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CIRCULAR (5, 2)-COLORING OF SPARSE GRAPHS

O.V. BORODIN, S.G. HARTKE, A.O. IVANOVA, A.V. KOSTOCHKA, D.B. WEST

Abstract. We prove that every triangle-free graph whose subgraphs
all have average degree less than 12

5
has a circular (5, 2)-coloring. This

includes planar and projective-planar graphs with girth at least 12.

Keywords: triangle-free graph, circular (k, d)-coloring, projective-planar
graph.

1. Introduction

A circular (k, d)-coloring of a graph G, introduced by Vince [9], is a map ϕ :
V (G) −→ {0, . . . , k − 1} such that d ≤ |ϕ(u) − ϕ(v)| ≤ k − d for every edge
uv ∈ E(G). Such a coloring is “circular” in the sense that we may view the k
colors as points on a circle, where the colors on adjacent vertices must be at least
d positions apart on the circle. Note that a circular (k, 1)-coloring is an ordinary
proper k-coloring.

Clearly, G has a circular (2t+1, t)-coloring if and only if it has a homomorphism
into the cycle C2t+1. A relaxation for planar graphs of a conjecture of Jaeger [5] on
nowhere-zero flows states the following:

Conjecture 1. For every positive integer t, every planar graph with girth at least
4t has a circular (2t + 1, t)-coloring.
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When t = 1, Conjecture 1 reduces to Grötzsch’s Theorem. The conjecture is
sharp if true, as shown by DeVos [10].

Nešetřil and Zhu [7] and Galuccio, Goddyn, and Hell [4] proved a relaxation of
Conjecture 1 with girth at least 10t− 4, which bound was improved by Zhu [11] to
8t−3. Recently, Borodin, Kim, Kostochka, and West [1] further lowered this bound
to 20t−2

3 .
One of results in the present paper is a partial step (for t = 2) towards Conjec-

ture 1:

Theorem 2. If G is a planar graph G with girth at least 12, then G has a circular
(5, 2)-coloring.

By mad(G) denote the maximum average degree of all subgraphs of G. This is
a conventional measure of sparseness of arbitrarily graphs (not necessarily planar).
For planar graphs, the sparseness is usually expressed in terms of girth; the girth
g(G) of G is the minimum length of cycles in G.

The following is an easy application of Euler’s formula |V | − |E|+ |F | = 2:

Remark 3. Every plane graph G with girth g satisfies mad(G) < 2g
g−2 .

Indeed,

g(G)− 2
2

2|E| − g(G)|V |+ 2|E| − g(G)|F | =

=
∑

v∈V

(g(G)− 2
2

d(v)− g(G)
)

+
∑

f∈F

(r(f)− g(G)) = −2g(G).

Thus, a planar graph G with a large girth has a low mad(G). On the other hand,
a nonplanar graph G may have arbitrarily large g(G) and mad(G), as follows from
the Erdös theorem [3] on the existence of k-chromatic graphs with arbitrarily large
girth.

Often, coloring theorems on planar graphs can be extended to arbitrary graphs.
In particular, the result in [1] reads as follows:

Theorem 4. Every graph G with girth at least 6t− 2 and mad(G) < 2 + 3
5t−2 has

a circular (2t + 1, t)-coloring.

Our main result improves the special case t = 2 of Theorem 4:

Theorem 5. Every triangle-free graph G with mad(G) < 12
5 has a circular (5, 2)-

coloring.

It follows from Remark 3 that Theorem 5 implies Theorem 2; i.e., it proves the
cyclic (5, 2)-colorability of plane graphs with girth at least 12, whereas Theorem 4
can be applied only to plane graphs of girth at least 13.

Note that the case t = 2 in Conjecture 1 deserves attention because the case
t = 2 of the general conjecture by Jaeger [5] on nowhere-zero flows implies Tutte’s
5-Flow Conjecture [8] (see [6, p. 209]).

We would like to mention a novel technical feature of the proof of Theorem 5,
which perhaps could be used in further research; namely, the global character of
discharging: portions of charge in our proof are sometimes sent from vertices to
arbitrarily remote vertices. Note that in [1] charge is also moved far away but
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only along paths consisting solely of vertices with degree 2. The first example of a
nontrivial global discharging is given in the paper [2] on oriented colorings.

Clearly, a triangle does not admit a circular (5, 2)-coloring. Also note that the
bound on average degree in Theorem 5 is sharp.

Indeed, consider the following graph GD. It has adjacent vertices a, b and paths
through 2-vertices: aazz, aaww, bbzz, bbww, and wxyz. So, mad(GD) = 12

5 . Suppose
GD has a (5,2)-coloring ϕ. W.l.o.g., we can assume that ϕ(a) = 0, ϕ(b) = 2. Due
to paths aaww and bbww, the only possible color for w is 1. The same is true for z.
However, then we cannot color both of x and y.

2. Proof of Theorem 5

Let G be a counterexample to Theorem 5 with the fewest edges. Since mad(G) <
< 12

5 , we have ∑

v∈V

(5d(v)− 12) < 0, (1)

where V is the set of vertices of G and d(v) is the degree of vertex v.
Let the charge µ(v) of each vertex v of G be 5d(v)− 12. Note that the charge of

2-vertex is −2, the charge of 3-vertex is 3, for 4-vertex it is 8, etc.
We shall describe a number of structural properties of G which make it possible

to vary the charges so that the new charge of every vertex becomes nonnegative.
Since the sum of charges does not change, we shall get a contradiction with (1),
which will complete the proof of Theorem 5.

2.1. Basic properties of the minimal counterexample.

Lemma 1. δ(G) ≥ 2. ¤

Lemma 2. G has no 4-cycle wxyz, where d(w) = 2. ¤

Proof. We delete the edges incident with w, color the graph obtained, and color w
the same as y. ¤

In what follows, by k-thread we mean a path consisting of precisely k vertices of
degree 2.

Lemma 3. If an end vertex of a k-thread P , where k ≤ 3, is colored then the other
end of P gets 3− k forbidden colors along P .

Proof. Let v0, v1, . . . , vk, vk+1, k ≤ 3, be a k-thread, where v1, v2, . . . , vk are vertices
degree 2, while v0 and vk+1 have degree at least 3. Let α be the color of vertex v0.
Note that v1 has two colors (α+2 and α−2) admissible from v0, while v2 has three
colors (α− 1, α and α + 1), and for v3 all colors are admissible except for α. ¤

Corollary 4. G has no ≥ 3-thread.

Proof. We delete an edge between the 2-vertices v1, v2, v3 of such a path, take a
circular coloring of the graph G′ obtained (clearly, mad(G′) ≤ mad(G)), discolor
the 2-vertices and color them in this order: v3, v2, v1. ¤

In what follows, while proving the reducibility of configurations, we will simply
delete vertices, color the graph G′ obtained, since mad(G′) ≤ mad(G) will always
hold, and extend a coloring of G′ to G.
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Corollary 5. If the end vertices of a 2-thread are colored differently then its 2-
vertices can be colored. ¤

Lemma 6. If an end vertex of an edge has two admissible colors, while its other
end vertex has either three or two nonconsecutive admissible colors, then one can
choose a color at every end vertex so that the two colors differ by 2 (mod 5). ¤

Corollary 7. If an end vertex of a 1-thread has either three or two nonconsecutive
admissible colors, while its other end vertex is already colored, then one can find an
admissible color so that the 2-vertex of this path can be colored. ¤

Lemma 8. If the vertices of 1-thread P = abc have lists A,B, C of admissible
colors, then P can be colored in each of the following cases:

(i) |A| ≥ 1, |B| ≥ 5, |C| ≥ 3,
(ii) |A| ≥ 1, |B| ≥ 4, |C| ≥ 4,
(iii) |A| ≥ 2, |B| ≥ 3, |C| ≥ 4,
(iv) |A| ≥ 2, |B| ≥ 4, |C| ≥ 3,
(v) |A| ≥ 3, |B| ≥ 3, |C| ≥ 3.

Proof. In cases (ii) and (v) we first color vertices a and b using Lemma 6, then we
can color c. In the other cases, we first erase the colors forbidden for b along ab;
then use Lemma 6 for coloring b and c, and then we can color vertex a. ¤

Lemma 9. If the vertices of 5-cycle C = uwpz′t have lists U,W,P, Z ′, T of admis-
sible colors, where |P | = |T | = 5, then C can be colored in each of the following
cases:

(i) |U | ≥ 4, |W | ≥ 4, |Z ′| ≥ 4,
(ii) |U | ≥ 4, |W | ≥ 5, |Z ′| ≥ 3,
(iii) |U | ≥ 4, |W | ≥ 3, |Z ′| ≥ 5,
(iv) |U | ≥ 5, |W | ≥ 3, |Z ′| ≥ 4.

Proof. (i) Observe that any admissible color at z′ brings two restrictions to each of
the vertices w, u, so that each of them is left with at least two admissible colors.
By properly choosing a color for z′, we can leave w with either three or two non-
consecutive colors. Then w and u can be colored by Lemma 6. Indeed, suppose α
is forbidden for z′, while β, at w. We first try to color z′ with α + 2. We are done
unless w has forbidden colors β +1, β +2 or β +3, β +4. In the first case we color z′

with α+3; in the second, with α+1. Then w has nonconsecutive admissible colors
β + 1, β + 4, as desired.

(ii) We first color z′, then u and w by Lemma 6, and finally, p and t.
(iii) We first color u and w.
(iv) Is equivalent to (ii). ¤

Lemma 10. If the vertices of 5-cycle C = uwptz have lists U,W,P, T, Z of admis-
sible colors, where |P | = |T | = 5, then C can be colored in each of the following
cases:

(i) |W | ≥ 4, |U | ≥ 4, |Z| ≥ 4,
(ii) |W | ≥ 5, |U | ≥ 3, |Z| ≥ 4,
(iii) |W | ≥ 3, |U | ≥ 5, |Z| ≥ 4,
(iv) |W | ≥ 3, |U | ≥ 4, |Z| ≥ 5.
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Proof. (i) Observe that any admissible color at w leaves three colors at z along
wptz. To apply Lemma 6, it suffices to have two colors at u. Suppose α is forbidden
for u, then either α or α + 1 is suitable.

(ii)–(iv) Follow by Lemma 9. ¤
By (k1, k2, . . .)-vertex we mean a vertex that is incident with k1-, k2-, . . . threads.

Lemma 11. G has no (≥ 1, 2, 2)-vertex.

Proof. Let v be a (≥ 1, 2, 2)-vertex. We delete v and 2-vertices of the paths incident
with it. By Lemma 3, v has 2 restrictions along the 1-thread and 1 restriction along
every 2-thread. It follows that we can find a color for v which allows a circular
5-coloring of 2-vertices of the paths incident with v. ¤

Lemma 12. G has no cycles that consists of (≥ 1,≥ 1,≥ 1)- and 2-vertices.

Proof. Suppose the contrary, and let C be the shortest among such cycles. Let
v1, v2, . . . , vk be the vertices of degree 3 in C in the clockwise order. Note that two
paths incident with each vi belong to C, while the third, outside, path cannot end
in C due to Lemma 2 and the minimality of C. By wi denote the 2-vertex not in
C that is adjacent to vi, where 1 ≤ i ≤ k, and let si be the vertex different from vi

and adjacent to wi. We delete all the vertices of C along with all the wi, and color
the graph obtained.

Let si be colored with αi. According to Lemma 3, vi has 3 colors, αi− 1, αi and
αi + 1, which are admissible from the outside; i.e., for each of them used at vi we
can find a suitable color for wi. It remains to color all vi’s with those admissible
colors so that we could color the 2-vertices of C itself. We shall prove this fact for
C having arbitrary length.

Observe that 3-vertices of C can be joined both by 1-threads and also by 2-
threads.

Case 1. The 3-vertices in C are joined by 1-threads only.
Subcase 1.1. There are two consecutive 3-vertices in C, say v1, v2, such that their

central colors α1 and α2 differ by at most 1.
Then α1 belongs to the triple of colors admissible for v2. We color v2 with α1.

Then, using Corollary 7, we color v3 so that the 2-vertex of C that lies between v2

and v3 could be also colored. Similarly we color C until v1. Since none of the colors
admissible at v1 differs from the color α1 of the vertex v2 more than by 1, we can
now color the 2-vertex between v1 and v2.

Subcase 1.2. There are three consecutive 3-vertices in C, say v1, v2, v3, such that
α1 = α, α2 = α + 2, and α2 = α + 4. Then we color v3 with α + 3 and go along
the cycle until vk. Since c(v3) = α + 3 and c(s2) = α + 2, we have two choices for
v2: α + 2 or α + 3. Thus, v2 forbids for v1 only color α, while s1 forbids α + 2 and
α + 3. Hence, α + 1 and α + 4 are allowed for v1, so that at least one of them does
not contradict any color of vk.

Subcase 1.3. All si’s are colored alternatively with α and α + 2. Then we color
all vi’s with α + 1.

Case 2. C has a 2-thread, say, v1xyv2.
Let, for example, v1 have admissible colors 0, 1, 2. If v2 has the same admissible

colors, then we color v2 with 1 and delete 1 from the list of colors admissible for
v1; otherwise we color v2 with a color different from 0, 1, 2. Then we color cycle C
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clockwise, using Corollaries 5 and 7. Note that when we color v1, there is no conflict
with vertex v2. ¤

Lemma 13. Let P be a path s′0y0x0v0x1v1x2 . . . vkxk+1vk+1, where v1, v2, . . . , vk

are (1, 1, 1)-vertices, v0 is a (2, 1, 1)-vertex, and xi’s and y0 are 2-vertices. Let wi be
the 2-vertex not in P that is adjacent to vi and si be the vertex different from vi and
adjacent to wi. If si’s and s′0 are colored then vertex vk+1 gets just one restriction
along P .

Proof. Observe that Lemma 13 extends the case k = 2 of Lemma 3. So, v0 has 2
restrictions from s0 (along 1-thread), and 1 restriction from s′0 (along 2-thread).
Hence, there exist two admissible colors for vertex v0 such that for any color chosen
at v0, we can always color the 2-vertices w0, x0, y0. Having two admissible colors
for v0, we have only one restriction at v1 that comes from v0. Along with the two
restrictions from s1, there are two admissible colors left for v1 (for any color chosen
at v1, we can always color v0 and the 2-vertices w1 and x1). This way, vk+1 will get
one restriction along P . ¤

Lemma 14. G has no path v0x1v1x2 . . . xk+1vk+1, where v1, v2, . . . , vk are (1, 1, 1)-
vertices, v0 and vk+1 are (2, 1, 1)-vertices and xi’s are 2-vertices.

Proof. Clearly, Lemma 14 extends Lemma 11 (with k = −1). Suppose such a path
P exists. By Lemma 12, v0 and vk+1 are different. By s′0 and s′k+1 denote the ends
of 2-threads that are incident with v0 and vk+1, respectively. It is not excluded that
s′0 = s′k+1, but due to Lemma 12, we have s′0 6= vk+1 and v0 6= s′k+1. It also follows
from Lemma 12 that vertices s0, s1, . . . , sk+1 do not belong to P . We assume that
path P is embedded into a path P ′ = y0x0v0x1v1x2 . . . xk+1vk+1xk+2yk+2, where
x0, y0, xk+2, yk+2 are 2-vertices.

We delete from G all vertices of P ′ along with all wi’s and color the graph
obtained. By Lemma 13, vk+1 gets one restriction along P ′. By Lemma 3, vk+1 gets
one restriction from s′k+1 and two restrictions from sk+1; i.e., vk+1 can be colored.
Then we color the vertices of P with admissible colors in the opposite order, and
finally we color the 2-vertices of P ′ and all the wi’s. ¤

2.2. Initial rules of discharging and their consequences.

R1: Every 2-vertex that belongs to a 1-thread gets charge 1 from its end vertices,
while 2-vertex that belongs to 2-thread gets charge 2 from the neighbor vertex of
degree greater than 2.

Note that after applying R1, the charge of every 2-vertex vanishes, while the
charges of (2,1,1)- and (2,2,0)-vertices are equal to −1 and the charges of the other
vertices are nonnegative.

We now introduce the concept of sponsor as follows. Every (2,1,1)-vertex v0 gets
a feeding path FP = v0x1v1x2 . . . xk+1vk+1, where all v1, . . . , vk are (1,1,1)-vertices,
whereas vk+1 is not; moreover, FP is a shortest path with these properties. Such
a path exists due to the finiteness of G combined with Lemma 12. By Lemma 14,
vertex vk+1 is not a (2,1,1)-vertex. Then vk+1 is called the sponsor for the (2,1,1)-
vertex v0. It also follows from Lemma 14 that the feeding paths of any two different
(2,1,1)-vertices have no (1,1,1)-vertex in common, which implies that at most one
feeding path enters any 1-thread of any sponsor.
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R2: Every (2,1,1)-vertex gets charge 1 along the feeding path from its sponsor.

After applying R2, the charge of every (2,1,1)-vertex vanishes, the charge of
every (2,2,0)-vertex is −1, while the charges of all other vertices, except for (2,1,0)-
vertices that are sponsors and (1,1,0)-vertices that are double sponsors (entered by
two feeding paths) are nonnegative.

Indeed, if d(v) ≥ 4 then every path takes away from v at most two units of charge
by R1 and R2 (note that it takes precisely two only in the cases of 2-threads or those
1-threads that belong to a feeding path because feeding paths do not branch), while
5d(v)− 12 ≥ 2d(v). But if d(v) = 3 then it suffices to observe that (1,1,1)-vertices
have charge 0, while any other 3-vertex, except for (2,1,1)-vertex, is incident with a
0-thread and therefore, having initial charge 3, can end up with a negative charge
only if each of its two other paths takes away two units of charge.

A path that takes away two units of charge (i.e. being either a 2-thread or a
1-thread that belongs to a feeding path), is called loaded.

Lemma 15. If all the boundary vertices of a loaded path P are colored then its end
vertex gets just one restriction along P .

Proof. Follows directly from Lemmas 3 and 13. ¤

Let P = s′0y0x0v0x1v1x2 . . . vkxk+1vk+1 be a loaded path going out of an over-
loaded vertex vk+1, where v0 is a (2,1,1)-vertex, v1, . . . , vk are (1,1,1)-vertices, while
x0, . . . , xk and y0 are 2-vertices. Then 2-vertices not from P adjacent to vi, where
0 ≤ i ≤ k, are denoted by wi, while a vertex adjacent to wi and different from vi,
by si. Vertex s′o and all si’s will be called the boundary vertices of the loaded path
P ; in particular, s′o will be called terminal, while all si’s, side vertices. Also, the
(1,1,1)-vertices v1, . . . , vk will be called internal for P . If a loaded path is simply
a 2-thread, then this corresponds to the case k = −1, when it has neither internal
nor side vertices.

Lemma 16. Let the terminal vertex of a loaded path L1 be the (2, 1, 1)-vertex for
another loaded path L2. Suppose L2 does not degenerate into 2-thread and all the
side vertices of paths L1, L2 are colored. Then the end vertex of L2 can get no
restrictions along L2 at price that every 3-vertex of L1 gets two restrictions along
L1.

Proof. Let a be the (2,1,1)-vertex for the (feeding) path L2, and let b be terminal
vertex of L2 that belongs to L1. Let A be the triple of admissible colors at a left
by the side vertex. Let B be the set of admissible colors at b. We erase from B the
two extreme colors in A and erase the central color from A.

Now observe that we can color path L2 in the last place, from the sponsor to
a, whatever color of vertex b. Indeed, now a has no restrictions along the 2-thread
from b, so that it can be colored in the last place due to Corollary 5 since it has
either three or two nonconsecutive admissible colors. In the same fashion, the whole
path L2 can be colored by Corollary 7 from the beginning to end. Thus, L2 does
not impose restrictions to the choice of color on its initial vertex.

As for L1, we have nothing to prove if L1 is a 2-thread. If L1 is a feeding path, then
b has at least one admissible color. The next 3-vertex of L1 gets three admissible
colors from its side vertex and two restrictions from b, and so can be colored; etc.
¤
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A 3-vertex is called overloaded if it is incident with a 0-thread and two loaded
paths.

Lemma 17. G has no edge between overloaded vertices.

Proof. Let u and w be adjacent overloaded vertices incident with loaded paths P1, P2

and P3, P4, respectively. Recall that no two feeding paths can have a (1,1,1)-vertex
in common due to Lemma 14. In particular, this implies that neither u nor w can
be a boundary vertex for any Pi. Indeed, then a side path of Pi belongs to another
feeding path Pj , which is impossible.

Paths P3 and P4 at w, as well as paths P1 and P2 at u, are called related. We
say that paths Pi, Pj are closed on each other if the terminal vertex of Pi is the
(2,1,1)-vertex of Pj .

We delete u, w, internal vertices of P1, P2, P3, P4 and all the other 2-vertices of
the incident 1-threads.

Case 1. There are no closings between unrelated paths.
By Lemmas 13 and 16, each of u, w gets two restrictions along corresponding

P1, P2, P3, P4, and we are done by Lemma 6.

Case 2. P1 is closed with P3.
With the same argument as in Case 1, we see that u and w have lists of admissible

colors of the following cardinalities: (≥ 1,≥ 5); (≥ 2,≥ 4); (≥ 3,≥ 3). ¤
Corollary 18. In particular, G has no two adjacent (2, 2, 0)-vertices u, w.

2.3. Final discharging.

R3: Every overloaded vertex gets charge 1 from the end of incident 0-thread.

By Lemma 17, applying Rule R3 does not result in a collision; so its remains to
prove that now every vertex has a nonnegative charge.

Suppose the contrary; i.e., the charge of u is negative. Then u must be adjacent
to an overloaded vertex w. It is also clear that d(u) = 3, since 5d(u)− 12 ≥ 2d(u)
whenever d(u) ≥ 4. But since u sends charge 1 along every edge uw, it follows that
it sends 2 along one of the two other paths, P2, and sends 1 along the other (it
cannot send 2 along each of them since it is not overloaded due to Lemma 17). The
path, P1, that takes charge 1 from u, is either a 1-thread utz′ (in which case z′ is
considered as a side vertex of P1) or 0-thread (an edge) that leads to an overloaded
vertex z, in which case the loaded paths going out of z are denoted by P11 and P12.
By P3 and P4 we denote the loaded paths going out of w.

Let us prove that such an edge uw is impossible; this will complete the proof of
Theorem 2. We proceed along the lines of the proof of Lemma 17.

Note that since G has neither triangles nor 4-cycles incident with a 2-vertex due
to Lemma 2, it follows that while considering possible closings among loaded paths
we should concern only about creating cycles of lengths at least 5.

Case 1. P1 is 1-thread.

Subcase 1.1. No boundary vertex of paths P1, P2, P3, P4 coincides with u,w or
an internal vertex of paths P2, P3, P4.

We delete u, w, the internal vertices of paths P2, P3, P4, and also the 2-vertices
of paths P1, P2, P3, P4. Now u gets 2 + 1 restrictions from P1, P2, and w gets 1 + 1
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restrictions from P3, P4. Hence, we can first color u and w by Lemma 6, and then
color paths P1, P2, P3, P4 from their beginnings to ends.

Subcase 1.2. Vertex z′ is internal for at least one of paths P2, P3, P4.
Suppose z′ belongs to one of the feeding paths Pi ∈ {P2, P3, P4}. Since Pi is the

shortest and due to Lemma 2, it follows that Pi starts at w and reaches z′ through
a 1-thread wpz′. We can assume that Pi is P4.

If paths P2, P3, P4 are not closed between each other, then each of them brings
one restriction to vertices u, w and z′, respectively. It remains to color the vertices
of 5-cycle z′pwut; this follows by (i) of Lemma 9. If paths P2, P3, P4 are closed
between each other, the proof follows by (ii)–(iv) of Lemma 9.

Subcase 1.3. Vertex z′ is internal for none of paths P2, P3, P4.
Now consider possible closings between paths P2, P3, P4. If P2 is closed with P3

then, as above, either P3 is ”destroyable” and P2 is colorable, in which case w has
only one restriction (along P4) and thus can be colored after u, or vice versa P2 is
”destroyable” and P3 is colorable, in which case w has three restrictions while u has
two restrictions, so we are done by Lemma 6.

To complete the proof of Case 1, it suffices to assume that P4 is closed with P3.
By Lemma 16, w has three admissible colors, while u has two, so we are done again
by Lemma 6.

Case 2. P1 is 0-thread.

Delete w, u, z, the internal vertices of paths P3, P4, P11, P12, and their 2-vertices.
Subcase 2.1. There is a 2-thread P between w and z.
Then we have paths P2, P4, P12 (P11 = P3 = P ). If P2, P4, P12 are independent,

then each brings one restriction at u, w and z, respectively, by Lemma 13, and we
are done by (i) of Lemma 10. If these paths are closed, then we are done by the
rest of Lemma 10 combined with Lemma 16. Observe that the case then there are
two 2-threads between w and z is even easier because one can use the same colors
for the 2-vertices of the second of them as for the first.

Subcase 2.2. There is no 2-thread P between w and z.
Whatever closings among paths P2, P3, P4, P11, P12, the numbers of admissible

colors at w, u, z are sufficient to apply Lemma 8.

So, after discharging according to Rules R1–R3, the charges of all vertices are
nonnegative, which contradicts (1). This completes the proof of Theorem 5.
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