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ISOSPECTRAL FINITE SIMPLE GROUPS
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Abstract. The spectrum of a finite group is the set of its element
orders. Two groups are called isospectral if their spectra coincide. It is
known that PSp6(2) is isospectral to PΩ+

8 (2) and Ω7(3) is isospectral to
PΩ+

8 (3). In the present paper we prove that there are no other pairs of
non-isomorphic isospectral finite simple groups. In particular, we prove
that there are no three finite simple groups with the same spectrum.
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The spectrum ω(G) of a finite group G is the set of its element orders. Two
groups are called isospectral if their spectra coincide. Given a finite group G, we
write h(G) for the number of isomorphism classes of finite groups isomorphic to G.
A finite group G is called recognizable by spectrum if h(G) = 1.

Let {G,H} be one of the pairs {PSp6(2), PΩ+
8 (2)} and {Ω7(3), PΩ+

8 (3)}. Then
ω(G) = ω(H). Moreover, it is proved in [1, 2] that h(G) = 2, i. e., if K is a finite
group such that ω(K) = ω(G), then either K ' G or K ' H. In this context the
following question naturally arises ([3, Question 16.25]):

Do there exist three pairwise non-isomorphic finite nonabelian simple groups
with the same spectrum?

In the present paper we prove that there are no pairs of non-isomorphic isospectral
finite simple groups except for the listed above. In particular, we give a negative
answer to Question 16.25.
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The set ω(G) is closed under taking divisors, i.e., if n ∈ ω(G) and d divides n
then d ∈ ω(G). Therefore it is uniquely determined by its subset µ(G) of elements
that are maximal under the divisibility relation. Thus the spectra of finite groups
G and H coincide if and only if µ(G) = µ(H).

Given a finite group G, denote by π(G) the set of all prime divisors of its order
and by exp(G) the period of G. If G is a finite group of Lie type over a field of
characteristic p, then ωp′(G) denotes the subset of ω(G) consisting of all elements
that are not divisible by p.

Theorem 1. Let G and H be finite simple groups such that ω(H) = ω(G) and
H 6' G. Then either {G,H} = {PSp6(2), PΩ+

8 (2)} or {G, H} = {Ω7(3), PΩ+
8 (3)}.

In particular, there are no three pairwise non-isomorphic isospectral finite simple
groups.

Proof. Let G be a finite simple group such that there exists a simple group H non-
isomorphic to G and having the same spectrum as G. Obviously, G is nonabelian.

First, we show that G is not a sporadic group. Indeed, all sporadic groups except
for the group J2 are recognizable by spectrum [4]. Suppose that G = J2. Then
µ(G) = {15, 12, 10, 8, 7} and π(G) = {2, 3, 5, 7} (see [5]). The list of simple groups
K with π(K) = {2, 3, 5, 7} can be found in [6, Table 1]. These groups are Alt7,
Alt8, Alt9, Alt10, PSL2(49), PSU3(5), PSL3(4), PSU4(3), PSp4(7), PSp6(2), and
PΩ+

8 (2). The spectra of Alt7, Alt8, Alt9, and PSL3(4) do not contain 8, hence H
is not one of these groups. The spectra of Alt10, PSU4(3), PSp6(2), and PΩ+

8 (2)
contain 9 (see [5] and [7, Corollaries 3 and 4]). By [7, Corollary 2] the spectrum
of PSp4(7) contains 25 = (72 + 1)/2. The spectrum of PSL2(49) also contains 25.
Finally, µ(PSU3(5)) = {10, 8, 7, 6} (see [8, Corollary 3]). Thus, H 6= J2.

Suppose that G is an alternating group. We show that H is not an alternating
group in this case. By [9, Lemma 2.1] if n > 7, then ω(Altn) 6⊆ ω(Symn−1).
Hence if 6 6 n < m then ω(Altn) is a proper subset of ω(Altm). Obviously, 4 ∈
ω(Alt6) \ ω(Alt5). Thus H is a group of Lie type. It follows from [10, 11] that for
every p ∈ π(H) there exists q ∈ π(H) such that pq 6∈ ω(H). Since ω(H) = ω(G),
this property also holds for G. Let p = 3 and q ∈ π(G) is such that 3q 6∈ ω(G). Then
G is one of the groups Altq, Altq+1, and Altq+2. The alternating groups of such
degrees, except for the group Alt6, are recognizable by spectrum [9, 12]. Suppose
that G = Alt6. Then π(G) = {2, 3, 5}. Using [6, Table 1] we infer that the only
possibility for H is PSU3(3). But 12 ∈ ω(PSU3(3)). Thus G is not an alternating
group.

It remains to consider the case where G and H are groups of Lie type. The
following result is a consequence of [13, Theorem 1.1].

Lemma 1. Let G and H be finite simple groups of Lie type such that ω(G) = ω(H)
and G 6' H. Then one of the following holds:

(a) {G,H} = {PSp2n(q), Ω2n+1(q)} for n > 5 and odd q;
(b) {G,H} = {PSp4(q), PSL2(q2)};
(c) {G,H} ⊆ {PSp6(q), PΩ+

8 (q), Ω7(q)};
(d) {G,H} ⊆ {PSp8(q), PΩ−8 (q), Ω9(q)};
(e) {G,H} = {PSL3(2), PSU3(3)}.

Since PSL3(2) is recognizable, (e) is impossible. If q is a power of a prime p then
p(q+1) ∈ ω(PSp4(q))\ω(PSL2(q2)) by [7, Corollary 2] and [8, Corollary 3]. Hence
(b) is not possible either. By [14, 15] or [7, Theorems 2 and 6], ω(PSp2n(q)) 6=
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ω(Ω2n+1(q)) for n > 2 and odd q. Therefore (a) is impossible. Moreover, the set
{G,H} contains PΩ+

8 (q) in (c) and PΩ−8 (q) in (d).
Let G = PΩ+

8 (q) and H = PSp6(q). By [16, Theorem 5], G contains an element
of order

q4 − 1
(4, q4 − 1)

=
1

(4, q4 − 1)
(q2 + 1)(q + 1)(q − 1).

Let T be a maximal torus of H such that q2 + 1 divides the order of T . By [16,
Theorems 3 and 7], the period of T is equal to [q2 +1, q±1] = (q2 +1)(q±1)/(q2 +
1, q ± 1). If q > 5 or q = 4 then

exp(T ) 6 (q2 + 1)(q + 1) < (q2 + 1)(q + 1)
q − 1

(4, q4 − 1)
,

hereinafter exp(K) denotes the period of а group K. Let q = 5. Then (q2+1, q±1) =
2. So

exp(T ) 6 (q2 + 1)(q + 1)/2 < (q2 + 1)(q + 1) =
1
4
(q2 + 1)(q + 1)(q − 1).

Thus the spectra of groups G and H are different for q > 3. If q = 3 then ω(H) \
ω(G) contains 30 = 3(32 + 1) by [7, Theorems 2 and 9]. If q = 2 then {G,H} =
{PSp6(2), PΩ+

8 (2)}.
Let G = PΩ+

8 (q) and H = Ω7(q). Since ωp′(PSp6(q)) = ωp′(Ω7(q)) by [16,
Theorems 3 and 4], a word-by-word repetition of the previous argument yields that
for q > 3 the spectra of groups G and H are different. If q = 2 then Ω7(2) '
PSp6(2). If q = 3 then {G,H} = {Ω7(3), PΩ+

8 (3)}.
Let G = PΩ−8 (q) and H ∈ {PSp8(q), Ω9(q)} and q is a power of a prime p. By

[7, Theorems 2–4, 6 and 8] we have p(q3 +1)/(2, q−1) ∈ ω(H)\ω(G). The theorem
is proved.
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