
S e©MR ISSN 1813–3304

СИБИРСКИЕ ЭЛЕКТРОННЫЕ
МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports
http://semr.math.nsc.ru

Том 4, стр. 605–609 (2007) УДК 514.132
MSC 57M27

LÖBELL MANIFOLDS REVISED

A. D. MEDNYKH, A. YU. VESNIN

Abstract. The first example of a closed orientable hyperbolic 3–mani-
fold was constructed by F. Löbell in 1931. It was an affirmative answer to
the Köbe question on the existence of hyperbolic 3–forms. In the present
paper we give a short survey of some related results and obtain a simple
analytic formula for the volume of the Löbell manifold as well as for
volumes of Humbert manifolds.

Introduction

The first example of a closed orientable hyperbolic 3–manifold was constructed
by F. Löbell [5] in 1931. It was an affirmative answer to the Köbe question on
the existence of hyperbolic 3–forms. Two years later H. Seifert and C. Weber [14]
presented an elegant construction of the dodecahedron hyperbolic space, which was
much more cited than Löbell’s example. As we know, during a long period, there
was only one reference made to the Löbell construction: in [13] T. Salenius presented
a closed hyperbolic 3–manifold obtained from four copies of Löbell’s polyhedron.

We remind that Löbell’s example was obtained by gluing eight copies of a right–
angled polyhedron P (6) shown in Fig. 1. The construction was described in a purely
geometrical form. Later on, it was recognized and widely used in our papers [8, 9,
17, 18, 19, 20] that a Löbell type manifold can be naturally described in terms
of 4–coloring of right–angled polyhedra. A similar construction was independently
discovered by M. Takahashi [16]. Recently, the Löbell type manifolds as well as
right–angled polyhedra became a subject of intensive investigations [1, 2, 7, 12,
15, 4]. In particular, arithmetical properties of these manifolds were investigated
in [1]. Upper and lower bounds for complexity of the Löbell type manifolds were
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obtained in [21]. An arrangement of right–angled hyperbolic polyhedra by their
volumes was done in [4]. It turns out that the smallest volume is attained by a
regular right–angled dodecahedron. Four–dimensional generalizations of the Löbell
construction are considered in [12]. Right–angled polyhedra arising as convex cores
of quasi–Fuchsian groups are investigated in [7].

1. Construction

Let P (n), n ≥ 5, be a right–angled polyhedron in H3 whose boundary consists
of two n–gons on the top and bottom and 2n pentagons on the lateral surface (see
Fig. 1 for n = 6). We will call P (n) a Löbell polyhedron. Let ∆(n) be a group
generated by reflections in faces of P (n). We recall that every 4–color coloring σ
of faces of P (n) induces an epimorphism ϕσ

n : ∆(n) → Z2 ⊕ Z2 ⊕ Z2 such that
its kernel Γσ

n = Ker (ϕσ
n) is torsion free and does not contain orientation reversing

isometries. We fix a coloring σ and define a Löbell manifold L(n) = L(n, σ) as a
quotient space L(n, σ) = H3/Γσ

n. Thus, L(n) is obtained by gluing eight copies of
P (n). Hence

vol L(n) = 8 vol P (n).
We note the volume of the manifold L(n) does not depend on the choice of σ. See
[5, 8, 17, 20] for details.

It follows from the result of R. Hidalgo and G. Rosenberger [3] that the commu-
tator subgroup ∆(n)′ of ∆(n) is torsion free. A quotient space H(n) = H3/∆(n)′

will be referred to as a Humbert manifold. Since ∆(n) is generated by (2n + 2)
reflections, we have ∆(n)/∆(n)′ = Z2n+2

2 . Hence, |∆ : ∆′| = 22n+2 and H(n) is
obtained from 22n+2 copies of P (n). Therefore,

(1) vol H(n) = 22n−1 · vol L(n).

Note that H(n) and L(n) are the maximal and the minimal manifold Abelian
coverings of orbifold H3/∆(n), respectively.

2. Volume formulae

In this section we will obtain elementary formulas for volumes of the manifolds
H(n) and L(n), which are closed orientable hyperbolic 3–manifolds. A formula
expressing volumes of Löbell manifolds in terms of the Lobachevskii function

Λ(θ) = −
∫ θ

0

log |2 sin ζ|dζ

was obtained by A. Vesnin in [19].

Theorem 1. [19] Let L(n), n ≥ 5, be a Löbell manifold. Then

(2) vol L(n) = 4n
(
2Λ(θ) + Λ

(
θ +

π

n

)
+ Λ

(
θ − π

n

)
+ Λ

(
2θ − π

2

))
,

where θ =
π

2
− arccos

1
2 cos π

n

.

A similar formula for a particular case n = 6 was established in Ph.D. thesis by
D. Surchat [15] advised by P. Buser.

Now we will present a new formula for volume of Löbell manifolds that will be
useful for further investigations.
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Consider a polyhedron T (α) = ABCA′B′C ′DE (see Fig. 1) with dihedral angles
as follows: α at AA′, π

4 at DB′ and CE, and π
2 at all other edges. If 0 < α < π

4

then T (α) is a hexahedron in H3, which can be regarded as a doubly–truncated
doubly–rectangular tetrahedron, where hyperbolic triangles ABC and A′B′C ′ are
results of truncations. If α = π

n , n ≥ 5, then T (π
n ) is an 1

2n–piece of the Löbell
polyhedron P (n), as presented in Fig. 1. If α = π

4 then triangles ABC and A′B′C ′

are Euclidean, and by T (π
4 ) we will mean an ideal tetrahedron with two ideal

vertices. If π
4 < α < π

3 then triangles ABC and A′B′C ′ are spherical, and by
T (α) we will mean a doubly–rectangular tetrahedron. Dihedral angles π

4 , α, π
4 are

essential dihedral angles of T (α).
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Рис. 1. Truncated tetrahedron T (α) and 14-hedron P (6)

Lemma 1. If 0 < α < π
3 then T (α) is a hyperbolic polyhedron and

(3) volT (α) =
1
2

∫ π
3

α

arccosh
∣∣∣∣

cos θ

cos 2θ

∣∣∣∣ dθ.

Proof. Let `α be the length of edge of T (α) with prescribed angle α. By the tangent
rule from [22, p. 125] we have

tanh `α

tan α
=

√
cos2 α− sin2 π

4 sin2 π
4

cos π
4 cos π

4

=
√

4 cos2 α− 1.

Hence, tanh `α = tan α · √4 cos2 α− 1 and

cosh2 `α =
1

1− tanh2 `α

=
(

cos θ

cos 2θ

)2

.

Obviously,
cos θ

cos 2θ
> 0 for 0 < α < π

4 and
cos θ

cos 2θ
< 0 for π

4 < α < π
2 . In case α = π

4

the tetrahedron T (π
4 ) has two ideal vertices and hence `α = ∞. Moreover, `α → 0

as α → π
3 . Therefore, vol T (α) → 0 as α → π

3 . By the Schläfli formula [10] we
obtain

vol T (α) = −
∫ α

π
3

`θ

2
dθ =

1
2

∫ π
3

α

arccosh
∣∣∣∣

cos θ

cos 2θ

∣∣∣∣ dθ.
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Theorem 2. Let L(n), n ≥ 5, be a Löbell manifold. Then

(4) vol L(n) = 8n

∫ π
3

π
n

arccosh
∣∣∣∣

cos θ

cos 2θ

∣∣∣∣ dθ.

Proof. It can be seen from Fig. 1 that T (π
n ) is an 1

2n -piece of P (n). Hence, vol L(n) =
8 vol P (n) = 8 · 2n · vol T

(
π
n

)
. The result follows from formula (3).

¤
As an immediate consequence of the obtained theorem, by (1) we have

Corollary 1. Let H(n), n ≥ 5, be a Humbert manifold. Then

vol H(n) = n · 22n+2

∫ π
3

π
n

arccosh
∣∣∣∣

cos θ

cos 2θ

∣∣∣∣ dθ.
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11–te Skandinavske Matematikerkongress, Trondheim, 1949, 107–112.

[14] H. Seifer, C. Weber, Die beiden Dodekaederräume, Math. Z., 37 (1933), 237–253 .
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