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LOBELL MANIFOLDS REVISED

A. D. MEDNYKH, A. YU. VESNIN

ABsTRACT. The first example of a closed orientable hyperbolic 3-—mani-
fold was constructed by F. Lobell in 1931. It was an affirmative answer to
the K6be question on the existence of hyperbolic 3—forms. In the present
paper we give a short survey of some related results and obtain a simple
analytic formula for the volume of the Lobell manifold as well as for
volumes of Humbert manifolds.

INTRODUCTION

The first example of a closed orientable hyperbolic 3—-manifold was constructed
by F. Lobell [5] in 1931. It was an affirmative answer to the Kdbe question on
the existence of hyperbolic 3—forms. Two years later H. Seifert and C. Weber [14]
presented an elegant construction of the dodecahedron hyperbolic space, which was
much more cited than Lobell’s example. As we know, during a long period, there
was only one reference made to the Lébell construction: in [13] T. Salenius presented
a closed hyperbolic 3—manifold obtained from four copies of Lébell’s polyhedron.

We remind that Lobell’s example was obtained by gluing eight copies of a right—
angled polyhedron P(6) shown in Fig. 1. The construction was described in a purely
geometrical form. Later on, it was recognized and widely used in our papers [8, 9,
17, 18, 19, 20] that a Lobell type manifold can be naturally described in terms
of 4—coloring of right—angled polyhedra. A similar construction was independently
discovered by M. Takahashi [16]. Recently, the Libell type manifolds as well as
right—angled polyhedra became a subject of intensive investigations [1, 2, 7, 12,
15, 4]. In particular, arithmetical properties of these manifolds were investigated
in [1]. Upper and lower bounds for complexity of the Lobell type manifolds were
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obtained in [21]. An arrangement of right—angled hyperbolic polyhedra by their
volumes was done in [4]. It turns out that the smallest volume is attained by a
regular right—angled dodecahedron. Four—-dimensional generalizations of the Libell
construction are considered in [12]. Right—angled polyhedra arising as convex cores
of quasi-Fuchsian groups are investigated in [7].

1. CONSTRUCTION

Let P(n), n > 5, be a right-angled polyhedron in H? whose boundary consists
of two n—gons on the top and bottom and 2n pentagons on the lateral surface (see
Fig. 1 for n = 6). We will call P(n) a Ldbell polyhedron. Let A(n) be a group
generated by reflections in faces of P(n). We recall that every 4—color coloring o
of faces of P(n) induces an epimorphism ¢? : A(n) — Zg @ Zg ® Zo such that
its kernel I'? = Ker (¢?) is torsion free and does not contain orientation reversing
isometries. We fix a coloring o and define a Lébell manifold L(n) = L(n,o0) as a
quotient space L(n,o) = H3/T'?. Thus, L(n) is obtained by gluing eight copies of
P(n). Hence

vol L(n) = 8vol P(n).
We note the volume of the manifold L(n) does not depend on the choice of o. See
[5, 8, 17, 20] for details.

It follows from the result of R. Hidalgo and G. Rosenberger [3] that the commu-
tator subgroup A(n)’ of A(n) is torsion free. A quotient space H(n) = H3/A(n)’
will be referred to as a Humbert manifold. Since A(n) is generated by (2n + 2)
reflections, we have A(n)/A(n)’ = Z3"*2. Hence, |A : A'| = 22"*2 and H(n) is
obtained from 22"*2 copies of P(n). Therefore,

(1) vol H(n) = 2*"~1 . vol L(n).

Note that H(n) and L(n) are the maximal and the minimal manifold Abelian
coverings of orbifold H?/A(n), respectively.

2. VOLUME FORMULAE

In this section we will obtain elementary formulas for volumes of the manifolds
H(n) and L(n), which are closed orientable hyperbolic 3-manifolds. A formula
expressing volumes of Lobell manifolds in terms of the Lobachevskii function

0
A() = —/ log |2 sin ¢|d¢
0
was obtained by A. Vesnin in [19].

Theorem 1. [19] Let L(n), n > 5, be a Lébell manifold. Then

2)  vol L(n) = 4n (2/\(0) +A (9+ %) A (9 _ %) LA (23_ g)) 7

s
where § = — — arccos —.
2 2cos -

A similar formula for a particular case n = 6 was established in Ph.D. thesis by
D. Surchat [15] advised by P. Buser.

Now we will present a new formula for volume of Lobell manifolds that will be
useful for further investigations.
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Counsider a polyhedron T'(a) = ABCA'B'C'DE (see Fig. 1) with dihedral angles
as follows: a at AA’, 7 at DB’ and CE, and 7 at all other edges. If 0 < o < %
then T'(a) is a hexahedron in H?, which can be regarded as a doubly-truncated
doubly-rectangular tetrahedron, where hyperbolic triangles ABC and A’B'C’ are
results of truncations. If & = Z, n > 5, then T(Z) is an 5-—piece of the Lobell
polyhedron P(n), as presented in Fig. 1. If o = § then triangles ABC and A’B'C’
are Euclidean, and by T'(§) we will mean an ideal tetrahedron with two ideal
vertices. If 7 < a < % then triangles ABC and A’B’C’ are spherical, and by
T'(c) we will mean a doubly-rectangular tetrahedron. Dihedral angles 7, «, 7 are
essential dihedral angles of T'(«).

Puc. 1. Truncated tetrahedron T'(«) and 14-hedron P(6)

Lemma 1. If0 < a < § then T'(«a) is a hyperbolic polyhedron and

1 (3
(3) volT(a) = 3 /% arccosh

cos 6
cos 26 ‘ 0.

Proof. Let £, be the length of edge of T'(a) with prescribed angle a. By the tangent
rule from [22, p. 125] we have

tanh £, \/c052 a — sin? T sin? T
= — — = v/4cos?a — 1.
tan « CO8 4 COS
Hence, tanh /, = tana - v4cos?2 o — 1 and
1 cosf \ 2
2
cosh” /., = = .
“ 1 —tanh®/, (cos 29)
cos 6 cos

Obviously,

9>0f0r0<a<§and <Ofor 7 <a< 7. Incase a =7

cos cos 20
the tetrahedron T'(%) has two ideal vertices and hence £, = co. Moreover, £, — 0

as @ — %. Therefore, vol T(a) — 0 as a — %. By the Schléfli formula [10] we

obtain
“y 1[5 0
vol T'(a) = 7/ 2 a0 = 7/3 arccosh‘ o ‘d@.
E 2 Ja cos 20
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Theorem 2. Let L(n), n > 5, be a Lébell manifold. Then

4) vol L(n) = 8n/3 arccosh

cos 20

™

0
cos ‘dé).

Proof. It can be seen from Fig. 1 that T'(Z) is an 5--piece of P(n). Hence, vol L(n) =
8vol P(n) =8-2n-vol T (Z). The result follows from formula (3).
O
As an immediate consequence of the obtained theorem, by (1) we have

Corollary 1. Let H(n), n > 5, be a Humbert manifold. Then

vol H(n) =n- 22"”/3 arccosh

™

cos
do.
cos 20 ‘

n
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