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LIST 2-ARBORICITY OF PLANAR GRAPHS
WITH NO TRIANGLES AT DISTANCE LESS THAN TWO

O. V. BORODIN, A. O. IVANOVA

Abstract. It is known that not all planar graphs are 4-choosable;
neither all of them are vertex 2-arborable. However, planar graphs with
no triangles at distance less than two are known to be 4-choosable (Lam,
Shiu, Liu, 2001) and 2-arborable (Raspaud, Wang, 2008).

We give a common extension of these two last results in terms of
covering the vertices of a graph by induced subgraphs of variable degen-
eracy. In particular, we prove that every planar graph with no triangles
at distance less than two is list 2-arborable.
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1. Introduction

It is impossible to strengthen Appel and Haken’s Four Color Theorem [1] in
the following two ways. First, Chartrand and Kronk [5] constructed planar graphs
whose vertex sets cannot be covered by two induced forests. On the other hand,
Margit Voigt [9] proved that there exist planar graphs that are not 4-choosable.

However, planar graphs with no triangles at distance less than two are both
4-choosable (as proved by Lam, Shiu, and Liu [7]) and 2-arborable (Raspaud and
Wang [8]).

A common extension of the notions of choosability and arboricity, the list point
arboricity, was introduced by Borodin, Kostochka and Toft [3]. A graph G is called
list k-arborable if for any sets L(v) of cardinality at least k at its vertices, one can
choose an element (color) for each vertex v from its list L(v) so that the subgraph
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induced by every color class is an acyclic graph (a forest). Note that if the list L(v)
does not vary from a vertex to another, we have a problem of usual k-arboricity.
Also note that every forest is 2-choosable.

A smaller purpose of this paper is to extend the above mentioned result by
Raspaud and Wang [8] as follows:

Theorem 1. Every planar graph with no triangles at distance less than two is list
2-arborable.

However, our main purpose here is to give a common extension of the above
results in [7] and [8] in terms of covering the vertices of a graph by induced subgraphs
of variable degeneracy. These concepts were introduced by Borodin, Kostochka and
Toft in [3].

Let f be a function from V (G) to the set of positive integers. We say that G is
strictly f -degenerate if every subgraph G′ of G has a vertex v such that dG′(v) <
f(v). (Henceforth, d be the degree function of graph G.) In other words, G can be
made empty by a sequence of deletions of vertices such that each vertex v has, at
the moment of its deletion, degree less than f(v) in the remaining graph.

Now let fi, 1 ≤ i ≤ s, be functions from V (G) to the non-negative integers. A
graph G is called (f1, . . . , fs)-partitionable if V (G) can be partitioned into subsets
V1, . . . , Vs so that the induced subgraph G(Vi) = Gi is strictly fi-degenerate for
each 1 ≤ i ≤ s.

These subgraphs Gi may be treated as color classes. Observe that if fi(v) = 0,
then v cannot be colored with i: otherwise v could never be deleted from Gi.

Thus, the special case of covering by subgraphs of variable degeneracy in which
fi(v) ∈ {0, 1} for all 1 ≤ i ≤ s and v ∈ V (G) corresponds to list coloring with
L(v) = {i | fi(v) = 1}. If fi(v) ∈ {0, 2} whenever v ∈ V (G), then we have the
problem of list point arboricity [3].

Given functions fi, 1 ≤ i ≤ s, and a graph G, a monoblock H of G is either an
end-block of G or G itself if it has only one block, such that there is an index j
(depending on H) with the property that

fi =
{

0, for all i 6= j,
dG(v), for i = j,

for all v in H, except possibly for the cut-vertex if H is an end-block.
Monoblocks are actually obstacles to (f1, . . . , fs)-partitionability (see [3] for de-

tails). We will deal with a simple special case of monoblocks in the proof of our
main Theorem 2.

The main purpose of this paper is the following extension of Theorem 1 and of
the results in [7, 8]:

Theorem 2. Every planar graph with no triangles at distance less than two is
(f1, . . . , fs)-partitionable whenever s ≥ 2, f1(v) + . . . + fs(v) ≥ 4 for each vertex v,
and fi(v) ∈ {0, 1, 2} for all i and v.

Clearly, the case of 4-choosability is fi(v) ∈ {0, 1}, while that of 2-arboricity is
s = 2, f1(v) ≡ f2(v) ≡ 2.

2. Proof of main result

Let graph G0 have the minimum number of vertices among the counterexamples
to Theorem 2, and let (f1, . . . , fs) be a corresponding vector-function.
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First mention some structural properties of planar graphs having no adjacent
3-cycles. Let δ be the minimum degree of such a graph. It was proved in [2] that
δ ≤ 4; moreover, δ ≥ 3 implies that there is an edge e = xy such that d(x)+d(y) ≤ 9
(both bounds are tight).

As applied to Theorem 2, only the case δ = 4 is of interest, since G0 has no vertex
v with d(v) ≤ 3. Indeed, any (f1, . . . , fs)-partition of G0 − {v} can be extended to
G0 by coloring vertex v with such an i that v is adjacent in G0 − {v} to less than
fi(v) vertices colored i.

By f3
5 denote a 5-face adjacent to a 3-face. It was proved in [6] that every

connected planar graph G with δ(G) = 4 and no 4-cycles has an f3
5 whose all

vertices have degree 4. This result was extended in [4] to planar graphs with no
4-cycles adjacent to 3-cycles.

A similar structural fact is established in [8]:

Lemma 1. If a planar graph G with δ(G) = 4 has no triangles at distance less
than two, then G has a 5-cycle C∗5 = x1 . . . x5 with a chord x2x5 such that d(xi) = 4
whenever 1 ≤ i ≤ 5.

So, our G0 contains a C∗5 . It is easy to see that the subgraph induced by G0 on
the vertex set {x1, . . . , x5} coincides with C∗5 . In other words, each of x2 and x5 is
joined to V (G)− {x1, . . . , x5} by precisely one edge, whereas each x1, x3, and x4,
by two edges.

It remains to show that every (f1, . . . , fs)-partition of G0 − {x1, . . . , x5}, which
exists due to the minimality of G0, can be extended to the whole G0.

For each v ∈ V (C∗5 ) and every 1 ≤ i ≤ s, we put f∗i (v) equal fi(v) minus the
number of vertices colored i and adjacent to v in G0 − {x1, . . . , x5}.

Note that having an (f∗1 , . . . , f∗s )-partition of C∗5 , one can get a desired (f1, . . . , fs)-
partition of G0. Indeed, for each color class i, we first destroy its vertices in
{x1, . . . , x5} (in the order of its (f∗1 , . . . , f∗s )-destruction), and then, its vertices
that belong to G0 − {x1, . . . , x5}.

So, to complete proving Theorem 2 it suffices to check that C∗5 is (f∗1 , . . . , fs)∗-
partitionable. Here, we make use of Theorem 8 in [3], which gives a necessary and
sufficient condition for a connected graph G to be (f1, . . . , fs)-partitionable under
the assumption that f1(v) + . . . , +fs(v) ≥ d(v) for every vertex v.

Since C∗5 is 2-connected, applying this criterion reduces to two observations:
(1) C∗5 is neither a complete graph nor an odd cycle, which is obvious, and, (2)
it is not a monoblock (see the definition in the introduction above or, for more
explanations, [3]).

So suppose C∗5 is a monoblock w.r.t. the vector-function (f∗1 , . . . , f∗s ). Since ver-
tices x2 and x5 have degree 3 in C∗5 , we have f∗1 (x2) + . . . + f∗s (x2) ≥ 3. On
the other hand, fi(x2) ≤ 2 for every color i by assumption of Theorem 2, while
f∗i (x2) ≤ fi(x2) for all i by definition. This implies that vector (f∗1 (x2), . . . , f∗s (x2))
has at least two nonzero components, a contradiction.

This completes the proof of Theorem 2.
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