements about bicompactifications of mappings that were obtained earlier.

In the second section some new topological properties of the fan product and the inverse limit are proved.

The third section contains important constructions which are used for an upbuilding of bicompactifications of mappings. Several new properties of these constructions are proved.

The fourth section is devoted to a definition and an investigation of algebras of functions on mappings. In this section a natural topology on these algebras is defined; the class of globally completely regular mappings is singled out for which such algebras play a role similar to that of algebras of continuous bounded functions on completely regular spaces; a functor from the category of mappings to the category of perfect globally completely regular mappings is constructed which preserves algebras of continuous "bounded" functions on mappings; a correspondence between "mappings" of mappings and homomorphisms of their algebras is investigated.

In the fifth section sheaves of algebras connected with mappings are defined and investigated.

The sixth section contains a proof of the main result of the paper: there exists a one-to-one correspondence preserving the order between the set of all $\mathfrak{T a}$-bicompactifications of a given mapping and the set of all sheaves of a special kind.

In the seventh section we define maximal closed ideals of sheaves of algebras; relations between these ideals and points of $\mathfrak{T a}$ of a given mapping are investigated.

[^0]
Contents

§ 1. Basic constructions and notions 505
A. Constructions 505
B. Properties of mappings 506
C. Compactifications of mappings 508
D. Covers of topological spaces 509
E. $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$-bicompactifications of mappings 509
F. The existence of $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$-bicompactifications 510
G. The largest $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$-bicompactifications and $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$-absolutes 511
H. Sheaves 512
§ 2. The fan product and the inverse limit 513
A. The fan product 513
B. The inverse limit 519
§ 3. Some topological constructions 520
§ 4. Algebras of functions on mappings 522
A. Algebras of f-bounded functions 523
B. Semi-norms and topologies on algebras 523
C. $C(f)$ and other algebras 523
D. Globally completely regular mappings 525
E. Homomorphisms of algebras 527
§ 5. Sheaves 528
A. Sets of couples of functions 528
B. Algebras of couples of functions 529
C. Presheaves of algebras 531
D. Sheaves of algebras 533
E. Properties of sheaves 533
§6. $\mathfrak{T} \mathfrak{a}$-bicompactifications 536
A. From a bicompactification to a sheaf 536
B. From a sheaf to a bicompactification 538
C. Bicompactifications and sheaves 538
§ 7. Maximal ideals of sheaves 541
References 543

§ 1. Basic constructions and notions

1.1. This section contains a historical review of basic constructions and notions used in the paper.

The term "mapping" will mean "continuous map". No axioms of separability will be assumed. The symbol $[A]_{X}$ stands for the closure of the set A in the topological space X.

For mappings we write subscripts and superscripts on the left rather then on the right, that is, we write ${ }_{\alpha}^{\mathfrak{A}} \pi$ instead of $\pi_{\alpha}^{\mathfrak{A}}$ and so on. This is somewhat unusual but more convenient since we can write, for example, ${ }_{\alpha}^{\mathfrak{A}} \pi^{\#}$ and ${ }_{\alpha}^{\mathfrak{A}} \pi^{-1}$ instead of $\left(\pi_{\alpha}^{\mathfrak{A}}\right)^{\#}$ and $\left(\pi_{\alpha}^{\mathfrak{A}}\right)^{-1}$ (see [35]). Analogously, $[A \backslash B]_{X}$ is shorter than $C l_{X}(A \backslash B)$.

A. Constructions

1.2. The fan product of topological spaces relative to given mappings is a topological version of the well-known fibred product in the theory of categories (see, for example, [61], the item 1.5.4). The fan product have been described, for example, in the book [3] ($\S 2$ of Supplement to Chapter I), but for our purposes its discussion there is not sufficiently detailed, so that we shall investigate this construction
in $\S 2$. We shall also discuss some properties of the well-known inverse limit (see, for example, [3], §1 of Supplement to Chapter I).
1.3. In the item 3.1 a construction is described which have been investigated in the papers [43] and [46]. This construction was used for an upbuilding of the absolutes and compactifications of topological spaces and their mappings, for an upbuilding of completely regular spaces which have not compactifications of special kinds.

Two partial cases of this construction were known earlier: first, the partial topological product which was investigated in the paper [35] and can be obtained if $G_{\alpha}=O_{\alpha}$ for all $\alpha \in \mathfrak{A}$ (see the item 3.1); the partial topological product was used for an upbuilding of universal spaces in dimension theory (see, for example, [35], [41] or [59]); second, the construction which was described in the paper [49] and can be obtained if $\left|G_{\alpha}\right|=1$ for all $\alpha \in \mathfrak{A}$; this construction was used for an upbuilding of a great number of Hausdorff compact spaces with "pathological" properties in dimension theory and in the theory of cardinal-valued topological invariants.

B. Properties of mappings

1.4. Definition. A class \mathfrak{E} of topological spaces will be called closed if the following conditions are fulfilled:

1) there exists $Z \in \mathfrak{E}$ such that $|Z|=1$;
2) if $Z_{\alpha} \in \mathfrak{E}$ for all $\alpha \in A$ then $\prod\left\{Z_{\alpha}: \alpha \in A\right\} \in \mathfrak{E}$;
3) if $Z \in \mathfrak{E}$ and $Z^{\prime} \subseteq Z$ then $Z^{\prime} \in \mathfrak{E}$.

Further on the symbol "E" will always denote a closed class of topological spaces.
1.5. Definition. A family \mathfrak{a} of locally closed subsets of a space Y will be called closed if the following conditions are fulfilled:

1) $\varnothing \in \mathfrak{a}$;
2) if $G_{1}, G_{2} \in \mathfrak{a}$ then $\left(G_{1} \cup G_{2}\right) \backslash\left(G_{1}^{*} \cup G_{2}^{*}\right) \in \mathfrak{a}$ where $G^{*}=[G]_{Y} \backslash G$ for $G \subseteq Y$;
3) if $G \subseteq Y$ is a locally closed subset such that for each point $y \in G$ there exist a neighborhood $U y \subseteq Y$ and a set $G_{y} \in \mathfrak{a}$ satisfying the condition $G \cap U y \subseteq G_{y}$ then $G \in \mathfrak{a}$.
Particularly, if $G \in \mathfrak{a}$ and $G^{\prime} \subseteq G$ is a locally closed subset then $G^{\prime} \in \mathfrak{a}$.
Further on the symbol "a" will always denote a closed family of locally closed subsets of a topological space Y.
1.6. Definition. We shall say that a mapping $f: X \rightarrow Y$ has the property $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$ if for an arbitrary point $x \in X$ in each of the following two cases
a) for every point $x^{\prime} \in f^{-1} f x \backslash\{x\}$ and
b) for every neighborhood $U x \subseteq X$
there exist a neighborhood $O f x \subseteq Y$, a set $G \in \mathfrak{a}$, a space $Z \in \mathfrak{E}$ and mappings $g: O f x \backslash G \rightarrow Z$ and $\tilde{g}: f^{-1} O f x \rightarrow Z$ such that $[G]_{Y} \cap O f x=G,\left.\tilde{g}\right|_{f^{-1}(O f x \backslash G)}=$ $=\left.g\right|_{f^{-1}(O f x \backslash G)}$ and, respectively,
a) $\tilde{g} x^{\prime} \neq \tilde{g} x$ or
b) $\tilde{g} x \notin\left[\tilde{g}\left(f^{-1} O f x \backslash U x\right)\right]_{Z}$.

1.7. If \mathfrak{E} is the class of all completely regular spaces then we shell write $\mathfrak{T a}$ instead of $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$. In this case we can always take $Z=\mathbb{R}$ (the space of real numbers) or $Z=[0,1]$ in Definition 1.6. If \mathfrak{a} is a family of all discrete (in itself) locally closed subsets of the space Y then we shall write $\mathfrak{T}^{\mathfrak{E}}$ instead of $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$. In this case we can always suppose that $|G| \leqslant 1$ in Definition 1.6. If the above assumptions are both fulfilled, we shall write simply \mathfrak{T}.

Definition 1.6 is more general than the corresponding definition of the paper [43], but all statements and their proves remain valid (it is possible to omit the operators of the closure in Lemma 5 in [43]).

The property $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$ and the construction described in the item 3.1 are connected. Namely, the following two statements are valid.
1.8. Assertion ([43], Lemma 5). The mapping ${ }^{\mathfrak{A}} \pi: Y_{\mathfrak{A}} \xrightarrow{\text { onto }} Y$ constructed in the item 3.1 has the property $\mathfrak{T} \mathfrak{E} \mathfrak{a}$, where \mathfrak{E} is any closed class of topological spaces containing $\left\{Z_{\alpha}: \alpha \in \mathfrak{A}\right\}$ and \mathfrak{a} is any closed family of locally closed subsets of the space Y containing $\left\{G_{\alpha}: \alpha \in \mathfrak{A}\right\}$.
1.9. Assertion (a consequence of Lemma 6 of the paper [43]). If a mapping $f: X \rightarrow Y$ has the property $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$ then there exist a mapping ${ }^{\mathfrak{A}} \pi: Y_{\mathfrak{A}} \xrightarrow{\text { onto }} Y$ and a homeomorphic embedding $f_{\mathfrak{A}}: X \rightarrow Y_{\mathfrak{A}}$ such that $f={ }^{\mathfrak{A}} \pi f_{\mathfrak{A}}$, where $Y_{\mathfrak{A}}=$ $=\mathfrak{P}\left(Y,\left\{Z_{\alpha}\right\},\left\{G_{\alpha}\right\},\left\{O_{\alpha}\right\},\left\{g_{\alpha}\right\}, \alpha \in \mathfrak{A}\right), Z_{\alpha} \in \mathfrak{E}$ and $G_{\alpha} \in \mathfrak{a}$ for all $\alpha \in \mathfrak{A}$ (see 3.1-3.2).
1.10. Mappings with the property $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$ have been defined in the paper [43] and they have been investigated in the papers [45], [47] and [42]. The property $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$ is an analog of \mathfrak{E}-regularity of topological spaces ([57]). An analog of the \mathfrak{E}-compactness is defined for mappings in the paper [5].

Mappings with the property $\mathfrak{T a}$ are analogous to completely regular spaces. These mappings admit a great deal of structures which exist in completely regular spaces. For example, in the paper [42] the notion of a normal base is studied, in the paper [25] the concept of a subordination on a mapping is defined, in the papers [6], [53] and [56] uniformities on mappings are discussed. The weakest property $\mathfrak{T a}$ can be obtained if \mathfrak{a} is the family of all locally closed subsets of the space Y. Mappings with this property have been called Tychonoff mappings in the paper [34], where a great number of properties of mappings has been defined which are analogous to properties of topological spaces (see also [52]). Some of them are included in the book $[58]^{1}$ (without direct references).

Earlier, in the paper [40], the property \mathfrak{T} has been defined for mappings of completely regular spaces. The paper [44] is connected with the paper [40] and is devoted to related properties. In the paper [27] subordinations on mappings with the property \mathfrak{T} have been defined.

Some of earlier defined properties of mappings are equivalent to properties $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$ for suitable \mathfrak{E} and \mathfrak{a}. For example, the following two statements are valid.

[^1]1.11. Assertion. A mapping $f: X \rightarrow Y$ is dividing ([9], Definition 1) iff it has the property $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$ where $\mathfrak{E}=\{Z: Z$ is completely regular and ind $Z=0\}$ and $\mathfrak{a}=\{G \subseteq Y: G$ is locally closed $\}$.
1.12. Assertion ([44] - for regular X and Y). a) If a T_{3}-mapping ([34]) $f: X \rightarrow$ $\rightarrow Y$ is completely closed ([49]) then the mapping f is closed and has the property $\mathfrak{T}^{\mathfrak{E}}$ where \mathfrak{E} is the class of all topological spaces, and the set $Y \backslash f X$ is discrete and clopen in Y.
b) If a mapping $f: X \rightarrow Y$ is closed and has the property $\mathfrak{T}^{\mathfrak{E}}$ where \mathfrak{E} is the class of all topological spaces, and the set $Y \backslash f X$ is discrete and clopen in Y, then the mapping f is completely closed.
1.13. Remark. a) If $\mathfrak{a}=\{\varnothing\}$ or $|Z| \leqslant 1$ for all $Z \in \mathfrak{E}$ then each mapping $f: X \rightarrow Y$ with the property $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$ is a homeomorphic embedding.
b) If \mathfrak{a} is a family of all locally closed subsets of the space Y and \mathfrak{E} is the class of all topological spaces, then each mapping $f: X \rightarrow Y$ has the property $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$.
c) If $\mathfrak{E}_{1} \subseteq \mathfrak{E}_{2}$ and $\mathfrak{a}_{1} \subseteq \mathfrak{a}_{2}$, then every mapping with the property $\mathfrak{T}^{\mathfrak{E}_{1}} \mathfrak{a}_{1}$ has the property $\mathfrak{T}^{\mathfrak{E}_{2}} \mathfrak{a}_{2}$.
d) If a mapping $f: X \rightarrow Y$ has the property $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}, X^{\prime} \subseteq X, f X^{\prime} \subseteq Y^{\prime} \subseteq Y$, $G \cap Y^{\prime} \in \mathfrak{a}^{\prime}$ for all $G \in \mathfrak{a}$ where \mathfrak{a}^{\prime} is a closed family of locally closed subsets of Y^{\prime}, then the mapping $f^{\prime}=\left.f\right|_{X^{\prime}}: X^{\prime} \rightarrow Y^{\prime}$ has the property $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}^{\prime}$.
1.14. Definition ([55]). A mapping $f: X \rightarrow Y$ will be called separable if any two distinct points $x_{1}, x_{2} \in X$ such that $f x_{1}=f x_{2}$ have disjoint neighborhoods in X.
1.15. Lemma ([43]). If every space $Z \in \mathfrak{E}$ is Hausdorff, then each mapping with the property $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$ is separable.

C. Compactifications of mappings

1.16. Definition ([63]). Let $f: X \rightarrow Y$ be a mapping such that $[f X]_{Y}=Y$. A mapping $f_{v}: v_{f} X \rightarrow Y$ will be called a compactification of the mapping f if the following conditions are fulfilled:

1) the mapping f_{v} is perfect;
2) $X \subseteq v_{f} X$;
3) $\left.f_{v}\right|_{X}=f$;
4) $[X]_{v_{f} X}=v_{f} X$.
1.17. It has been proved in the paper [63] that a mapping of a Hausdorff locally compact space onto another such space has a compactification. An analogous statement has been proved in the paper [54] for mappings of completely regular spaces onto regular spaces. The statement that any mapping has a compactification is a partial case of results of the paper [43]. The problem on the existence of separable compactifications of mappings has been studied in the paper [26]. ${ }^{2}$ Various problems on compactifications of mappings in the sense of Definition 1.16 have been considered in the papers [11]-[15], [18], [21]-[23], [29]-[34], [36]-[39], [56], [60].

It is possible to obtain a definition of an extension of a mapping if one replace the condition 1) in Definition 1.16 by another suitable condition. Such extensions have been studied in the papers [4], [5], [11]-[13], [20].

It should be mentioned that the notion of an extension of a topological space can be considered as a partial case of an extension of a mapping (a mapping $X \rightarrow\{*\}$ onto the one-point space corresponds to the topological space $X \neq \varnothing$).

[^2]
D. Covers of topological spaces

1.18. Definition ([64]). A cover of a topological space Y is a perfect irreducible mapping $f: X \xrightarrow{\text { onto }} Y$.

Usually it is convenient to say that the space X is the cover of the space Y.
1.19. The most important cover of a topological space is its absolute. Absolutes for all topological spaces have been constructed in the paper [43]. Other covers have been studied too (see, for example, the papers [1], [10], [16], [17], [62]). Different general constructions of covers can be found in the papers [1], [2], [16], [17], [62], [64]. The paper [24] contains a method to construct all separable (in the sense of Definition 1.14) and all Tychonoff (in the sense of the paper [34]) covers of an arbitrary topological space.

It is noted in the paper [64] that the notions of an extension and of a cover of a topological space are analogous. However, the notions of a compactification of a mapping and a cover of a topological space are much more similar (compare, for example, the papers [26] and [24]). All these notions are partial cases of an extension of a mapping which can be obtained if we replace the conditions 1) and 5) of Definition 1.21 by other suitable conditions. Definition 1.21 has been formulated in the paper [43] to unify the notions of a compactification of a mapping (and, particularly, of a topological space) and of a cover of a topological space. This is, probably, the best version; the condition 5) could be replaced by other conditions to obtain bicompactifications with special properties.

E. $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$-bicompactifications of mappings

1.20. Definition ([43]). A mapping $f: X \xrightarrow{\text { onto }} Y$ will be called irreducible modulo $X^{\prime} \subseteq X$ if every closed set $F \subseteq X$, which satisfies the conditions $X^{\prime} \subseteq F$ and $f F=\bar{Y}$, coincides with X (or, that is equivalent, if for each non-empty open set $U \subseteq X$ the set $\left(U \cap X^{\prime}\right) \cup f^{\#} U$ is non-empty too ${ }^{3}$).

In a usual way we can prove that if a mapping $f: X \xrightarrow{\text { onto }} Y$ and a set $X^{\prime} \subseteq X$ are given such that for each $y \in Y \backslash f\left[X^{\prime}\right]_{X}$ the space $f^{-1} y$ is compact then the mapping f can be reduced modulo X^{\prime}, that is, there is a closed set $F \subseteq X$ such that $f F=Y, X^{\prime} \subseteq F$ and the mapping $\left.f\right|_{F}$ is irreducible modulo X^{\prime}.
1.21. Definition ([43]). A mapping $f_{v}: v_{f} X \xrightarrow{\text { onto }} Y$ will be called $a \mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$ bicompactification of a mapping $f: X \rightarrow Y$ if the following conditions are fulfilled:

1) the mapping f_{v} is perfect;
2) $X \subseteq v_{f} X$;
3) $\left.f_{v}\right|_{X}=f$;
4) the mapping f_{v} is irreducible modulo X;
5) the mapping f_{v} has the property $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$.

1.22. Definition ([43]). Let $f_{v}: v_{f} X \xrightarrow{\text { onto }} Y$ and $f_{w}: w_{f} X \xrightarrow{\text { onto }} Y$ be $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$ bicompactifications of a mapping $f: X \rightarrow Y$. We shall write $f_{v} \geqslant f_{w}$ if there is a mapping ${ }_{w}^{v} \varphi: v_{f} X \rightarrow w_{f} X$ such that $f_{v}=f_{w}{ }_{w}^{v} \varphi$ and ${ }_{w}^{v} \varphi x=x$ for all $x \in X$.

[^3]
1.23. Definition. $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$-bicompactifications $f_{v}: v_{f} X \xrightarrow{\text { onto }} Y$ and $f_{w}: w_{f} X \xrightarrow{\text { onto }}$ $\xrightarrow{\text { onto }} Y$ of a mapping $f: X \rightarrow Y$ will be called equivalent if there exists a homeomorphism ${ }_{w}^{v} \varphi: v_{f} X \xrightarrow{\text { onto }} w_{f} X$ such that $f_{v}=f_{w}{ }_{w}^{v} \varphi$ and ${ }_{w}^{v} \varphi x=x$ for all $x \in X$.

In general the mapping ${ }_{w}^{v} \varphi$ in Definitions 1.22 and 1.23 is not unique, and there are non-equivalent $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$-bicompactifications f_{v} and f_{w} such that $f_{v} \geqslant f_{w}$ and $f_{w} \geqslant$ $\geqslant f_{v}$, but this is impossible in the case of separable $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$-bicompactifications (for example, if all spaces of the class \mathfrak{E} are Hausdorff).
1.24. The existence of $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$-bicompactifications has been considered in the paper [43]. Properties of the largest separable $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$-bicompactifications have been investigated in the paper [45]. Constructions of all \mathfrak{T}-bicompactifications and $\mathfrak{T a}$-bicompactifications by means of subordinations have been described in the papers [27] and [25]. The main results of the papers [43] and [45] about $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$ bicompactifications are following.

F. The existence of $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$-bicompactifications

1.25. Theorem. If each space $Z \in \mathfrak{E}$ has a compactification $v Z \in \mathfrak{E}$ then each mapping $f: X \rightarrow Y$ with the property $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$ has a $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$-bicompactification $f_{v}: v_{f} X \xrightarrow{\text { onto }} Y$.
1.26. Corollary. If each space $Z \in \mathfrak{E}$ has a Hausdorff compactification $v Z \in$ $\in \mathfrak{E}$ then each mapping $f: X \rightarrow Y$ with the property $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$ has a separable $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$ bicompactification $f_{v}: v_{f} X \xrightarrow{\text { onto }} Y$.
1.27. Lemma. Let $f_{v}: v_{f} X \xrightarrow{\text { onto }} Y$ be a $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$-bicompactification and $f_{w}: w_{f} X \xrightarrow{\text { onto }} Y$ be a separable $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$-bicompactification of a mapping $f: X \rightarrow$ $\rightarrow Y$ such that $f_{v} \geqslant f_{w}$. Then the mapping ${ }_{w}^{v} \varphi: v_{f} X \xrightarrow{\text { onto }} w_{f} X$ satisfying the conditions $f_{v}=f_{w}{ }_{w}^{v} \varphi$ and ${ }_{w}^{v} \varphi x=x$ for all $x \in X$, is perfect, "onto", irreducible and is determined by these conditions uniquely.
1.28. Corollary. Let $f_{v}: v_{f} X \xrightarrow{\text { onto }} Y$ and $f_{w}: w_{f} X \xrightarrow{\text { onto }} Y$ be separable $\mathfrak{T} \mathfrak{a} \mathfrak{a}$ bicompactifications of a mapping $f: X \rightarrow Y$ such that $f_{v} \geqslant f_{w}$ and $f_{w} \geqslant f_{v}$. Then the mappings ${ }_{w}^{v} \varphi$ and ${ }_{v}^{w} \varphi$ are mutually inverse homeomorphisms, and the $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$-bicompactifications f_{v} and f_{w} are equivalent.
1.29. Assertion. Let $\left\{f_{\alpha}: \alpha \in \mathfrak{A}\right\}$ be any non-empty set of (separable) $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$ bicompactifications $f_{\alpha}: v_{\alpha} X \xrightarrow{\text { onto }} Y, \alpha \in \mathfrak{A}$, of a mapping $f: X \rightarrow Y$. Then there is a (separable) $\mathfrak{T} \mathfrak{E}_{\mathfrak{a}}$-bicompactification $f_{v}: v_{f} X \xrightarrow{\text { onto }} Y$ of the mapping f such that $f_{v} \geqslant f_{\alpha}$ for all $\alpha \in \mathfrak{A}$.
1.30. Proposition. For every mapping $f: X \rightarrow Y$ there exists the set $\mathfrak{C}(f)$ of all pairwise non-equivalent separable $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$-bicompactifications of this mapping. The relation " \geqslant " is a partial order on the set $\mathfrak{C}(f)$.

Of course, it is possible that the set $\mathfrak{C}(f)$ is empty.

G. The largest $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$-bicompactifications and $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$-absolutes

1.31. Theorem. If the mapping $f: X \rightarrow Y$ has at least one separable $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$ bicompactification then it has the largest separable $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$-bicompactification $f_{\beta}: \beta_{f} X \xrightarrow{\text { onto }} Y$ (of course, f_{β} is unique).
1.32. Corollary. If each space $Z \in \mathfrak{E}$ has a Hausdorff compactification $v Z \in$ $\in \mathfrak{E}$ then every mapping $f: X \rightarrow Y$ with the property $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$ has the largest $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$ bicompactification $f_{\beta}: \beta_{f} X \xrightarrow{\text { onto }} Y$ (obviously, f_{β} is separable).
1.33. Let us consider a mapping $f: \varnothing \rightarrow Y$ with the empty domain. Obviously, the identical mapping $i_{Y}: Y \xrightarrow{\text { onto }} Y$ is a separable $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$-bicompactification of the mapping f for any closed \mathfrak{E} and \mathfrak{a}. Hence, the mapping f has the largest separable $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$-bicompactification $\mathfrak{p}: \mathfrak{a}_{\mathfrak{E}} Y \xrightarrow{\text { onto }} Y$. The space $\mathfrak{a}_{\mathfrak{E}} Y$ is called the $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$-absolute of the space Y.
$\mathfrak{T a}$-absolutes of topological spaces have been studied in the paper [62].
Obviously, each $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$-bicompactification of the mapping $f: \varnothing \rightarrow Y$ is a cover of the space Y; hence, we get the following statement.
1.34. Corollary. Each topological space Y has the largest separable cover $\mathfrak{p}: \mathfrak{a}_{\mathfrak{E}} Y \xrightarrow{\text { onto }} Y$ with the property $\mathfrak{T} \mathfrak{a} \mathfrak{a}$.
1.35. Assertion. If a family \mathfrak{a} contains all boundaries of regular closed subsets of a space Y, and there is a space $Z \in \mathfrak{E}$ such, that there exists an open subset $U \subseteq Z$ satisfying the condition $\varnothing \neq U \neq Z$, then the $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$-absolute of the space Y coincides with the absolute of the space Y.
1.36. Assertion ([62]). If \mathfrak{a} is the smallest closed family containing all nowhere dense zero-sets of a completely regular space Y, then the $\mathfrak{T a}$-absolute of the space Y coincides with the sequential absolute o $Y([10])$ of the space Y.
1.37. Theorem ([45]). Let a mapping $f_{1}: X_{1} \rightarrow Y_{1}$ has the largest separable $\mathfrak{T}^{\mathfrak{E}_{1}} \mathfrak{a}_{1}$-bicompactification $f_{1 \beta}: \beta_{f_{1}} X_{1} \xrightarrow{\text { onto }} Y_{1}, f_{2}: X_{2} \xrightarrow{\text { onto }} Y_{2}$ be a perfect separable mapping with the property $\mathfrak{T}^{\mathfrak{E}_{2}} \mathfrak{a}_{2}, h_{1}: X_{1} \rightarrow X_{2}$ and $h_{2}: Y_{1} \rightarrow Y_{2}$ be mappings such that $h_{2} f_{1}=f_{2} h_{1}$ and $h_{2}^{-1} G \in \mathfrak{a}_{1}$ for all $G \in \mathfrak{a}_{2}, \mathfrak{E}_{2} \subseteq \mathfrak{E}_{1}$. Then there exists a mapping $h: \beta_{f_{1}} X_{1} \rightarrow X_{2}$ such that $f_{2} h=h_{2} f_{1 \beta}$ and $\left.h\right|_{X_{1}}=h_{1}$. Moreover,

1) if the mapping h_{2} is perfect or separable then the mapping h is, respectively, perfect or separable too;
2) if for each $G \in \mathfrak{a}_{1}$ the set $G \backslash\left[f_{1} X_{1}\right]_{Y_{1}}$ is nowhere dense in Y_{1} then the mapping h is unique.

1.38. Corollary. Let $\mathfrak{p}_{1}: \mathfrak{a}_{1 \mathfrak{E}_{1}} Y_{1} \xrightarrow{\text { onto }} Y_{1}$ and $\mathfrak{p}_{2}: \mathfrak{a}_{2 \mathfrak{E}_{2}} Y_{2} \xrightarrow{\text { onto }} Y_{2}$ be the largest separable covers with the properties $\mathfrak{T}^{\mathfrak{E}_{1}} \mathfrak{a}_{1}$ and $\mathfrak{T}^{\mathfrak{E}_{2}} \mathfrak{a}_{2}$ respectively, $\mathfrak{E}_{2} \subseteq \mathfrak{E}_{1}$, and $h: Y_{1} \rightarrow Y_{2}$ be a mapping such that $h^{-1} G \in \mathfrak{a}_{1}$ for all $G \in \mathfrak{a}_{2}$. Then there is a mapping $\tilde{h}: \mathfrak{a}_{1 \mathfrak{E}_{1}} Y_{1} \rightarrow \mathfrak{a}_{2 \mathfrak{E}_{2}} Y_{2}$ such that $\mathfrak{p}_{2} \tilde{h}=h \mathfrak{p}_{1}$. Moreover,
3) if the mapping h is perfect or separable then the mapping \tilde{h} is, respectively, perfect or separable;
4) if each set $G \in \mathfrak{a}_{1}$ is nowhere dense in Y_{1} then the mapping \tilde{h} is unique.

1.39. Corollary ([50]). Let $q Y_{1}$ and $q Y_{2}$ be absolutes of topological spaces Y_{1} and Y_{2} respectively, $q_{1}: q Y_{1} \xrightarrow{\text { onto }} Y_{1}$ and $q_{2}: q Y_{2} \xrightarrow{\text { onto }} Y_{2}$ be their projections, $h: Y_{1} \rightarrow Y_{2}$ be a mapping. Then there exists a mapping $\tilde{h}: q Y_{1} \rightarrow q Y_{2}$ such that $q_{2} \tilde{h}=h q_{1}$. Moreover,
5) if the mapping h is perfect or separable then the mapping \tilde{h} is, respectively, perfect or separable;
6) if for each regular open set $U \subseteq Y_{2}$ the set $h^{-1} \mathrm{Fr}_{Y_{2}} U$ is nowhere dense ${ }^{4}$ in Y_{1} then the mapping \tilde{h} is unique.
1.40. Corollary (it seems to be new). Let $o Y_{1}$ and $o Y_{2}$ be sequential absolutes of completely regular spaces Y_{1} and Y_{2} respectively, $o_{1}: o Y_{1} \xrightarrow{\text { onto }} Y_{1}$ and $o_{2}: o Y_{2} \xrightarrow{\text { onto }} Y_{2}$ be their projections, $h: Y_{1} \rightarrow Y_{2}$ be a mapping such that for each nowhere dense zero-set $G \subseteq Y_{2}$ the set $h^{-1} G$ is nowhere dense in Y_{1}. Then there exists a unique mapping $\tilde{h}: o Y_{1} \rightarrow o Y_{2}$ such that $o_{2} \tilde{h}=h o_{1}$. Moreover, if the mapping h is perfect or separable then the mapping \tilde{h} is, respectively, perfect or separable.
1.41. Remark. It is possible to eliminate the property $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$ from statements 1.25 , 1.27-1.32, 1.34 using Remark 1.13 b).

H. Sheaves

1.42. In $\S 4$ and $\S 5$ we construct and investigate an object connected with a given mapping which corresponds to the algebra of continuous bounded functions on a given topological space. An analogous problem has considered in the papers [19], [18].

A required object is a sheaf. Unfortunately, a usual sheaf over a topological space is not convenient to describe $\mathfrak{T a}$-bicompactifications of a given mapping with the property $\mathfrak{T} \mathfrak{a}$, therefore we have to use a more general definition. We re-formulate Definition 0.31 of the book [8] in a convenient way for our special purposes.

The symbol " T " will denote further on a partially ordered set. We shall denote the relation of the partial order by the symbol " \subseteq ". We shall also suppose that for each $t_{1}, t_{2} \in T$ there exists $\min \left\{t_{1}, t_{2}\right\} \in T$ which will be denoted by $t_{1} \cap t_{2}$.
1.43. Definition. We shall say that a Grothendieck pretopology is given on the set T if for each $t \in T$ a family $P(t)$ of subsets of T is given satisfying the following conditions:

1) if $t \in T, \gamma \in P(t)$ and $t^{\prime} \in \gamma$, then $t^{\prime} \subseteq t$;
2) if $t \in T$, then $\{t\} \in P(t)$;
3) if $t, t^{\prime} \in T, t^{\prime} \subseteq t$ and $\left\{t_{\alpha}: \alpha \in A\right\} \in P(t)$, then $\left\{t_{\alpha} \cap t^{\prime}: \alpha \in A\right\} \in P\left(t^{\prime}\right)$;
4) if $t \in T$, $\left\{t_{\alpha}: \alpha \in A\right\} \in P(t)$ and $\left\{t_{\alpha \beta}: \beta \in B_{\alpha}\right\} \in P\left(t_{\alpha}\right)$ for all $\alpha \in A$, then $\left\{t_{\alpha \beta}: \beta \in B_{\alpha}, \alpha \in A\right\} \in P(t)$.
Elements of $P(t)$ are called coverings of the element $t \in T$.

[^4]1.44. Definition. We shall say that a presheaf C of sets is given on the set T if for each $t \in T$ a set $C(t)$ is given, and for each $t_{1}, t_{2} \in T$ such that $t_{1} \subseteq t_{2}$ a (restriction) map ${ }_{t_{1}}^{t_{2}} h: C\left(t_{2}\right) \rightarrow C\left(t_{1}\right)$ is given satisfying the following conditions:

1) ${ }_{t}^{t} h: C(t) \rightarrow C(t)$ is an identity map for every $t \in T$;
2) if $t_{1}, t_{2}, t_{3} \in T$ and $t_{1} \subseteq t_{2} \subseteq t_{3}$ then ${ }_{t_{1}}^{t_{3}} h={ }_{t_{1}}^{t_{2}} h_{t_{2}}^{t_{3}} h$.
1.45. Definition ([61], the item 4.5.2). Let C be a presheaf on the set T and let $\gamma \subseteq T$ and $g_{t} \in C(t)$ for all $t \in \gamma$. The set $\left\{g_{t}: t \in \gamma\right\}$ will be called compatible if for each $t_{1}, t_{2} \in \gamma$ the equality ${ }_{t_{1} \cap t_{2}}^{t_{1}} h g_{t_{1}}={ }_{t_{1} \cap t_{2}}^{t_{2}} h g_{t_{2}}$ holds.
1.46. Definition. A presheaf \mathcal{C} on the set T with a given Grothendieck pretopology $\{P(t): t \in T\}$ will be called a sheaf if for each element $t_{0} \in T$, a covering $\gamma \in P\left(t_{0}\right)$ and a compatible set $\left\{g_{t}: t \in \gamma\right\}$ there is a unique element $g \in \mathcal{C}\left(t_{0}\right)$ such that ${ }_{t}^{t_{0}} h g=g_{t}$ for all $t \in \gamma$.
1.47. Example. Let Y be a topological space and T be the set of all open subsets of the space Y (that is, T is the topology of the space Y). For each $U \in T$ let $P(U)=\{\gamma \subseteq T: \bigcup \gamma=U\}$. It is easy to verify that $\{P(U): U \in T\}$ is a Grothendieck pretopology and that \mathcal{C} is a sheaf on the set T with this pretopology iff \mathcal{C} is a sheaf over the space Y (see [61], Definition 4.5.1, or [8], Definition 0.23).
1.48. We shall consider sheaves of topological algebras. In this case restriction maps are supposed to be continuous homomorphisms.

In $\S 6$ we shall show that there is an order isomorphism of the set $\mathfrak{C}(f)$ of all $\mathfrak{T} \mathfrak{a}$-bicompactifications of a given mapping $f: X \rightarrow Y$ with the property $\mathfrak{T a}$ onto a set of sheaves with special properties.

In $\S 7$ we shall consider closed maximal ideals of sheaves of topological algebras of continuous functions on $\mathfrak{T a}$-bicompactifications of mappings.

§ 2. The fan product and the inverse limit

A. The fan product

2.1. Let mappings ${ }^{\alpha} \pi: Y_{\alpha} \rightarrow Y, \alpha \in \mathfrak{A}$, be given. The fan product of the spaces Y_{α} relative to the mappings ${ }^{\alpha} \pi, \alpha \in \mathfrak{A}$, is the set $Y_{\mathfrak{A}}=\prod_{Y}\left(\left\{Y_{\alpha}\right\},\left\{{ }^{\alpha} \pi\right\}, \alpha \in \mathfrak{A}\right)=$ $=\left\{\left\{y_{\gamma}: \gamma \in \mathfrak{A}\right\} \in \prod\left\{Y_{\gamma}: \gamma \in \mathfrak{A}\right\}:{ }^{\alpha} \pi y_{\alpha}={ }^{\beta} \pi y_{\beta}\right.$ for all $\left.\alpha, \beta \in \mathfrak{A}\right\}$, equipped with the topology of the subspace of the product $\prod\left\{Y_{\alpha}, \alpha \in \mathfrak{A}\right\}$. Let ${ }_{\alpha}^{\mathfrak{A}} \pi: Y_{\mathfrak{A}} \rightarrow Y_{\alpha}$ be the restriction of the projection ${ }^{\alpha} p: \prod\left\{Y_{\gamma}: \gamma \in \mathfrak{A}\right\} \rightarrow Y_{\alpha}$ of the product to its factor for each $\alpha \in \mathfrak{A}$. Due to the definition of the fan product the equality ${ }^{\alpha} \pi{ }_{\alpha}^{\mathfrak{A}} \pi={ }^{\beta} \pi{ }_{\beta}^{\mathfrak{A}} \pi$ holds for all $\alpha, \beta \in \mathfrak{A}$. Therefore the equality ${ }^{\mathfrak{A}} \pi={ }^{\alpha} \pi{ }_{\alpha}^{\mathfrak{A}} \pi, \alpha \in \mathfrak{A}$, defines the mapping ${ }^{\mathfrak{A}} \pi: Y_{\mathfrak{A}} \rightarrow Y$ correctly. The mapping ${ }^{\mathfrak{A}} \pi$ will be called the fan product of the mappings ${ }^{\alpha} \pi, \alpha \in \mathfrak{A}$. We shall write ${ }^{\mathfrak{A}} \pi=\prod_{Y}\left\{{ }^{\alpha} \pi: \alpha \in \mathfrak{A}\right\}$.

It is convenient to use the following coordinate representation of the fan product (it follows from Proposition of the book [3], §2 of Supplement to Chapter I): $Y_{\mathfrak{A}}=$ $=\prod_{Y}\left(\left\{Y_{\alpha}\right\},\left\{{ }^{\alpha} \pi\right\}, \alpha \in \mathfrak{A}\right)=\left\{\left\{y, z_{\alpha}: \alpha \in \mathfrak{A}\right\}: y \in Y, z_{\alpha} \in{ }^{\alpha} \pi^{-1} y\right.$ for all $\left.\alpha \in \mathfrak{A}\right\}$. Then we have the equalities ${ }^{\mathfrak{A}} \pi\left\{y, z_{\alpha}: \alpha \in \mathfrak{A}\right\}=y$ and ${ }_{\beta}^{\mathfrak{A}} \pi\left\{y, z_{\alpha}: \alpha \in \mathfrak{A}\right\}=z_{\beta} \in$ $\in{ }^{\beta} \pi^{-1} y \subseteq Y_{\beta}$ for all $\beta \in \mathfrak{A}$ and $\left\{y, z_{\alpha}: \alpha \in \mathfrak{A}\right\} \in Y_{\mathfrak{A}}$.

For each $\mathfrak{B} \subseteq \mathfrak{A}$ let us define a mapping $\mathfrak{A}_{\mathfrak{B}}^{\mathfrak{A}} \pi: Y_{\mathfrak{A}} \rightarrow Y_{\mathfrak{B}}=\prod_{Y}\left(\left\{Y_{\alpha}\right\},\left\{{ }^{\alpha} \pi\right\}, \alpha \in\right.$ $\in \mathfrak{B}$) by the equality ${ }_{\mathfrak{B}}^{\mathfrak{A}} \pi\left\{y, z_{\alpha}: \alpha \in \mathfrak{A}\right\}=\left\{y, z_{\alpha}: \alpha \in \mathfrak{B}\right\}$ for all $\left\{y, z_{\alpha}: \alpha \in \mathfrak{A}\right\} \in$ $\in Y_{\mathfrak{A}}$. Of course, ${ }^{\mathfrak{A}} \pi={ }^{\mathfrak{B}} \pi{ }_{\mathfrak{B}}^{\mathfrak{A}} \pi$ and ${ }_{\alpha}^{\mathfrak{A}} \pi={ }_{\alpha}^{\mathfrak{B}} \pi{ }_{\mathfrak{B}}^{\mathfrak{A}} \pi$ for all $\alpha \in \mathfrak{B}$.

Let us note that the space $Y_{\{\alpha\}}$ is naturally homeomorphic to the space Y_{α} for each $\alpha \in \mathfrak{A}$; we shall identify these spaces and corresponding mappings ${ }^{\{\alpha\}} \pi$ and ${ }^{\alpha} \pi$.

If $\mathfrak{B} \subseteq \mathfrak{A}$ then we shall call the mapping ${ }_{\mathfrak{A} \backslash \mathfrak{B}}^{\mathfrak{A}}$] parallel to the mapping ${ }^{\mathfrak{B}} \pi$.

Further on we shall assume that $Y_{\mathfrak{A}}$ is the fan product, without specifying it each time.

The following statements 2.2-2.5 can be proved by a comparison of corresponding sets and topologies.
2.2. Proposition ([3]). For each point $y \in Y$ the space ${ }^{\mathfrak{A}} \pi^{-1} y$ is homeomorphic to the space $\prod\left\{{ }^{\alpha} \pi^{-1} y: \alpha \in \mathfrak{A}\right\}$. In particular, if ${ }^{\alpha} \pi Y_{\alpha}=Y$ for all $\alpha \in \mathfrak{A}$, then ${ }^{\mathfrak{A}} \pi Y_{\mathfrak{A}}=Y$.
2.3. Proposition. Let $z \in Y_{\mathfrak{A} \backslash \mathfrak{B}}$ and $y={ }^{\mathfrak{A} \backslash \mathfrak{B}} \pi z$. Then the mapping ${ }_{\mathfrak{B}}^{\mathfrak{A}} \pi$ maps the space $\underset{\mathfrak{A} \backslash \mathfrak{B}}{\mathfrak{A}} \pi^{-1} z$ onto the space ${ }^{\mathfrak{B}} \pi^{-1} y$ homeomorphically. In particular, if ${ }^{\mathfrak{B}} \pi Y_{\mathfrak{B}}=y$ then $\underset{\mathfrak{A} \backslash \mathfrak{B}}{\mathfrak{A}} \pi Y_{\mathfrak{A}}=Y_{\mathfrak{A} \backslash \mathfrak{B}}$.
2.4. Proposition. Let A be a family of pairwise disjoint subsets of the set \mathfrak{A} such that $\bigcup\{\mathfrak{B}: \mathfrak{B} \in A\}=\mathfrak{A}$. Then the fan products $Y_{\mathfrak{A}}=\prod_{Y}\left(\left\{Y_{\alpha}\right\},\left\{{ }^{\alpha} \pi\right\}, \alpha \in \mathfrak{A}\right)$ and $Y_{A}=\prod_{Y}\left(\left\{Y_{\mathfrak{B}}\right\},\left\{{ }^{\mathfrak{B}} \pi\right\}, \mathfrak{B} \in A\right.$) are naturally homeomorphic and (if we identify $Y_{\mathfrak{A}}$ and $\left.Y_{A}\right)^{A} \pi={ }^{\mathfrak{A}} \pi,{ }_{\mathfrak{B}}^{A} \pi={ }_{\mathfrak{B}}^{\mathfrak{A}} \pi$ for each $\mathfrak{B} \in A$.
2.5. Proposition. Let A be a family of subsets of the set \mathfrak{A} such that $\bigcup\{\mathfrak{B}: \mathfrak{B} \in$ $\in A\}=\mathfrak{A}$, and let A be directed by the relation " \subseteq ". Let $S=\left\{Y_{\mathfrak{B}}, \mathfrak{B}^{\mathfrak{B}}, \pi: \mathfrak{B}, \mathfrak{B}^{\prime} \in\right.$ $\left.\in A, \mathfrak{B}^{\prime} \subseteq \mathfrak{B}\right\}$ be an inverse spectrum. Let $Y_{S}=\lim S,{ }^{S} \pi=\lim ^{{ }^{\mathfrak{B}}} \pi$ and ${ }_{\mathfrak{B}}^{S} \pi$ be the projection of the space Y_{S} to $Y_{\mathfrak{B}}, \mathfrak{B} \in A$ (for the definitions see [51], §2.5). Then the fan product $Y_{\mathfrak{A}}$ and the space Y_{S} are naturally homeomorphic and (if we identify $Y_{\mathfrak{A}}$ and $\left.Y_{S}\right)^{S} \pi={ }^{\mathfrak{A}} \pi,{ }_{\mathfrak{B}}^{S} \pi={ }_{\mathfrak{B}}^{\mathfrak{R}} \pi$ for each $\mathfrak{B} \in A$.
2.6. In the following seven items we shall prove statements about the existence of mappings connected with the fan product; also we shall prove that the fan product preserves the following properties of mappings: to be perfect, or separable, or uniquely reducible, or to have the property $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$. Analogous statements will be proved for the inverse limit of mappings. Other properties of the inverse limit can be found in the books [3] and [51].
2.7. Proposition. Let mappings $f: X \rightarrow Y$ and $f_{\alpha}: X \rightarrow Y_{\alpha}, \alpha \in \mathfrak{A}$, be given such that ${ }^{\alpha} \pi f_{\alpha}=f$ for all $\alpha \in \mathfrak{A}$. Then there is a unique map $f_{\mathfrak{A}}: X \rightarrow Y_{\mathfrak{A}}$ such that ${ }_{\alpha}^{\mathfrak{A}} \pi f_{\mathfrak{A}}=f_{\alpha}$ for all $\alpha \in \mathfrak{A}$. The map $f_{\mathfrak{A}}$ is continuous and satisfies the condition ${ }^{\mathfrak{A}} \pi f_{\mathfrak{A}}=f$.

Proof. Obviously, the map $f_{\mathfrak{A}}$ has to be defined by the equality $f_{\mathfrak{A}} x=\left\{f x, f_{\alpha} x\right.$: $\alpha \in \mathfrak{A}\}$ for all $x \in X$, and it satisfies the required conditions. The continuity of the $\operatorname{map} f_{\mathfrak{A}}$ follows from the definition of the topology of the fan product (see [3], §2 of Supplement to Chapter I, and [51], Proposition 2.3.6).
2.8. Proposition. Let $X_{\mathfrak{B}}=\prod_{X}\left(\left\{X_{\beta}\right\},\left\{{ }^{\beta} p\right\}, \beta \in \mathfrak{B}\right),{ }^{\mathfrak{B}} p=\prod_{X}\left\{{ }^{\beta} p, \beta \in \mathfrak{B}\right\}$ and $Y_{\mathfrak{A}}=\prod_{Y}\left(\left\{Y_{\alpha}\right\},\left\{{ }^{\alpha} \pi\right\}, \alpha \in \mathfrak{A}\right),{ }^{\mathfrak{A}} \pi=\prod_{Y}\left\{{ }^{\alpha} \pi, \alpha \in \mathfrak{A}\right\}$. Let $h: \mathfrak{A} \rightarrow \mathfrak{B}$ be a map, and let mappings $f: X \rightarrow Y$ and ${ }_{\alpha} f: X_{h \alpha} \rightarrow Y_{\alpha}, \alpha \in \mathfrak{A}$, satisfy the equality ${ }^{\alpha} \pi_{\alpha} f=f^{h \alpha} p$ for all $\alpha \in \mathfrak{A}$. Then there exists a unique map ${ }_{\mathfrak{A}} f: X_{\mathfrak{B}} \rightarrow Y_{\mathfrak{A}}$ such that ${ }_{\alpha}^{\mathfrak{A}} \pi_{\mathfrak{A}} f={ }_{\alpha} f{ }_{h}^{\mathfrak{B}} p$ for all $\alpha \in \mathfrak{A}$. The map ${ }_{\mathfrak{A}} f$ is continuous and satisfies the equality ${ }^{\mathfrak{A}} \pi_{\mathfrak{A}} f=f^{\mathfrak{B}} p$.

Proof. We can define the mappings $f^{\mathfrak{B}} p: X_{\mathfrak{B}} \rightarrow Y$ and ${ }_{\alpha} f{ }_{h \alpha}^{\mathfrak{B}} p: X_{\mathfrak{B}} \rightarrow Y_{\alpha}$, $\alpha \in \mathfrak{A}$, and use Proposition 2.7.
2.9. Theorem. a) If all mappings ${ }^{\alpha} \pi: Y_{\alpha} \rightarrow Y, \alpha \in \mathfrak{A}$, are separable, then the mapping ${ }^{\mathfrak{A}} \pi$ is separable too.
b) If $\mathfrak{B} \subseteq \mathfrak{A}$ and the mapping ${ }^{\mathfrak{B}} \pi$ is separable then the parallel mapping ${ }_{\mathfrak{A} \backslash \mathfrak{B}}^{\mathfrak{A}} \pi$ is separable too.

Proof. a) Let $x_{1}, x_{2} \in Y_{\mathfrak{A}}$ be points such that $x_{1} \neq x_{2}$ but ${ }^{\mathfrak{A}} \pi x_{1}={ }^{\mathfrak{A}} \pi x_{2}$. Then there exists $\alpha \in \mathfrak{A}$ such that ${ }_{\alpha}^{\mathfrak{A}} \pi x_{1} \neq{ }_{\alpha}^{\mathfrak{A}} \pi x_{2}$. Since the mapping ${ }^{\alpha} \pi$ is separable, there exist disjoint neighborhoods $U_{\alpha}^{\mathfrak{A}} \pi x_{1}, U_{\alpha}^{\mathfrak{A}} \pi x_{2} \subseteq Y_{\alpha}$. Their preimages under the mapping ${ }_{\alpha}^{\mathfrak{A}} \pi$ are disjoint neighborhoods of the points x_{1} and x_{2}.
b) Let $x_{1}, x_{2} \in Y_{\mathfrak{A}}$ be distinct points such that ${ }_{\mathfrak{A} \backslash \mathfrak{B}}^{\mathfrak{A}} \pi x_{1}={ }_{\mathfrak{A} \backslash \mathfrak{B}}^{\mathfrak{A}} \pi x_{2}$. By Proposition 2.3 points $y_{1}={ }_{\mathfrak{B}}^{\mathfrak{Z}} \pi x_{1}$ and $y_{2}={ }_{\mathfrak{B}}^{\mathfrak{Z}} \pi x_{2}$ are distinct but ${ }^{\mathfrak{B}} \pi y_{1}={ }^{\mathfrak{B}} \pi y_{2}$. Since the mapping ${ }^{\mathfrak{B}} \pi$ is separable, there are disjoint neighborhoods $U y_{1}, U y_{2} \subseteq Y_{\mathfrak{B}}$. Then the sets $\mathfrak{B}_{\mathfrak{B}}^{\mathfrak{g}} \pi^{-1} U y_{1}$ and ${ }_{\mathfrak{B}}^{\mathfrak{A}} \pi^{-1} U y_{2}$ are disjoint neighborhoods of the point x_{1} and x_{2}.
2.10. Theorem. a) If each mapping ${ }^{\alpha} \pi: Y_{\alpha} \rightarrow Y, \alpha \in \mathfrak{A}$, has the property $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$ then the mapping ${ }^{\mathfrak{A}} \pi$ has the property $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$ too.
b) Let $\mathfrak{B} \subseteq \mathfrak{A}$ and the mapping ${ }^{\mathfrak{B}} \pi$ has the property $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$, and let \mathfrak{a}^{\prime} be a closed family of locally closed subsets of the space $Y_{\mathfrak{A} \backslash \mathfrak{B}}$ such that ${ }^{\mathfrak{A} \backslash \mathfrak{B}} \pi^{-1} G \in \mathfrak{a}^{\prime}$ for all $G \in \mathfrak{a}$. Then the parallel mapping $\underset{\mathfrak{A} \backslash \mathfrak{B}}{\mathfrak{A}} \pi$ has the property $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}^{\prime}$.

Proof. a) We have to consider the two cases of Definition 1.6.

Let $x, x^{\prime} \in Y_{\mathfrak{A}}$ be distinct points such that ${ }^{\mathfrak{A}} \pi x={ }^{\mathfrak{A}} \pi x^{\prime}$. There exists an index $\alpha \in \mathfrak{A}$ such that ${ }_{\alpha}^{\mathfrak{A}} \pi x \neq{ }_{\alpha}^{\mathfrak{Z}} \pi x^{\prime}$. Since the mapping ${ }^{\alpha} \pi$ has the property $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$, there are a neighborhood $O^{\mathfrak{A}} \pi x \subseteq Y$, a set $G \in \mathfrak{a}$ a space $Z \in \mathfrak{E}$ and mappings $g: O^{\mathfrak{A}} \pi x \backslash G \rightarrow$ $\rightarrow Z$ and $\tilde{g}_{\alpha}:{ }^{\alpha} \pi^{-1} O^{\mathfrak{A}} \pi x \rightarrow Z$ such that $[G]_{Y} \cap O^{\mathfrak{A}} \pi x=G,\left.\tilde{g}_{\alpha}\right|_{\alpha} \pi^{-1}\left(O^{\mathfrak{1}} \pi x \backslash G\right)=$ $=\left.g^{\alpha} \pi\right|_{\alpha \pi^{-1}\left(O^{\mathfrak{A}} \pi x \backslash G\right)}$ and $\tilde{g}_{\alpha}{ }_{\alpha}^{\mathfrak{A}} \pi x \neq \tilde{g}_{\alpha}{ }_{\alpha}^{\mathfrak{A}} \pi x^{\prime}$. Then the mapping $\tilde{g}=\left.\tilde{g}_{\alpha}{ }_{\alpha}^{\mathfrak{A}} \pi\right|_{\mathfrak{A}} \pi^{-1} O^{\mathfrak{A} \mathfrak{I}} \pi x$ has all necessary properties.

Let $x \in Y_{\mathfrak{A}}$ be any point and $U x \subseteq Y_{\mathfrak{A}}$ be its neighborhood. By the definition of the fan product there are a finite set $\mathfrak{B} \subseteq \mathfrak{A}$ and neighborhoods $U_{\alpha}^{\mathfrak{A}} \pi x \subseteq Y_{\alpha}$, $\alpha \in \mathfrak{B}$, such that $x \in \bigcap\left\{{ }_{\alpha}^{\mathfrak{A}} \pi^{-1} U_{\alpha}^{\mathfrak{A}} \pi x: \alpha \in \mathfrak{B}\right\} \subseteq U x$. Since each mapping ${ }^{\alpha} \pi, \alpha \in \mathfrak{B}$, has the property $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$, for every $\alpha \in \mathfrak{B}$ there exist a neighborhood $O_{\alpha}{ }^{\mathfrak{A}} \pi x \subseteq Y$, a set $G_{\alpha} \in \mathfrak{a}$, a space $Z_{\alpha} \in \mathfrak{E}$ and mappings $g_{\alpha}: O_{\alpha}{ }^{\mathfrak{A}} \pi x \backslash G \rightarrow Z_{\alpha}$ and $\tilde{g}_{\alpha}:{ }^{\alpha} \pi^{-1} O_{\alpha}{ }^{\mathfrak{A}} \pi x \rightarrow Z_{\alpha}$ such that $\left[G_{\alpha}\right]_{Y} \cap O_{\alpha}{ }^{\mathfrak{A}} \pi x=G_{\alpha},\left.\tilde{g}_{\alpha}\right|_{\alpha} \pi^{-1}\left(O_{\alpha}{ }^{\mathfrak{A}} \pi x \backslash G\right)=$ $=\left.g_{\alpha}{ }^{\alpha} \pi\right|_{\alpha \pi^{-1}\left(O_{\alpha}{ }^{\mathfrak{A}} \pi x \backslash G\right)}$ and $\tilde{g}_{\alpha}{ }_{\alpha}^{\mathfrak{A}} \pi x \notin\left[\tilde{g}_{\alpha}\left({ }^{\alpha} \pi^{-1} O_{\alpha}{ }^{\mathfrak{A}} \pi x \backslash U_{\alpha}^{\mathfrak{A}} \pi x\right)\right]_{Z_{\alpha}}$. Then we can take $O^{\mathfrak{A}} \pi x=\bigcap\left\{O_{\alpha}^{\mathfrak{A}} \pi x: \alpha \in \mathfrak{B}\right\}, G=\bigcup\left\{G_{\alpha} \cap O^{\mathfrak{A}} \pi x: \alpha \in \mathfrak{B}\right\}, Z=\prod\left\{Z_{\alpha}: \alpha \in\right.$ $\in \mathfrak{B}\}, g=\Delta\left\{\left.g_{\alpha}\right|_{O^{\mathfrak{2}} \pi x \backslash G}: \alpha \in \mathfrak{B}\right\}: O^{\mathfrak{A}} \pi x \backslash G \rightarrow Z$ and $\tilde{g}=\Delta\left\{\left.\tilde{g}_{\alpha}{ }_{\alpha}^{\mathfrak{A}} \pi\right|_{\mathfrak{\mathfrak { x }} \pi^{-1} O^{\mathfrak{a}} \pi x}:\right.$ $\alpha \in \mathfrak{B}\}:{ }^{\mathfrak{A}} \pi^{-1} O^{\mathfrak{A}} \pi x \rightarrow Z$ (the diagonal mapping; see [51], §2.3).

Obviously, $[G]_{Y} \cap O^{\mathfrak{A}} \pi x=G$ and $\left.\tilde{g}\right|_{\mathfrak{A} \pi^{-1}\left(O{ }^{\mathfrak{A}} \pi x \backslash G\right)}=\left.g^{\mathfrak{A}} \pi\right|_{\mathfrak{A}} \pi^{-1}\left(O^{\mathfrak{R}} \pi x \backslash G\right)$.
Let $V_{\alpha}=Z_{\alpha} \backslash\left[\tilde{g}_{\alpha}\left({ }^{\alpha} \pi^{-1} O_{\alpha}{ }^{\mathfrak{A}} \pi x \backslash U_{\alpha}^{\mathfrak{A}} \pi x\right)\right]_{Z_{\alpha}}, \alpha \in \mathfrak{B}$; then $\tilde{g}_{\alpha}^{-1} V_{\alpha} \subseteq U_{\alpha}^{\mathfrak{A}} \pi x$ is a neighborhood of the point ${ }_{\alpha}^{\mathfrak{2}} \pi x$ for all $\alpha \in \mathfrak{B}$. Therefore the set $V=$ $=\bigcap\left\{{ }_{\alpha}^{\mathfrak{A}} \pi^{-1} \tilde{g}_{\alpha}^{-1} V_{\alpha}: \alpha \in \mathfrak{B}\right\} \subseteq \bigcap\left\{{ }_{\alpha}^{\{ } \pi^{-1} U_{\alpha}^{\mathfrak{A}} \pi x: \alpha \in \mathfrak{B}\right\} \subseteq U x$ is a neighborhood of the point x. We have the equality $V=\bigcap\left\{{ }_{\alpha}^{\mathfrak{A}} \pi^{-1} \tilde{g}_{\alpha}^{-1} V_{\alpha}: \alpha \in \mathfrak{B}\right\}=\tilde{g}^{-1} \Pi\left\{V_{\alpha}: \alpha \in\right.$ $\in \mathfrak{B}\}$, hence, $\tilde{g} x \in \prod\left\{V_{\alpha}: \alpha \in \mathfrak{B}\right\} \subseteq \prod\left\{Z_{\alpha}: \alpha \in \mathfrak{B}\right\} \backslash\left[\tilde{g}\left({ }^{\mathfrak{A}} \pi^{-1} O^{\mathfrak{A}} \pi x \backslash U x\right)\right]_{Z}$, that is, the mapping ${ }^{\mathfrak{A}} \pi$ has the property $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$.
b) We have to consider the two cases of Definition 1.6

Let $x, x^{\prime} \in Y_{\mathfrak{A}}$ be distinct points such that ${ }_{\mathfrak{A} \backslash \mathfrak{B}}^{\mathfrak{H}} \pi x={ }_{\mathfrak{A} \backslash \mathfrak{B}}^{\mathfrak{A}} \pi x^{\prime}$. By Proposition 2.3 we have ${ }_{\mathfrak{B}}^{\mathfrak{A}} \pi x \neq{ }_{\mathfrak{B}}^{\mathfrak{A}} \pi x^{\prime}$. Since the mapping ${ }^{\mathfrak{B}} \pi$ has the property $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$, there exist a neighborhood $O^{\mathfrak{A}} \pi x \subseteq Y$, a set $G \in \mathfrak{a}$, a space $Z \in \mathfrak{E}$ and mappings $g: O^{\mathfrak{A}} \pi x \backslash G \rightarrow Z$ and $\tilde{g}:{ }^{\mathfrak{B}} \pi^{-1} O^{\mathfrak{A}} \pi x \rightarrow Z$ such that $[G]_{Y} \cap O^{\mathfrak{A}} \pi x=G$, $\left.\tilde{g}\right|_{\mathfrak{B}^{-1}\left(O{ }^{\mathfrak{A}} \pi x \backslash G\right)}=\left.g^{\mathfrak{B}} \pi\right|_{\mathfrak{B}} \pi^{-1}\left(O^{\mathfrak{A}} \pi x \backslash G\right)$ and $\tilde{g}_{\mathfrak{B}}^{\mathfrak{A}} \pi x \neq \tilde{g}_{\mathfrak{B}}^{\mathfrak{A}} \pi x^{\prime}$. Then the sets $O^{\prime}=$
 and $\tilde{g}^{\prime}=\left.\tilde{g}_{\mathfrak{B}}^{\mathfrak{A}} \pi\right|_{\mathfrak{A} \backslash \mathfrak{B}} \pi^{-1} O^{\prime}$, have all necessary properties.

Let $x \in Y_{\mathfrak{A}}$ be any point and $U x \subseteq Y_{\mathfrak{A}}$ be its neighborhood. By Proposition 2.4 and by the definition of the fan product there are neighborhoods $U_{\mathfrak{A} \backslash \mathfrak{B}}{ }^{\mathfrak{A}} \pi x \subseteq Y_{\mathfrak{A} \backslash \mathfrak{B}}$ and $U_{\mathfrak{B}}^{\mathfrak{R}} \pi x \subseteq Y_{\mathfrak{B}}$ such that $x \in{ }_{\mathfrak{A} \backslash \mathfrak{B}}^{\mathfrak{A}} \pi^{-1} U_{\mathfrak{A} \backslash \mathfrak{B}}^{\mathfrak{A}} \pi x \cap_{\mathfrak{B}}^{\mathfrak{A}} \pi^{-1} U_{\mathfrak{B}}^{\mathfrak{A}} \pi x \subseteq U x$. Since the mapping ${ }^{\mathfrak{B}} \pi$ has the property $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$, there exist a neighborhood $O^{\mathfrak{A}} \pi x \subseteq Y$, a set $G \in \mathfrak{a}$, a space $Z \in \mathfrak{E}$ and mappings $g: O^{\mathfrak{A}} \pi x \backslash G \rightarrow Z$ and $\tilde{g}:{ }^{\mathfrak{B}} \pi^{-1} O^{-\mathfrak{A}} \pi x \rightarrow Z$ such that $[G]_{Y} \cap O^{\mathfrak{A}} \pi x=G,\left.\tilde{g}\right|_{\mathfrak{B}} \pi^{-1}\left(O^{\mathfrak{A}} \pi x \backslash G\right)=\left.g^{\mathfrak{B}} \pi\right|_{\mathfrak{B}^{-1}\left(O^{\mathfrak{A}} \pi x \backslash G\right)}$ and $\tilde{g}_{\mathfrak{B}}^{\mathfrak{A}} \pi x \notin$ $\notin\left[\tilde{g}\left({ }^{\mathfrak{B}} \pi^{-1} O^{\mathfrak{A}} \pi x \backslash U_{\mathfrak{B}}^{\mathfrak{A}} \pi x\right)\right]_{z}$. Then the sets $O_{\mathfrak{A} \backslash \mathfrak{B}}{ }_{\mathfrak{B}}^{\mathfrak{A}} \pi x=U_{\mathfrak{A} \backslash \mathfrak{B}}{ }^{\mathfrak{A}} \pi x \cap^{\mathfrak{A} \backslash \mathfrak{B}} \pi^{-1} O^{\mathfrak{A}} \pi x$, $G^{\prime}=U_{\mathfrak{A} \backslash \mathfrak{B}}^{\mathfrak{A}} \pi x \cap \cap^{\mathfrak{A} \backslash \mathfrak{B}} \pi^{-1} G \in \mathfrak{a}$ and the mappings $g^{\prime}=\left.g^{\mathfrak{A} \backslash \mathfrak{B}} \pi\right|_{O_{\mathfrak{A} \backslash \mathfrak{B}}}{ }_{\mathfrak{A}}^{\mathfrak{A}} \pi x \backslash G^{\prime}$, and $\tilde{g}^{\prime}=\left.\tilde{g}_{\mathfrak{B}}^{\mathfrak{A}} \pi\right|_{\mathfrak{A} \backslash \mathfrak{B}}{ }^{\mathfrak{R}} \pi^{-1} O_{\mathfrak{A} \backslash \mathfrak{B}}{ }^{\mathfrak{A}} \pi x$ have all necessary properties.
2.11. Theorem. a) If $\mathfrak{B} \subseteq \mathfrak{A}$ and the mapping ${ }^{\mathfrak{B}} \pi$ is perfect, then its parallel mapping ${ }_{\mathfrak{A} \backslash \mathfrak{B}}^{\mathfrak{A}} \pi$ is perfect too.
b) If all mappings ${ }^{\alpha} \pi, \alpha \in \mathfrak{A}$, are perfect then the mapping ${ }^{\mathfrak{A}} \pi$ is perfect too.

Proof. The mapping $\mathfrak{A} \backslash \mathfrak{B}_{\mathfrak{A}} \pi$ is compact due to Proposition 2.3. Let us take any point $z \in Y_{\mathfrak{A} \backslash \mathfrak{B}}$ and prove that the mapping ${ }_{\mathfrak{A} \backslash \mathfrak{B}}^{\mathfrak{A}} \pi$ is closed at the point z. Let us denote $\Phi={ }_{\mathfrak{A} \backslash \mathfrak{B}}^{\mathfrak{A}} \pi^{-1} z, y={ }^{\mathfrak{A} \backslash \mathfrak{B}} \pi z, F={ }^{\mathfrak{B}} \pi^{-1} y\left(={ }_{\mathfrak{B}}^{\mathfrak{A}} \pi \Phi\right)$. Note that the set ${ }_{\mathfrak{A} \backslash \mathfrak{B}}^{\mathfrak{A}} \pi Y_{\mathfrak{A}}={ }^{\mathfrak{A} \backslash \mathfrak{B}} \pi^{-1} \mathfrak{B} \pi Y_{\mathfrak{B}}$ is closed since the mapping ${ }^{\mathfrak{B}} \pi$ is perfect. Hence, if $z \notin \underset{\mathfrak{A} \backslash \mathfrak{B}}{\mathfrak{A}} \pi Y_{\mathfrak{A}}$ then there exists a neighborhood $U z \subseteq Y_{\mathfrak{A} \backslash \mathfrak{B}}$ such that $U z \cap_{\mathfrak{A} \backslash \mathfrak{B}} \pi Y_{\mathfrak{A}}=$ $=\varnothing$, therefore the mapping ${ }_{\mathfrak{A} \backslash \mathfrak{B}}^{\mathfrak{A}} \pi$ is closed at the point z.

Let us suppose that $z \in{ }_{\mathfrak{A} \backslash \mathfrak{B}}^{\mathfrak{A}} \pi Y_{\mathfrak{A}}$ and let $U \Phi \subseteq Y_{\mathfrak{A}}$ be any neighborhood. We have to find a neighborhood $U z \subseteq Y_{\mathfrak{A} \backslash \mathfrak{B}}$ such that ${ }_{\mathfrak{A} \backslash \mathfrak{B}}^{\mathfrak{A}} \pi^{-1} U z \subseteq U \Phi$.

By the definition of the fan product, for each point $x \in \Phi$ there are neighborhoods $U_{x} z \subseteq Y_{\mathfrak{A} \backslash \mathfrak{B}}$ and $U_{\mathfrak{B}}^{\mathfrak{A}} \pi x \subseteq Y_{\mathfrak{B}}$ such that $x \in U x=_{\mathfrak{A} \backslash \mathfrak{B}}^{\mathfrak{A}} \pi^{-1} U_{x} z \cap_{\mathfrak{B}}^{\mathfrak{A}} \pi^{-1} U_{\mathfrak{B}}^{\mathfrak{A}} \pi x \subseteq$ $\subseteq U \Phi$. The set $\{U x: x \in \Phi\}$ is an open covering of the compact set Φ. Let $\left\{U x_{i}: i=1,2, \ldots, n\right\}$ be a finite subcovering, $V_{1}=\bigcap\left\{U_{x_{i}} z: i=1,2, \ldots, n\right\}$, $V_{2}=\bigcup\left\{U_{\mathfrak{B}}^{\mathfrak{A}} \pi x_{i}: i=1,2, \ldots, n\right\}$. Then $z \in V_{1}, F \subseteq V_{2}$ and $\Phi \subseteq \underset{\mathfrak{A} \backslash \mathfrak{B}}{\mathfrak{A}} \pi^{-1} V_{1} \cap$ $\cap \mathfrak{A}_{\mathfrak{B}}^{\mathfrak{A}} \pi^{-1} V_{2} \subseteq U \Phi$. Since the mapping ${ }^{\mathfrak{B}} \pi$ is perfect, there exists a neighborhood $V y \subseteq Y$ such that $F \subseteq{ }^{\mathfrak{B}} \pi^{-1} V y \subseteq V_{2}$. Then the set $U z=V_{1} \cap{ }^{\mathfrak{A} \backslash \mathfrak{B}} \pi^{-1} V y$ satisfies the condition $\Phi \subseteq{ }_{\mathfrak{A} \backslash \mathfrak{B}}^{\mathfrak{A}} \pi^{-1} U z={ }_{\mathfrak{A} \backslash \mathfrak{B}}^{\mathfrak{A}} \pi^{-1} V_{1} \cap_{\mathfrak{A} \backslash \mathfrak{B}} \pi^{\mathfrak{A}} \pi^{-1} \mathfrak{A} \backslash \mathfrak{B} \pi^{-1} V y={ }_{\mathfrak{A} \backslash \mathfrak{B}}^{\mathfrak{A}} \pi^{-1} V_{1} \cap$ $\cap_{\mathfrak{B}}^{\mathfrak{A}} \pi^{-1}{ }^{\mathfrak{B}} \pi^{-1} V y \subseteq{ }_{\mathfrak{A} \backslash \mathfrak{B}}^{\mathfrak{A}} \pi^{-1} V_{1} \cap_{\mathfrak{B}}^{\mathfrak{A}} \pi^{-1} V_{2} \subseteq U \Phi$, that is, the mapping ${ }_{\mathfrak{A} \backslash \mathfrak{B}}^{\mathfrak{A}} \pi$ is closed at the point z.
b) The mapping ${ }^{\mathfrak{A}} \pi$ is compact due to Proposition 2.2. Note that the set ${ }^{\mathfrak{A}} \pi Y_{\mathfrak{A}}=$ $=\bigcap\left\{{ }^{\alpha} \pi Y_{\alpha}: \alpha \in \mathfrak{A}\right\}$ is closed since all mappings ${ }^{\alpha} \pi, \alpha \in \mathfrak{A}$, are closed, therefore the mapping ${ }^{\mathfrak{A}} \pi$ is closed at any point $y \in Y \backslash \mathfrak{A} \pi Y_{\mathfrak{A}}$. Let us take any point $y \in{ }^{\mathfrak{A}} \pi Y_{\mathfrak{A}}$ and prove that the mapping ${ }^{\mathfrak{A}} \pi$ is closed at the point y.

Let $\Phi={ }^{\mathfrak{A}} \pi^{-1} y$ and $U \Phi \subseteq Y_{\mathfrak{A}}$ be any neighborhood. For each point $x \in \Phi$ there exist a finite set $\mathfrak{B}_{x} \subseteq \mathfrak{A}$ and neighborhoods $U_{\alpha}^{\mathfrak{A}} \pi x \subseteq Y_{\alpha}, \alpha \in \mathfrak{B}_{x}$, such that $x \in U x=\bigcap\left\{{ }_{\alpha}^{\mathfrak{A}} \pi^{-1} U_{\alpha}^{\mathfrak{A}} \pi x: \alpha \in \mathfrak{B}_{x}\right\} \subseteq U \Phi$. The family $\{U x: x \in \Phi\}$ is an open covering of the compact set Φ. Let $\left\{U x_{i}: i=1,2, \ldots, n\right\}$ be a finite subcovering, $V=\bigcup\left\{U x_{i}: i=1,2, \ldots, n\right\}, \mathfrak{B}=\bigcup\left\{\mathfrak{B}_{x_{i}}: i=1,2, \ldots, n\right\}$. Note that $V={ }_{\mathfrak{\mathfrak { A }}}^{\mathfrak{\mathfrak { A }}} \pi^{-1}{ }_{\mathfrak{B}}^{\mathfrak{A}} \pi V$ and \mathfrak{B} is a finite set, $\Phi \subseteq V \subseteq U \Phi$.

It follows from the statement a) and Proposition 5a) of $\S 10$ of Chapter I of the book [7] that the fan product of two perfect mappings is perfect; by Proposition 2.4, the fan product of any finite family of perfect mappings is perfect. Therefore the
mapping ${ }^{\mathfrak{B}} \pi$ is perfect. Hence there is a neighborhood $U y \subseteq Y$ such that ${ }^{\mathfrak{B}} \pi^{-1} U y \subseteq$ $\subseteq{ }_{\mathfrak{B}}^{\mathfrak{A}} \pi V$, that is, $\Phi \subseteq{ }^{\mathfrak{A}} \pi^{-1} U y={ }_{\mathfrak{B}}^{\mathfrak{A}} \pi^{-1} \mathfrak{B}^{\mathfrak{B}} \pi^{-1} U y \subseteq{ }_{\mathfrak{B}}^{\mathfrak{A}} \pi^{-1}{ }_{\mathfrak{B}}^{\mathfrak{A}} \pi V=V \subseteq U \Phi$. This means that the mapping ${ }^{\mathfrak{A}} \pi$ is closed at the point y.
2.12. Proposition. If $X \subseteq Y_{\mathfrak{A}}$ is a subset such that the set $O_{0}=Y \backslash{ }^{\mathfrak{A}} \pi[X]_{Y_{\mathfrak{A}}}$ is open, the mapping ${ }^{\mathfrak{A}} \pi_{0}=\left.{ }^{\mathfrak{A}} \pi\right|_{\mathfrak{A}} \pi^{-1} O_{0}:{ }^{\mathfrak{A}} \pi^{-1} O_{0} \xrightarrow{\text { onto }} O_{0}$ is perfect, ${ }^{5}$ and for every $\alpha \in \mathfrak{A}$ the mapping ${ }^{\alpha} \pi$ can be reduced modulo ${ }_{\alpha}^{\mathfrak{A}} \pi X$ in a unique way, then the mapping ${ }^{\mathfrak{A}} \pi$ can be reduced modulo X in a unique way (that is, there exists a unique closed subset $Y_{\mathfrak{A}}^{r} \subseteq Y_{\mathfrak{A}}$ such that $X \subseteq Y_{\mathfrak{A}}^{r},{ }^{\mathfrak{A}} \pi Y_{\mathfrak{A}}^{r}=Y$ and the mapping ${ }^{\mathfrak{A}} \pi_{r}=\left.{ }^{\mathfrak{A}} \pi\right|_{Y_{\mathfrak{a}}^{r}}$ is irreducible modulo $\left.X\right)$.

Proof. We can assume that the mapping ${ }^{\alpha} \pi$ is irreducible modulo ${ }_{\alpha}^{\mathfrak{A}} \pi X$ for every $\alpha \in \mathfrak{A}$.

We shall assume that the set O_{0} is non-empty; otherwise we could use $Y_{\mathfrak{A}}^{r}=$ $=[X]_{Y_{\mathfrak{Y}}}$.

Let us denote by \mathfrak{B} the family of all open dense subsets of the set O_{0}. For every $U \in \mathfrak{B}$ let $F_{U}=\left[{ }^{\mathfrak{A}} \pi^{-1} U\right]_{Y_{\mathfrak{2}}}$ and let $F_{0}=\bigcap\left\{F_{U}: U \in \mathfrak{B}\right\}$. The set F_{0} is closed in $Y_{\mathfrak{A}}$. We shall prove that $O_{0} \subseteq{ }^{\mathfrak{A}} \pi F_{0}$.

Let $U_{1}, U_{2}, \ldots, U_{n} \in \mathfrak{B}$. The set $\bigcap\left\{U_{i}: i=1,2, \ldots, n\right\}$ is open and dense in O_{0}. Therefore ${ }^{\mathfrak{A}} \pi \bigcap\left\{F_{U_{i}}: 1 \leqslant i \leqslant n\right\}={ }^{\mathfrak{A}} \pi \bigcap\left\{\left[{ }^{\mathfrak{A}} \pi^{-1} U_{i}\right]_{Y_{\mathfrak{\mathfrak { l }}}}: 1 \leqslant i \leqslant\right.$ $\leqslant n\} \supseteq{ }^{\mathfrak{A}} \pi\left[\bigcap\left\{{ }^{\mathfrak{A}} \pi^{-1} U_{i}: 1 \leqslant i \leqslant n\right\}\right]_{Y_{\mathfrak{A}}} \supseteq{ }^{\mathfrak{A}} \pi_{0}\left[\bigcap\left\{{ }^{\mathfrak{A}} \pi^{-1} U_{i}: 1 \leqslant i \leqslant n\right\}\right]_{\mathfrak{A}} \pi^{-1} O_{0}=$ $=\left[{ }^{\mathfrak{A}} \pi_{0}{ }^{\mathfrak{A}} \pi^{-1} \bigcap\left\{U_{i}: 1 \leqslant i \leqslant n\right\}\right]_{O_{0}}=\left[\cap\left\{U_{i}: 1 \leqslant i \leqslant n\right\}\right]_{O_{0}}=O_{0}$ since the mapping ${ }^{\mathfrak{A}} \pi_{0}$ is closed.

Therefore for each $y \in O_{0}$ the family $\left\{{ }^{\mathfrak{A}} \pi^{-1} y \cap F_{U}: U \in \mathfrak{B}\right\}$ is a centered family of closed subsets of the compact space ${ }^{\mathfrak{A}} \pi^{-1} y$, hence $\bigcap\left\{F_{U} \cap{ }^{\mathfrak{A}} \pi^{-1} y: U \in \mathfrak{B}\right\} \neq \varnothing$ and ${ }^{\mathfrak{A}} \pi F_{0} \supseteq O_{0}$.

Let us prove that the mapping ${ }^{\mathfrak{A}} \pi_{1}=\left.{ }^{\mathfrak{A}} \pi\right|_{F_{0} \cap^{\mathfrak{A}} \pi^{-1} O_{0}}: F_{0} \cap^{\mathfrak{A}} \pi^{-1} O_{0} \xrightarrow{\text { onto }} O_{0}$ is irreducible. To this end, let us take any point $z_{0} \in F_{0} \cap \mathfrak{A} \pi^{-1} O_{0}$ and prove that

$$
\begin{equation*}
{ }^{\mathfrak{A}} \pi^{\#} U z_{0} \neq \varnothing \text { for any neighborhood } U z_{0} \subseteq Y_{\mathfrak{A}} . \tag{1}
\end{equation*}
$$

Let $U z_{0} \subseteq Y_{\mathfrak{A}}$ be any neighborhood. By the definition of the topology of the fan product there exist a finite subset $\mathfrak{A}_{0} \subseteq \mathfrak{A}$ and open subsets $U_{\alpha}^{0} \subseteq{ }^{\alpha} \pi^{-1} O_{0}$, $\alpha \in \mathfrak{A}_{0}$, such that $z_{0} \in \bigcap\left\{{ }_{\alpha}^{\mathfrak{A}} \pi^{-1} U_{\alpha}^{0}: \alpha \in \mathfrak{A}_{0}\right\} \subseteq U z_{0} \cap{ }^{\mathfrak{A}} \pi^{-1} O_{0}$. For each $\alpha \in \mathfrak{A}_{0}$ let $U_{\alpha}^{1}={ }^{\alpha} \pi^{-1} O_{\alpha} \backslash\left[U_{\alpha}^{0}\right]_{Y_{\alpha}}$ and $U_{\alpha}={ }^{\alpha} \pi^{\#} U_{\alpha}^{0} \cup^{\alpha} \pi^{\#} U_{\alpha}^{1}$.

The sets $U_{\alpha}, \alpha \in \mathfrak{A}_{0}$, are dense open subsets of O_{0}, since for all $\alpha \in \mathfrak{A}$ the mappings $\left.{ }^{\alpha} \pi\right|_{\alpha^{-1} O_{0}}:{ }^{\alpha} \pi^{-1} O_{0} \xrightarrow{\text { onto }} O_{0}$, are closed and irreducible.

It suffices to prove that $\bigcap\left\{{ }^{\alpha} \pi^{\#} U_{\alpha}^{0}: \alpha \in \mathfrak{A}_{0}\right\} \neq \varnothing$, since

$$
{ }^{\mathfrak{A}} \pi^{\#} U z_{0} \supseteq{ }^{\mathfrak{A}} \pi^{\#} \bigcap\left\{{ }_{\alpha}^{\mathfrak{A}} \pi^{-1} U_{\alpha}^{0}: \alpha \in \mathfrak{A}_{0}\right\}=\bigcap\left\{{ }^{\alpha} \pi^{\#} U_{\alpha}^{0}: \alpha \in \mathfrak{A}_{0}\right\}
$$

Obviously, ${ }^{\alpha} \pi^{\#} U_{\alpha}^{0} \cap^{\alpha} \pi^{\#} U_{\alpha}^{1}=\varnothing$. Therefore $U=\bigcap\left\{U_{\alpha}: \alpha \in \mathfrak{A}_{0}\right\} \subseteq\left(\bigcap\left\{{ }^{\alpha} \pi^{\#} U_{\alpha}^{0}:\right.\right.$ $\left.\left.\alpha \in \mathfrak{A}_{0}\right\}\right) \cup\left(\bigcup\left\{{ }^{\alpha} \pi^{\#} U_{\alpha}^{1}: \alpha \in \mathfrak{A}_{0}\right\}\right)$ and U is an open dense subset of O_{0}. If we assume that $\bigcap\left\{{ }^{\alpha} \pi^{\#} U_{\alpha}^{0}: \alpha \in \mathfrak{A}_{0}\right\}=\varnothing$, then the set $\bigcup\left\{{ }^{\alpha} \pi^{\#} U_{\alpha}^{1}: \alpha \in \mathfrak{A}_{0}\right\}$ is an open dense subset of O_{0}, and due to the construction of the set F_{0} we have $\left.z_{0} \in{ }^{\mathfrak{A}} \pi^{-1} \bigcup\left\{{ }^{\alpha} \pi^{\#} U_{\alpha}^{1}: \alpha \in \mathfrak{A}_{0}\right\}\right]_{Y_{\mathfrak{A}}}=\bigcup\left\{\left[{ }^{\mathfrak{A}} \pi^{-1 \alpha} \pi^{\#} U_{\alpha}^{1}\right]_{Y_{\mathfrak{A}}}: \alpha \in \mathfrak{A}_{0}\right\} \subseteq$ $\subseteq \bigcup\left\{\left[{ }_{\alpha}^{\mathfrak{A}} \pi^{-1} U_{\alpha}^{1}\right]_{Y_{\mathfrak{2}}}: \alpha \in \mathfrak{A}_{0}\right\}$.

But the latter is impossible due to the choice of the sets $U_{\alpha}^{1}, \alpha \in \mathfrak{A}_{0}$. Hence, the mapping ${ }^{\mathfrak{A}} \pi_{1}$ is irreducible. Moreover, it is obvious that if a set $F \subseteq{ }^{\mathfrak{A}} \pi^{-1} O_{0}$ is closed in ${ }^{\mathfrak{A}} \pi^{-1} O_{0},{ }^{\mathfrak{A}} \pi F=O_{0}$ and the mapping $\left.{ }^{\mathfrak{A}} \pi\right|_{F}: F \xrightarrow{\text { onto }} O_{0}$ is irreducible, then the set F contains all points $z_{0} \in{ }^{\mathfrak{A}} \pi^{-1} O_{0}$ which satisfy the condition (1).

[^5]Therefore $F=F_{0} \cap{ }^{\mathfrak{A}} \pi^{-1} O_{0}$, that is, the mapping $\left.{ }^{\mathfrak{A}} \pi\right|_{\mathfrak{A} \pi^{-1} O_{0}}$ can be reduced in a unique way.

To conclude the proof it suffices to let $Y_{\mathfrak{A}}^{r}=[X]_{Y_{\mathfrak{A}}} \cup F_{0}$.
2.13. Corollary. If $X \subseteq Y_{\mathfrak{A}}$ and all mappings ${ }^{\alpha} \pi: Y_{\alpha} \xrightarrow{\text { onto }} Y, \alpha \in \mathfrak{A}$, are perfect and irreducible modulo ${ }_{\alpha}^{\mathfrak{A}} \pi X$ (or can be reduced modulo ${ }_{\alpha}^{\mathfrak{A}} \pi X$ in a unique way) then the mapping ${ }^{\mathfrak{A}} \pi$ can be reduced modulo X in a unique way.

B. The inverse limit

2.14. Further let $S=\left\{Y_{\alpha},{ }_{\beta}^{\alpha} \pi: \alpha, \beta \in \mathfrak{A}, \beta \leqslant \alpha\right\}$ be an inverse spectrum, ${ }^{\alpha} \pi: Y_{\alpha} \rightarrow Y, \alpha \in \mathfrak{A}$, be mappings such that ${ }^{\alpha} \pi={ }^{\beta} \pi_{\beta}^{\alpha} \pi$ for all $\alpha, \beta \in \mathfrak{A}, \beta \leqslant \alpha$. Let $Y_{S}=\lim S,{ }^{S} \pi=\lim { }^{\alpha} \pi$ and ${ }_{\alpha}^{S} \pi: Y_{S} \rightarrow Y_{\alpha}$ be the projection of the space Y_{S} to $Y_{\alpha}, \alpha \in \overleftarrow{\mathfrak{A}}$ (see [51], $\overleftarrow{\S 2.5}$).

We can assume that the space Y_{S} is a subspace of the fan product $Y_{\mathfrak{A}}=$ $=\prod_{Y}\left(\left\{Y_{\alpha}\right\},\left\{{ }^{\alpha} \pi\right\}, \alpha \in \mathfrak{A}\right):$

$$
Y_{S}=\left\{\left\{y, z_{\alpha}: \alpha \in \mathfrak{A}\right\} \in Y_{\mathfrak{A}}: z_{\beta}={ }_{\beta}^{\alpha} \pi z_{\alpha} \text { for all } \alpha, \beta \in \mathfrak{A}, \beta \leqslant \alpha\right\} .
$$

To prove that the limit topology of the space Y_{S} coincides with the topology of the subspace of the fan product $Y_{\mathfrak{A}}$ it suffices to observe that $Y_{S} \subseteq Y_{\mathfrak{A}} \subseteq \prod\left\{Y_{\alpha}: \alpha \in\right.$ $\in \mathfrak{A}\}$.

Note that ${ }^{S} \pi=\left.{ }^{\mathfrak{A}} \pi\right|_{Y_{S}}$ were ${ }^{\mathfrak{A}} \pi=\prod_{Y}\left\{{ }^{\alpha} \pi: \alpha \in \mathfrak{A}\right\},{ }_{\alpha}^{S} \pi=\left.{ }_{\alpha}^{\mathfrak{A}} \pi\right|_{Y_{S}}$ for all $\alpha \in \mathfrak{A}$, but ${ }_{\beta}^{\mathfrak{A}} \pi \neq{ }_{\beta}^{\alpha} \pi_{\alpha}^{\mathfrak{A}} \pi$ for $\alpha, \beta \in \mathfrak{A}, \beta \leqslant \alpha$, in general.

2.15. Proposition. Let all mappings ${ }^{\alpha} \pi, \alpha \in \mathfrak{A}$, be separable. Then

1) the mappings ${ }_{\beta}^{\alpha} \pi, \alpha, \beta \in \mathfrak{A}, \beta \leqslant \alpha$, are separable;
2) the mappings ${ }^{S} \pi$ and ${ }_{\alpha}^{S} \pi, \alpha \in \mathfrak{A}$, are separable;
3) the space Y_{S} is a closed subspace of the space $Y_{\mathfrak{A}}$.

Proof. 1) This statement is a consequence of the following fact: if $f: X \rightarrow Y$, $g: X \rightarrow Z$ and $h: Z \rightarrow Y$ are mappings such that $f=h g$ and the mapping f is separable then the mapping g is separable too.

2) This follows from Theorem 2.9 a).
3) For each $\alpha, \beta \in \mathfrak{A}, \beta \leqslant \alpha$, let $F_{\alpha \beta}=\left\{\left\{y, z_{\gamma}: \gamma \in \mathfrak{A}\right\} \in Y_{\mathfrak{A}}: z_{\beta}={ }_{\beta}^{\alpha} \pi z_{\alpha}\right\}$.

Then $Y_{S}=\bigcap\left\{F_{\alpha \beta}: \alpha, \beta \in \mathfrak{A}, \beta \leqslant \alpha\right\}$. Let us prove that the set $F_{\alpha \beta}$ is closed in $Y_{\mathfrak{A}}$ for every $\alpha, \beta \in \mathfrak{A}, \beta \leqslant \alpha$.

Let $\alpha, \beta \in \mathfrak{A}, \beta \leqslant \alpha, x=\left\{y, z_{\gamma}: \gamma \in \mathfrak{A}\right\} \in Y_{\mathfrak{A}} \backslash F_{\alpha \beta}$. This means that $z_{\beta}={ }_{\beta}^{\mathfrak{A}} \pi x \neq z_{\beta}^{\prime}={ }_{\beta}^{\alpha} \pi z_{\alpha}={ }_{\beta}^{\alpha} \pi_{\alpha}^{\mathfrak{A}} \pi x$. Since the mapping ${ }^{\beta} \pi$ is separable and ${ }^{\beta} \pi z_{\beta}=$ $={ }^{\beta} \pi z_{\beta}^{\prime}=y$, there exist neighborhoods $U z_{\beta}, U z_{\beta}^{\prime} \subseteq Y_{\beta}$ such that $U z_{\beta} \cap U z_{\beta}^{\prime}=$ $=\varnothing$. Let $U z_{\alpha}={ }_{\beta}^{\alpha} \pi^{-1} U z_{\beta}^{\prime}$; obviously, $U z_{\alpha}$ is a neighborhood of the point $z_{\alpha} \in Y_{\alpha}$.

Therefore the set $U x={ }_{\alpha}^{\mathfrak{A}} \pi^{-1} U z_{\alpha} \cap{ }_{\beta}^{\mathfrak{A}} \pi^{-1} U z_{\beta}$ is a neighborhood of the point $x \in Y_{\mathfrak{A}}$. Moreover, if $x^{\prime} \in U x$ is an arbitrary point, then ${ }_{\beta}^{\mathfrak{\alpha}} \pi x^{\prime} \in U z_{\beta}$ and ${ }_{\beta}^{\alpha} \pi_{\alpha}^{\mathfrak{R}} \pi x^{\prime} \in U z_{\beta}^{\prime}$, hence, ${ }_{\beta}{ }^{2} \pi x^{\prime} \neq{ }_{\beta}^{\alpha} \pi_{\alpha}^{\mathfrak{A}} \pi x^{\prime}$. This means that $U x \cap F_{\alpha \beta}=\varnothing$, that is, the set $F_{\alpha \beta}$ is closed. Hence, the set Y_{S} is closed too.
2.16. Corollary. If all mappings ${ }_{\beta}^{\alpha} \pi, \alpha, \beta \in \mathfrak{A}, \beta \leqslant \alpha$, are separable, then all projections ${ }_{\alpha}^{S} \pi, \alpha \in \mathfrak{A}$, are separable too.
2.17. Theorem. If each mapping ${ }^{\alpha} \pi, \alpha \in \mathfrak{A}$, has the property $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$, then the mapping ${ }^{S} \pi$ has the property $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$ too.

Proof follows from Theorem 2.10 a) and Proposition 2.15 3).
2.18. Theorem. If each mapping ${ }^{\alpha} \pi, \alpha \in \mathfrak{A}$, is separable and perfect (and "onto") then the mapping ${ }^{S} \pi$ is also separable and perfect (and "onto"). Moreover, the mappings ${ }_{\alpha}^{S} \pi, \alpha \in \mathfrak{A}$, and ${ }_{\beta}^{\alpha} \pi, \alpha, \beta \in \mathfrak{A}, \beta \leqslant \alpha$, are separable and perfect too.

Proof. The mapping ${ }^{S} \pi$ is separable and perfect by Proposition 2.15 and Theorem 2.11. The mappings ${ }_{\alpha}^{S} \pi, \alpha \in \mathfrak{A}$, and ${ }_{\beta}^{\alpha} \pi, \alpha, \beta \in A, \beta \leqslant \alpha$, are separable by Proposition 2.15 and perfect by Lemma 8 of the paper [43].

Let all mappings ${ }^{\alpha} \pi, \alpha \in \mathfrak{A}$, be "onto". Let us take any point $y \in Y$ and prove that the set ${ }^{S} \pi^{-1} y=Y_{S} \cap^{\mathfrak{A}} \pi^{-1} y$ is not empty.

Let $\alpha \in \mathfrak{A}$, and let $F_{\alpha}=\left\{\left\{y, z_{\gamma}: \gamma \in \mathfrak{A}\right\}: z_{\beta}={ }_{\beta}^{\alpha} \pi z_{\alpha}\right.$ for all $\left.\beta \in \mathfrak{A}, \beta \leqslant \alpha\right\}$.
Note that $F_{\alpha}=\bigcap\left\{F_{\alpha \beta}: \beta \in \mathfrak{A}, \beta \leqslant \alpha\right\}$, where the closed sets $F_{\alpha \beta}, \alpha, \beta \in \mathfrak{A}$, $\beta \leqslant \alpha$, were defined in the proof of the statement 3) of Proposition 2.15. Hence, the set F_{α} is closed. Moreover, the set $F_{y \alpha}=F_{\alpha} \cap^{\mathfrak{A}} \pi^{-1} y$ is non-empty, since we can define a point $\left\{y, z_{\gamma}: \gamma \in \mathfrak{A}\right\} \in F_{y \alpha}$, if we choose any $z_{\alpha} \in{ }^{\alpha} \pi^{-1} y$, put $z_{\beta}={ }_{\beta}^{\alpha} \pi z_{\alpha}$ for $\beta \in \mathfrak{A}, \beta \leqslant \alpha$, and choose arbitrary elements $z_{\gamma} \in{ }^{\gamma} \pi^{-1} y \neq \varnothing$ for $\gamma \in \mathfrak{A}$ such that the inequality $\gamma \leqslant \alpha$ does not hold.

Since $F_{y \alpha} \subseteq F_{y \beta}$ for all $\alpha, \beta \in A, \beta \leqslant \alpha$, the family $\left\{F_{y \alpha}: \alpha \in \mathfrak{A}\right\}$ is a centered family of closed subsets of the compact space ${ }^{\mathfrak{A}} \pi^{-1} y$. Therefore we have ${ }^{S} \pi^{-1} y=$ $=\bigcap\left\{F_{y \alpha}: \alpha \in \mathfrak{A}\right\} \neq \varnothing$. Hence, ${ }^{S} \pi Y_{S}=Y$.
2.19. Corollary. If all mappings ${ }_{\beta}^{\alpha} \pi, \alpha, \beta \in A, \beta \leqslant \alpha$, are separable and perfect (and "onto") then all mappings ${ }_{\alpha}^{S} \pi, \alpha \in \mathfrak{A}$, are separable and perfect (and "onto").
2.20. Assertion. Let ${ }^{S} \pi Y_{S}=Y$ and $X \subseteq Y_{S}$ be a subset such that each mapping ${ }^{\alpha} \pi, \alpha \in \mathfrak{A}$, is irreducible modulo ${ }_{\alpha}^{S} \pi X$. Then the mapping ${ }^{S} \pi$ is irreducible modulo X.

Proof. Let $U \subseteq Y_{S}$ be an arbitrary non-empty open set such that $U \cap X=\varnothing$. We must prove that there is a point $y \in Y$ such that ${ }^{S} \pi^{-1} y \subseteq U$.

Let us choose some point $x \in U$. By Proposition 2.2.5 of the book [51] there are an index $\alpha \in \mathfrak{A}$ and a neighborhood $U{ }_{\alpha}^{S} \pi x \subseteq Y_{\alpha}$ such that ${ }_{\alpha}^{S} \pi^{-1} U_{\alpha}^{S} \pi x \subseteq U$. Since $U^{S} \pi x \cap{ }_{\alpha}^{S} \pi X=\varnothing$ and the mapping ${ }^{\alpha} \pi$ is irreducible modulo ${ }_{\alpha}{ }_{\alpha} \pi X$, there exists a point $y \in Y$ such that ${ }^{\alpha} \pi^{-1} y \subseteq U{ }_{\alpha}^{S} \pi x$. Then we have ${ }^{S} \pi^{-1} y={ }_{\alpha} \pi^{-1}{ }^{\alpha} \pi^{-1} y \subseteq$ $\subseteq{ }_{\alpha}^{S} \pi^{-1} U_{\alpha}^{S} \pi x \subseteq U$. Hence, the mapping ${ }^{S} \pi$ is irreducible modulo X.
2.21. Corollary. Let $X \subseteq Y_{S}$ be a subset and ${ }^{\alpha} \pi, \alpha \in \mathfrak{A}$, be perfect separable mappings onto Y which can be reduced modulo ${ }_{\alpha}^{S} \pi X$ in a unique way. Then the mapping ${ }^{S} \pi$ can be reduced modulo X in a unique way.

§ 3. Some topological constructions

3.1. Construction. Let non-empty topological spaces Y and Z_{α}, open sets $O_{\alpha} \subseteq$ $\subseteq Y$, sets $G_{\alpha} \subseteq O_{\alpha}$, satisfying the condition $\left[G_{\alpha}\right]_{Y} \cap O_{\alpha}=G_{\alpha}$, and mappings $g_{\alpha}: O_{\alpha} \backslash G_{\alpha} \rightarrow Z_{\alpha}, \alpha \in \mathfrak{A}$, be given.

For each $\alpha \in \mathfrak{A}$ let

$$
Y_{\alpha}=\mathfrak{P}\left(Y,\left\{Z_{\alpha}\right\},\left\{G_{\alpha}\right\},\left\{O_{\alpha}\right\},\left\{g_{\alpha}\right\}, \alpha \in\{\alpha\}\right)=\left(Y \backslash G_{\alpha}\right) \dot{\cup}\left(G_{\alpha} \times Z_{\alpha}\right)
$$

and define the maps ${ }^{\alpha} \pi: Y_{\alpha} \xrightarrow{\text { onto }} Y$ and ${ }^{\alpha} \psi:{ }^{\alpha} \pi^{-1} O_{\alpha} \rightarrow Z_{\alpha}$ as follows:

$$
{ }^{\alpha} \pi z=\left\{\begin{array}{l}
z \text { for } z \in Y \backslash G_{\alpha}, \\
y \text { for } z=(y, t) \in G_{\alpha} \times Z_{\alpha},
\end{array} \quad{ }^{\alpha} \psi z=\left\{\begin{array}{l}
g z \text { for } z \in O_{\alpha} \backslash G_{\alpha} \\
t \text { for } z=(y, t) \in G_{\alpha} \times Z_{\alpha}
\end{array}\right.\right.
$$

Let us equip Y_{α} with the smallest topology with respect to which the maps ${ }^{\alpha} \pi$ and ${ }^{\alpha} \psi$ are continuous. Thus all sets of the form

$$
V(U)={ }^{\alpha} \pi^{-1} U \text { and } V\left(U, U_{\alpha}\right)={ }^{\alpha} \pi^{-1} U \cap{ }^{\alpha} \psi^{-1} U_{\alpha},
$$

where $U \subseteq Y$ and $U_{\alpha} \subseteq Z_{\alpha}$ are open subsets, constitute a base for the topology of Y_{α}. It is easily seen that

$$
\left.{ }^{\alpha} \psi\right|_{\alpha \pi^{-1}\left(O_{\alpha} \backslash G_{\alpha}\right)}=\left.g_{\alpha}^{\alpha} \pi\right|_{\alpha \pi^{-1}\left(O_{\alpha} \backslash G_{\alpha}\right)}
$$

Let us define a space $Y_{\mathfrak{A}}=\mathfrak{P}\left(Y,\left\{Z_{\alpha}\right\},\left\{G_{\alpha}\right\},\left\{O_{\alpha}\right\},\left\{g_{\alpha}\right\}, \alpha \in \mathfrak{A}\right)$ as the fan product of the spaces Y_{α} relative to the mappings ${ }^{\alpha} \pi, \alpha \in \mathfrak{A}$. The mappings ${ }^{\mathfrak{A}} \pi,{ }_{\mathfrak{B}}^{\mathfrak{A}} \pi, \mathfrak{B} \subseteq \mathfrak{A}$, and ${ }_{\alpha}^{\mathfrak{A}} \pi, \alpha \in \mathfrak{A}$, were defined in the item 2.1. For each $\alpha \in \mathfrak{A}$ let ${ }_{\alpha}^{\mathfrak{A}} \psi:{ }_{\alpha}^{\mathfrak{A}} \pi^{-1} O_{\alpha} \rightarrow Z_{\alpha}$ be the mapping defined by the equality ${ }_{\alpha}^{\mathfrak{A}} \psi={ }^{\alpha} \psi_{\alpha}^{\mathfrak{A}} \pi$. It is easily seen that this construction coincides with the construction of the paper [43], §1.

It is convenient to use the following coordinate representation of the space $Y_{\mathfrak{A}}$ ([43], §1; for $y \in Y$ let $\left.\mathfrak{A}(y)=\left\{\alpha \in \mathfrak{A}: y \in G_{\alpha}\right\}\right)$):

$$
Y_{\mathfrak{A}}=\left\{\left\{y, z_{\alpha}: \alpha \in \mathfrak{A}(y)\right\}: y \in Y, z_{\alpha} \in Z_{\alpha} \text { for all } \alpha \in \mathfrak{A}(y)\right\} .
$$

3.2. Construction. Let us suppose, in addition, that for all $\alpha \in \mathfrak{A}$ the map g_{α} is defined for all points $y \in G_{\alpha}$ too, but it is not necessarily continuous at these points (in other words, the map $g_{\alpha}: O_{\alpha} \rightarrow Z_{\alpha}$ is given, and $\left.g_{\alpha}\right|_{O_{\alpha} \backslash G_{\alpha}}$ is continuous).

Also let a topological space X and mappings $f: X \rightarrow Y$ and $\tilde{g}_{\alpha}: f^{-1} O_{\alpha} \rightarrow Z_{\alpha}$, satisfying the condition $\left.\tilde{g}_{\alpha}\right|_{f^{-1}\left(O_{\alpha} \backslash G_{\alpha}\right)}=\left.g_{\alpha} f\right|_{f^{-1}\left(O_{\alpha} \backslash G_{\alpha}\right)}$ for all $\alpha \in \mathfrak{A}$, be given.

For each $\alpha \in \mathfrak{A}$ let us define the maps $\varphi_{\alpha}: Y \rightarrow Y_{\alpha}$ and $f_{\alpha}: X \rightarrow Y_{\alpha}$ as follows:

$$
\varphi_{\alpha} y=\left\{\begin{array}{l}
y \text { for } y \in Y \backslash G_{\alpha}, \\
\left(y, g_{\alpha} y\right) \text { for } y \in G_{\alpha},
\end{array} \quad f_{\alpha} x=\left\{\begin{array}{l}
f x \text { for } x \in f^{-1}\left(Y \backslash G_{\alpha}\right), \\
\left(f x, \tilde{g}_{\alpha} x\right) \text { for } x \in f^{-1} G_{\alpha}
\end{array}\right.\right.
$$

Obviously, $\tilde{g}_{\alpha}=\left.{ }^{\alpha} \psi f_{\alpha}\right|_{f^{-1} O_{\alpha}},\left.{ }^{\alpha} \psi \varphi_{\alpha}\right|_{O_{\alpha}}=g_{\alpha}$ and ${ }^{\alpha} \pi \varphi_{\alpha} y=y$ for all $y \in Y$ and $\alpha \in \mathfrak{A}$. It is easily seen that the map f_{α} is continuous for every $\alpha \in \mathfrak{A}$.

Using Proposition 2.7 we get the mapping $f_{\mathfrak{A}}: X \rightarrow Y_{\mathfrak{A}}$ which satisfies the conditions ${ }^{\mathfrak{A}} \pi f_{\mathfrak{A}}=f$ and $\tilde{g}_{\alpha}=\left.{ }_{\alpha}^{\mathfrak{A}} \psi f_{\mathfrak{A}}\right|_{f^{-1} O_{\alpha}}$ for every $\alpha \in \mathfrak{A}$ (see also [43], Lemma 6).

For every $\alpha \in \mathfrak{A}$ let $X_{\alpha}=\left[f_{\alpha} X \cup \varphi_{\alpha} Y\right]_{Y_{\alpha}} \subseteq Y_{\alpha}$, and let $X_{\mathfrak{A}}$ be the fan product of the spaces X_{α} relative to the mappings $p_{\alpha}=\left.{ }^{\alpha} \pi\right|_{X_{\alpha}}, \alpha \in \mathfrak{A}$. It is easily seen that the space $X_{\mathfrak{A}}$ is a closed subset of $Y_{\mathfrak{A}}, f_{\mathfrak{A}} X \subseteq X_{\mathfrak{A}}$ and ${ }^{\mathfrak{A}} \pi X_{\mathfrak{A}}=Y$; the projections of $X_{\mathfrak{A}}$ onto Y and X_{α} coincide with $\left.{ }^{\mathfrak{A}} \pi\right|_{X_{\mathfrak{A}}}$ and $\left.{ }_{\alpha}^{\mathfrak{A}} \pi\right|_{X_{\mathfrak{A}}}, \alpha \in \mathfrak{A}$, respectively.
3.3. Proposition. If for some $\alpha \in \mathfrak{A}$ every point $y \in G_{\alpha}$ has a neighborhood $U y \subseteq O_{\alpha}$ such that the set $\left[\tilde{g}_{\alpha} f^{-1} U y \cup g_{\alpha} U y\right]_{Z_{\alpha}}$ is compact then the mapping p_{α} is perfect. If it is true for all $\alpha \in \mathfrak{A}$ then the mapping $\left.{ }^{\mathfrak{A}} \pi\right|_{X_{\mathfrak{A}}}$ is perfect too.

Proof. The second statement follows from the first one and Theorem 2.11 b). Therefore we have to prove only the first statement.

It is obvious that the mapping p_{α} is perfect at all points $y \in Y \backslash G_{\alpha}$.
Let $y \in G_{\alpha}$. There exists a neighborhood $U y \subseteq O_{\alpha}$ such that the set $Z_{\alpha}^{\prime}=$ $=\left[\tilde{g}_{\alpha} f^{-1} U y \cup g_{\alpha} U y\right]_{Z_{\alpha}}$ is compact. Let us consider the space

$$
Z=\mathfrak{P}\left(U y,\left\{Z_{\alpha}^{\prime}\right\},\left\{G_{\alpha} \cap U y\right\},\{U y\},\left\{\left.g_{\alpha}\right|_{U y \backslash G_{\alpha}}\right\}, \alpha \in\{\alpha\}\right)
$$

and the projection ${ }^{\alpha} \pi^{\prime}: Z \xrightarrow{\text { onto }} U y$. The mapping ${ }^{\alpha} \pi^{\prime}$ is perfect by Theorem 1 of the paper [43]. It is clear that $p_{\alpha}^{-1} U y$ is a closed subset of Z and Z is a closed subset of ${ }^{\alpha} \pi^{-1} U y,{ }^{\alpha} \pi^{\prime}=\left.{ }^{\alpha} \pi\right|_{Z}$ and $\left.p_{\alpha}\right|_{p_{\alpha}^{-1} U y}=\left.{ }^{\alpha} \pi^{\prime}\right|_{p_{\alpha}^{-1} U y}$. Therefore the mapping p_{α} is perfect.
3.4. Proposition. If for each $\alpha \in \mathfrak{A}$ the space Z_{α} is compact and the set $G_{\alpha} \backslash$ $\backslash[f X]_{Y}$ is nowhere dense in Y then the mapping ${ }^{\mathfrak{A}} \pi: Y_{\mathfrak{A}} \xrightarrow{\text { onto }} Y$ can be reduced modulo $f_{\mathfrak{A}} X$ in a unique way (that is, there exists a unique closed subset $Y_{\mathfrak{A}}^{r} \subseteq Y_{\mathfrak{A}}$ such that $f_{\mathfrak{A}} X \subseteq Y_{\mathfrak{A}}^{r},{ }^{\mathfrak{A}} \pi Y_{\mathfrak{A}}^{r}=Y$ and the mapping $\left.{ }^{\mathfrak{A}} \pi\right|_{Y_{\mathfrak{l}}^{r}}$ is irreducible modulo $\left.f_{\mathfrak{A}} X\right)$.

Proof. Let $\alpha \in \mathfrak{A}$ and $X_{\alpha}=\left[f_{\alpha} X \cup \cup^{\alpha} \pi^{-1}\left(Y \backslash\left([f X]_{Y} \cup G_{\alpha}\right)\right)\right]_{Y_{\alpha}}$. The mapping ${ }^{\alpha} \pi$ is perfect due to Theorem 1 of the paper [43]. Moreover, ${ }^{\alpha} \pi X_{\alpha}=Y, f_{\alpha} X \subseteq$ $\subseteq X_{\alpha}$ and the mapping $\left.{ }^{\alpha} \pi\right|_{X_{\alpha}}$ is irreducible modulo $f_{\alpha} X$ since the mapping ${ }^{\alpha} \pi$ is one-to-one on the set ${ }^{\alpha} \pi^{-1}\left(Y \backslash G_{\alpha}\right)$ and the set $G_{\alpha} \backslash[f X]_{Y}$ is nowhere dense in Y.

On the other hand, if $F \subseteq Y_{\alpha}$ is a closed subset such that $f_{\alpha} X \subseteq F$ and ${ }^{\alpha} \pi F=$ $=Y$ then $X_{\alpha} \subseteq F$ and, hence, the mapping ${ }^{\alpha} \pi$ can be reduced modulo $f_{\alpha} X$ in a unique way. Therefore the mapping ${ }^{\mathfrak{A}} \pi$ can be reduced modulo $f_{\mathfrak{A}} X$ in a unique way by Corollary 2.13.
3.5. Corollary. Let $f: X \xrightarrow{\text { onto }} Y$ be a mapping with the property $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$ and $X^{\prime} \subseteq$ $\subseteq X$ be a subset such that the set $O_{0}=Y \backslash f\left[X^{\prime}\right]_{Y}$ is open (for example, it is true if f is closed), the mapping $\left.f\right|_{f^{-1} O_{0}}: f^{-1} O_{0} \xrightarrow{\text { onto }} O_{0}$ is perfect and for each $G \in \mathfrak{a}$ the set $G \cap O_{0}$ is nowhere dense in Y. Then the mapping f can be reduced modulo X^{\prime} in a unique way.

§ 4. Algebras of functions on mappings

4.1. Further on we shall fix a mapping $f: X \rightarrow Y$ such that $[f X]_{Y}=Y$ until the item 4.16 (except the items 4.12-4.14 where the condition $[f X]_{Y}=Y$ can be
omitted). Let $C^{*}(X)$ be the algebra of all bounded continuous functions ${ }^{6} \tilde{g}: X \rightarrow$ $\rightarrow \mathbb{R}$ with the usual norm $\|\tilde{g}\|=\sup \{|\tilde{g} x|: x \in X\}$ and let $C(X)$ be the algebra of all continuous functions $\tilde{g}: X \rightarrow \mathbb{R}$.

A. Algebras of f-bounded functions

4.2. Definition. A function $\tilde{g}: X \rightarrow \mathbb{R}$ will be called f-bounded if for each point $y \in Y$ there exists a neighborhood $U y \subseteq Y$ such that the function \tilde{g} is bounded on the set $f^{-1} U y$.

Let $B(f)$ be the algebra (over the field \mathbb{R}) of all f-bounded functions $\tilde{g}: X \rightarrow \mathbb{R}$, $C(f)=B(f) \cap C(X)$. Of course, $C^{*}(X) \subseteq C(f)$ as a subalgebra. The following two statements are very simple (any topology on the set $C(f)$ is not defined).
4.3. Proposition. If the space Y is countably compact then $C(f)=C^{*}(X)$.
4.4. Proposition. If the mapping f is closed and $f^{-1} y$ is pseudocompact for every $y \in Y$ then $C(f)=C(X)$.

B. Semi-norms and topologies on algebras

4.5. For every $y \in Y$ and $\tilde{g} \in B(f)$ let
$n_{y} \tilde{g}=\inf \left\{\sup \left\{|\tilde{g} x|: x \in f^{-1} U y\right\}: U y \subseteq Y\right.$ is a neighborhood of the point $\left.y\right\}$.
It is clear that n_{y} is a seminorm on the algebra $B(f)$ for each point $y \in Y$, and for every $y \in Y, \tilde{g} \in B(f)$ and $\varepsilon>0$ such that $n_{y} \tilde{g}<\varepsilon$ the set $U_{\tilde{g}, \varepsilon} y=\left\{y^{\prime} \in\right.$ $\left.\in Y: n_{y^{\prime}} \tilde{g}<n_{y} \tilde{g}+\varepsilon\right\}$ is an open neighborhood of the point y.
4.6. Proposition. If the mapping f is closed then for each $\tilde{g} \in C(f)$ and $y \in Y$ the equality $n_{y} \tilde{g}=\sup \left\{|\tilde{g} x|: x \in f^{-1} y\right\}$ holds.

Proof. Let $y \in Y$ and $\tilde{g} \in C(f)$. Obviously, $n_{y} \tilde{g} \geqslant M=\sup \left\{|\tilde{g} x|: x \in f^{-1} y\right\}$. We have to prove the inverse inequality.

Let us take any $\varepsilon>0$. Since the function \tilde{g} is continuous, for each point $x \in f^{-1} y$ there exists a neighborhood $U x \subseteq X$ such that $\left|\tilde{g} x^{\prime}-\tilde{g} x\right|<\varepsilon$ for all $x^{\prime} \in U x$. Let $U^{\varepsilon} y=f^{\#} \bigcup\left\{U x: x \in f^{-1} y\right\}$. Then $U^{\varepsilon} y \subseteq Y$ is open since the mapping f is closed and, hence, "onto" (see 4.1). We have the inequality $\sup \left\{|\tilde{g} x|: x \in f^{-1} U^{\varepsilon} y\right\} \leqslant M+$ $+\varepsilon$. Since $\varepsilon>0$ is arbitrary, we have $n_{y} \tilde{g} \leqslant \inf \left\{\sup \left\{|\tilde{g} x|: x \in f^{-1} U^{\varepsilon} y\right\}: \varepsilon>\right.$ $>0\} \leqslant M$.

Thus, the equality $n_{y} \tilde{g}=M$ is valid.
4.7. Let us take the family of the sets of the form

$$
V_{\varepsilon, M} \tilde{g}_{0}=\left\{\tilde{g} \in B(f): \max \left\{n_{y}\left(\tilde{g}-\tilde{g}_{0}\right): y \in M\right\}<\varepsilon\right\},
$$

where $M \subseteq Y$ is a finite subset, $\varepsilon>0$ and $g_{0} \in B(f)$, as a base of a topology of $B(f)$, and let us equip $C(f)$ with the topology of a subspace.

It is easily seen (this is a standard definition) that $B(f)$ and $C(f)$ with these topologies are topological algebras.

C. $C(f)$ and other algebras

4.8. Theorem. The algebra $C(f)$ is closed in $B(f)$.

Proof. Let $\tilde{g}_{0} \in[C(f)]_{B(f)}$. It suffices to prove that the function \tilde{g}_{0} is continuous. Let $x_{0} \in X$ and $y=f x_{0}$. We have to prove that \tilde{g}_{0} is continuous at the point x_{0}.
Let $\varepsilon>0$ be an arbitrary number. By the definition of the topology of the space $B(f)$ the set $V_{\frac{\varepsilon}{3},\{y\}}\left(\tilde{g}_{0}\right)$ is an open neighborhood of \tilde{g}_{0}. Therefore there is a continuous function $\tilde{g} \in V_{\frac{\varepsilon}{3},\{y\}}\left(\tilde{g}_{0}\right) \cap C(f)$. By the definition of the seminorm n_{y} there exists a neighborhood $U y \subseteq Y$ such that $\left|\tilde{g} x-\tilde{g}_{0} x\right|<\frac{\varepsilon}{3}$ for all $x \in f^{-1} U y$.

[^6]Since the function \tilde{g} is continuous there is a neighborhood $U x_{0} \subseteq f^{-1} U y$ such that $\left|\tilde{g} x-\tilde{g} x_{0}\right|<\frac{\varepsilon}{3}$ for all $x \in U x_{0}$.

Hence, for any $x \in U x_{0}$ we have

$$
\begin{aligned}
\left|\tilde{g}_{0} x-\tilde{g}_{0} x_{0}\right|=\mid \tilde{g}_{0} x & -\tilde{g} x+\tilde{g} x-\tilde{g} x_{0}+\tilde{g} x_{0}-\tilde{g}_{0} x_{0} \mid \leqslant \\
& \leqslant\left|\tilde{g}_{0} x-\tilde{g} x\right|+\left|\tilde{g} x-\tilde{g} x_{0}\right|+\left|\tilde{g} x_{0}-\tilde{g}_{0} x_{0}\right|<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon .
\end{aligned}
$$

Therefore the function \tilde{g}_{0} is continuous.
4.9. Proposition. The identity map $i_{X}: C^{*}(X) \rightarrow C(f)$ is continuous and $i_{X} C^{*}(X)$ is dense in $C(f)$.

Proof. The map i_{X} is continuous since for every $\tilde{g} \in C^{*}(X)$ and any $y \in Y$ we have $n_{y} \tilde{g} \leqslant\|\tilde{g}\|$.

Let $\tilde{g} \in C(f)$. For every number $t \geqslant 0$ let us set

$$
\tilde{g}_{t} x=\left\{\begin{array}{l}
t \text { if } \tilde{g} x \geqslant t \\
\tilde{g} x \text { if }|\tilde{g} x|<t \\
-t \text { if } \tilde{g} x \leqslant-t
\end{array}\right.
$$

It is obvious that $\tilde{g}_{t} \in C^{*}(X)$ for each $t \geqslant 0$, therefore $A=\left\{\tilde{g}_{t}: t \geqslant 0\right\} \subseteq C^{*}(X)$. If $V_{\varepsilon, M} \tilde{g}$ is any neighborhood of \tilde{g} then for every $t \geqslant \max \left\{n_{y} \tilde{g}: y \in M\right\}$ we have $n_{y}\left(\tilde{g}_{t}-\tilde{g}\right)=0$ for all $y \in M$, hence, $\tilde{g}_{t} \in V_{\varepsilon, M} \tilde{g}$ for such t, and $\tilde{g} \in[A]_{C(f)} \subseteq$ $\subseteq\left[C^{*}(X)\right]_{C(f)}$.
4.10. Proposition. If there exists a continuous function $g: Y \rightarrow[0,1]$ such that the set $g Y$ is infinite then the identity mapping $i_{X}: C^{*}(X) \rightarrow C(f)$ is not an embedding.

Proof. Since the segment $[0,1]$ is compact and the set $g Y$ is infinite there is a point $t_{0} \in[0,1]$ such that $t_{0} \in\left[g Y \backslash\left\{t_{0}\right\}\right]_{\mathbb{R}}$. Let $\left\{U_{n} t_{0}: n \in \mathbb{N}=\{1,2,3, \ldots\}\right\}$ be a local base of $[0,1]$ at the point t_{0}.

For every $n \in \mathbb{N}$ let us choose a point $t_{n} \in g Y \cap\left(U_{n} t_{0} \backslash\left\{t_{0}\right\}\right)$ and a neighborhood $U t_{n} \subseteq[0,1]$ such that $\left[U t_{n}\right]_{\mathbb{R}} \subseteq U_{n} t_{0} \backslash\left\{t_{0}\right\}$, and let $h_{n}:[0,1] \rightarrow[0,1]$ be a continuous function such that $h_{n} t_{n}=1$ and $h_{n} t=0$ for all $t \in[0,1] \backslash U t_{n}$. Let $A=\left\{h_{n} g f: n \in\right.$ $\in \mathbb{N}\}$. It is obvious that $A \subseteq C^{*}(X)$.

Let $\tilde{g}_{0} \in C^{*}(X)$ be a function such that $\tilde{g}_{0} x=0$ for all $x \in X$. We have $\left\|\tilde{g}-\tilde{g}_{0}\right\|=\|\tilde{g}\|=1$ for all $\tilde{g} \in A$, therefore $\tilde{g}_{0} \notin[A]_{C^{*}(X)}$.

On the other hand, for any neighborhood $V_{\varepsilon, M} \tilde{g}_{0} \subseteq B(f)$ there exists a number $n \in \mathbb{N}$ such that $M \cap\left(U_{n} t_{0} \backslash\left\{t_{0}\right\}\right)=\varnothing$, hence, $n_{y}\left(h_{n} g f-\tilde{g}_{0}\right)=n_{y}\left(h_{n} g f\right)=0$ for all $y \in M$, that is, $h_{n} g f \in V_{\varepsilon, M} \tilde{g}_{0}$ and $V_{\varepsilon, M} \tilde{g}_{0} \cap A \neq \varnothing$; therefore $\tilde{g}_{0} \in[A]_{C(f)}$.
4.11. Proposition. If the mapping f is closed and for each $y \in Y$ the set $f^{-1} y$ is finite then the topology of the space $C(f)$ coincides with the topology of pointwise convergence.

Proof. Let $C_{p}(X)$ be the algebra of all continuous functions $\tilde{g}: X \rightarrow \mathbb{R}$ with the topology of pointwise convergence. Due to Proposition 4.4 the sets $C(f)$ and $C_{p}(X)$ coincide. Let $j_{X}: C(f) \xrightarrow{\text { onto }} C_{p}(X)$ be the identity map.

It is obvious that the topology of the pointwise convergence can be defined by the family of semi-norms

$$
n_{y}^{\prime} \tilde{g}=\max \left\{|\tilde{g} x|: x \in f^{-1} y\right\}=\sup \left\{|\tilde{g} x|: x \in f^{-1} y\right\}
$$

for all $y \in f X=Y$ (see 4.1) and $\tilde{g} \in C_{p}(X)$, because $f^{-1} y$ is finite for each $y \in$ $\in Y$. Due to Proposition $4.6 n_{y}^{\prime} j_{X}=n_{y}$ for every $y \in Y$, hence the map j_{X} is a homeomorphism.

D. Globally completely regular mappings

4.12. Definition ([34], §7). We shall say that a mapping $f: X \rightarrow Y$ is parallel to a completely regular space if there exist a completely regular space Z and an embedding $i: X \rightarrow Y \times Z$ such that the equality $f=p_{Y} i$ is valid, where $p_{Y}: Y \times$ $\times Z \rightarrow Y$ is the projection of the product $Y \times Z$ to its factor Y.

Obviously, if a mapping $f: X \rightarrow Y$ is parallel to a completely regular space then f is Tychonoff. On the other hand, if the space X is completely regular then the mapping f is parallel to a completely regular space (we can take $Z=X$).
4.13. Definition. A mapping $f: X \rightarrow Y$ will be called globally completely regular if for an arbitrary point $x \in X$ in each of the following two cases
a) for every point $x^{\prime} \in f^{-1} f x \backslash\{x\}$ and
b) for every neighborhood $U x \subseteq X$
there exist a continuous function $\tilde{g}: X \rightarrow \mathbb{R}$ and a neighborhood $O f x \subseteq Y$ such that, respectively,
a) $\tilde{g} x^{\prime} \neq \tilde{g} x$ or
b) $\tilde{g} x \notin\left[\tilde{g}\left(f^{-1} O f x \backslash U x\right)\right]_{\mathbb{R}}$.

Note that we can use the segment $[0,1]$ instead of \mathbb{R} with the same result.
It is possible to generalize this definition analogously to Definition 1.6, but we shall consider the simplest case. For the general case we can prove all results of this paper about mappings with the properties $\mathfrak{T} \mathfrak{E} \mathfrak{a}$ and $\mathfrak{T} \mathfrak{a}$ with trivial modifications.
4.14. Proposition. A mapping $f: X \rightarrow Y$ is parallel to a completely regular space iff it is globally completely regular.

Proof. Necessity. Let the mapping f be parallel to a completely regular space Z, that is, there exists an embedding $i: X \rightarrow Y \times Z$ such that $f=p_{Y} i$, where $p_{Y}: Y \times Z \rightarrow Y$ is the projection. We have to consider two cases.
a) Let $x \in X$ and $x^{\prime} \in f^{-1} f x \backslash\{x\}$. Let us denote $z=p_{Z} i x$ and $z^{\prime}=p_{Z} i x^{\prime}$, where $p_{Z}: Y \times Z \rightarrow Z$ is the projection. Then $z^{\prime} \neq z$, therefore there is a continuous function $g: Z \rightarrow[0,1]$ such that $g z=0$ and $g z^{\prime}=1$, because the space Z is completely regular. Then the function $\tilde{g}=g p_{Z} i$ has all necessary properties.
b) Let $x \in X$ be a point and $U x \subseteq X$ be its neighborhood. By the definition of the topological product there are neighborhoods $O f x \subseteq Y$ and $O p_{Z} i x \subseteq Z$ such that $x \in f^{-1} O f x \cap i^{-1} p_{Z}^{-1} O p_{Z} i x=i^{-1}\left(O f x \times O p_{Z} i x\right) \subseteq U x$, since the mapping i is embedding. Analogously there is a continuous function $g: Z \rightarrow[0,1]$ such that $g p_{Z} i x=0$ and $g z=1$ for all $z \in Z \backslash O p_{Z} i x$. Then the function $\tilde{g}=g p_{Z} i$ has all necessary properties.

Sufficiency. Let the mapping f be globally completely regular. Let $\mathfrak{A}_{1}=$ $=\left\{\left(x, x^{\prime}\right): x \in X, x^{\prime} \in f^{-1} f x \backslash\{x\}\right\}, \mathfrak{A}_{2}=\{(x, U x): x \in X, U x \subseteq X$ is a neighborhood of the point $x\}, \mathfrak{A}=\mathfrak{A}_{1} \cup \mathfrak{A}_{2}$.

Let $\alpha=\left(x, x^{\prime}\right) \in \mathfrak{A}_{1}$. By Definition 4.12 there is a continuous function $\tilde{g}_{\alpha}: X \rightarrow$ $\rightarrow Z_{\alpha}=\mathbb{R}($ or $[0,1])$ such that $\tilde{g}_{\alpha} x^{\prime} \neq \tilde{g}_{\alpha} x$.

Let $\alpha=(x, U x) \in \mathfrak{A}_{2}$. By Definition 4.12 there are a continuous function $\tilde{g}_{\alpha}: X \rightarrow Z_{\alpha}=\mathbb{R}($ or $[0,1])$ and a neighborhood $O f x \subseteq Y$ such that $\tilde{g}_{\alpha} x \notin$ $\notin\left[\tilde{g}_{\alpha}\left(f^{-1} O f x \backslash U x\right)\right]_{\mathbb{R}}$.

Let $Z=\prod\left\{Z_{\alpha}: \alpha \in \mathfrak{A}\right\}$ and let $i=f \Delta\left(\Delta\left\{\tilde{g}_{\alpha}: \alpha \in \mathfrak{A}\right\}\right): X \rightarrow Y \times \prod\left\{Z_{\alpha}: \alpha \in\right.$ $\in \mathfrak{A}\}=Y \times Z$ be the diagonal mapping (see [51], §2.3). It is easily seen that
the mapping i is an embedding, the space Z is completely regular ([51], Theorem 2.3.11) and $f=p_{Y} i$.
4.15. Theorem. There exist a space X^{\prime} and two mappings $h_{1}: X \rightarrow X^{\prime}$ and $h_{2}: X^{\prime} \rightarrow Y$ such that

1) $h_{2} h_{1}=f$;
2) $\left[h_{1} X\right]_{X^{\prime}}=X^{\prime}$;
3) h_{2} is perfect (hence, $h_{2} X^{\prime}=Y$; see 4.1) and globally completely regular (hence, h_{2} is separable);
4) the map $\varphi: C\left(h_{2}\right) \xrightarrow{\text { onto }} C(f)$, defined by the equality $\varphi \bar{g}=\bar{g} h_{1}$ for all $\bar{g} \in$ $\in C\left(h_{2}\right)$, is an isomorphism of topological algebras preserving all semi-norms $n_{y}, y \in Y$.
Moreover, if the mapping f is globally completely regular (and perfect) then the mapping h_{1} is an embedding (a homeomorphism onto X^{\prime}).

Proof. Let $C(f)=\left\{\tilde{g}_{\alpha}: \alpha \in \mathfrak{A}\right\}$. Let us set $Z_{\alpha}=\mathbb{R}, O_{\alpha}=Y, G_{\alpha}=Y$ for every $\alpha \in \mathfrak{A}$, and let us define a function $g_{\alpha}: Y \rightarrow Z_{\alpha}$ by the equality
$g_{\alpha} y=\inf \left\{\sup \left\{\tilde{g}_{\alpha} x: x \in f^{-1} U y\right\}: U y \subseteq Y\right.$ is a neighborhood of the point $\left.y\right\}$ for each $y \in Y$.

Using Construction 3.2 we get the mappings $f_{\mathfrak{A}}: X \rightarrow X_{\mathfrak{A}} \subseteq Y_{\mathfrak{A}}=\mathfrak{P}\left(Y,\left\{Z_{\alpha}\right\}\right.$, $\left.\left\{G_{\alpha}\right\},\left\{O_{\alpha}\right\},\left\{\left.g_{\alpha}\right|_{O_{\alpha} \backslash G_{\alpha}}\right\}, \alpha \in \mathfrak{A}\right)=Y \times \prod\left\{Z_{\alpha}: \alpha \in \mathfrak{A}\right\},{ }^{\mathfrak{A}} \pi=p_{Y}: Y_{\mathfrak{A}} \xrightarrow{\text { onto }} Y$ and ${ }_{\alpha}^{\mathfrak{A}} \psi=p_{Z_{\alpha}}: Y_{\mathfrak{A}} \rightarrow Z_{\alpha}=\mathbb{R}, \alpha \in \mathfrak{A}$, such that ${ }^{\mathfrak{A}} \pi f_{\mathfrak{A}}=f$ and ${ }_{\alpha}^{\mathfrak{A}} \psi f_{\mathfrak{A}}=\tilde{g}_{\alpha}$ for all $\alpha \in \mathfrak{A}$.

Since all functions $\tilde{g}_{\alpha}, \alpha \in \mathfrak{A}$, are f-bounded, the mapping $\left.{ }^{\mathfrak{A}} \pi\right|_{X_{\mathfrak{A}}}$ is perfect by Proposition 3.3. Let $X^{\prime}=\left[f_{\mathfrak{A}} X\right]_{X_{\mathfrak{A}}}, h_{2}=\left.{ }^{\mathfrak{A}} \pi\right|_{X^{\prime}}$, and let $h_{1}: X \rightarrow X^{\prime}$ be the mapping which coincides with $f_{\mathfrak{A}}$.

It is easily seen that the map $\psi: C(f) \rightarrow C\left(h_{2}\right)$, defined by the equality $\psi \tilde{g}_{\alpha}=$ $=\left.{ }_{\alpha}^{\mathfrak{A}} \psi\right|_{X^{\prime}}$ for $\alpha \in \mathfrak{A}$, is inverse to the mapping φ, and that $n_{y} \tilde{g}_{\alpha}=n_{y}\left(\psi \tilde{g}_{\alpha}\right)$ for all $\alpha \in \mathfrak{A}$ and $y \in Y$. Therefore the map φ is a topological isomorphism preserving all seminorms $n_{y}, y \in Y$.

The mapping h_{2} is globally completely regular by Proposition 4.14.
It is easily seen that if the mapping f is globally completely regular then the mapping h_{1} is embedding in consequence of Definition 4.13. Moreover, if the mapping f is perfect then the mapping h_{1} is perfect by Lemma 8 of [43] and, hence, h_{1} is a homeomorphism onto X^{\prime}.
4.16. For the statements 4.17 and 4.18 let $f_{1}: X_{1} \rightarrow Y_{1}, f_{2}: X_{2} \rightarrow Y_{2}, \phi_{1}: X_{1} \rightarrow$ $\rightarrow X_{2}$ and $\phi_{2}: Y_{1} \rightarrow Y_{2}$ be mappings such that $\left[f_{1} X_{1}\right]_{Y_{1}}=Y_{1},\left[f_{2} X_{2}\right]_{Y_{2}}=Y_{2}$ and $\phi_{2} f_{1}=f_{2} \phi_{1}$.
4.17. Lemma. For $i=1,2$ let the space X_{i}^{\prime} and the mappings $h_{i 1}$ and $h_{i 2}$ be such as they were constructed in Theorem 4.15 for the mapping f_{i}. Then there exists and is unique a mapping $\phi_{0}: X_{1}^{\prime} \rightarrow X_{2}^{\prime}$ such that $\phi_{0} h_{11}=h_{21} \phi_{1}$ and $h_{22} \phi_{0}=$ $=\phi_{2} h_{12}$. If the mapping ϕ_{2} is perfect (or separable) then the mapping ϕ_{0} is perfect (or separable) too.

Proof. Let $C\left(f_{i}\right)=\left\{\tilde{g}_{i \alpha}: \alpha \in \mathfrak{A}_{i}\right\}, i=1,2$. For each $\alpha \in \mathfrak{A}_{2}$ there is a unique element $\alpha^{\prime} \in \mathfrak{A}_{1}$ such that $\tilde{g}_{1 \alpha^{\prime}}=\tilde{g}_{2 \alpha} \phi_{1}$; therefore we can define a map $h: \mathfrak{A}_{2} \rightarrow \mathfrak{A}_{1}$ by setting $h \alpha=\alpha^{\prime}$ for all $\alpha \in \mathfrak{A}_{2}$. Due to Theorem 2 of [43] there exists and is unique a mapping $\bar{\phi}: Y_{1 \mathfrak{A}_{1}} \rightarrow Y_{2 \mathfrak{A}_{2}}$ such that $\phi_{2}{ }^{\mathfrak{A}_{1}} \pi_{1}={ }^{\mathfrak{A}_{2}} \pi_{2} \bar{\phi}$ and ${ }_{\alpha}^{\mathfrak{A}_{2}} \psi_{2} \bar{\phi}={ }_{h \alpha}^{\mathfrak{A}_{1}} \psi_{1}$ for all $\alpha \in \mathfrak{A}_{2}$ (see 4.15). By the definition of the map h we have $\bar{\phi} f_{1 \mathfrak{A}_{1}}=f_{2 \mathfrak{A}_{2}} \phi_{1}$, hence, $\bar{\phi} f_{1 \mathfrak{A}_{1}} X_{1} \subseteq f_{a \mathfrak{A}_{2}} X_{2}$. Therefore $\bar{\phi} X_{1}^{\prime} \subseteq X_{2}^{\prime}$, and we can define the mapping ϕ_{0} as the restriction of the mapping $\bar{\phi}$.

The mapping ϕ_{0} satisfying the conditions $\phi_{0} h_{11}=h_{21} \phi_{1}$ and $h_{22} \phi_{0}=\phi_{2} h_{12}$ is unique since the first condition defines it on the dense subset $h_{11} X_{1} \subseteq X_{1}^{\prime}$ and the mapping h_{22} is separable.

If the mapping ϕ_{2} is perfect then the mapping $h_{22} \phi_{0}=\phi_{2} h_{12}$ also is perfect, and hence ϕ_{0} is perfect by Lemma 8 of [43]. Analogously we can prove that ϕ_{0} is separable if ϕ_{2} is separable.

E. Homomorphisms of algebras

4.18. Theorem. The map $\varphi: C\left(f_{2}\right) \rightarrow C\left(f_{1}\right)$ defined by the formula $\varphi \tilde{g}_{2}=\tilde{g}_{2} \phi_{1}$ for all $\tilde{g}_{2} \in C\left(f_{2}\right)$ is a continuous homomorphism of the topological algebras and $n_{y}\left(\varphi \tilde{g}_{2}\right) \leqslant n_{\phi_{2} y} \tilde{g}_{2}$ for all $y \in Y_{1}$ and $\tilde{g} \in C\left(f_{2}\right)$. Moreover,

1) if $\left[\phi_{1} X_{1}\right]_{X_{2}}=X_{2}$ then φ is a continuous isomorphism onto a subalgebra of $C\left(f_{1}\right)$;
2) if, in addition to 1), the mapping ϕ_{2} is perfect then φ is a continuous isomorphism onto a closed subalgebra of $C\left(f_{1}\right)$;
3) if, in addition to 1) and 2), the set $\phi_{2}^{-1} y$ is finite for each $y \in Y_{2}$ then φ is a topological isomorphism onto a closed subalgebra of $C\left(f_{1}\right)$.
Proof is very simple except for the closedness of $\varphi C\left(f_{2}\right)$ in $C\left(f_{1}\right)$ in the statement 2).

By Lemma 4.17 we can assume that the mappings ϕ_{1} and f_{2} are perfect and $\phi_{1} X_{1}=X_{2}$; otherwise we can replace $X_{1}, X_{2}, f_{1}, f_{2}$ and ϕ_{1} by $X_{1}^{\prime}, X_{2}^{\prime}, h_{12}, h_{22}$ and ϕ_{0}.

Consider a function $\tilde{g}_{0} \in\left[\varphi C\left(f_{2}\right)\right]_{C\left(f_{1}\right)}$. We shall show that for any points $x_{1}, x_{2} \in X_{1}$ such that $\phi_{1} x_{1}=\phi_{1} x_{2}$ we have $\tilde{g}_{0} x_{1}=\tilde{g}_{0} x_{2}$. Let $M=\left\{f_{1} x_{1}, f_{1} x_{2}\right\}$. For each $\varepsilon>0$ there is $\tilde{g}_{2} \in C\left(f_{2}\right)$ such that $\tilde{g}_{1}=\varphi \tilde{g}_{2} \in V_{\frac{\varepsilon}{2}, M} \tilde{g}_{0}$ (see 4.7); therefore

$$
\begin{aligned}
& \left|\tilde{g}_{0} x_{1}-\tilde{g}_{0} x_{2}\right|=\left|\tilde{g}_{0} x_{1}-\tilde{g}_{1} x_{1}+\tilde{g}_{1} x_{1}-\tilde{g}_{1} x_{2}+\tilde{g}_{1} x_{2}-\tilde{g}_{0} x_{2}\right| \leqslant \\
\leqslant & \left|\tilde{g}_{0} x_{1}-\tilde{g}_{1} x_{1}\right|+\left|\tilde{g}_{1} x_{1}-\tilde{g}_{1} x_{2}\right|+\left|\tilde{g}_{1} x_{2}-\tilde{g}_{0} x_{2}\right|<\frac{\varepsilon}{2}+\left|\tilde{g}_{2} \phi_{1} x_{1}-\tilde{g}_{2} \phi_{1} x_{2}\right|+\frac{\varepsilon}{2}=\varepsilon,
\end{aligned}
$$

since $\phi_{1} x_{1}=\phi_{1} x_{2}$. Thus, $\left|\tilde{g}_{0} x_{1}-\tilde{g}_{0} x_{2}\right|<\varepsilon$ for any $\varepsilon>0$, so that $\tilde{g}_{0} x_{1}=\tilde{g}_{0} x_{2}$ for any $x_{1}, x_{2} \in X_{1}$ such that $\phi_{1} x_{1}=\phi_{1} x_{2}$.

Therefore we can define a function $\tilde{g}: X_{2} \rightarrow \mathbb{R}$ by the equality $\tilde{g} x=\tilde{g}_{0} x^{\prime}$ for any $x \in X_{2}$ and $x^{\prime} \in \phi_{1}^{-1} x$. For every closed set $F \subseteq \mathbb{R}$ the set $\tilde{g}^{-1} F=\phi_{1} \tilde{g}_{0}^{-1} F$ is closed since ϕ_{1} is closed, hence \tilde{g} is continuous; by Proposition $4.4 \tilde{g} \in C\left(f_{2}\right)$. Obviously, $\varphi \tilde{g}=\tilde{g}_{0}$, therefore $\varphi C\left(f_{2}\right)$ is closed subalgebra of $C\left(f_{1}\right)$.
4.19. Corollary. Let mappings $f_{1}: X_{1} \rightarrow Y, f_{2}: X_{2} \rightarrow Y$ and $\phi_{0}: X_{1} \rightarrow X_{2}$ such that $f_{1}=f_{2} \phi_{0}$, $\left[\phi_{0} X_{1}\right]_{X_{2}}=X_{2}$ and $\left[f_{1} X_{1}\right]_{Y}=Y$ be given. Then the map $\varphi: C\left(f_{2}\right) \rightarrow C\left(f_{1}\right)$, defined by the equality $\varphi \tilde{g}_{2}=\tilde{g}_{2} \phi_{0}$ for all $\tilde{g}_{2} \in C\left(f_{2}\right)$, is a topological isomorphism onto a closed subalgebra of $C\left(f_{1}\right)$, preserving all seminorms $n_{y}, y \in Y$.

§ 5. Sheaves

5.1. From now on we shall fix a mapping $f: X \rightarrow Y$ and a closed family \mathfrak{a} of locally closed subsets of the space Y.

Let T be the family of all open subsets of the space Y.
Let us denote by $T_{\mathfrak{a}}$ the family of all ordered couples (O, G), where $O \in T$ and $G \in \mathfrak{a}$ are sets such that $[G]_{Y} \cap O=G$. For $\left(O_{1}, G_{1}\right),\left(O_{2}, G_{2}\right) \in T_{\mathfrak{a}}$ we shall write $\left(O_{1}, G_{1}\right) \subseteq\left(O_{2}, G_{2}\right)$ if $O_{1} \subseteq O_{2}$ and $O_{1} \backslash G_{1} \subseteq O_{2} \backslash G_{2}$. This relation defines a partial order on the set $T_{\mathfrak{a}}$.
5.2. Lemma. The partially ordered set $T_{\mathfrak{a}}$ has the following properties:
a) the couple (Y, \varnothing) is the largest element of $T_{\mathfrak{a}}$;
b) for each $\left(O_{1}, G_{1}\right),\left(O_{2}, G_{2}\right) \in T_{\mathfrak{a}}$ there is their minimum

$$
\left(O_{1}, G_{1}\right) \cap\left(O_{2}, G_{2}\right)=\left(O_{1} \cap O_{2},\left(G_{1} \cup G_{2}\right) \cap\left(O_{1} \cap O_{2}\right)\right) ;
$$

c) for each point $y \in Y$ and each set $O \in T$ the families $T_{y}=\{(O, G) \in$ $\left.\in T_{\mathfrak{a}}: O \ni y\right\}$ and $T_{O}=\left\{\left(O^{\prime}, G\right) \in T_{\mathfrak{a}}: O^{\prime}=O\right\}$ are directed by the relation " \supseteq " inverse to " \subseteq ".
Proof. The statements a) and b) are evident, the statement c) is a consequence of the fact that for any $\left(O_{1}, G_{1}\right),\left(O_{2}, G_{2}\right) \in T_{y}$ (or T_{O}) their minimum belongs to T_{y} (or T_{O}).
5.3. Further on we shall fix a couple $(O, G) \in T_{\mathfrak{a}}$ until the item 5.14.

A. Sets of couples of functions

5.4. Let us denote by $\mathcal{C}_{\mathfrak{a}}(O, G)$ the set of all ordered couples (g, \tilde{g}) of functions $g: O \rightarrow \mathbb{R}$ and $\tilde{g}: f^{-1} O \rightarrow \mathbb{R}$ which satisfy the following conditions:

1) $\left.g\right|_{O \backslash G}$ and \tilde{g} are continuous;
2) $\left.\tilde{g}\right|_{f^{-1}(O \backslash G)}=\left.g f\right|_{f^{-1}(O \backslash G)}$;
3) for every point $y \in G$ there is a neighborhood $U y \subseteq O$ such that the functions $\left.g\right|_{U y}$ and $\left.\tilde{g}\right|_{f^{-1} U y}$ are bounded;
4) for every point $y \in G$ the following equality holds:
(2) $\left\{\begin{array}{l}g y=\inf \left\{\max \left\{\sup \left\{g y^{\prime}: y^{\prime} \in U y \backslash\left([f X]_{Y} \cup E\right)\right\}, \sup \left\{\tilde{g} x: x \in f^{-1} U y\right\}\right\}:\right. \\ U y \subseteq O \text { is a neighborhood of the point } y, \\ E \subseteq U y \text { is a nowhere dense set }\} .\end{array}\right.$

We shall assume that $\mathcal{C}_{\mathfrak{a}}(\varnothing, \varnothing)=\{(0,0)\}$ is the zero-algebra.
Let $C_{\mathfrak{a}}^{*}(O, G)=\left\{(g, \tilde{g}) \in \mathcal{C}_{\mathfrak{a}}(O, G): g\right.$ and \tilde{g} are bounded $\}$.
The following statement is obvious.
5.5. Proposition. If $(g, \tilde{g}) \in \mathcal{C}_{\mathfrak{a}}(O, G)$ then for every point $y_{0} \in O$ we have $g y_{0}=\inf \left\{\sup \left\{g y: y \in U y_{0}\right\}: U y_{0} \subseteq O\right.$ is a neighborhood of the point $\left.y_{0}\right\}$, and for every $t \in \mathbb{R}$ the set $\{y \in O: g y<t\}$ is open.
5.6. Definition. A couple $(g, \tilde{g}) \in \mathcal{C}_{\mathfrak{a}}(O, G)$ will be called factorizable if the function g is continuous on the set O and $\tilde{g}=\left.g f\right|_{f^{-1} O}$.

The set of all factorizable couples $(g, \tilde{g}) \in \mathcal{C}_{\mathfrak{a}}(O, G)$ will be denoted by $\mathcal{C}_{f}(O, G)$. Let us observe that $\mathcal{C}_{f}(O, G)$ is independent of the set G since $\mathcal{C}_{f}(O, G)$ "coincides" with the set $C(O)$ of all continuous functions on the space O.
5.7. Definition. A couple $(g, \tilde{g}) \in \mathcal{C}_{\mathfrak{a}}(O, G)$ will be called constant if there exists a number $c \in \mathbb{R}$ such that $g y=c$ for all $y \in O$ and $\tilde{g} x=c$ for all $x \in f^{-1} O$.

B. Algebras of couples of functions

5.8. Let $\mathcal{C}_{\mathfrak{a}}(O, G)=\left\{\left(g_{\alpha}, \tilde{g}_{\alpha}\right): \alpha \in \mathfrak{A}\right\}$. For each $\alpha \in \mathfrak{A}$ let us set $Z_{\alpha}=\mathbb{R}$, $G_{\alpha}=G, O_{\alpha}=O$.

Using Construction 3.1 let us construct the spaces $Y_{\alpha}=\mathfrak{P}\left(Y,\left\{Z_{\alpha}\right\},\left\{G_{\alpha}\right\},\left\{O_{\alpha}\right\}\right.$, $\left\{\left.g_{\alpha}\right|_{O_{\alpha} \backslash G_{\alpha}}\right\}, \alpha \in\{\alpha\}$) and the mappings ${ }^{\alpha} \pi: Y_{\alpha} \xrightarrow{\text { onto }} Y, \alpha \in \mathfrak{A}$, and, after that, the space $Y_{\mathfrak{A}}=\mathfrak{P}\left(Y,\left\{Z_{\alpha}\right\},\left\{G_{\alpha}\right\},\left\{O_{\alpha}\right\},\left\{\left.g_{\alpha}\right|_{O_{\alpha} \backslash G_{\alpha}}\right\}, \alpha \in \mathfrak{A}\right)$ and the mapping ${ }^{\mathfrak{A}} \pi: Y_{\mathfrak{A}} \xrightarrow{\text { onto }} Y$.

Using Construction 3.2 let us construct the mappings $f_{\alpha}: X \rightarrow Y_{\alpha}$, the maps $\varphi_{\alpha}: Y \rightarrow Y_{\alpha}$ and the closed subsets $X_{\alpha}=\left[f_{\alpha} X \cup \varphi_{\alpha} Y\right]_{Y_{\alpha}} \subseteq Y_{\alpha}, \alpha \in \mathfrak{A}$, and, after that, the closed subset $X_{\mathfrak{A}}=\prod_{Y}\left(\left\{X_{\alpha}\right\},\left\{\left.{ }^{\alpha} \pi\right|_{X_{\alpha}}\right\}, \alpha \in \mathfrak{A}\right) \subseteq Y_{\mathfrak{A}}$ and the mapping $f_{\mathfrak{A}}: X \rightarrow X_{\mathfrak{A}}$. Due to the condition 3) of the item 5.4 and Proposition 3.3, the mappings $\left.{ }^{\mathfrak{A}} \pi\right|_{X_{\mathfrak{2}}}$ and $p_{\alpha}=\left.{ }^{\alpha} \pi\right|_{X_{\alpha}}, \alpha \in \mathfrak{A}$, are perfect.
5.9. Lemma. For each $\alpha \in \mathfrak{A}$ the mapping $p_{\alpha}: X_{\alpha} \xrightarrow{\text { onto }} Y$ is irreducible modulo $f_{\alpha} X$.

Proof. Let $\alpha \in \mathfrak{A}$; by the conditions 2) and 4) of the item 5.4 we have $\varphi_{\alpha} y \in$ $\in\left[f_{\alpha} X\right]_{Y_{\alpha}}$ for all $y \in \operatorname{Int}_{Y}[f X]_{Y} .^{7}$ Therefore in order to prove that the mapping p_{α} is irreducible modulo f_{α} it is suffices to prove that $p_{\alpha}^{\#} U=\left\{y \in Y: p_{\alpha}^{-1} y \subseteq U\right\} \neq$ $\neq \varnothing$ for an arbitrary non-empty open set $U \subseteq p_{\alpha}^{-1}\left(Y \backslash[f X]_{Y}\right)$. Moreover, we can assume that $U \subseteq p_{\alpha}^{-1} G_{\alpha}$ since the mappings ${ }^{\alpha} \pi$ and p_{α} are one-to-one on the set $p_{\alpha}^{-1}\left(Y \backslash G_{\alpha}\right)$.

Since the set $\varphi_{\alpha}\left(Y \backslash[f X]_{Y}\right)$ is dense in the set $p_{\alpha}^{-1}\left(Y \backslash[f X]_{Y}\right)$, there exists $y_{0} \in Y \backslash[f X]_{Y}$ such that $\varphi_{\alpha} y_{0} \in U$. Of course, $y_{0} \in G_{\alpha} \backslash[f X]_{Y}$. By the definition of the topology of the space X_{α} there are a neighborhood $W y_{0} \subseteq O_{\alpha} \backslash[f X]_{Y}$ and a number $\varepsilon>0$ such that $\varphi_{\alpha} y_{0} \in p_{\alpha}^{-1} W y_{0} \cap{ }^{\alpha} \psi^{-1} U_{2 \varepsilon} g_{\alpha} y \subseteq U$, where $U_{2 \varepsilon} g_{\alpha} y_{0}=$ $=\left\{t \in Z_{\alpha}=\mathbb{R}: g_{\alpha} y_{0}-2 \varepsilon<t<g_{\alpha} y_{0}+2 \varepsilon\right\}$ is a neighborhood of the point $g_{\alpha} y_{0}$ in the space Z_{α}.

For every $t \in \mathbb{R}$ let $U_{t}=\left\{y \in W y_{0}: g_{\alpha} y<t\right\}$; by Proposition 5.5 the sets $V_{1}=U_{g_{\alpha} y_{0}+\varepsilon}$ and $V_{0}=U_{g_{\alpha} y_{0}-\varepsilon}$ are open. The set $E=V_{1} \backslash V_{0}$ is locally closed and $y_{0} \in E \subseteq V_{1} \subseteq W y_{0}$. It is impossible for the set E to be nowhere dense, since in such

[^7]a case the condition (2) (see 5.4) would not be valid for the point y_{0} (we can take $U y_{0}=V_{1}$ and our $E \subseteq U y_{0}$ since $g_{\alpha} y<g_{\alpha} y_{0}-\varepsilon$ for all $\left.y \in U y_{0} \backslash E=V_{0}\right)$. Therefore the set $V=\operatorname{Int}_{Y} E$ is non-empty. We have $\varnothing \neq p_{\alpha}^{-1} V \subseteq p_{\alpha}^{-1} W y_{0} \cap\left[\varphi_{\alpha} V\right]_{Y_{\alpha}} \subseteq$ $\subseteq p_{\alpha}^{-1} W y_{0} \cap{ }^{\alpha} \psi^{-1}\left[g_{\alpha} V\right]_{Z_{\alpha}} \subseteq p_{\alpha}^{-1} W y_{0} \cap{ }^{\alpha} \psi^{-1} U_{2 \varepsilon} g_{\alpha} y_{0} \subseteq U$, hence $p_{\alpha}^{\#} U \subseteq V \neq \varnothing$ and the mapping p_{α} is irreducible modulo $f_{\alpha} X$.
5.10. Thus we have the fan product $X_{\mathfrak{A}}$ of the spaces X_{α} relative to the perfect irreducible modulo $f_{\alpha} X$ mappings $p_{\alpha}, \alpha \in \mathfrak{A}$ (see 5.8). Due to Corollary 2.13 there exists a unique closed subset $X_{\mathfrak{A}}^{r} \subseteq X_{\mathfrak{A}}$ such that $f_{\mathfrak{A}} X \subseteq X_{\mathfrak{A}}^{r},{ }^{\mathfrak{A}} \pi X_{\mathfrak{A}}^{r}=Y$, and the mapping $p_{\mathfrak{A}}=\left.{ }^{\mathfrak{A}} \pi\right|_{X_{\mathfrak{A}}^{r}}$ is irreducible modulo $f_{\mathfrak{A}} X$.

Let $X_{O G}=p_{\mathfrak{A}}^{-1} O, X^{O}=f^{-1} O, f_{O G}=\left.f_{\mathfrak{A}}\right|_{X^{o}}: X^{O} \rightarrow X_{O G}, f_{O}=\left.f\right|_{X^{o}}: X^{O} \rightarrow$ $\rightarrow O, p_{O G}=\left.p_{\mathfrak{A}}\right|_{X_{O G}}: X_{O G} \rightarrow O$.

5.11. For each $\alpha \in \mathfrak{A}$ let us define the continuous function $\bar{g}_{\alpha}: X_{O G} \rightarrow \mathbb{R}$ by the equality $\bar{g}_{\alpha}=\left.{ }_{\alpha}^{\mathfrak{A}} \psi\right|_{X_{O G}}$. Obviously, $\tilde{g}_{\alpha}=\bar{g}_{\alpha} f_{O G}$ and $\left.\bar{g}_{\alpha}\right|_{p_{O G}^{-1}(O \backslash G)}=\left.g_{\alpha} p_{O G}\right|_{p_{O G}^{-1}(O \backslash G)}$.

Thus we have got the map $\varphi_{O G}: \mathcal{C}_{\mathfrak{a}}(O, G) \rightarrow C\left(p_{O G}\right)$ defined by the formula $\varphi_{O G}\left(g_{\alpha}, \tilde{g}_{\alpha}\right)=\bar{g}_{\alpha}$ for all $\alpha \in \mathfrak{A}$ (see 4.4).
5.12. Theorem. The map $\varphi_{O G}$ is "onto" and one-to-one. Moreover, for each $y_{0} \in O$ and $\alpha \in \mathfrak{A}$ we have (see 4.5)

$$
\left\{\begin{array}{c}
n_{y_{0}} \bar{g}_{\alpha}=\inf \left\{\max \left\{\sup \left\{\left|g_{\alpha} y\right|: y \in U y_{0}\right\}, \sup \left\{\left|\tilde{g}_{\alpha} x\right|: x \in f^{-1} U y_{0}\right\}\right\}:\right. \tag{3}\\
\left.U y_{0} \subseteq O \text { is a neighborhood of the point } y_{0}\right\} .
\end{array}\right.
$$

Proof. Let us define a map $\varphi^{O G}: C\left(p_{O G}\right) \rightarrow \mathcal{C}_{\mathfrak{a}}(O, G)$ in the following way. For a function $\bar{g} \in C\left(p_{O G}\right)$ let $\tilde{g}=\bar{g} f_{O G}$, and for all $y \in O$ let $g y=\sup \left\{\bar{g} z: z \in p_{O G}^{-1} y\right\}$. It is clear that the functions $\tilde{g}: f^{-1} O=X^{O} \rightarrow \mathbb{R}$ and $\left.g\right|_{O \backslash G}: O \backslash G \rightarrow \mathbb{R}$ are continuous; moreover, $\left.\tilde{g}\right|_{f^{-1}(O \backslash G)}=\left.g f\right|_{f^{-1}(O \backslash G)}$ since the mapping $\left.p_{O G}\right|_{p_{O G}^{-1}(O \backslash G)}$ is a homeomorphism of the set $p_{O G}^{-1}(O \backslash G)$ onto $O \backslash G$.

Since the mapping $p_{O G}$ is closed, it follows for every $y \in O$ that
$g y=\inf \left\{\sup \left\{\bar{g} z: z \in p_{O G}^{-1} U y\right\}: U y \subseteq O\right.$ is a neighborhood of the point $\left.y\right\}$
(see 4.6). Using the irreducibility of the mapping $p_{O G}$ modulo $f_{O G} X^{O}$, one obtains easily the equality (2) (in analogous way we can prove the equality (3)). Thus
$(g, \tilde{g}) \in \mathcal{C}_{\mathfrak{a}}(O, G)$, and we shall get the map $\varphi^{O G}$ letting $\varphi^{O G} \bar{g}=(g, \tilde{g})$ for all $\bar{g} \in C\left(p_{O G}\right)$.

For $(g, \tilde{g}) \in \mathcal{C}_{\mathfrak{a}}(O, G)$ let $M_{g \tilde{g}}=f_{O G} X^{O} \cup\left(X_{O G} \cap{ }_{\alpha}^{\mathfrak{A}} \pi^{-1} \varphi_{\alpha} O\right),{ }^{8}$ and for $\bar{g} \in$ $\in C\left(p_{O G}\right)$ let $M_{\bar{g}}=f_{O G} X^{O} \cup\left\{z \in X_{O G}: \bar{g} z=\sup \left\{\bar{g} z^{\prime}: z^{\prime} \in p_{O G}^{-1} p_{O G} z\right\}\right\}$.

It is easily seen that both $\bar{g}=\varphi_{O G}(g, \tilde{g}),(g, \tilde{g}) \in \mathcal{C}_{\mathfrak{a}}(O, G)$, and $(g, \bar{g})=\varphi^{O G} \bar{g}$, $\bar{g} \in C\left(p_{O G}\right)$, imply the equality $M_{g \tilde{g}}=M_{\bar{g}}$, and this set is dense in $X_{O G}$. Using the definitions of maps $\varphi_{O G}$ and $\varphi^{O G}$ and the last equality, it is easily proved that these maps are inverse to each other. Hence the maps $\varphi_{O G}$ and $\varphi^{O G}$ are "onto" and one-to-one.
5.13. By Theorem 5.12 we can transfer the structure of the topological algebra $C\left(p_{O G}\right)$ onto $\mathcal{C}_{\mathfrak{a}}(O, G)$. Moreover, we can write $n_{y}(g, \tilde{g})=n_{y} \varphi_{O G}(g, \tilde{g})$ for all $y \in O$ and $(g, \tilde{g}) \in \mathcal{C}_{\mathfrak{a}}(O, G)($ see $(3))$.

C. Presheaves of algebras

5.14. If $\left(O_{1}, G_{1}\right),\left(O_{2}, G_{2}\right) \in T_{\mathfrak{a}},\left(O_{1}, G_{1}\right) \subseteq\left(O_{2}, G_{2}\right)$, then there is the restriction homomorphism $h: \mathcal{C}_{\mathfrak{a}}\left(O_{2}, G_{2}\right) \rightarrow \mathcal{C}_{\mathfrak{a}}\left(O_{1}, G_{1}\right)$, defined by the formula $h(g, \tilde{g})=$ $=\left(\left.g\right|_{O_{1}},\left.\tilde{g}\right|_{f^{-1} O_{1}}\right)$ for $(g, \tilde{g}) \in \mathcal{C}_{\mathfrak{a}}\left(O_{2}, G_{2}\right)$. Let $h_{f}=\varphi_{O_{1} G_{1}} h \varphi^{O_{2} G_{2}}$, where the maps $\varphi_{O_{1} G_{1}}$ and $\varphi^{O_{2} G_{2}}$ were defined in the items 5.11 and 5.12.

It is easily seen that the maps C and $\mathcal{C}_{\mathfrak{a}}$ which attribute to each couple $(O, G) \in$ $\in T_{\mathfrak{a}}$ the algebras $C\left(p_{O G}\right)$ and $\mathcal{C}_{\mathfrak{a}}(O, G)$ with the corresponding restriction homomorphisms h_{f} and h are presheaves (see Definition 1.44). These presheaves are isomorphic in a natural sense. We shall prove that the restriction homomorphisms are continuous, and that $\mathcal{C}_{\mathfrak{a}}$ (and, of course, C) is a sheaf.
5.15. Lemma. If $\left(O_{1}, G_{1}\right),\left(O_{2}, G_{2}\right) \in T_{\mathfrak{a}},\left(O_{1}, G_{1}\right) \subseteq\left(O_{2}, G_{2}\right)$, then there exists and is unique a mapping $\phi: X_{O_{1} G_{1}} \rightarrow X_{O_{2} G_{2}}$ such that $\phi f_{O 1, G_{1}}=\left.f_{O_{2} G_{2}}\right|_{X^{O_{1}}}$ and $p_{O_{2} G_{2}} \phi=p_{O_{1} G_{1}}$. Moreover,

1) $h_{f} \bar{g}=\bar{g} \phi$ for all $\bar{g} \in C\left(p_{O_{2} G_{2}}\right)$;
2) if $\left[O_{1}\right]_{Y} \cap O_{2}=O_{1}$ then the mapping ϕ is perfect;
3) if $O_{1}=O_{2}$ then the mapping ϕ is "onto" and irreducible modulo $f_{O_{1} G_{1}} X^{O_{1}}$;
4) if $\left[O_{1}\right]_{Y} \cap O_{2}=O_{1}$ and $G_{2} \cap O_{1}=G_{1}$ then the mapping ϕ is a homeomorphism onto the clopen set $p_{O_{2} G_{2}}^{-1} O_{1}$.

[^8]Proof. Let $\mathcal{C}_{\mathfrak{a}}\left(O_{2}, G_{2}\right)=\left\{\left(g_{\alpha}, \tilde{g}_{\alpha}\right): \alpha \in \mathfrak{A}\right\}$ and $\left.\mathcal{C}_{\mathfrak{a}}\left(O_{1}, G_{1}\right)=\left\{g_{\beta}, \tilde{g}_{\beta}\right): \beta \in \mathfrak{B}\right\}$. Let us define the map $k: \mathfrak{A} \rightarrow \mathfrak{B}$ by the formula $k \alpha=\beta$, where $\beta \in \mathfrak{B}$ is the unique element such that $\left(g_{\beta}, \tilde{g}_{\beta}\right)=h\left(g_{\alpha}, \tilde{g}_{\alpha}\right), \alpha \in \mathfrak{A}$.

Let all objects with the index $\alpha \in \mathfrak{A}$ (respectively, $\beta \in \mathfrak{B}$) correspond to the constructions 5.8 and 5.10 of $X_{O_{2} G_{2}}$ (respectively, $X_{O_{1} G_{1}}$).

Let $\alpha \in \mathfrak{A}$ and $\beta=k \alpha \in \mathfrak{B}$. We can define the map ${ }_{\alpha} i: p_{\beta}^{-1} O_{1} \rightarrow X_{\alpha}$ as follows (see Construction 3.2):

$$
{ }_{\alpha}^{\beta} i z=\left\{\begin{array}{l}
p_{\beta} z \text { for } z \in p_{\beta}^{-1}\left(O_{1} \backslash G_{2}\right) \\
\left(p_{\beta} z,{ }^{\beta} \psi z\right) \text { for } z \in p_{\beta}^{-1}\left(G_{2} \cap O_{1}\right) .
\end{array}\right.
$$

The map ${ }_{\alpha}^{\beta} i$ is an embedding onto the set $p_{\alpha}^{-1} O_{1} \subseteq X_{\alpha}$, because $g_{\beta}=\left.g_{\alpha}\right|_{O_{1}}$, $\tilde{g}_{\beta}=\left.\tilde{g}_{\alpha}\right|_{f^{-1} O_{1}}$ and $\left.{ }^{\beta} \psi\right|_{p_{\beta}^{-1}}\left(O_{1} \backslash G_{2}\right)=\left.g_{\alpha} p_{\beta}\right|_{p_{\beta}^{-1}}\left(O_{1} \backslash G_{2}\right)$. Of course, ${ }^{\beta} \psi={ }^{\alpha} \psi_{\alpha}^{\beta} i$.

Thus for each $\alpha \in \mathfrak{A}$ and $\beta=k \alpha$ we have the mapping $\bar{f}_{\alpha}: X_{O_{1} G_{1}} \rightarrow X_{\alpha}$ defined by the equality $\bar{f}_{\alpha}=\left.{ }_{\alpha}^{\beta} i{ }_{\beta}^{\mathfrak{B}} \pi\right|_{X_{O_{1} G_{1}}}$. The existence of the mapping $\phi: X_{O_{1} G_{1}} \rightarrow$ $\rightarrow X_{O_{2} G_{2}}$ follows now from Proposition 2.7. Let us prove its uniqueness.

Let $\phi_{i}: X_{O_{1} G_{1}} \rightarrow X_{O_{2} G_{2}}, i=1,2$, be mappings such that $\phi_{i} f_{O_{1} G_{1}}=\left.f_{O_{2} G_{2}}\right|_{X O_{1}}$ and $p_{O_{2} G_{2}} \phi_{i}=p_{O 1 G 1}$ for $i=1,2$. We have to prove that $\phi_{1}=\phi_{2}$.

If $x \in\left[f_{O_{1} G_{1}} X^{O_{1}}\right]_{X_{O_{1} G_{1}}}$ then the equality $\phi_{1} x=\phi_{2} x$ follows from pointed out conditions and the separability of the mapping $p_{O_{2} G_{2}}$. Therefore let $x \in X_{O_{1} G_{1}} \backslash$ $\backslash\left[f_{O_{1} G_{1}} X^{O_{1}}\right]_{X_{O_{1} G_{1}}}$ be a point such that $\phi_{1} x \neq \phi_{2} x$. Since $p_{O_{2} G_{2}} \phi_{1} x=p_{O_{1} G_{1}} x=$ $=p_{O_{2} G_{2}} \phi_{2} x$ and the mapping $p_{O_{2} G_{2}}$ is separable, there are disjoint neighborhoods $U \phi_{1} x, U \phi_{2} x \subseteq X_{O_{2} G_{2}} \backslash\left[f_{O_{2} G_{2}} X^{O_{2}}\right]_{X_{O_{2} G_{2}}}$. Let us set $U x=\phi_{1}^{-1} U \phi_{1} x \cap \phi_{2}^{-1} U \phi_{2} x$. Then $U x \subseteq X_{O_{1} G_{1}} \backslash\left[f_{O_{1} G_{1}} X^{O_{1}}\right]_{X_{O_{1} G_{1}}}$ is a neighborhood of the point x. The mapping $p_{O_{1} G_{1}}$ is irreducible modulo $f_{O_{1} G_{1}} X^{O_{1}}$, hence, $p_{O_{1} G_{1}}^{\#} U x \neq \varnothing$. On the other hand, we have $p_{O_{1} G_{1}}^{\#} U x=p_{O_{1} G_{1}}^{\#} U x \cap p_{O_{1} G_{1}}^{\#} U x=p_{O_{2} G_{2}}^{\#} \phi_{1}^{\#} U x \cap p_{O_{2} G_{2}}^{\#} \phi_{2}^{\#} U x \subseteq$ $\subseteq p_{O_{2} G_{2}}^{\#} U \phi_{1} x \cap p_{O_{2} G_{2}}^{\#} U \phi_{2} x=\varnothing$. This contradiction shows that $\phi_{1} x=\phi_{2} x$, that is, the mapping ϕ is unique.

Obviously, the mapping ϕ is perfect as the mapping onto $\phi X_{O_{1} G_{1}}$ by Lemma 8 of [43] (but not into $X_{O_{2} G_{2}}$ in general case), and it is irreducible modulo $f_{O_{1} G_{1}} X^{O_{1}}$ under the same condition.

Finally, if $\left[O_{1}\right]_{Y} \cap O_{2}=O_{1}$ and $G_{1}=G_{2} \cap O_{1}$ then for each couple $\left(g_{\beta}, \tilde{g}_{\beta}\right) \in$ $\in \mathcal{C}_{\mathfrak{a}}\left(O_{1}, G_{1}\right)$ there exists a couple $\left(g_{\alpha}, \tilde{g}_{\alpha}\right) \in \mathcal{C}_{\mathfrak{a}}\left(O_{2}, G_{2}\right)$ such that $h\left(g_{\alpha}, \tilde{g}_{\alpha}\right)=$ $=\left(g_{\beta}, \tilde{g}_{\beta}\right)$, that is, $k \alpha=\beta$ and, hence, $k \mathfrak{A}=\mathfrak{B}$ (for example, we can define

$$
g_{\alpha} y=\left\{\begin{array}{l}
g_{\beta} y \text { for } y \in O_{1}, \\
0 \text { for } y \in O_{2} \backslash O_{1},
\end{array} \quad \tilde{g}_{\alpha} x=\left\{\begin{array}{l}
\tilde{g}_{\beta} x \text { for } x \in f^{-1} O_{1}, \\
0 \text { for } x \in f^{-1}\left(O_{2} \backslash O_{1}\right)
\end{array}\right.\right.
$$

all conditions of the definition 5.4 are obviously satisfied). Therefore the map h is "onto" and, hence, the mapping ϕ separates points of $X_{O_{1} G_{1}}$; since ϕ is perfect, it is a homeomorphism onto the clopen set $p_{O_{2} G_{2}}^{-1} O_{1}$.

The remaining statements follow from the proved statements and the construction of the mapping ϕ.
5.16. Corollary. If $\left(O_{1}, G_{1}\right),\left(O_{2}, G_{2}\right) \in T_{\mathfrak{a}},\left(O_{1}, G_{1}\right) \subseteq\left(O_{2}, G_{2}\right)$, then the map $h: \mathcal{C}_{\mathfrak{a}}\left(O_{2}, G_{2}\right) \rightarrow \mathcal{C}_{\mathfrak{a}}\left(O_{1}, G_{1}\right)$ is a continuous homomorphism of topological algebras. Moreover,

1) if $\left[O_{1}\right]_{Y} \cap O_{2}=O_{1}$ then h is a homomorphism onto a closed subalgebra of $\mathcal{C}_{\mathfrak{a}}\left(O_{1}, G_{1}\right)$;
2) if $O_{1}=O_{2}$ then h is a topological isomorphism onto a closed subalgebra of $\mathcal{C}_{\mathfrak{a}}\left(O_{1}, G_{1}\right)$.

D. Sheaves of algebras

5.17. Definition. A family $\left\{\left(O_{\alpha}, G_{\alpha}\right): \alpha \in A\right\} \subseteq T_{\mathfrak{a}}$ will be called a covering of the couple $(O, G) \in T_{\mathfrak{a}}$ if $O=\bigcup\left\{O_{\alpha}: \alpha \in A\right\}$ and $O \backslash G=\bigcup\left\{O_{\alpha} \backslash G_{\alpha}: \alpha \in A\right\}$.

All conditions of Definition 1.43 are obviously valid.
5.18. Theorem. The maps $\mathcal{C}_{\mathfrak{a}}$ and \mathcal{C}_{f} which assign to each couple $(O, G) \in T_{\mathfrak{a}}$ the topological algebras $\mathcal{C}_{\mathfrak{a}}(O, G)$ and $\mathcal{C}_{f}(O, G)$ (see 5.4 and 5.6) are sheaves.

Proof follows from Proposition 2.1.11 of the book [51].
5.19. Remark. The analogous map $C_{\mathfrak{a}}^{*}$ (see 5.4) is a presheaf but it is not a sheaf.
5.20. We shall meet sheaves on the set T (see 5.4) which are usual sheaves over a topological space Y (see Example 1.47), but we shall formulate all definitions for sheaves on the set $T_{\mathfrak{a}}$ and use (if it is possible) some of them for sheaves on the set T too.

We shall consider sheaves of topological algebras only; therefore, the phrases "sheaf $\mathcal{C} \subseteq \mathcal{C}_{\mathfrak{a}}$ " or "subsheaf \mathcal{C} of the sheaf $\mathcal{C}_{\mathfrak{a}}$ " and so on will mean, particularly, that $\mathcal{C}(O, G)$ contains all constant couples and is a subalgebra of the topological algebra $\mathcal{C}_{\mathfrak{a}}(O, G)$ for every $(O, G) \in T_{\mathfrak{a}}$.

E. Properties of sheaves

5.21. Definition. A sheaf $\mathcal{C} \subseteq \mathcal{C}_{\mathfrak{a}}$ will be called complete if the algebra $\mathcal{C}(O, G)$ is closed in $\mathcal{C}_{\mathfrak{a}}(O, G)$ for any $(O, G) \in T_{\mathfrak{a}}$.
5.22. Let $T_{O}=\left\{\left(O, G_{\alpha}\right): \alpha \in \mathfrak{A}\right\}$ be the family of all couples $(O, G) \in T_{\mathfrak{a}}$ with a fixed set $O \in T$ (see 5.2 c$)$). For each $\alpha \in \mathfrak{A}$ we have the mappings $f_{O}: X^{O} \rightarrow O$, $f_{O G_{\alpha}}: X^{O} \rightarrow X_{O G_{\alpha}}$ and $p_{O G_{\alpha}}: X_{O G_{\alpha}} \xrightarrow{\text { onto }} O$ constructed in the item 5.10. Let $X_{\mathfrak{A}}=\prod_{O}\left(\left\{X_{O G_{\alpha}}\right\},\left\{p_{O G_{\alpha}}\right\}, \alpha \in \mathfrak{A}\right)$ and ${ }^{\mathfrak{A}} p=\prod_{O}\left\{p_{O G_{\alpha}}: \alpha \in \mathfrak{A}\right\}$ be the fan products. By Theorem 2.11 the mapping ${ }^{\mathfrak{A}} p$ is perfect.

By Proposition 2.7 there is a mapping $f_{\mathfrak{A}}: X^{O} \rightarrow X_{\mathfrak{A}}$ such that ${ }^{\mathfrak{A}} p f_{\mathfrak{A}}=f_{O}$ and ${ }_{\alpha}^{\mathfrak{A}} p f_{\mathfrak{A}}=f_{O G_{\alpha}}$ for all $\alpha \in \mathfrak{A}$, where ${ }_{\alpha}^{\mathfrak{A}} p: X_{\mathfrak{A}} \rightarrow X_{O G_{\alpha}}, \alpha \in \mathfrak{A}$, is the projection of the fan product to its factor (see 2.1). By Corollary 2.13 there exists a unique closed subset $X_{O} \subseteq X_{\mathfrak{A}}$ such that $f_{\mathfrak{A}} X^{O} \subseteq X_{O},{ }^{\mathfrak{A}} p X_{O}=O$ and the mapping $p_{O}=$ $=\left.{ }^{\mathfrak{A}} p\right|_{X_{O}}: X_{O} \xrightarrow{\text { onto }} O$ is irreducible modulo $f_{\mathfrak{A}} X^{O}$. Let us denote by $q_{O}: X^{O} \rightarrow$ $\rightarrow X_{O}$ the mapping coinciding with $f_{\mathfrak{A}}$.

5.23. By Theorem 4.18 we can assume that for each $\alpha \in \mathfrak{A}$ the algebra $\mathcal{C}_{\mathfrak{a}}\left(O, G_{\alpha}\right)$ is a closed subalgebra of $C\left(p_{O}\right)$ (the embedding $\mathcal{C}_{\mathfrak{a}}\left(O, G_{\alpha}\right) \rightarrow C\left(p_{O}\right)$ is defined by the formula $(g, \tilde{g}) \rightarrow\left(\varphi_{O G_{\alpha}}(g, \tilde{g})\right)_{\alpha}^{\mathfrak{A}} p$ for each $(g, \tilde{g}) \in \mathcal{C}_{\mathfrak{a}}\left(O, G_{\alpha}\right)$ and $\alpha \in \mathfrak{A}$; see 5.11). This embedding is coordinated with the restriction homomorphisms (see 5.14), which are closed embeddings by Corollary 5.16.

By Lemma 5.2 c) for every sheaf $\mathcal{C} \subseteq \mathcal{C}_{\mathfrak{a}}$ the set $\hat{\mathcal{C}}(O)=\bigcup\left\{\mathcal{C}\left(O, G_{\alpha}\right): \alpha \in \mathfrak{A}\right\}$ is a subalgebra of the algebra $C\left(p_{O}\right)$. In general case this algebra is not closed in $C\left(p_{O}\right)$ and in $\hat{\mathcal{C}_{\mathfrak{a}}}(O)$ even if the sheaf \mathcal{C} is complete.
5.24. Definition. We shall say that the family \mathfrak{a} has the largest representative in a set $O \in T$ if there exists an element $G_{O} \in \mathfrak{a}$ such that $\left(O, G_{O}\right) \in T_{\mathfrak{a}}$ and $\left(O, G_{O}\right) \subseteq(O, G)$ for every couple $(O, G) \in T_{O}$.
5.25. Proposition. Let a sheaf $\mathcal{C} \subseteq \mathcal{C}_{\mathfrak{a}}$ be complete, and let the family \mathfrak{a} have the largest representative $G_{O} \in \mathfrak{a}$ in the set $O \in T$. Then the algebra $\hat{\mathcal{C}}(O)$ is closed in $C\left(p_{O}\right)$.

Proof. Obviously, in this case we have $\mathcal{C}(O, G) \subseteq \mathcal{C}\left(O, G_{O}\right)$ for all $(O, G) \in$ $\in T_{O}$, therefore the algebra $\hat{\mathcal{C}}(O)=\bigcup\left\{\mathcal{C}(O, G):(O, G) \in T_{O}\right\}=\mathcal{C}\left(O, G_{O}\right)$ is closed in $\mathcal{C}_{\mathfrak{a}}\left(O, G_{O}\right)$; on the other hand, using Lemma 5.15, the construction 5.22 and Proposition 2.7, we can prove that the projection of X_{O} onto $X_{O G_{O}}$ is a homeomorphism, therefore $\mathcal{C}_{\mathfrak{a}}\left(O, G_{O}\right)=C\left(p_{O}\right)$.
5.26. Definition. A sheaf $\mathcal{C} \subseteq \mathcal{C}_{\mathfrak{a}}$ will be called hereditary, if for every $\left(O, G_{1}\right)$, $\left(O, G_{2}\right) \in T_{O}, O \in T$, such that $\left(O, G_{1}\right) \subseteq\left(O, G_{2}\right)$ the condition $\mathcal{C}\left(O, G_{2}\right)=$ $=\mathcal{C}\left(O, G_{1}\right) \cap \mathcal{C}_{\mathfrak{a}}\left(O, G_{2}\right)$ is satisfied. ${ }^{9}$
5.27. Lemma. If a sheaf $\mathcal{C} \subseteq \mathcal{C}_{\mathfrak{a}}$ is hereditary then the map $\hat{\mathcal{C}}$ which assigns to each $O \in T$ the topological algebra $\hat{\mathcal{C}}(O)$ is a sheaf over the topological space Y. In particular, the map $\hat{\mathcal{C}}_{\mathfrak{a}}$ is a sheaf.

Proof. It is clear that the map $\hat{\mathcal{C}}$ is a presheaf. It is necessary to prove the following property only (Definition 1.46): if $\left\{O_{\alpha}: \alpha \in \mathfrak{A}\right\}$ is a family of open sets of the space $Y, O=\bigcup\left\{O_{\alpha}: \alpha \in \mathfrak{A}\right\}$, for each $\alpha \in \mathfrak{A}$ a couple $\left(g_{\alpha}, \tilde{g}_{\alpha}\right) \in \mathcal{C}\left(O_{\alpha}\right)$ is given, and for all $\alpha, \beta \in \mathfrak{A}$ the equalities $\left.g_{\alpha}\right|_{O_{\alpha} \cap O_{\beta}}=\left.g_{\beta}\right|_{O_{\alpha} \cap O_{\beta}}$ and $\left.\tilde{g}_{\alpha}\right|_{f^{-1}\left(O_{\alpha} \cap O_{\beta}\right)}=$ $=\left.\tilde{g}_{\beta}\right|_{f^{-1}\left(O_{\alpha} \cap O_{\beta}\right)}$ hold, then there exists a unique couple $(g, \tilde{g}) \in \hat{\mathcal{C}}(O)$ such that $\left.g\right|_{O_{\alpha}}=g_{\alpha}$ and $\left.\tilde{g}\right|_{f^{-1} O_{\alpha}}=\tilde{g}_{\alpha}$ for all $\alpha \in \mathfrak{A}$.

Such a couple (g, \tilde{g}) exists by Proposition 2.1.11 of [51]. We have to prove that $(g, \tilde{g}) \in \hat{\mathcal{C}}(O)$. For every $\alpha \in \mathfrak{A}$ let $G_{\alpha} \in \mathfrak{a}$ be a set such that $\left(O_{\alpha}, G_{\alpha}\right) \in T_{\mathfrak{a}}$ and $\left(g_{\alpha}, \tilde{g}_{\alpha}\right) \in \mathcal{C}\left(O_{\alpha}, G_{\alpha}\right)$. Let
$U=\{y \in O:$ there exists a neighborhood $U y \subseteq O$ such that the function $\left.g\right|_{U y}$ is continuous and $\left.\left.\tilde{g}\right|_{f^{-1} U y}=\left.g f\right|_{f^{-1} U y}\right\}$.
It is clear that the set U is open and the set $G=O \backslash U$ is closed in O, hence, G is a locally closed subset of Y. Let us show that $G \in \mathfrak{a}$. For each $y \in G$ there exists $\alpha \in \mathfrak{A}$ such that $y \in O_{\alpha}$. Obviously, $G \cap O_{\alpha} \subseteq G_{\alpha}$ by the definition of the set G. Since the family \mathfrak{a} is closed, we have $G \in \mathfrak{a}$ (see Definition 1.5, the condition 3)).

For every $\alpha \in \mathfrak{A}$ let $G_{\alpha}^{\prime}=G \cap O_{\alpha}$; since $\left(g_{\alpha}, \tilde{g}_{\alpha}\right) \in \mathcal{C}_{\mathfrak{a}}\left(O_{\alpha}, G_{\alpha}\right),\left(O_{\alpha}, G_{\alpha}\right) \subseteq$ $\subseteq\left(O_{\alpha}, G_{\alpha}^{\prime}\right)$, the sheaf \mathcal{C} is hereditary and $\left(g_{\alpha}, \tilde{g}_{\alpha}\right) \in \mathcal{C}\left(O_{\alpha}, G_{\alpha}\right)$, we have $\left(g_{\alpha}, \tilde{g}_{\alpha}\right) \in$ $\in \mathcal{C}\left(O_{\alpha}, G_{\alpha}^{\prime}\right)$ for all $\alpha \in \mathfrak{A}$. The family $\left\{\left(O_{\alpha}, G_{\alpha}^{\prime}\right): \alpha \in \mathfrak{A}\right\}$ is a covering of the couple (O, G) and \mathcal{C} is a sheaf. Therefore $(g, \tilde{g}) \in \mathcal{C}(O, G)$ and, hence, $(g, \tilde{g}) \in \hat{\mathcal{C}}(O)$. Thus, the map $\hat{\mathcal{C}}$ is a sheaf over the topological space Y.
5.28. Proposition. There exists a one-to-one correspondence between the set of all hereditary subsheaves of the sheaf $\mathcal{C}_{\mathfrak{a}}$ and the set of all subsheaves of the sheaf $\hat{\mathcal{C}}_{\mathfrak{a}}$ which preserves the relation " \subseteq ".

Proof. It suffices to note that if $\hat{\mathcal{C}} \subseteq \hat{\mathcal{C}}_{\mathfrak{a}}$ is a subsheaf then one can define the sheaf \mathcal{C} by the equality $\mathcal{C}(O, G)=\hat{\mathcal{C}}(O) \cap \mathcal{C}_{\mathfrak{a}}(O, G)$ for all $(O, G) \in T_{\mathfrak{a}}$, and this construction is inverse to the construction 5.23.
5.29. It is known ([61], Theorem 4.5.3, or [8], Theorem 0.24) that a sheaf over a space Y has a representation by a local homeomorphism $p: E \rightarrow Y$. Therefore

[^9]we can consider that hereditary subsheaves of $\mathcal{C}_{\mathfrak{a}}$ have similar representations. We shall not use these representations.
5.30. Definition. A sheaf $\hat{\mathcal{C}} \subseteq \hat{\mathcal{C}}_{\mathfrak{a}}$ will be called closed if for every set $O \in T$ the algebra $\hat{\mathcal{C}}(O)$ is closed in $\hat{\mathcal{C}}_{\mathfrak{a}}(O)$.
5.31. Definition. A sheaf $\hat{\mathcal{C}} \subseteq \hat{\mathcal{C}}_{\mathfrak{a}}$ will be called complete if for every set $O \in T$ the algebra $\hat{\mathcal{C}}(O)$ is closed in $C\left(p_{O}\right)$ (see 5.23).
5.32. Remark. If a sheaf $\hat{\mathcal{C}} \subseteq \hat{\mathcal{C}}_{\mathfrak{a}}$ is complete then it is closed too, but the inverse statement is not valid (for example, the sheaf $\hat{\mathcal{C}}_{\mathfrak{a}}$ is closed but, in general case, is not complete). It is also quite probable that a sheaf $\hat{\mathcal{C}}$ need not be closed, even if the sheaf $\mathcal{C} \subseteq \mathcal{C}_{\mathfrak{a}}$ is hereditary and complete (of course, if $\hat{\mathcal{C}}$ is closed and \mathcal{C} is hereditary then \mathcal{C} is complete; see 5.21).
5.33. Definition. Let $\mathcal{C} \subseteq \mathcal{C}_{\mathfrak{a}}$ be a subsheaf, $(O, G) \in T_{\mathfrak{a}}$. A couple $\left(g_{0}, \tilde{g}_{0}\right) \in$ $\in \mathcal{C}_{\mathfrak{a}}(O, G)$ will be called \mathcal{C}-separated if for any numbers $a, b \in \mathbb{R}, a<b$, and a point $y \in O$ there exist couples $\left(O^{\prime}, G^{\prime}\right) \in T_{\mathfrak{a}},(g, \tilde{g}) \in \mathcal{C}\left(O^{\prime}, G^{\prime}\right)$ and numbers $a^{\prime}, b^{\prime} \in \mathbb{R}$, $a^{\prime}<b^{\prime}$, such that $y \in O^{\prime}$,
\[

$$
\begin{gathered}
O^{\prime} \cap g_{0}^{-1} H_{a} \subseteq g^{-1} H_{a^{\prime}} \subseteq g^{-1} H_{b^{\prime}} \subseteq g_{0}^{-1} H_{b} \cap O^{\prime} \text { and } \\
f^{-1} O^{\prime} \cap \tilde{g}_{0}^{-1} H_{a} \subseteq \tilde{g}^{-1} H_{a^{\prime}} \subseteq \tilde{g}^{-1} H_{b^{\prime}} \subseteq \tilde{g}_{0}^{-1} H_{b} \cap f^{-1} O^{\prime}
\end{gathered}
$$
\]

where $H_{c}=\{t \in \mathbb{R}: t<c\}$ for $c \in \mathbb{R}$.
5.34. Definition. A sheaf $\mathcal{C} \subseteq \mathcal{C}_{\mathfrak{a}}$ will be called saturated if for each $(O, G) \in T_{\mathfrak{a}}$ the algebra $\mathcal{C}(O, G)$ contains all \mathcal{C}-separated couples $(g, \tilde{g}) \in \mathcal{C}_{\mathfrak{a}}(O, G)$.
5.35. Theorem. If a sheaf $\mathcal{C} \subseteq \mathcal{C}_{\mathfrak{a}}$ is saturated then it is also hereditary and complete, $\mathcal{C}_{f} \subseteq \mathcal{C}$, and the sheaf $\hat{\mathcal{C}}$ is closed.

Proof. The sheaf \mathcal{C} is hereditary, because if $\left(O, G_{1}\right),\left(O, G_{2}\right) \in T_{\mathfrak{a}},\left(O, G_{1}\right) \subseteq$ $\subseteq\left(O, G_{2}\right)$ and $\left(g_{0}, \tilde{g}_{0}\right) \in \mathcal{C}\left(O, G_{1}\right) \cap \mathcal{C}_{\mathfrak{a}}\left(O, G_{2}\right)$, then the couple $\left(g_{0}, \tilde{g}_{0}\right)$ is \mathcal{C}-separated and, hence, $\left(g_{0}, \tilde{g}_{0}\right) \in \mathcal{C}\left(O, G_{2}\right)$ (we can take $\left(O^{\prime}, G^{\prime}\right)=\left(O, G_{1}\right),(g, \tilde{g})=\left(g_{0}, \tilde{g}_{0}\right)$ and $\left(a^{\prime}, b^{\prime}\right)=(a, b)$ in Definition 5.33).

Let $\left(g_{0}, \tilde{g}_{0}\right) \in \mathcal{C}_{f}(O, G)$ be an arbitrary couple, where $(O, G) \in T_{\mathfrak{a}}$. By Definition 5.6 the function g_{0} is continuous and $\tilde{g}_{0}=\left.g_{0} f\right|_{f^{-1} O}$. Let $a, b \in \mathbb{R}, a<b$. The sets $F_{0}=\left[g_{0}^{-1} H_{a}\right]_{Y} \cap O$ and $F_{1}=O \backslash g^{-1} H_{b}$ are disjoint and closed in O. For any $y \in O$ let

$$
O^{\prime}=\left\{\begin{array}{l}
O \backslash F_{1} \text { if } y \in F_{0}, \\
O \backslash F_{0} \text { if } y \in O \backslash F_{0},
\end{array} \quad c=\left\{\begin{array}{l}
a \text { if } y \in F_{0}, \\
b \text { if } y \in O \backslash F_{0},
\end{array}\right.\right.
$$

$G^{\prime}=\varnothing, g y^{\prime}=c$ and $\tilde{g} x=c$ for all $y^{\prime} \in O^{\prime}$ and $x \in f^{-1} O^{\prime}, a^{\prime}=a, b^{\prime}=b$. Then all conditions of Definition 5.33 are satisfied; therefore $\left(g_{0}, \tilde{g}_{0}\right) \in \mathcal{C}(O, G)$ and, hence, $\mathcal{C}_{f}(O, G) \subseteq \mathcal{C}(O, G)$.

We shall show that the sheaf $\hat{\mathcal{C}}$ is closed. The completeness of the hereditary sheaf \mathcal{C} is a consequence of the closedness of $\hat{\mathcal{C}}$.

Let $\left(g_{0}, \tilde{g}_{0}\right) \in[\hat{\mathcal{C}}(O)]_{\hat{\mathcal{C}}_{\mathfrak{a}}(O)}$ for some $O \in T$. Let $a, b \in \mathbb{R}, a<b, y \in O$. Let us set $\varepsilon=\frac{b-a}{3}, a^{\prime}=a+\varepsilon, b^{\prime}=b-\varepsilon$. By the definition of the topology of the algebra $\hat{\mathcal{C}}_{\mathfrak{a}}(O)$ there exist a couple $(g, \tilde{g}) \in \hat{\mathcal{C}}(O)$ and a set $O^{\prime} \in T$ such that $y \in O^{\prime} \subseteq O$ and $n_{y^{\prime}}\left((g, \tilde{g})-\left(g_{0}, \tilde{g}_{0}\right)\right)<\varepsilon$ for all $y^{\prime} \in O^{\prime}$ (see 5.13). Let $G \in \mathfrak{a}$ be a set such that $(O, G) \in T_{\mathfrak{a}},(g, \tilde{g}) \in \mathcal{C}(O, G)$ and $\left(g_{0}, \tilde{g}_{0}\right) \in \mathcal{C}_{\mathfrak{a}}(O, G)$. Let $G^{\prime}=G \cap O^{\prime} ;$ it is easily seen that the couple $\left(\left.g\right|_{O^{\prime}},\left.\tilde{g}\right|_{f^{-1} O^{\prime}}\right) \in \mathcal{C}\left(O^{\prime}, G^{\prime}\right)$ satisfy all conditions of Definition 5.33. Therefore the couple $\left(g_{0}, \tilde{g}_{0}\right)$ is \mathcal{C}-separated and, hence, $\left(g_{0}, \tilde{g}_{0}\right) \in \mathcal{C}(O, G) \subseteq$ $\subseteq \hat{\mathcal{C}}(O)$.
5.36. Let $\mathcal{C} \subseteq \mathcal{C}_{\mathfrak{a}}$ be a subsheaf. For each $(O, G) \in T_{\mathfrak{a}}$ let us set

$$
\overline{\mathcal{C}}(O, G)=\left\{(g, \tilde{g}) \in \mathcal{C}_{\mathfrak{a}}(O, G):(g, \tilde{g}) \text { is } \mathcal{C} \text {-separated }\right\}
$$

5.37. Theorem. For every subsheaf $\mathcal{C} \subseteq \mathcal{C}_{\mathfrak{a}}$ the map $\overline{\mathcal{C}}$ is a saturated sheaf.

Proof. It suffices to note that each $\overline{\mathcal{C}}$-separated couple is also \mathcal{C}-separated (we can prove, that $\overline{\mathcal{C}}(O, G)$ is a subalgebra of $\mathcal{C}_{\mathfrak{a}}(O, G)$ for every $(O, G) \in T_{\mathfrak{a}}$, using the reasonings $6.6,6.11,6.3)$.

Let us note that this theorem is also true if $\mathcal{C} \subseteq \mathcal{C}_{\mathfrak{a}}$ is a presheaf.

§ 6. $\mathfrak{T} \mathfrak{a}$-BICOMPACTIFICATIONS

6.1. From now on we shall fix a mapping $f: X \rightarrow Y$ with the property $\mathfrak{T a}$.

A. From a bicompactification to a sheaf

6.2. Let $f_{v}: v_{f} X \xrightarrow{\text { onto }} Y$ be a $\mathfrak{T a}$-bicompactification of the mapping $f, O \in T$. Let us denote $X_{O}=f_{v}^{-1} O, X^{O}=f^{-1} O, f_{O}=\left.f\right|_{X^{o}}, p_{O}=\left.f_{v}\right|_{X_{O}}$.

For each $\bar{g} \in C\left(p_{O}\right)$ let us define functions $\tilde{g}: X^{O} \rightarrow \mathbb{R}$ and $g: O \rightarrow \mathbb{R}$ as follows:

$$
\begin{equation*}
\tilde{g}=\left.\bar{g}\right|_{X^{o}}, \quad g y=\sup \left\{\bar{g} z: z \in p_{O}^{-1} y\right\} \text { for all } y \in O \tag{4}
\end{equation*}
$$

Since the mapping p_{O} is irreducible modulo X^{O}, we have $\left(g_{1}, \tilde{g}_{1}\right) \neq\left(g_{2}, \tilde{g}_{2}\right)$ for any different $\bar{g}_{1}, \bar{g}_{2} \in C\left(p_{O}\right)$.

For every couple $(O, G) \in T_{\mathfrak{a}}$ let
$\mathcal{C}_{v}(O, G)=\left\{(g, \tilde{g}):(g, \tilde{g}) \in \mathcal{C}_{\mathfrak{a}}(O, G)\right.$ and there is $\bar{g} \in C\left(p_{O}\right)$ such that the equalities (4) hold $\}$.

6.3. Lemma. The map \mathcal{C}_{v} defined above is a saturated sheaf.

Proof. It is obvious that \mathcal{C}_{v} is a sheaf. We shall prove that it is saturated. Let $(O, G) \in T_{\mathfrak{a}}$.

Let a couple $\left(g_{0}, \tilde{g}_{0}\right) \in \mathcal{C}_{\mathfrak{a}}(O, G)$ be \mathcal{C}_{v}-separated. We have to show that there exists a function $\bar{g}_{0} \in C\left(p_{O}\right)$ such that the equalities (4) hold.

For every $b \in \mathbb{R}$ let $U_{b}=\left\{y \in O: g_{0} y<b\right\}, V_{b}=\left\{x \in X^{O}: \tilde{g}_{0} x<b\right\}$ and $W_{b}=\bigcup\left\{\tilde{W}_{a}: a<b\right\}$, where for all $a \in \mathbb{R}$
$\tilde{W}_{a}=\left\{z \in X_{O}:\right.$ there is a neighborhood $W z \subseteq X_{O}$

$$
\text { such that } \left.X^{O} \cap W z \subseteq V_{a} \text { and } p_{O}^{\#} W z \subseteq U_{a}\right\}
$$

Let $b \in \mathbb{R}$; the sets $U_{b}, V_{b}, \tilde{W}_{b}$ and W_{b} are open in $Y, X, v_{f} X$ and $v_{f} X$ respectively. Let us prove the equality $W_{b} \cap X^{O}=\tilde{W}_{b} \cap X^{O}=V_{b}$. Let us take any point $x \in V_{b}$ and a number $a \in \mathbb{R}$ such that $\tilde{g}_{0} x<a<b$ and denote $y=$ $=f x$. Since the couple $\left(g_{0}, \tilde{g}_{0}\right)$ is \mathcal{C}_{v}-separated, there exist couples $\left(O^{\prime}, G^{\prime}\right) \in T_{\mathfrak{a}}$, $(g, \tilde{g}) \in \mathcal{C}_{v}\left(O^{\prime}, G^{\prime}\right)$ and numbers $a^{\prime}, b^{\prime} \in \mathbb{R}, a^{\prime}<b^{\prime}$, such that $y \in O^{\prime}$,

$$
\begin{gathered}
O^{\prime} \cap U_{a} \subseteq g^{-1} H_{a^{\prime}} \subseteq g^{-1} H_{b^{\prime}} \subseteq U_{b} \cap O^{\prime} \text { and } \\
x \in f_{O}^{-1} O^{\prime} \cap V_{a} \subseteq \tilde{g}^{-1} H_{a^{\prime}} \subseteq \tilde{g}^{-1} H_{b^{\prime}} \subseteq V_{b} \cap f^{-1} O^{\prime} .
\end{gathered}
$$

For a function $\bar{g} \in C\left(p_{O}\right)$ satisfying the condition (4), the inverse image $\bar{g}^{-1} H_{a^{\prime}}$ is an open subset of X_{O},

$$
\begin{gathered}
x \in f_{O}^{-1} O^{\prime} \cap V_{a} \subseteq \bar{g}^{-1} H_{a^{\prime}} \subseteq \bar{g}^{-1} H_{b^{\prime}}, \\
\bar{g}^{-1} H_{a^{\prime}} \cap X^{O} \subseteq \bar{g}^{-1} H_{b^{\prime}} \cap X^{O} \subseteq f_{O}^{-1} O^{\prime} \cap V_{b} \subseteq V_{b} \text { and } \\
p_{O}^{\#} \bar{g}^{-1} H_{a^{\prime}}=g^{-1} H_{a^{\prime}} \subseteq g^{-1} H_{b^{\prime}} \subseteq O^{\prime} \cap U_{b} \subseteq U_{b} .
\end{gathered}
$$

Thus, $x \in \tilde{W}_{a} \subseteq W_{b} \subseteq \tilde{W}_{b}$ and, hence, $V_{b} \subseteq W_{b} \subseteq \tilde{W}_{b}$. Since the inclusion $\tilde{W}_{b} \cap X^{O} \subseteq V_{b}$ is obvious, we have the required equality.

Let us prove that $p_{O}^{\#} W_{b}=U_{b}$. The inclusion $U_{b} \subseteq p_{O}^{\#} W_{b}$ is obvious. Consider a point $y \in p_{O}^{\#} W_{b}$; since $p_{O}^{-1} y$ is compact, by the definition of the set W_{b} there is $a<$ $<b$ such that $p_{O}^{-1} y \subseteq \tilde{W}_{a}$. From the definition of the set \tilde{W}_{a} and the irreducibility of the mapping p_{O} modulo X^{O} it follows that for every point $z \in p_{O}^{-1} y$ and its arbitrary neighborhood $W z \subseteq X_{O}$ at least one of the sets $W z \cap V_{a}$ and $W z \cap p_{O}^{-1} U_{a}$ is non-empty, therefore $p_{O}^{-1} y \subseteq\left[V_{a} \cup p_{O}^{-1} U_{a}\right]_{X_{O}}=\left[\tilde{W}_{a}\right]_{X_{O}}$ (the last equality is true since the same property holds for all points $\left.z \in\left[\tilde{W}_{a}\right]_{X_{O}}\right)$. Since the couple $\left(g_{0}, \tilde{g}_{0}\right)$ is \mathcal{C}_{v}-separated, there exist couples $\left(O^{\prime}, G^{\prime}\right) \in T_{\mathfrak{a}}$ and $(g, \tilde{g}) \in \mathcal{C}_{v}\left(O^{\prime}, G^{\prime}\right)$ and numbers $a^{\prime}, b^{\prime} \in \mathbb{R}, a^{\prime}<b^{\prime}$, such that $y \in O^{\prime}$,

$$
\begin{gathered}
O^{\prime} \cap U_{a} \subseteq g^{-1} H_{a^{\prime}} \subseteq g^{-1} H_{b^{\prime}} \subseteq U_{b} \cap O^{\prime} \text { and } \\
f_{O}^{-1} O^{\prime} \cap V_{a} \subseteq \tilde{g}^{-1} H_{a^{\prime}} \subseteq \tilde{g}^{-1} H_{b^{\prime}} \subseteq V_{b} \cap f_{O}^{-1} O^{\prime}
\end{gathered}
$$

For a function $\bar{g} \in C\left(p_{O^{\prime}}\right)$ satisfying the condition (4) we have

$$
\begin{aligned}
p_{O}^{-1} y \subseteq\left[\tilde{W}_{a} \cap X_{O^{\prime}}\right]_{X_{O^{\prime}}} \subseteq[& \left.\left(V_{a} \cup p_{O}^{-1} U_{a}\right) \cap X_{O^{\prime}}\right]_{X_{O^{\prime}}} \subseteq \\
& \subseteq\left[\tilde{g}^{-1} H_{a^{\prime}} \cup p_{O^{\prime}}^{-1} H_{a^{\prime}}\right]_{X_{O^{\prime}}}=\left[\bar{g}^{-1} H_{a^{\prime}}\right]_{X_{O^{\prime}}} \subseteq \bar{g}^{-1} H_{b^{\prime}}
\end{aligned}
$$

thus, $y \in p_{O}^{\#} \bar{g}^{-1} H_{b^{\prime}}=g^{-1} H_{b^{\prime}} \subseteq U_{b} \cap O^{\prime} \subseteq U_{b}$ and, hence, $p_{O}^{\#} W_{b}=U_{b}$.
Analogously we can prove the inclusion $\left[W_{a}\right]_{X_{O}} \subseteq W_{b}$ for all $a, b \in \mathbb{R}, a<b$. From that it follows that a function $\bar{g}_{0}: X_{O} \rightarrow \mathbb{R}$, defined by the equality $\bar{g}_{0} z=$ $=\inf \left\{t \in \mathbb{R}: z \in W_{t}\right\}$ for all $z \in X_{O}$, is continuous (see [51], proof of Theorem 1.5.10).

Thus we have constructed the function $\bar{g}_{0} \in C\left(P_{O}\right)$. The equalities (4) follow from the equalities $\bar{g}_{0}^{-1} H_{t} \cap X^{O}=W_{t} \cap X^{O}=V_{t}$ and $p_{O}^{\#} \bar{g}_{0}^{-1} H_{t}=p_{O}^{\#} W_{t}=U_{t}$ for all $t \in \mathbb{R}$. Hence, $\left(g_{0}, \tilde{g}_{0}\right) \in \mathcal{C}_{v}(O, G)$ and the sheaf \mathcal{C}_{v} is saturated.
6.4. Definition. A sheaf $\mathcal{C} \subseteq \mathcal{C}_{\mathfrak{a}}$ will be called dismembering if for an arbitrary point $x \in X$ in each of the following two cases
a) for every point $x^{\prime} \in f^{-1} f x \backslash\{x\}$ and
b) for every neighborhood $U x \subseteq X$
there exist couples $(O, G) \in T_{\mathfrak{a}}$ and $(g, \tilde{g}) \in \mathcal{C}(O, G)$ such that $f x \in O$ and, respectively,
a) $\tilde{g} x \neq \tilde{g} x^{\prime}$ or
b) $\tilde{g} x \notin\left[\tilde{g}\left(f^{-1} O \backslash U x\right)\right]_{\mathbb{R}}$.
6.5. Lemma. The sheaf \mathcal{C}_{v} is dismembering; moreover, for an arbitrary point $z \in v_{f} X$ in each of the following two cases
a) for every point $z^{\prime} \in f_{v}^{-1} z \backslash\{z\}$ and
b) for every neighborhood $U z \subseteq v_{f} X$
there are couples $(O, G) \in T_{\mathfrak{a}},(g, \tilde{g}) \in \mathcal{C}_{v}(O, G)$ and a continuous function $\bar{g}: f_{v}^{-1} O \rightarrow \mathbb{R}$ satisfying the condition (4) such that $f_{v} z \in O$ and, respectively,
a) $\bar{g} z^{\prime} \neq \bar{g} z$ or
b) $\bar{g} z \notin\left[\bar{g}\left(f_{v}^{-1} O \backslash U z\right)\right]_{\mathbb{R}}$.

Proof follows from the definition of $\mathfrak{T a}$-bicompactification.

B. From a sheaf to a bicompactification

6.6. Let a dismembering sheaf $\mathcal{C} \subseteq C_{\mathfrak{a}}$ be given. Let us denote by B the set of all quadruplets (O, G, g, \tilde{g}) where $(O, G) \in T_{\mathfrak{a}}$ and $(g, \tilde{g}) \in \mathcal{C}(O, G)$. Let $B=$ $=\left\{\left(O_{\alpha}, G_{\alpha}, g_{\alpha}, \tilde{g}_{\alpha}\right): \alpha \in \mathfrak{A}\right\}$. For all $\alpha \in \mathfrak{A}$ let us set $Z_{\alpha}=\mathbb{R}$.

By analogy with the item 5.8, using Constructions 3.1 and 3.2, Proposition 3.3, Lemma 5.9 and Corollary 2.13, we obtain the space

$$
v_{\mathcal{C}} X=X_{\mathfrak{A}}^{r} \subseteq X_{\mathfrak{A}} \subseteq Y_{\mathfrak{A}}=\mathfrak{P}\left(Y,\left\{Z_{\alpha}\right\},\left\{G_{\alpha}\right\},\left\{O_{\alpha}\right\},\left\{\left.g_{\alpha}\right|_{O_{\alpha} \backslash G_{\alpha}}\right\}, \alpha \in \mathfrak{A}\right)
$$

and the mappings $i_{\mathcal{C}}=f_{\mathfrak{A}}: X \rightarrow v_{\mathcal{C}} X, f_{\mathcal{C}}=\left.{ }^{\mathfrak{A}} \pi\right|_{v_{\mathcal{C}} X}: v_{\mathcal{C}} X \xrightarrow{\text { onto }} Y$ and $\bar{g}_{\alpha}=$ $=\left.{ }_{\alpha}^{\mathfrak{A}} \psi\right|_{f_{\mathcal{C}}^{-1} O_{\alpha}}: f_{\mathcal{C}}^{-1} O_{\alpha} \rightarrow Z_{\alpha}=\mathbb{R}, \alpha \in \mathfrak{A}$, satisfying the conditions $f_{\mathcal{C}} i_{\mathcal{C}}=f$, $\left.\bar{g}_{\alpha}\right|_{f_{\mathcal{C}}^{-1}\left(O_{\alpha} \backslash G_{\alpha}\right)}=\left.g_{\alpha} f_{\mathcal{C}}\right|_{f_{\mathcal{C}}^{-1}\left(O_{\alpha} \backslash G_{\alpha}\right)}$ and $\tilde{g}_{\alpha}=\left.\bar{g}_{\alpha} i_{\mathcal{C}}\right|_{f^{-1} O_{\alpha}}$ for all $\alpha \in \mathfrak{A}$. Moreover, the mapping $f_{\mathcal{C}}$ is perfect and irreducible modulo $i_{\mathcal{C}} X$.

Let $C(O, G)=\left\{\bar{g}_{\alpha}: \alpha \in \mathfrak{A}, O_{\alpha}=O, G_{\alpha}=G\right\}$ for all $(O, G) \in T_{\mathfrak{a}}$. The map C is a sheaf which is naturally isomorphic to the sheaf \mathcal{C}.
6.7. Lemma. The mapping $f_{\mathcal{C}}: v_{\mathcal{C}} X \xrightarrow{\text { onto }} Y$ is a $\mathfrak{T a}$-bicompactification of the mapping f.

Proof. Since the sheaf \mathcal{C} is dismembering, it is easily seen that the mapping $i_{\mathcal{C}}$ is an embedding. Let us identify X and $i_{\mathcal{C}} X$, that is, we shall assume that $X \subseteq$ $\subseteq v_{\mathcal{C}} X$. Then we have $\left.f_{\mathcal{C}}\right|_{X}=f$. Moreover, the mapping $f_{\mathcal{C}}$ has the property $\mathfrak{T a}$ by Assertion 1.8. Therefore $f_{\mathcal{C}}$ is a $\mathfrak{T a}$-bicompactification of the mapping f.

C. Bicompactifications and sheaves

6.8. Lemma. Let $n \in \mathbb{N}=\{1,2,3, \ldots\}, \mathbb{R}^{n}=\left\{\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{i} \in\right.$ $\in \mathbb{R}$ for all $i=1,2, \ldots, n\}$ with the usual topology, $\Phi \subseteq \mathbb{R}^{n}$ be a compact set, $F \subseteq \mathbb{R}^{n}$ be a closed set and $\Phi \cap F=\varnothing$. Then there exists a polynomial $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

1) $h \vec{x} \geqslant-\frac{1}{2}$ for all $\vec{x} \in \mathbb{R}^{n}$,
2) $-\frac{1}{2} \leqslant h \vec{x}<0$ for all $\vec{x} \in \Phi$,
3) $h \vec{x} \geqslant 1$ for all $\vec{x} \in F$.

Proof. Let $c=\inf \left\{\sum_{i=1}^{n}\left(x_{i}-x_{0 i}\right)^{2}:\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in F,\left(x_{01}, x_{02}, \ldots, x_{0 n}\right) \in \Phi\right\}$. It is clear that $c>0$ since the set Φ is compact, the set F is closed and $\Phi \cap F=\varnothing$ (of course, we assume that $\Phi \neq \varnothing$ and $F \neq \varnothing$).

For each point $\vec{x}_{0}=\left(x_{01}, x_{02}, \ldots, x_{0 n}\right) \in \Phi$ let us define a polynomial $h_{\vec{x}_{0}}$ by the formula $h_{\vec{x}_{0}} \vec{x}=\frac{3}{2 c} \cdot \sum_{i=1}^{n}\left(x_{i}-x_{0 i}\right)^{2}-\frac{1}{2}$ for $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, and let $U \vec{x}_{0}=$ $=h_{\vec{x}_{0}}^{-1}\left[-\frac{1}{2}, 0\right) \subseteq \mathbb{R}^{n}$. These neighborhoods form an open covering of the compactum Φ. Let us choose a finite subcovering. Let it be formed by sets $U_{1}, U_{2}, \ldots, U_{m}$, and let $h_{1}, h_{2}, \ldots, h_{m}$ be the corresponding polynomials. It is clear that for all $i=1,2, \ldots, m$ the conditions $h_{i} \vec{x} \geqslant-\frac{1}{2}$ for $\vec{x} \in \mathbb{R}^{n},-\frac{1}{2} \leqslant h_{i} \vec{x}<0$ for $\vec{x} \in \Phi \cap U_{i}$ and $h_{i} \vec{x} \geqslant 1$ for $\vec{x} \in F$ are satisfied.

If $m=1$ then our Lemma is proved. Let us suppose that $m>1$ and show that the number m can be made smaller.

Let us denote $U_{1,2}=U_{1} \cup U_{2}, M=\sup \left\{\max \left\{h_{1} \vec{x}, h_{2} \vec{x}, 0\right\}: \vec{x} \in \Phi \cap U_{1,2}\right\}$ ($0 \leqslant M \in \mathbb{R}$ since Φ is compact and the polynomials h_{1} and h_{2} are continuous), and let $h_{1,2}^{\prime}$ be a polynomial defined by the equality $h_{1,2}^{\prime} \vec{x}=2 \cdot h_{1} \vec{x} \cdot h_{2} \vec{x}$ for all $\vec{x} \in \mathbb{R}^{n}$. This polynomial has the following properties: $-M \leqslant h_{1,2}^{\prime} \vec{x} \leqslant \frac{1}{2}$ if $\vec{x} \in$ $\in \Phi \cap U_{1,2}$ and $h_{1,2}^{\prime} \vec{x} \geqslant 2$ if $\vec{x} \in F$.

Let us choose a number $k \in \mathbb{N}$ such that $\left(\frac{2 M+1}{2 M+2}\right)^{2 k}<\frac{1}{2}$. Since $\frac{2 M+1}{2 M+2} \cdot \frac{M+2}{M+1} \geqslant 1$, we have $\left(\frac{M+2}{M+1}\right)^{2 k}>2>\frac{3}{2}$. Therefore the polynomial $h_{1,2}$, defined by the equality $h_{1,2} \vec{x}=\left(\frac{h_{1,2}^{\prime} \vec{x}+M}{M+1}\right)^{2 k}-\frac{1}{2}$ for all $\vec{x} \in \mathbb{R}^{n}$, satisfies the conditions $h_{1,2} \vec{x} \geqslant-\frac{1}{2}$ for $\vec{x} \in \mathbb{R}^{n},-\frac{1}{2} \leqslant h_{1,2} \vec{x}<0$ for $\vec{x} \in \Phi \cap U_{1,2}$ and $h_{1,2} \vec{x} \geqslant 1$ for $\vec{x} \in F$.

In consequence, we have the covering $\left\{U_{1,2}, U_{3}, \ldots, U_{m}\right\}$ consisting of $m-1$ elements and the corresponding polynomials $h_{1,2}, h_{3}, \ldots, h_{m}$. Repeating these reasonings we shall get the required polynomial.
6.9. Lemma. For each point $z_{0} \in v_{\mathcal{C}} X$ and each neighborhood $U z_{0} \subseteq v_{\mathcal{C}} X$ there exists $\alpha \in \mathfrak{A}$ (see 6.6) such that $f_{\mathcal{C}} z_{0} \in O_{\alpha}$ and

1) $\bar{g}_{\alpha} z \geqslant-\frac{1}{2}$ for all $z \in f_{\mathcal{C}}^{-1} O_{\alpha}$,
2) $\bar{g}_{\alpha} z_{0}=-\frac{1}{2}$,
3) $\bar{g}_{\alpha} z \geqslant 1$ for all $z \in f_{\mathcal{C}}^{-1} O_{\alpha} \backslash U z_{0}$.

Proof. By the definition of the topology of the space $Y_{\mathfrak{A}}$, there are a finite set $\mathfrak{B} \subseteq \mathfrak{A}$ and neighborhoods $U f_{\mathcal{C}} z_{0} \subseteq Y$ and $U \bar{g}_{\alpha} z_{0} \subseteq Z_{\alpha}=\mathbb{R}, \alpha \in \mathfrak{B}$, such that $z_{0} \in f_{\mathcal{C}}^{-1} U f_{\mathcal{C}} z_{0} \cap \bigcap\left\{\bar{g}_{\alpha}^{-1} U \bar{g}_{\alpha} z_{0}: \alpha \in \mathfrak{B}\right\} \subseteq U z_{0}$. Let $O=U f_{\mathcal{C}} z_{0} \cap \bigcap\left\{O_{\alpha}: \alpha \in \mathfrak{B}\right\}$, $G=\bigcup\left\{G_{\alpha} \cap O: \alpha \in \mathfrak{B}\right\}$. Since \mathcal{C} is a sheaf we can suppose that $O_{\alpha}=O$ and $G_{\alpha}=G$ for all $\alpha \in \mathfrak{B}$ (for a simplification of notations).

Let $\mathfrak{B}=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$, and let $\bar{g}=\Delta\left\{\bar{g}_{\alpha}: \alpha \in \mathfrak{B}\right\}: f_{\mathcal{C}}^{-1} O \rightarrow \mathbb{R}^{n}$ be the diagonal mapping (see [51], §2.3). Then $\bar{g} z_{0} \notin F=\left[\bar{g}\left(f_{\mathcal{C}}^{-1} O \backslash U z_{0}\right)\right]_{\mathbb{R}^{n}}$. Let us denote $c=\inf \left\{\sum_{i=1}^{n}\left(x_{i}-\bar{g}_{\alpha_{i}} z_{0}\right)^{2}:\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in F\right\}$. Obviously, $c>0$. Since $C(O, G)$ is an algebra containing all constants (see the items 5.20 and 6.6), it contains the function $\bar{g}_{0}: f_{\mathcal{C}}^{-1} O \rightarrow \mathbb{R}$ defined by the equality $\bar{g}_{0} z=\frac{3}{2 c} \cdot \sum_{i=1}^{n}\left(\bar{g}_{\alpha_{i}} z-\right.$ $\left.-\bar{g}_{\alpha_{i}} z_{0}\right)^{2}-\frac{1}{2}$ for $z \in f_{\mathcal{C}}^{-1} O$. Therefore there exists $\alpha \in \mathfrak{A}$ such that $O_{\alpha}=O$, $G_{\alpha}=G$ and $\bar{g}_{\alpha}=\bar{g}_{0}$. This α is the one we were looking for.
6.10. Lemma. Let $y \in Y, \Phi \subseteq f_{\mathcal{C}}^{-1} y$ be a compact subset, $U \Phi \subseteq v_{\mathcal{C}} X$ be a neighborhood of the set Φ. Then there exists $\alpha \in \mathfrak{A}$ (see 6.6) such that $y \in O_{\alpha}$ and

1) $\bar{g}_{\alpha} z \geqslant-\frac{1}{2}$ for all $z \in f_{\mathcal{C}}^{-1} O_{\alpha}$,
2) $-\frac{1}{2} \leqslant \bar{g}_{\alpha} z<0$ for all $z \in \Phi$,
3) $\bar{g}_{\alpha} z \geqslant 1$ for all $z \in f_{\mathcal{C}}^{-1} O_{\alpha} \backslash U \Phi$.

Proof. Using Lemma 6.9 we can find for each $z \in \Phi$ a function $\bar{g}_{z} \in C\left(O_{z}, G_{z}\right)$ for some $\left(O_{z}, G_{z}\right) \in T_{\mathfrak{a}}$ (see 6.6) such that $f_{\mathcal{C}} z \in O_{z}, \bar{g}_{z} z=-\frac{1}{2}, \bar{g}_{z} z^{\prime} \geqslant 1$ for all $z^{\prime} \in f_{\mathcal{C}}^{-1} O_{z} \backslash U \Phi$ and $\bar{g}_{z}^{\prime} \geqslant-\frac{1}{2}$ for all $z^{\prime} \in f_{\mathcal{C}}^{-1} O_{z}$. Let $U z=\bar{g}_{z}^{-1}\left[-\frac{1}{2}, 0\right)$. Then $\{U z: z \in \Phi\}$ is an open covering of the compact set Φ. Let $\left\{U z_{1}, U z_{2}, \ldots, U z_{n}\right\}$ be its finite subcovering, $O=\bigcap\left\{O_{z_{i}}: i=1,2, \ldots, n\right\}, G=\bigcup\left\{G_{z_{i}} \cap O: i=\right.$ $=1,2, \ldots, n\}$. Then $g_{i}=\left.g_{z_{i}}\right|_{f_{\mathcal{C}}^{-1} O} \in C(O, G)$ for $1 \leqslant i \leqslant n$.

Let $\bar{g}=\Delta\left\{\bar{g}_{i}: i=1,2, \ldots, n\right\}: f_{\mathcal{C}}^{-1} O \rightarrow \mathbb{R}^{n}$ be the diagonal mapping. Then $\bar{g} \Phi$ is a compact subset of $\mathbb{R}^{n}, F=\left[\bar{g}\left(f_{\mathcal{C}}^{-1} O \backslash U \Phi\right)\right]_{\mathbb{R}^{n}}$ is a closed subset and $F \cap \bar{g} \Phi=\varnothing$. By Lemma 6.8 there exists a polynomial $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $-\frac{1}{2} \leqslant h \vec{x}<0$ for all $\vec{x} \in \bar{g} \Phi, h \vec{x} \geqslant 1$ for all $\vec{x} \in F$ and $h \vec{x} \geqslant-\frac{1}{2}$ for all $\vec{x} \in \mathbb{R}^{n}$. Then the function $h \bar{g}$ belongs to $C(O, G)$ since $C(O, G)$ is an algebra containing all constants (see 5.20), that is, there is $\alpha \in \mathfrak{A}$ such that $O_{\alpha}=O, G_{\alpha}=G$ and $\bar{g}_{\alpha}=h \bar{g}$.
6.11. Lemma. Let \mathcal{C}_{v} be a sheaf constructed using the $\mathfrak{T a}$-bicompactification $f_{\mathcal{C}}: v_{\mathcal{C}} \xrightarrow{\text { onto }} Y$ as in the item 6.2. Then for every $(O, G) \in T_{\mathfrak{a}}$ each couple $(g, \tilde{g}) \in$ $\in \mathcal{C}_{v}(O, G)$ is \mathcal{C}-separated.

Proof. Let $(O, G) \in T_{\mathfrak{a}},\left(g_{0}, \tilde{g}_{0}\right) \in \mathcal{C}_{v}(O, G), \bar{g} \in C\left(p_{O}\right)$ be a function satisfying the conditions (4), $a, b \in \mathbb{R}, a<b, y \in O$.

Let $F_{0}=\left\{z \in f_{\mathcal{C}}^{-1} O: \bar{g}_{0} z \leqslant a\right\}$ and $F_{1}=\left\{z \in f_{\mathcal{C}}^{-1} O: \bar{g}_{0} z \geqslant b\right\}$. The sets F_{0} and F_{1} are closed in $f_{\mathcal{C}}^{-1} O$ and $F_{0} \cap F_{1}=\varnothing$. Since the mapping $f_{\mathcal{C}}$ is perfect, the sets $\Phi_{0}=F_{0} \cap f_{\mathcal{C}}^{-1} y$ and $\Phi_{1}=F_{1} \cap f_{\mathcal{C}}^{-1} y$ are compact.

By Lemma 6.10 there exists $\alpha_{0} \in \mathfrak{A}$ such that $y \in O_{\alpha_{0}} \subseteq O,-\frac{1}{2} \leqslant \bar{g}_{\alpha_{0}} z<$ <0 for $z \in \Phi_{0}, \bar{g}_{\alpha_{0}} z \geqslant-\frac{1}{2}$ for $z \in f_{\mathcal{C}}^{-1} O_{\alpha_{0}}$ and $\bar{g}_{\alpha_{0}} z \geqslant 1$ for $z \in F_{1} \cap f_{\mathcal{C}}^{-1} O_{\alpha_{0}}$. Analogously there exists $\alpha_{1} \in \mathfrak{A}$ such that $y \in O_{\alpha_{1}} \subseteq O,-\frac{1}{2} \leqslant \bar{g}_{\alpha_{1}} z<0$ for $z \in \Phi_{1}$, $\bar{g}_{\alpha_{1}} z \geqslant-\frac{1}{2}$ for $z \in f_{\mathcal{C}}^{-1} O_{\alpha_{1}}$ and $\bar{g}_{\alpha_{1}} z \geqslant 1$ for $z \in F_{0} \cap f_{\mathcal{C}}^{-1} O_{\alpha_{1}}$. Since C is a sheaf of algebras (see 6.6), there exists an element $\alpha \in \mathfrak{A}$ such that $O_{\alpha}=O_{\alpha_{0}} \cap O_{\alpha_{1}}$, $G_{\alpha}=\left(G_{\alpha_{0}} \cup G_{\alpha_{1}}\right) \cap O_{\alpha}$ and $\bar{g}_{\alpha}=\frac{1}{2}\left(\bar{g}_{\alpha_{0}}\left|O_{\alpha}+1-\bar{g}_{\alpha_{1}}\right| O_{\alpha}\right)$.

Let $U_{0}=\left\{z \in f_{\mathcal{C}}^{-1} O_{\alpha}: \bar{g}_{\alpha_{0}} z<0\right\}, U_{1}=\left\{z \in f_{\mathcal{C}}^{-1} O_{\alpha}: \bar{g}_{\alpha_{1}} z<0\right\}, U_{2}=$ $=f_{\mathcal{C}}^{-1} O_{\alpha} \backslash\left(F_{0} \cup F_{1}\right), O^{\prime}=f_{\mathcal{C}}^{\#}\left(U_{0} \cup U_{1} \cup U_{2}\right), G^{\prime}=O^{\prime} \cap G_{\alpha}, g=\left.g_{\alpha}\right|_{O^{\prime}}, \tilde{g}=\left.\tilde{g}_{\alpha}\right|_{f^{-1} O^{\prime}}$, $a^{\prime}=0, b^{\prime}=1$. It is easily seen that all conditions of Definition 5.33 are satisfied, therefore the couple $\left(g_{0}, \tilde{g}_{0}\right)$ is \mathcal{C}-separated.
6.12. Corollary. Under the assumptions of Lemma 6.11 we have $\mathcal{C}_{v}=\overline{\mathcal{C}}$ (see 5.36). Particularly, if the sheaf \mathcal{C} is saturated then $\mathcal{C}_{v}=\mathcal{C}$.
6.13. Lemma. If $f_{v}: v_{f} X \xrightarrow{\text { onto }} Y$ is a $\mathfrak{T a}$-bicompactification of the mapping f, \mathcal{C}_{v} is a sheaf constructed using f_{v} as in the item 6.2, and $f_{\mathcal{C}}: v_{\mathcal{C}} X \xrightarrow{\text { onto }} Y$ is $a \mathfrak{T a}$-bicompactification constructed using \mathcal{C}_{v} as in the item 6.6, then the $\mathfrak{T a}$-bicompactifications f_{v} and $f_{\mathcal{C}}$ are equivalent.

Proof. Let us repeat the construction 6.6 using the space $v_{f} X$ instead of X and the sheaf \mathcal{C}_{v}^{\prime} instead of \mathcal{C}_{v}, where

$$
\mathcal{C}_{v}^{\prime}(O, G)=\left\{(g, \bar{g}):(g, \tilde{g}) \in \mathcal{C}_{v}(O, G) \text { and } \bar{g} \in C\left(p_{O}\right)\right. \text { is }
$$ a function satisfying the condition (4) \}

for all $(O, G) \in T_{\mathfrak{a}}$ (the sheaf \mathcal{C}_{v}^{\prime} is naturally isomorphic to the sheaf \mathcal{C}_{v}). Due to Lemma 6.5 we obtain an embedding $i_{v}: v_{f} X \rightarrow v_{\mathcal{C}} X$ which is a homeomorphism onto $v_{\mathcal{C}} X$, because the mapping f_{v} is perfect, and the mapping $f_{\mathcal{C}}$ is separable and irreducible modulo X (see Lemma 8 of the paper [43]).
6.14. Theorem. There exists a one-to-one correspondence between the set of all $\mathfrak{T a}$-bicompactifications of the mapping f and the set of all dismembering saturated subsheaves of the sheaf $\mathcal{C}_{\mathfrak{a}}$ which preserves the partial order.

Proof. The existence of a one-to-one correspondence follows from Corollary 6.12 and Lemma 6.13. If $f_{v}: v_{f} X \xrightarrow{\text { onto }} Y$ and $f_{w}: w_{f} X \xrightarrow{\text { onto }} Y$ are $\mathfrak{T a}$-bicompactifications of the mapping $f, f_{v} \geqslant f_{w}$, and $\mathcal{C}_{v}, \mathcal{C}_{w} \subseteq \mathcal{C}_{\mathfrak{a}}$ are the corresponding subsheaves, then $\mathcal{C}_{v} \supseteq \mathcal{C}_{w}$ by Corollary 5.16 and the construction 6.2. If $\mathcal{C}_{1}, \mathcal{C}_{2} \subseteq \mathcal{C}_{\mathfrak{a}}$ are dismembering subsheaves, $\mathcal{C}_{1} \supseteq \mathcal{C}_{2}$, and $f_{\mathcal{C}_{1}}: v_{\mathcal{C}_{1}} X \xrightarrow{\text { onto }} Y, f_{\mathcal{C}_{2}}: v_{\mathcal{C}_{2}} X \xrightarrow{\text { onto }} Y$ are the corresponding $\mathfrak{T a}$-bicompactifications, then the inequality $f_{\mathcal{C}_{1}} \geqslant f_{\mathcal{C}_{2}}$ can be proved as Lemma 6.13.
6.15. Definition. Subsheaves $\mathcal{C}_{1}, \mathcal{C}_{2} \subseteq \mathcal{C}_{\mathfrak{a}}$ will be called equivalent if $\overline{\mathcal{C}}_{1}=\overline{\mathcal{C}}_{2}$ (see 5.36).
6.16. Proposition. Let $\mathcal{C}_{1}, \mathcal{C}_{2} \subseteq \mathcal{C}_{\mathfrak{a}}$ be dismembering subsheaves and let $f_{\mathcal{C}_{1}}: v_{\mathcal{C}_{1}} X \xrightarrow{\text { onto }} Y, f_{\mathcal{C}_{2}}: v_{\mathcal{C}_{2}} X \xrightarrow{\text { onto }} Y$ be the corresponding $\mathfrak{T a}$-bicompactifications. The sheaves \mathcal{C}_{1} and \mathcal{C}_{2} are equivalent iff the $\mathfrak{T a}$-bicompactifications $f_{\mathcal{C}_{1}}$ and $f_{\mathcal{C}_{2}}$ are equivalent.

Proof follows from Corollary 6.12 and Lemma 6.13.
6.17. Remark. Of course, we can use subsheaves of the sheaf $\hat{\mathcal{C}}_{\mathfrak{a}}$ (see the items $5.23,5.28$ and 5.35) instead of subsheaves of the sheaf $\mathcal{C}_{\mathfrak{a}}$, but the sheaf $\hat{\mathcal{C}}_{\mathfrak{a}}$ is not complete (see 5.32). This defect can make some difficulties.

This defect does not occur if the family \mathfrak{a} has the largest representative in each set $O \in T$ (see Definition 5.24 and Proposition 5.25). For example, such situation holds for Tychonoff mappings in the sense of paper [34] (see the item 1.10), when \mathfrak{a} is the family of all locally closed subsets of the space Y.

§ 7. Maximal ideals of sheaves

7.1. We shall assume that the notions of an ideal and a maximal ideal of an algebra are known (see, for example, [51], the item 3.12.21, or [28], Chapter II, $\S 7(4))$.

We shall consider a fixed perfect mapping $f: X \xrightarrow{\text { onto }} Y$ with the property $\mathfrak{T a}$. For each couple $(O, G) \in T_{\mathfrak{a}}$ let $f_{O}=\left.f\right|_{f^{-1} O}: f^{-1} O \xrightarrow{\text { onto }} O$ and
$C_{\mathfrak{a}}(O, G)=\left\{\bar{g} \in C\left(f_{O}\right):\right.$ there is a function

$$
\left.g: O \rightarrow \mathbb{R} \text { such that }(g, \bar{g}) \in \mathcal{C}_{\mathfrak{a}}(O, G)\right\}
$$

The map $C_{\mathfrak{a}}$ is a sheaf which is naturally isomorphic to the sheaf $\mathcal{C}_{\mathfrak{a}}$ (see 5.13).
7.2. Let $C \subseteq C_{\mathfrak{a}}$ be a dismembering subsheaf. For each point $y \in Y$ and each couple $(O, G) \in T_{y}($ see 5.2 c$\left.)\right)$ let $I_{y}(O, G)=\left\{\bar{g} \in C(O, G): n_{y} \bar{g}=0\right\}$.

It is easily seen that $I_{y}(O, G)$ is a closed ideal of the algebra $C(O, G)$ for each couple $(O, G) \in T_{y}$. Moreover, if $\left(O_{1}, G_{1}\right),\left(O_{2}, G_{2}\right) \in T_{y},\left(O_{1}, G_{1}\right) \subseteq\left(O_{2}, G_{2}\right)$ and $h: C\left(O_{2}, G_{2}\right) \rightarrow C\left(O_{1}, G_{1}\right)$ is the restriction homomorphism (see 5.14), then $I_{y}\left(O_{2}, G_{2}\right)=h^{-1} I_{y}\left(O_{1}, G_{1}\right)$.
7.3. Definition. Let $y \in Y$ be any point. A map M, which assign to each couple $(O, G) \in T_{y}$ a closed maximal ideal $M(O, G) \subseteq C(O, G)$ of the algebra $\left.C O, G\right)$, will be called a closed maximal y-ideal of the sheaf C, if the following conditions are fulfilled:

1) if $(O, G) \in T_{y}$ then $I_{y}(O, G) \subseteq M(O, G)$;
2) if $\left(O_{1}, G_{1}\right),\left(O_{2}, G_{2}\right) \in T_{y}$ and $\left(O_{1}, G_{1}\right) \subseteq\left(O_{2}, G_{2}\right)$ then $M\left(O_{2}, G_{2}\right)=$ $=h^{-1} M\left(O_{1}, G_{1}\right)$, where h is the restriction homomorphism (see 7.2).
Let us denote by \mathfrak{M}_{y} the set of all closed maximal y-ideals of the sheaf C for $y \in Y$.
7.4. Lemma. Let $y \in Y, x \in f^{-1} y, M_{x}(O, G)=\{\bar{g} \in C(O, G): \bar{g} x=0\}$ for all $(O, G) \in T_{y}$. Then the map M_{x} is a closed maximal y-ideal of the sheaf C.

Proof. For each couple $(O, G) \in T_{y}$ let us define a homomorphism $\varphi_{O G}: C(O, G) \rightarrow \mathbb{R}$ by the formula $\varphi_{O G} \bar{g}=\bar{g} x$ for all $\bar{g} \in C(O, G)$. This homomorphism is continuous and "onto", since the algebra $C(O, G)$ contains all constants (see 5.20), and $|\bar{g} x| \leqslant n_{y} \bar{g}$ for all $\bar{g} \in C(O, G)$. It is easily seen that $M_{x}(O, G)=$ $=\varphi_{O G}^{-1} 0$, therefore $M_{x}(O, G)$ is a closed ideal of the algebra $C(O, G)$. This ideal is maximal since the algebra \mathbb{R} has no ideals except $\{0\}$. The conditions 1) and 2) of Definition 7.3 are satisfied obviously.
7.5. Lemma. For each closed maximal y-ideal $M \in \mathfrak{M}_{y}, y \in Y$, there exists a point $x \in f^{-1} y$ such that $M=M_{x}$.

Proof. Let us suppose that for every point $x \in f^{-1} y$ there are a couple $\left(O_{x}, G_{x}\right) \in$ $\in T_{y}$ and a function $\bar{g}_{x} \in M\left(O_{x}, G_{x}\right)$ such that $\bar{g}_{x} x \neq 0$; let us denote $U x=\left\{x^{\prime} \in\right.$ $\left.\in f^{-1} O_{x}:\left|\bar{g}_{x} x^{\prime}\right|>\frac{1}{2}\left|\bar{g}_{x} x\right|\right\}$. Then the set $\left\{U x: x \in f^{-1} y\right\}$ is an open covering of the compact set $f^{-1} y$. Let $\left\{U x_{i}: i=1,2, \ldots, n\right\}$ be its finite subcovering; the set

$$
O=\left(f^{\#} \bigcup\left\{U x_{i}: i=1,2, \ldots, n\right\}\right) \cap\left(\bigcap\left\{O_{x_{i}}: i=1,2, \ldots, n\right\}\right)
$$

is open and $y \in O \subseteq \bigcap\left\{O_{x_{i}}: i=1,2, \ldots, n\right\}$ since the mapping f is closed. Let $G=\bigcup\left\{G_{x_{i}} \cap O: i=1,2, \ldots, n\right\}, \varepsilon_{0}=\min \left\{\frac{1}{4}\left(\bar{g}_{x_{i}} x_{i}\right)^{2}: i=1,2, \ldots, n\right\}>$ >0 and $\bar{g}_{i}=\left.\bar{g}_{x_{i}}\right|_{f^{-1} O}$ for $i=1,2, \ldots, n$; then $(O, G) \in T_{y}$ and $\bar{g}_{i} \in M(O, G)$ for all $i=1,2, \ldots, n$ by the condition 2) of Definition 7.3. Therefore the function $\bar{g}: f^{-1} O \rightarrow \mathbb{R}$, defined by the formula $\bar{g} x=\sum_{i=1}^{n}\left(\bar{g}_{i} x\right)^{2}$ for all $x \in f^{-1} O$, belongs to the ideal $M(O, G)$ and satisfies the condition $\bar{g} x>\varepsilon_{0}>0$ for all $x \in f^{-1} O$.

Let us denote by \bar{g}_{e} the function such that $\bar{g}_{e} x=1$ for all $x \in f^{-1} O$. Of course, $\bar{g}_{e} \in C(O, G)$ (see 5.20). The function \bar{g}_{e} is the unit of the algebra $C(O, G)$. We shall prove that $\bar{g}_{e} \in M(O, G)$.

Let $V_{\varepsilon, A}^{C} \bar{g}_{e}=V_{\varepsilon, A} \bar{g}_{e} \cap C(O, G) \subseteq C(O, G)$, where $A \subseteq O$ is a finite set and $\varepsilon>0$, be an arbitrary neighborhood of the function $\bar{g}_{e}($ see 4.7$), B=\varepsilon_{0}+\max \left\{n_{y^{\prime}} \bar{g}: y^{\prime} \in\right.$ $\in A\}$. For each $n \in \mathbb{R}$ the function ${ }^{10} \bar{g}_{n}=\frac{2}{B} \cdot \sum_{i=0}^{n-1}\left(\bar{g}_{e}-\frac{2 \bar{g}}{B}\right)^{i}$ belongs to $C(O, G)$ and $\bar{g}_{e}-\bar{g} \cdot \bar{g}_{n}=\left(\bar{g}_{e}-\frac{2 \bar{g}}{B}\right)^{n}$.

Since $\varepsilon_{0} \leqslant \bar{g} x \leqslant B-\varepsilon_{0}$ for all $x \in f^{-1} A$, we have $\left|1-\frac{2 \bar{g} x}{B}\right| \leqslant 1-\frac{2 \varepsilon_{0}}{B}<1$ for $x \in f^{-1} A$. There is a number $n_{0} \in \mathbb{R}$ such that $\left(1-\frac{2 \varepsilon_{0}}{B}\right)^{n_{0}}<\varepsilon$. Then for every $y^{\prime} \in A$ we have

$$
n_{y^{\prime}}\left(\bar{g}_{e}-\bar{g} \cdot \bar{g}_{n_{0}}\right)=n_{y^{\prime}}\left(\left(\bar{g}_{e}-\frac{2 \bar{g}}{B}\right)^{n_{0}}\right) \leqslant\left(1-\frac{2 \varepsilon_{0}}{B}\right)^{n_{0}}<\varepsilon,
$$

that is, $\bar{g} \cdot \bar{g}_{n_{0}} \in V_{\varepsilon, A}^{C} \bar{g}_{e}$. Hence, $V_{\varepsilon, A}^{C} \bar{g}_{e} \cap M(O, G) \neq \varnothing$ because $\bar{g} \cdot \bar{g}_{n_{0}} \in M(O, G)$ by the definition of an ideal. Therefore $\bar{g}_{e} \in[M(O, G)]_{C(O, G)}=M(O, G)$.

The latter inclusion is impossible because $M(O, G)$ is an ideal. Hence, there exists a point $x \in f^{-1} y$ such that $\bar{g} x=0$ for all $\bar{g} \in M(O, G)$. Obviously, $M(O, G) \subseteq M_{x}(O, G)$, but really $M(O, G)=M_{x}(O, G)$ since $M(O, G)$ is a maximal ideal.
7.6. Theorem. For each point $y \in Y$ there exists a one-to-one map $\phi_{y}: f^{-1} y \xrightarrow{\text { onto }} \mathfrak{M}_{y}$.

Proof. Due to Lemma 7.4 we can define the map ϕ_{y} by the formula $\phi_{y} x=M_{x}$ for all $x \in f^{-1} y$. By Lemma 7.5 we have $\phi_{y} f^{-1} y=\mathfrak{M}_{y}$. Let us note that if $x_{1}, x_{2} \in f^{-1} y$ and $x_{1} \neq x_{2}$ then $M_{x_{1}} \neq M_{x_{2}}$ because the sheaf C is dismembering and, hence, there exist a couple $(O, G) \in T_{y}$ and a function $\bar{g} \in C(O . G)$ such that $\bar{g} x_{1}=0$ and $\bar{g} x_{2} \neq 0$ (see 5.20); then $\bar{g} \in M_{x_{1}}(O, G)$ and $\bar{g} \notin M_{x_{2}}(O, G)$.
7.7. Thanks to Theorem 7.6 for each $y \in Y$ we can define a Hausdorff compact topology on the set \mathfrak{M}_{y} such that the map ϕ_{y} is a homeomorphism.

Let $X^{\prime}=\dot{\bigcup}\left\{\mathfrak{M}_{y}: y \in Y\right\}$, where the symbol " $\dot{\cup}$ " denotes the disjunctive union, and let $f^{\prime}: X^{\prime} \xrightarrow{\text { onto }} Y$ be the map defined by the formula $f^{\prime} M=y$ for all $M \in \mathfrak{M}_{y}$ and $y \in Y$. For each couple $(O, G) \in T_{\mathfrak{a}}$ and each function $\bar{g} \in C(O, G)$ we can define a function $\hat{g}: f^{\prime-1} O \rightarrow \mathbb{R}$ by the equality $\hat{g} M=\bar{g} \phi_{f^{\prime} M}^{-1} M$ for $M \in f^{\prime-1} O$. Let us equip X^{\prime} with the smallest topology in which the map f^{\prime} and all functions \hat{g}, where $\bar{g} \in \bigcup\left\{C(O, G):(O, G) \in T_{\mathfrak{a}}\right\}$, are continuous.
7.8. Theorem. The map $\phi: X \xrightarrow{\text { onto }} X^{\prime}$, defined by the equality $\phi x=\phi_{f x} x$ for all $x \in X$, is a homeomorphism satisfying the condition $f^{\prime} \phi=f$.

Proof. The map ϕ is one-to-one by the construction. It is continuous since the map f and all functions $\bar{g} \in \bigcup\{C(O, G):(O, G) \in T \mathfrak{a}\}$ are continuous. It is easily seen that the mapping f^{\prime} is separable because for each $M, M^{\prime} \in X^{\prime}$ such that

[^10]$M \neq M^{\prime}$ and $f^{\prime} M=f^{\prime} M^{\prime}=y$ there are a couple $(O, G) \in T_{y}$ and a function $\bar{g} \in$ $\in C(O, G)$ such that $\hat{g} M \neq \hat{g} M^{\prime}$, and the space \mathbb{R} is Hausdorff. Therefore by Lemma 8 of the paper [43] the mapping ϕ is perfect, that is, ϕ is a homeomorphism.

Acknowledgement. The paper was written while the author was visiting Warsaw University. The author takes the opportunity to thank professor R.Engelking for his attention and some corrections of English text.

References

[1] С.М.Агеев. Абсолюти в категории G-пространств. "Сообщения Академии наук Грузинской ССР. Bulletin of the Academy of sciences of the Georgian SSR", 122, №2 (1986), 245-248.
[2] С.М.Агеев. Прообразъ, определяемые σ-идеалами множеств. Сборник "Кардинальные инварианты и отображения топологических пространств". Ижевск, 1984, 63-68.
[3] П.С.Александров, Б.А.Пасынков. Введение в теорию размерности. Москва, 1973.
[4] И.В.Блудова. О \mathcal{E}-компактификациях непрерывных отображений. Москва, 1990. Рукопись депонирована в ВИНИТИ 27 августа 1990 года, №4796-В90. РЖМат, ${ }^{11}$ 1991, 1А618ДЕП.
[5] И.В.Блудова. $O \mathcal{E}$-компактных отображениях. Москва, 1990. Рукопись депонирована в ВИНИТИ 17 апреля 1990 года, №2074-В90. РЖМат, 1990, 8А448ДЕП.
[6] А.А.Борубаев. Геометрия равномерно непрерывных отображений. "Сообщения академии наук Грузинской CCP. Bulletin of the Academy of sciences of the Georgian SSR", 137, №3 (1990), 497-500.
[7] Н.Бурбаки. Общая топология. Основные структуры. "Элементы математики". Москва, 1968. = N.Bourbaki. Topologie générale. Chapitre 1. Structures topologiques. Chapitre 2. Structures uniformes. "Éléments de mathématique". Paris, 1965; English translation: Paris, 1966.
[8] П.Т.Джонстон. Теория топосов. Москва, 1986. = P.T.Johnstone. Topos theory. London, New York, San Francisco, 1977.
[9] А.В.Зарелуа. О равенстве размерностей. "Математический сборник", 62 (104), №3 (1963), 295-319.
[10] В.К.Захаров, А.В.Колдунов. Секвенииалъный абсолют и его характеризаиии. "Доклады Академии наук СССР", 253, №2 (1980), 280-284.
[11] Н.И.Ильина. Построение раширений βf и f непреръвного отображения f при помощи вполне регулярных концов открытых множеств. Омск, 1990. Рукопись депонирована в ВИНИТИ 19 апреля 1990 года, №2113-В90. РЖМат, 1990, 8А454ДЕП.
[12] Н.И.Ильина. Построение расширений βf и νf непрерывного отображения f nри помощи ультрафильтров. Омск, 1990. Рукопись депонирована в ВИНИТИ 19 апреля 1990 года, №2114-В90. РЖММат, 1990, 8А455ДЕП.
[13] Н.И.Ильина. Построение расширений ωf и $\nu^{\omega} f$ непрерывного отображения f при помощи ультрафильтров. Омск, 1990. Рукопись депонирована в ВИНИТИ 19 апреля 1990 года, №2115-В90. РЖМат, 1990, 8А456ДЕП.
[14] К.Ишмахаметов. Бикомпактификачии и нарость конечного порядка тихоновских отображений. Сборник "Исследования по топологии и геометрии". Фрунзе, 1985, 4753.
[15] К.Ишмахаметов. О бикомпактификачиях почти локально совершенных отображений. Фрунзе, 1987. Рукопись депонирована в Киргизском ИНТИ 14 января 1987 года, №257Ки87. РЖМат, 1987, 6А604ДЕП.
[16] А.В.Колдунов. Непрерывные функиии на (M, I)-абсолютах. "Известия высших учебных заведений", Математика, №10 (305) (1987), 63-66.
[17] А.В.Колдунов. Функиионалъная характеризация (M, I)-абсолютов. Сборник "Приближения функций специальными классами операторов". Вологда, 1987, 8795.
[18] Л.Т.Крежевских. О максималъных подалгебрах на отображениях. Глазов, 1990. Рукопись депонирована в ВИНИТИ 11 сентября 1990 года, №4991-В90. РЖМат, 1991, 1А617ДЕП.
[19] Л.Т.Крежевских, Б.А.Пасынков. Об аналоге для отображения банаховой алгебры непрерывных функиий на пространстве. "Геометрия погруженных многообразий". Москва, 1986, 47-52.

[^11][20] Б.Й.Лазаров. О локально совершенных продолэжениях непреръвного отображения. "Доклады Болгарской академии наук. Comptes rendus de l'Academie bulgare des Sciences", 39, №6 (1986), 13-16.
[21] М.Эльх.Р.Мазроа. О пунктиформных бикомпактификациях непрерывных отображений. Сборник "Общая топология. Пространства и отображения". Москва, 1989, 80-84.
[22] М.Эльх.Р.Мазроа. О совершенных бикомпактификациях непрерывных отображений. "Вестник Московского университета", Серия 1, математика, механика, №1 (1990), 23-26.
[23] М.Эльх.Р.Мазроа. Периферически бикомпактные отображения и uх бикомпактификации. Сборник "Общая топология. Пространства и отображения". Москва, 1989, 148-152.
[24] В.А.Матвеев. О совершенных неприводимых прообразах топологических пространств. "Вестник Московского университета", Серия 1, математика, механика, №4 (1988), 80-82.
[25] В.А.Матвеев. О Та-бикомпактификациях отображений. Сборник "Топологические пространства и их кардинальные инварианты". Устинов, 1986, 43-45.
[26] В.А.Матвеев. Об отделимых бикомпактификациях отображений. "Вестник Московского университета", Серия 1, математика, механика, №1 (1988), 94-95.
[27] В.А.Матвеев, В.М.Ульянов. O т-бикомпактификациях отображений. "Успехи математических наук", 37, №2 (224) (1982), 211-212.
[28] М.А.Наймарк. Нормированные колъи,а. Москва, 1968.
[29] В.П.Норин. О близостях для отображений. "Вестник Московского университета", Серия 1, математика, механика, №4 (1982), 33-36.
[30] В.П.Норин. O т-близостлх и теореме Смирнова. Сборник "Отображения и функторы". Москва, 1984, 59-66.
[31] Р.Н.Ормоцадзе. Отображения, совершенные в n-й бесконечности. "Сообщения Академии наук Грузинской CCP. Bulletin of the Academy of sciences of the Georgian SSR", 136, №3 (1989), 529-532.
[32] Б.А.Пасынков. Близости на отображениях. Сборник "Общая топология. Пространства и отображения". Москва, 1989, 99-113.
[33] Б.А.Пасынков. О близостях на отображениях. "Доклады Болгарской академии наук. Comptes rendus de l'Academie bulgare des Sciences", 42, №4 (1989), 5-6.
[34] Б.А.Пасынков. O распространении на отображения некоторых понятий u утверждений, касающихся пространств. Сборник "Отображения и функторы". Москва, 1984, 72-102.
[35] Б.А.Пасынков. Частичные топологические произведения. "Труды Московского математического общества", 13 (1965), 136-245. = B.A.Pasynkov. Partial topological products. "Transactions of the Moscow Mathematical Society", 1965, 153-272.
[36] Ю.П.Першин. Смежности на непрерывных отображениях. Москва, 1989. Рукопись депонирована в ВИНИТИ 3 ноября 1989 года, №6699-В89. РЖМат, 1990, 3А484ДЕП.
[37] Ю.П.Першин. θ-близости и бикомпактные расширения отделимо бикомпактифицируемых θ-прообразов для непрерывных отображений. Москва, 1989. Рукопись депонирована в ВИНИТИ 19 сентября 1989 года, №5936-В89. РЖМат, 1990, 2А501ДЕП.
[38] Ю.П.Першин. θ-предблизости и бикомпактификации тихоновских θ-прообразов для непрерывных отображений. Москва, 1989. Рукопись депонирована в ВИНИТИ 19 сентября 1989 года, №5935-В89. РЖМат, 1990, 2А500ДЕП.
[39] Н.С.Стреколовская. О максимальной бикомпактификации непрерывных отображений вполне регулярных пространств. "Вестник Московского университета", Серия 1 , математика, механика, №1 (1991), 24-27.
[40] В.М.Ульянов. Бикомпактные расширения с первой аксиомой счётности и непрерывные отображения. "Математические заметки", 15, №3 (1974), 491-499. = V.M.Ul'janov. Bicompact extensions with the first axiom of countability and continuous mappings. "Mathematical Notes", 15 (1974), 287-291.
[41] В.М.Ульянов. Бикомпактные расширения $с$ первой аксиомой счётности, не повъшающие веса и размерности. "Доклады Академии наук СССР, 217, №6 (1974), 1263-1265. = V.M.Ul'janov. First countable compactifications that do not raise weight or dimension. "Soviet Mathematics Doklady", 14, No 4 (1974), 1218-1222.
[42] В.М.Ульянов. Внутренняя характеристика отображений со свойством Ta. Сборник "Материалы научно-технической конференции Новомосковского филиала Московского химико-технологического института. Новомосковск, 19-23 мая 1986. Часть 2". Москва, 1987, 250-253. Рукопись депонирована в ВИНИТИ 28 января 1987 года, №669-В87. РЖМат, 1987, 5А585ДЕП.
[43] В.М.Ульянов. O бикомпактных расширениях счётного характера и абсолютах. "Математический сборник", 98 (140)б №2 (10) (1975), 223-254. = V.M.Ul'janov. On compactifications satisfying the first axiom of countability and absolutes. "Mathematics of the USSR Sbornik", 27, No 2, 199-226. ${ }^{12}$
[44] В.М.Ульянов. O вполне замкнутъх и близких κ ним отображениях. "Успехи математических наук", 30, №3 (183) (1975), 177-178.
[45] В.М.Ульянов. О максимальной отделимой $\mathfrak{T}^{\mathfrak{E}} \mathfrak{a}$-бикомпактификаиии. Сборник "Семинар по общей топологии". Москва, 1981, 156-161.
[46] В.М.Ульянов. $О$ метризуемости пространства $Y_{\mathfrak{A}}=\mathfrak{P}\left(Y,\left\{Z_{\alpha}\right\},\left\{G_{\alpha}\right\},\left\{O_{\alpha}\right\},\left\{g_{\alpha}\right\}, \alpha \in\right.$ $\in \mathfrak{A})$. Сборник "Материалы научно-технической конференции Новомосковского филиала Московского химико-технологического института. Новомосковск, 6-11 февраля 1984. Часть 3". Москва, 1984, 163-166. Рукопись депонирована в ВИНИТИ 28 ноября 1984 года, №7581-84. РЖМат, 1985, ЗА530ДЕП.
[47] В.М.Ульянов. Отображение, обладающее свойством $\mathfrak{T a}$, но не обладающее свойством $\mathfrak{T} \mathfrak{a}_{\text {нп }}$. Сборник "Материалы научно-технической конференции Новомосковского филиала Московского химико-технологического института. Новомосковск, 6-11 февраля 1984. Часть 3". Москва, 1984, 167-169. Рукопись депонирована в ВИНИТИ 28 ноября 1984 года, №7581-84. РЖКМат, 1985, ЗА540ДЕП.
[48] В.М.Ульянов. Решение основной задачи о бикомпактных расширениях волмэновского muna. "Доклады Академии наук СССР", 223, №6 (1977), 1056-1059. = V.M.Ul’janov. Solution of a basic problem on compactifications of Wallman type. "Soviet Mathematics Doklady", 18, No 2 (1977), 567-571.
[49] В.В.Федорчук. О бикомпактах с несовпадающими размерностями. "Доклады Академии наук СССР", 213, №4 (1973), 795-797. = V.V.Fedorčuk. Bicompacta with noncoinciding dimensionalities. "Soviet Mathematics Doklady", 9 (1968), 1148-1150.
[50] Л.Б.Шапиро Об абсолютах топологических пространств $и$ непрерывных отображений. "Доклады Академии наук СССР", 226, №3 (1976), 523-526.
[51] Р.Энгелькинг. Общая топология. Москва, 1986. = Ryszard Engelking. General topology. Warsaw, 1977; Berlin, 1989.
[52] Leonid Bobkov. About the coincidence of weight and network weight for mappings. "Zbornik radova Filozofskog faculteta u Nišu", serija matematika, 4 (1990), 105-108.
[53] A.A.Borubaev. On completeness and completions of uniformity continuous mappings. "Zbornik radova Filozofskog faculteta u Nišu", serija matematika, 4 (1990), 95-97.
[54] George L.Cain, Jr.. Compactifications of mappings. "Proceedings of the American Mathematical Society", 23, No 2 (1969), 298-303.
[55] Roy Dyckhoff. Factorization theorems and projective spaces in topology. "Mathematische Zeitschrift", 127, No 3 (1972), 256-264.
[56] T.K.Dyikanov. On μ-bounded and precompact uniform mappings. "Zbornik radova Filozofskog faculteta u Nišu", serija matematika, 4 (1990), 99-100.
[57] Horst Herrlich. E-kompakt Räume. "Mathematische Zeitschrift", 96 (1967), 229-255.
[58] I.M.James. Fibrewise topology. "Cambridge Tracts in Mathematics", 91, Cambridge, New York, Port Chester, Melbourne, Sydney, 1989.
[59] Wojciech Olszewski. Universal spaces for locally finite-dimensional and strongly countabledimensional metrizable spaces. "Fundamenta Mathematicae", 135 (1990), 45-49.
[60] Yuri Pershin. Contiguities and proximities on mappings. "Zbornik radova Filozofskog fakulteta u Nišu", Serija matematika, 4 (1990), 45-49.
[61] Jan R.Strooker. Introduction to categories, homological algebra and sheaf cohomology. Cambridge, London, New York, Melbourn, 1978.
[62] V.M.Ulyanov. The sequential absolute and the other analogs of the absolute. In "Topology. Proceedings. Leningrad, 1982. Lecture Notes in Mathematics", 1060. Berlin, Heidelberg, New York, Tokyo, 1984, 95-104.
[63] G.T.Whyburn. A unified space for mappings. "Transactions of the American Mathematical Society", 74, No 2 (1953), 344-350.
[64] R.Grant Woods. Generalization of absolutes of topological spaces. "Supplemento ai Rendiconti del Circolo matematico di Palermo", serie II, No 18 (1988), 121-139.

[^12]Vladimir M. Ulyanov
Independent University of Russian Academy of Education,
Novomoskovsk's branch
Berezhnogo st., 12,
301650, Novomoskovsk, Russia
E-mail address: umax@newmsk.tula.net
URL: http://www.someoneltd.boom.ru/

[^0]: Ulyanov V.M., Sheaves and $\mathfrak{T} \mathfrak{a}$-bicompactifications of mappings.
 (C) 2007 Ulyanov V.M.

 Received September, 24, 2006, published December, 20, 2007.

[^1]: ${ }^{1}$ The term "fibrewise topological space" in [58] corresponds to the term "mapping" in [34] and so on.

[^2]: ${ }^{2}$ V.A.Matveev asserts that his proof of Corollary 1 in the paper [26] is incomplete, but a counter-example is not known. A correct condition can be found in his thesis "Структуры подчинений, связанных с отображениями" (Москва, 1990).

[^3]: ${ }^{3}$ Let us recall that $f{ }^{\#} U=\left\{y \in f X: f^{-1} y \subseteq U\right\}$.

[^4]: ${ }^{4}$ Let us recall that $\operatorname{Fr}_{X} A=[A]_{X} \cap[X \backslash A]_{X}$ is a boundary of a set $A \subseteq X$.

[^5]: ${ }^{5}$ Hence, all mappings $\left.{ }^{\alpha} \pi\right|_{\alpha} \pi^{-1} O_{0}:{ }^{\alpha} \pi^{-1} O_{0} \xrightarrow{\text { onto }} O_{0}, \alpha \in \mathfrak{A}$, are perfect due to Proposition $5 \mathrm{~b})$ of $\S 10$ of Chapter I of the book [7].

[^6]: ${ }^{6} \mathbb{R}$ is the field of all real numbers with the usual topological structure.

[^7]: ${ }^{7}$ If $A \subseteq Y$ then $\operatorname{Int}_{Y} A=Y \backslash[Y \backslash A]_{Y}$.

[^8]: ${ }^{8}$ The map φ_{α}, where $\alpha \in \mathfrak{A}$ satisfies the condition $\left(g_{\alpha}, \tilde{g}_{\alpha}\right)=(g, \tilde{g})$, is defined in 3.2 (see 5.8).

[^9]: ${ }^{9}$ Analogously to the item 5.23 we shall assume that if $\left(O, G_{1}\right),\left(O, G_{2}\right) \in T_{\mathfrak{a}}$ and $\left(O, G_{1}\right) \subseteq$ $\subseteq\left(O, G_{2}\right)$, then $\mathcal{C}_{\mathfrak{a}}\left(O, G_{2}\right)$ is a closed subalgebra of the algebra $\mathcal{C}_{\mathfrak{a}}\left(O, G_{1}\right)$ (see Corollary 5.16).

[^10]: ${ }^{10} \mathrm{We}$ assume that $\left(\bar{g}_{e}-\frac{2 \bar{g}}{B}\right)^{0}=\bar{g}_{e}$.

[^11]: ${ }^{11}$ Реферативный журнал "Математика".

[^12]: ${ }^{12}$ The translation of this article into English contains significant errors which do not exist in the Russian text. For the correction it is necessary

 1) to omit the word "open" in the second line of $\S 1$;
 2) to replace the word "continuous" by "irreducible" in Proposition 2;
 3) to replace the word "compact" by "Hausdorff compact" in Corollaries 4 and 9 (the Russian term "бикомпакт" means "Hausdorff compact space").
