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PLANAR GRAPHS WITHOUT TRIANGULAR 4-CYCLES
ARE 4-CHOOSABLE

O. V. BORODIN, A. O. IVANOVA

Abstract. It is known that not all planar graphs are 4-choosable (Mar-
git Voigt, 1993), but those without 4-cycles are 4-choosable (Lam, Xu
and Liu, 1999). We prove that all planar graphs without 4-cycles adjacent
to 3-cycles are 4-choosable.

1. Introduction

As proved by Thomassen [9], every planar graph is 5-choosable, but Margit
Voigt [11] constructed planar graphs that are not 4-choosable. Lam, Xu and Liu [8]
proved that every planar graph without 4-cycles is 4-choosable.

The purpose of this paper is to provide a broader sufficient condition for the
4-choosability.

A cycle C is triangular if it has a common edge with a triangle T such that
T 6= C. Note that the well-known Steinberg’s conjecture (1976) that every planar
graph without 4- and 5-cycles is 3-colorable was strengthened by Borodin, Glebov,
Jensen and Raspaud [4] by asking whether every planar graph without triangular
4- and 5-cycles is 3-colorable. A relaxation of this Novosibirsk 3 Color Conjecture
was proved in [4]: forbidding triangular cycles of length from 4 to 9 implies the
3-colorability.

Our main result is

Theorem 1. Every planar graph without triangular 4-cycles is 4-choosable.
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Recall that a graph G is called k-choosable if for any sets L(v) of cardinality
at least k at its vertices, one can choose a color for each vertex from its list L(v)
so that the colors of every two adjacent vertices were different. This extension of
coloring was introduced by Vizing [10] and, independently, by Erdős, Rubin and
Taylor [5] and has been intensively studied ever since.

Let δ(G) be the minimum degree of graph G. It follows from a result in [2] that
if G is planar and has no triangular 4-cycles then δ(G) ≤ 4. By f3

5 denote a 5-face
adjacent to a 3-face. The proof of Theorem 1 is based on the following

Theorem 2. Every connected planar graph G with δ(G) = 4 and no triangular
4-cycles has an f3

5 whose all vertices have degree 4.

This is an extension of a similar result in [8], where all 4-cycles were forbidden
rather than only triangular ones.

2. Deducing Theorem 1 from Theorem 2

Let G be a plane graph, and let V (G), E(G) and F (G) be its sets of vertices,
edges and faces, respectively. We consider only simple graphs. Denote the degree of
a vertex v by d(v) and the size of a face f by r(f); a k-vertex is one of degree k.
We write ≥ k-vertex for a vertex of degree at least k, etc. Similar notation is used
for faces; triangle is a synonym for 3-cycle. An edge is called triangular if it belongs
to a 3-face. By a chord in a cycle C we mean an edge joining two nonconsecutive
vertices of C.

Gallai’s theorem [6] says that in every critical k-chromatic graph, every block
of the subgraph induced by (k − 1)-vertices is either a cycle or a complete graph.
Erdős, Rubin and Taylor [5] extend Gallai’s theorem to the case of choosability
without changes (see also Corollary 6 in [3]). More generally, Borodin [1] (see also
Theorem 6 in [3]) gives a necessary and sufficient condition for a connected graph
to be nonchoosable w.r.t. a given list L such that |L(v)| ≥ d(v) for each vertex v.

Suppose G is a counterexample to Theorem 1 with the minimum number of
vertices. Clearly, G is connected and δ(G) ≥ 4. Since δ(G) ≤ 4 by a result in [2],
our G satisfies the hypothesis of Theorem 2.

Thus G has a 6-cycle C∗6 = x1 . . . x6 with a triangular chord x2x6, which corre-
sponds f3

5 . Note that the subgraph C∗6 induced by G on {x1, . . . , x6} has precisely
7 edges: this follows from the absence of triangular 4-cycles in G. Differently put,
each of x2 and x6 is joined to V (G) − {x1, . . . , x6} by precisely one edge, whereas
each x1, x3, x4, and x5, by two edges.

One readily sees that C∗6 is neither a cycle nor a complete graph; this contradicts
the minimality of G due to the results in [1, 5].

3. Proof of Theorem 2

Suppose G is a counterexample to Theorem 2. Euler’s formula |V (G)|−|E(G)|+
|F (G)| = 2 for G may be rewritten as

∑

v∈V (G)

(d(v)− 4) +
∑

f∈F (G)

(r(f)− 4) = −8,

where F (G) is the set of faces in G.
We set the initial charge ch(x) of every x ∈ V (G) ∪ F (G) of G to be either

d(x)− 4 or r(x)− 4, respectively. Clearly,
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∑

x∈V (G)∪F (G)

ch(x) = −8.

We now use a discharging procedure, leading to the final charge ch∗, defined by
applying the following rules R0–R3, in which f is a ≥ 4-face with the boundary
vertices v1v2 . . . (clockwise):

R0. Each 3-face receives 1/3 from each adjacent face.

R1. Suppose f is adjacent to two 3-faces at v2, d(v1) ≥ 5, d(v2) = 4, and
d(v3) ≥ 5. Then f sends charge 1/6 across v2 to the other ≥ 4-face incident with
v2.

R2. If d(v2) ≥ 5 and f is adjacent to two 3-faces at v2, then f gets charge 2/3
from v2.

R3. Suppose d(v2) ≥ 5, v1v2 belongs to a 3-face, while v2v3 does not. Then f
gets from v2:

(a) 1/6 if d(v3) ≥ 5;
(b) 1/3 if d(v3) = 4 and v3v4 belongs to a 3-face.

Since the above procedure preserves the total charge, we have:
∑

x∈V (G)∪F (G)

ch∗(x) = −8.

The rest of the proof consists in showing that ch∗(x) ≥ 0 whenever x ∈ V (G)∪F (G),
with an obvious final contradiction.

3.1. Checking that new charge of v ∈ V (G) is nonnegative. Let v1, v2 . . . be
the neighbors of v in a cyclic order.

If r(v) = 4 then ch∗(v) = ch(v) = 0 since such vertices do not participate in
R0–R3.

Now suppose d(v) = 5. If v participates in R2, giving away 2/3 to a ≥ 4-face
v1vv2 . . . between two triangles, then v gives to the other two ≥ 4-faces at most 1/3
in total by R3: either 1/6 + 1/6 (if d(v4) ≥ 5) or 1/3 + 0 (if d(v4) = 4 and v4 is
incident with a 3-face).

If v does not participate in R2, then it can only give charge of at most 1/3 to at
most two ≥ 4-faces by R3, so that ch∗(v) ≥ ch(v)− 2× 1/3 > 0.

Finally, suppose d(v) ≥ 6. Note that v can afford giving all incident faces a
charge of at least 1/3 on the average, for d(v)− 4− d(v)/3 = 2(d(v)− 6)/3 ≥ 0. So,
we are done unless v participates in R2.

However, every donation of 2/3 by v to a ≥ 4-face f2 can be looked at as giving
1/3 to that face and giving 1/6 to each of 3-faces f1 and f3 that are clock- and
counterclockwise neighbors of f2 at v. As a result of this averaging, every face takes
away from v at most 1/3 = 2/3− 2× 1/6 = 2× 1/6.

3.2. Checking ch∗(f) ≥ 0 whenever f ∈ F (G). Let v1, v2 . . . be the vertices
incident with f in a cyclic order. Recall that f can only loose charge of 1/3 by R0
and of 1/6 by R1.

If r(f) = 3 then ch∗(f) = 3− 4 + 3× 1/3 = 0 by R0. If r(f) = 4 then ch∗(f) =
ch(f) = 0 since such faces do not participate in R0–R3.

Now suppose r(f) = 5.



78 O. V. BORODIN, A. O. IVANOVA

CASE 1. f is incident with five 3-faces. Thus R0 leaves f with a charge of
5− 4− 5× 1/3 = −2/3.

If f is incident with a ≥ 5-vertex then we are done, unless f participates at
least once in R1, giving away 1/6, in which case f gets another 2/3 by R2 and
ch∗(f) ≥ 1− 5× 1/3 + 2× 2/3− 3× 1/6 > 0.

If f is completely surrounded by 4-vertices, then due to the absence of f3
5 in G,

we have ch∗(f) ≥ 1− 5× 1/3 + 5× 1/6 > 0 by R1.

CASE 2. f is incident with precisely four 3-faces. Now R0 leaves f with a charge
of 5− 4− 4× 1/3 = −1/3. Let edge v1v2 be not incident with a 3-face.

If d(v1) ≥ 5 and d(v2) ≥ 5, then f gets 2 × 1/6 = 1/3 from v1 and v1 by R3a.
If d(v1) = 4 and d(v2) ≥ 5, then f gets 1/3 from v2 by R3b. In both cases, we are
already done, unless f donates at least once 1/6 by R1. In this case, it suffices to
observe that f at least once gets 2/3 by R2, whereas it donates 1/6 by R1 at most
twice, so that ch∗(f) > 0.

Now suppose d(v1) = d(v2) = 4. If at least one of v3, v4, v5 has degree at least 5,
then f has a superfluous 1/3 after applying R0 and R2. Again, ch∗(f) > 0 since R1 is
applicable to f (as a donator) at most once. Finally, suppose d(v1) = . . . = d(v5) =
4; then due to the absence of f3

5 in G, we have ch∗(f) ≥ 1− 4× 1/3 + 3× 1/6 > 0
by R1 applied to f as a receiver.

CASE 3. f is incident with at most three 3-faces. This time, R0 leaves f with a
nonnegative charge. Suppose f makes a donation of 1/6 by R1; say, via v2. Since
such a donation may be done only once, it would be suffice for f to get at least 1/6
by R2 or R3. Suppose otherwise; then none of v3v4 and v5v1 belongs to a 3-face due
to R2 and hence d(v4) = d(v5) = 4 due to R3a. Now, we see from R3b that v4v5 is
not incident with a 3-face, which implies that ch∗(f) ≥ 1− 2× 1/3− 1/6 > 0.

Finally, suppose r(f) > 5. Since r(f) − 4 − r(f)/3 = 2(r(f) − 6)/3 ≥ 0, an
argument similar to that given above in Case 3 of r(f) = 5 works. Namely, if v2

causes troubles and v3v4 belongs to a 3-face, then v3 brings additional 2/3 to f ,
and 1/6 of this 2/3 may be assigned to v2. Otherwise, the nontriangular edge v3v4

saves 1/3 from the expenditure of f caused by R0, so again, 1/6 may be attributed
to v2.

This completes the proof of Theorem 2.
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