СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports http://semr.math.nsc.ru

Том 7, стр. 383-393 (2010)

УДК 515.162.8 MSC 57M25

О ЗАЦЕПЛЕННОСТИ ГАМИЛЬТОНОВЫХ ПАР ЦИКЛОВ В ПРОСТРАНСТВЕННЫХ ГРАФАХ

А. Ю. ВЕСНИН, А. В. ЛИТВИНЦЕВА

ABSTRACT. A pair of disjoint cycles in a graph is said to be hamiltonian if the union of cycles covers all vertices of the graph. It is shown that for each $n \ge 7$ for any spatial embedding of the complete graph K_n there is a hamiltonian pair that forms a nontrivial two-component link.

Keywords: spatial graph, knot, link, hamiltonian cycle.

1. Введение

В работе изучаются пространственные графы, т.е. вложения графов в трехмерное пространство \mathbb{R}^3 . При каждом таком вложении образом простого цикла является узел, а образом множества из нескольких непересекающихся простых циклов – зацепление. Пусть G – конечный граф, а f(G) – его пространственное вложение (т. е. отображение $f: G \to \mathbb{R}^3$ является вложением, которое мы всегда предполагаем конечно-звенным полигональным). Простой цикл γ в G, содержащий все вершины графа, назовем *гамильтоновым*; а пару непересекающихся простых циклов (α, β), объединение которых содержит все вершины графа – *гамильтоновой парой* циклов.

Обозначим через K_n полный граф на n вершинах. Конвей и Гордон в [2] и Закс в [4] доказали следующий результат о зацепленности пар циклов в пространственных вложениях полного графа.

Теорема 1. Любое пространственное вложение графа K_6 содержит нетривиальное двухкомпонентное зацепление.

© 2010 Веснин А.Ю., Литвинцева А.В.

Vesnin, A.Yu., Litvintseva, A.V., On linking of hamiltonian pairs of cycles in spatial graphs.

Работа выполнена при поддержке Федеральной целевой программы, РФФИ (проекты 10-01-00642, 10-01-91056-НЦНИ-а) и интеграционного проекта СО РАН и Ур
О РАН.

Поступила 29 октября 2010 г., опубликована 9 ноября 2010 г.

Кроме того, в [2] доказан следующий результат о заузленности циклов в пространственных вложениях полного графа.

Теорема 2. Любое пространственное вложение графа K_7 содержит нетривиальный узел.

Следовательно, любое вложение полного графа K_n , $n \ge 7$, содержит как нетривиальное двухкомпонентное зацепление, так и нетривиальный узел.

В доказательствах приведенных теорем узел соответствовал гамильтонову циклу в K_7 , а зацепление – гамильтоновой паре циклов в K_6 . Естественно, возникает вопрос о заузленности вложений гамильтоновых циклов и зацепленности вложений гамильтоновых пар циклов для других полных графов. В [1, 3] было получено следующее обобщение теоремы 2:

Теорема 3. При $n \ge 7$ любое пространственное вложение графа K_n содержит нетривиальный узел, являющийся вложением гамильтонова цикла.

Заузленность циклов в пространственных вложениях изучалась не только для полных графов, но и для других классов графов. Так, Шимабара в [5] доказала следующее свойство.

Теорема 4. Любое пространственное вложение полного двудольного графа $K_{5.5}$ содержит нетривиальный узел.

В данной работе, в следствии 1, устанавливается следующее обобщение теоремы 1: при $n \ge 7$ любое пространственное вложение графа K_n содержит нетривиальное двухкомпонентное зацепление, являющееся вложением гамильтоновой пары циклов.

2. Предварительные факты

Пусть D – диаграмма ориентированного 2-компонентного зацепления $L = L_1 \cup L_2$. Обозначим через c_1, \ldots, c_k двойные точки диаграммы D в которых дуги компоненты L_1 встречаются с дугами компоненты L_2 (мы не учитываем двойные точки в которых обе дуги принадлежат одной и той же компоненте). Индексом зацепления 2-компонентного ориентированного зацепления $L = L_1 \cup L_2$ называется величина

(1)
$$lk(L_1, L_2) = \frac{1}{2} \sum_{i=1}^k \varepsilon(c_i),$$

где $\varepsilon(c)$ равно +1 или -1 в соответствии с рис. 1.

РИС. 1. Метки в двойной точке.

Очевидно, если компоненты не зацеплены друг с другом, то индекс зацепления обращается в ноль. Введем характеристику $lk_2(L_1, L_2)$ – индекс зацепления по модулю 2:

(2)
$$lk_2(L_1, L_2) = lk(L_1, L_2) \mod 2.$$

Пусть f(G) – пространственное вложение графа G. Определим величину

(3)
$$w(f(G)) = \left[\sum_{(\alpha,\beta)} lk_2(f(\alpha), f(\beta))\right] \mod 2.$$

где сумма берется по всем гамильтоновым парам циклов (α, β) графа G. Очевидно, что если в f(G) любая гамильтонова пара циклов образует тривиальное зацепление, то w(f(G)) = 0.

Нетрудно найти число гамильтоновых пар циклов в заданном полном графе.

Лемма 1. Обозначим через c_n число гамильтоновых пар циклов в графе K_n , $n \ge 6$. Если n нечетное, то

(4)
$$c_n = \sum_{k=3}^{\lfloor \frac{k}{2} \rfloor} C_n^k \cdot \frac{(k-1)!}{2} \cdot \frac{(n-k-1)!}{2}$$

где $C_n^k = \frac{n!}{k!(n-k)!}$. Если n четное, то полагая n = 2m, имеем

(5)
$$c_n = c_{2m} = \sum_{k=3}^{m-1} C_{2m}^k \cdot \frac{(k-1)!}{2} \cdot \frac{(2m-k-1)!}{2} + \frac{1}{2} C_{2m}^m \cdot \frac{((m-1)!)^2}{4}.$$

В частности, $c_6 = 10$, $c_7 = 105$, $c_8 = 987$, $c_9 = 9576$.

Определим набор канонических диаграмм для произвольного графа G. Начнем со случая когда G является полным графом K_n , $n \ge 4$. Зафиксируем нумерацию 1, 2, ..., n вершин графа K_n . Расположим вершины 1, 2, ..., n последовательно на окружности и соединим их хордами, образовывая правильный *n*-угольник. Будем говорить, что полученные ребра есть ребра 0-го уровня. Далее строим диаграмму за (n - 2) шага.

1-ый шаг: соединим вершину 1 с вершинами 3, 4, ..., n-1 (т. е. с вершинами не смежными с ней на 0-ом уровне). Полученные ребра будем называть ребрами 1-го уровня.

2-ой шаг: проводя линии ниже построенных ребер 0-го и 1-го уровней, соединим вершину 2 со всеми вершинами, с которыми она еще не была соединена ранее, т. е. с вершинами 4,..., *п*. Полученные ребра будем называть ребрами 2-го уровня.

m-ый шаг: проводя линии ниже построенных ребер уровней от 0-го до (m - 1)-го, соединим вершину *m* с теми вершинами, с которыми она не была соединена ранее, т. е. с вершинами $(m+1), \ldots, n$. Полученные ребра будем называть ребрами *m-го уровня*.

(n-2)-шаг: проводя линию ниже построенных ребер уровней от 0-г до (n-3)-го, соединим вершину (n-2) с вершиной n.

Требуя, чтобы на каждом шаге возникающие точки пересечения были кратности два, получим диаграмму вложения графа K_n . Такую диаграмму и соответствующее вложение (точнее, множество эквивалентных вложений) будем называть *каноническими*. Канонические диаграммы графов K_4 и K_5 приведены на рис. 2.

Пусть граф G имеет n вершин, не содержит петель и кратных ребер. Тогда G является подграфом полного графа K_n . Канонической диаграммой графа

Рис. 2. Канонические диаграммы графов K₄ и K₅.

будем называть соответствующую подграфу $G \subset K_n$ поддиаграмму канонической диаграммы полного графа K_n . При этом, очевидно, каноническая диаграмма графа G, отличного от K_n не определяется однозначно и зависит от нумерации вершин графа.

Пример канонической диаграммы графа $K_{3,3,1}$ с такой нумерацией вершин, что множества $\{1\}, \{2, 4, 6\}$ и $\{3, 5, 7\}$ порождают полные подграфы K_1, K_3 и K_3 , привиден на рис. 3.

РИС. 3. Каноническая диаграмма графа $K_{3,3,1}$ и гамильтонова пара циклов $\alpha = (163), \beta = (2547).$

Следующий результат является достаточно известным в теории узлов (см. например, [5]).

Лемма 2. Пусть f(G) и g(G) – два пространственных вложения графа G. Тогда существует D_1 – диаграмма f(G) и существует D_2 – диаграмма g(G)такие, что от D_1 к D_2 можно перейти с помощью изотопий плоскости, замен проходов и переходов в двойных точках, и преобразований Рейдемейстера.

Доказательство. Следует, например, из того, что каждую диаграмму пространственного графа можно привести к канонической.

Пусть G – произвольный граф, содержащий цикл длины три; обозначим порождающие его вершины через a, b и c. Пусть G' – граф, полученный из Gдобавлением новой трехвалентной вершины v, удалением ребер [ab], [bc], [ac],и добавлением ребер [av], [bv], [cv]. Будем говорить, что граф G' получен из G преобразованием $\Delta \to Y$, а G получен из G' преобразованием $Y \to \Delta$ (см. рис. 4).

Роль преобразований $\triangle \rightleftharpoons Y$ при изучении пространственных вложений графов видна из следующего факта, отмеченного Заксом в [4].

Рис. 4. Преобразование $\Delta \rightarrow Y$.

Лемма 3. Пусть G – произвольный граф. Предположим, что G' получен из G преобразованиями $\Delta \rightleftharpoons Y$. Если каждое вложение графа G содержит нетрививиальное зацепление, то и каждое вложение графа G' содержит нетривиальное зацепление.

Семейством графов Петерсена называют множество из семи графов, состоящее из K_6 и графов, полученных из него преобразованиями $\triangle \rightleftharpoons Y$ (см., например, [4]). Очевидно, каждый граф из этого семейства имеет 15 ребер. В частности, семейство Петерсена содержит граф $K_{3,3,1}$. Из теоремы 1 и леммы 3 следует, что любое пространственное вложение графа $K_{3,3,1}$ содержит нетривиальное зацепление.

3. Вложения графа K₆

Прежде чем переходить к обобщению теоремы 1 на случай гамильтоновых пар в произвольном полном графе, напомним ее доказательство [2].

Число гамильтоновых пар циклов в K_6 равно 10 и длина каждого цикла равна трем. Покажем, что величина $w(f(K_6))$ для всех пространственных вложений $f(K_6)$ принимает одно и то же значение. Согласно лемме 2 диаграмму любого пространственного вложение графа K_6 можно преобразовать в диаграмму другого вложения с помощью операций изотопии плоскости, смены проходов и переходов и преобразований Рейдемейстера. Поскольку при изотопиях плоскости и преобразованиях Рейдемейстера индекс зацепления не меняется, то и $w = w(f(K_6))$ не меняется. Посмотрим, что происходит при смене проходов и переходов.

Для каждой пары циклов при смене прохода и перехода в двойной точке величина $lk_2(f(\alpha), f(\beta))$ либо не изменится (если двойная точка получена при пересечении с тем же или смежным ребром, так как такая точка не участвует в суммировании), либо изменится на ±1. В последнем случае, пусть двойная точка возникает при пересечении проекций $f(e_1)$ и $f(e_2)$, где e_1, e_2 – такие ребра в K_6 , что $e_1 \subset \alpha$ и $e_2 \subset \beta$. Очевидно, что при для фиксированных e_1 и e_2 в K_6 имеется лишь две таких гамильтоновых пары (α, β) , что $e_1 \subset \alpha$, а $e_2 \subset \beta$. Поскольку число таких пар четно, величина w не изменится при смене проходов и переходов. Следовательно w на всех вложениях принимает одно и то же значение.

Вычислим эту величину для канонического вложения графа K_6 , приведенного на рис. 5. Переберем все десять вариантов гамильтоновых пар, указав тройки вершин для одного из циклов, скажем α :

(123), (124), (125), (126), (134), (135), (136), (145), (146), (156).

Каждый раз цикл β образован оставшимися вершинами. Как видно из рис. 5, только одна пара циклов, а именно, подчеркнутый вариант $\alpha = (135)$ и $\beta = (246)$ – ребро 24 проходит под 13 и над 35, образует в каноническом вложении

Рис. 5. Каноническая диаграмма графа K_6 и гамильтонова пара $\alpha = (123), \beta = (246).$

нетривиальное зацепление, причем $lk_2(\alpha,\beta) = 1$. В остальных случаях вложения ребер $f(\alpha)$ ненулевого уровня находятся либо на одном, либо на соседних уровнях, и не зацеплены с $f(\beta)$. Это связано с тем, что среди вершин треугольников есть такие, которые являются соседними на 0-ом уровне. Таким образом, для канонического (а следовательно, и для произвольного) вложения графа K_6 величина $w(f(K_6))$ отлична от нуля.

4. Вложения графа К₇

Как показывает следующая лемма, в приведенных в предыдущем параграфе рассуждениях граф K_6 нельзя заменить на граф K_7 .

Лемма 4. Для любого пространственного вложения $f(K_7)$ имеет место равенство $w(f(K_7)) = 0$.

Доказательство. Прежде всего, отметим, что для графа K_7 число гамильтоновых пар циклов равно 105. При этом, в каждой паре длина одного цикла равна трем, а другого – четырем. Отметим, что каждой тройкой вершин цикл длины три определяется однозначно, а каждая четверка вершин задает три цикла (так, четверка вершин $\{1, 2, 3, 4\}$ задает циклы (1234), (1324) и (1342)).

Покажем, что величина $w(f(K_7))$ для всех пространственных вложений $f(K_7)$ принимает одно и то же значение. Воспользуемся леммой 2. Очевидно, что при изотопиях плоскости и преобразованиях Рейдемейстера величина $w = w(f(K_7))$ не меняется. Посмотрим, что происходит при смене проходов и переходов.

(1) Если двойная точка получена при пересечении проекции вложения ребра с самим собой или с вложением ребра из того же цикла, то w не изменится, так как такая точка не участвует в суммировании.

(2) Пусть двойная точка получена при пересечении проекций $f(e_1)$ и $f(e_2)$, где ребра e_1 и e_2 принадлежат разным циклам: $e_1 \subset \alpha$ и $e_2 \subset \beta$. Найдем $h(e_1, e_2)$ – число всех гамильтоновых пар (α, β) таких, что $e_1 \subset \alpha$ и $e_2 \subset \beta$ для зафиксированных e_1 и e_2 . Пусть, для определенности, концами e_1 являются вершины 1 и 2, а концами e_2 – вершины 3 и 4. Если α имеет длину три, то возможны такие пары наборов вершин:

α	(125)	(125)	(126)	(126)	(127)	(127)
β	${3467}$	${3476}$	${3457}$	${3475}$	${3456}$	${3465}$

Если α имеет длину четыре, то возможны такие варианты:

α	$\{1256\}$	$\{1265\}$	$\{1257\}$	$\{1275\}$	$\{1267\}$	$\{1276\}$
β	(347)	(347)	(346)	(346)	(345)	(345)

Очевидно, $h(e_1, e_2) = 36$ – четно. Значит, величина w не меняется при переходе к новой диаграмме. Следовательно, величина $w = f(f(K_7))$ для всех пространственных вложений графа K_7 принимает одно и то же значение.

Вычислим w для канонического вложения графа K₇ (см. рис. 6). Поскольку

Рис. 6. Каноническая диаграмма графа K_7 и гамильтонова пара $\alpha = (135), \beta = (2476).$

в гамильтоновой паре один из циклов имеет длину три, можем считать, что это цикл α. Для него имеется 35 возможностей:

$(123) \\ (134) \\ (145) \\ (156) \\ (167) \\ (167) \\ (123$	$\begin{array}{ccc} (124) & (125) \\ (135) & (136) \\ \hline (146) & (147) \\ \hline (157) \end{array}$	(126) $(127)(137)$	$\begin{array}{c} (234) \\ (245) \\ (245) \\ (256) \\ (267) \end{array} \begin{array}{c} (23) \\ (24) \\ (25) \\ (25) \\ (25) \end{array}$		(237)
	$\begin{array}{c} (345) & (346) \\ (356) & \underline{(357)} \\ (367) & \end{array}$	(347) (45) (46)	(457) (57)	(567)	

Нетрудно видеть, что если в тройке (pqr) хотя бы два числа, скажем p и q являются соседними на 0-ом уровне (то есть |p - q| = 1), то ребра pr и qr лежат на одном и том же или на соседних уровнях. А значит, такой треугольник не может быть зацеплен ни с каким четырехугольником. Остается рассмотреть семь подчеркнутых вариантов. В каждом из них треугольник не содержит ребро 0-го уровня.

Каждому из этих семи треугольников соответствуют три цикла длины четыре, но нетрудно убедиться в том, что только два из них будут зацеплены с треугольником. Таким образом, в K_7 имеется 14 гамильтоновых пар циклов (α, β) вложения которых зацеплены (одна из них, пара $\alpha = (135)$ и $\beta = (2476)$, приведена на рис. 6):

α	(135)	(135)	(136)	(136)	(146)	(146)	(246)	(246)
β	(2647)	(2476)	(2547)	(2475)	(2573)	(2375)	(1375)	(1537)
α	(247)	(247)	(257)	(257)	(357)	(357)		
a	()	(21)		(201)				

Поскольку для каждой из указанных пар циклов α и β имеет место равенство $lk_2(f(\alpha), f(\beta)) = 1$, то $w(f(K_7)) = 0$.

Лемма 4 показывает, что доказательство теоремы 1 не переносится на случай графа K_7 .

5. Вложения графа К_{3,3,1}

Для дальнейших рассмотрений нам потребуется не только тот факт, что любое пространственное вложение графа $K_{3,3,1}$ содержит нетривиальное зацепление, но и что более того, инвариант *w* принимает на нем нечетное значение. В следующей лемме доказательство этого факта проводится рассуждениями, аналогичными доказательству для графа K_6 из [2] (см. также [6]).

Лемма 5. Для любого пространственного вложения $f(K_{3,3,1})$ полного трехдольного графа $K_{3,3,1}$ имеет место равенство $w(f(K_{3,3,1})) = 1$.

Доказательство. Не ограничивая общности, можем считать, что вершины графа $K_{3,3,1}$ занумерованы таким образом, что его доли порождаются множествами вершин $\{1\}, \{2, 4, 6\}$ и $\{3, 5, 7\}$, а диаграмма имеет вид как на рисунке 3.

В каждой гамильтоновой паре графа $K_{3,3,1}$ длина одного цикла равна трем, а длина другого – четырем. Циклы длины три обозначим, через T, а циклы длины четыре – через S. Нетрудно заметить, что T = (1, a, x), и S = (b, y, c, z), где $a, b, c \in \{2, 4, 6\}, x, y, z \in \{3, 5, 7\}$. При этом, цикл T однозначно определяет цикл S. Следовательно, общее число гамильтоновых пар циклов в графе $K_{3,3,1}$ равно 9.

Покажем, что величина $w(f(K_{3,3,1}))$ для всех пространственных вложений $f(K_{3,3,1})$ принимает одно и то же значение. Согласно лемме 2 диаграмму любого пространственного вложения графа $K_{3,3,1}$ можно преобразовать в диаграмму другого вложения с помощью операций изотопии плоскости, смены проходов и переходов, и преобразований Рейдемейстера. Поскольку при изотопиях плоскости и преобразованиях Рейдемейстера индекс зацепления не меняется, то и $w = w(f(K_{3,3,1}))$ не меняется при этих преобразованиях. Посмотрим, что происходит при смене проходов и переходов.

Для каждой пары циклов при смене прохода и перехода в двойной точке величина $lk_2(f(\alpha), f(\beta))$ либо не изменится (если двойная точка получена при пересечении с тем же или смежным ребром, так как такая точка не участвует в суммировании), либо изменится на ±1. В последнем случае, пусть двойная точка возникает при пересечении проекций $f(e_1)$ и $f(e_2)$, где e_1, e_2 – такие ребра в $K_{3,3,1}$, что $e_1 \subset \alpha$ и $e_2 \subset \beta$. Очевидно, что для фиксированных e_1 и e_2 в $K_{3,3,1}$ имеется лишь две таких гамильтоновых пары (α, β) , что $e_1 \subset \alpha$, а $e_2 \subset \beta$. Так как число таких пар четно, величина w не изменяется при смене проходов и переходов. Следовательно, w на всех вложениях принимает одно и то же значение. Вычислим эту величину для канонического вложения графа $K_{3,3,1}$, приведенного на рис. 3. Перечислим все девять гамильтоновых пар циклов. Как уже было отмечено, для этого достаточно указать все циклы длины 3: они имеют указанный выше вид $\alpha = T = (1ax)$: (123), (125), (127), (143), (145), (147), (163), (165), (167). Для каждого цикла α цикл β длины 4 определяется однозначно.

Рассмотрим индексы зацепления вложений пар циклов для канонической диаграммы приведенной на рис. 3. Легко видеть, что лишь одна пара циклов (α, β) , а именно $\alpha = (163), \beta = (2547)$, обладает тем свойством, что $f(\alpha) \cup f(\beta)$ является нетривиальным двухкомпонентным зацеплением, причем $lk_2(f(\alpha), f(\beta)) = 1$. В остальных случаях вложения ребер $f(\alpha)$ ненулевого уровня находятся либо на одном, либо на соседних уровнях, и следовательно, компоненты $f(\alpha)$ и $f(\beta)$ не зацеплены. Таким образом, для канонического, а следовательно, и для произвольного, вложения графа $K_{3,3,1}$ величина $w(f(K_{3,3,1}))$ отлична от нуля.

Лемма 6. В каждом пространственном вложении $f(K_{3,3,1})$ существует ребро, которое содержится в нечетном числе таких гамильтоновых пар (α, β) , что $lk_2(f(\alpha), f(\beta)) \neq 0$.

Доказательство. В силу леммы 5, $w(f(K_{3,3,1})) = 1$, а значит в $K_{3,3,1}$ содержится нечетное число гамильтоновых пар (α, β) с ненулевыми значениями $lk_2(f(\alpha), f(\beta))$. Пусть, для определенности, число таких пар равно 2k+1. Тогда суммарное число ребер, содержащихся в гамильтоновых парах с ненулевыми $lk_2(\alpha, \beta)$ равно 7(2k + 1). Обозначим ребра графа $K_{3,3,1}$ через e_1, e_2, \ldots, e_{15} , а число гамильтоновых пар циклов, содержащих ребро e_i , через n_i , где $i = 1, 2, \ldots, 15$. Тогда

(6)
$$\sum_{i=1}^{15} n_i = 7(2k+1).$$

Следовательно, найдется такое i, что n_i – нечетное.

6. Вложения графа K_n

Теорема 5. Пусть $G_n = K_{3,3,1,...,1}$ – полный (n-4)-дольный граф на n вершинах. При $n \ge 7$ для любого пространственного вложения $f(G_n)$ в графе G_n найдется такая гамильтонова пара циклов (α, β) , что $f(\alpha) \cup f(\beta)$ является нетривиальным зацеплением.

Доказательство. Для n = 7 утверждение следует из леммы 5, как впрочем, и из леммы 3. Приведем доказательство для n = 8. Данное доказательство аналогично доказательству, приведенному в [1] для случая гамильтоновых циклов.

Пусть $f(G_8)$ – пространственное вложение полного четырехдольного графа $G_8 = K_{3,3,1,1}$. В G_8 рассмотрим подграф $G_7 = K_{3,3,1}$ на семи вершинах. Вершину графа G_8 , не содержащуюся в G_7 , обозначим через v. Напомним, что вершина v соединяется ребром с каждой вершиной графа G_7 . По лемме 6 в G_7 существует ребро, содержащееся в нечетном числе таких гамильтоновых пар (α, β) , что $lk_2(f(\alpha), f(\beta)) \neq 0$. Обозначим это ребро через e, а его концы – через w_1 и w_2 . Заменив ребро e парой ребер (w_1, v) и (v, w_2) , получим подграф $G'_7 \subset G_8$. По построению, граф G'_7 гомеоморфен, как одномерный комплекс,

графу $G_7 = K_{3,3,1}$ (G'_7 отличается от G_7 вставкой на ребре вершины валентности два). По лемме 6 в G'_7 имеется нечетное число гамильтоновых пар (α, β) таких, что $lk_2(f(\alpha), f(\beta)) \neq 0$.

В силу леммы 5, в $G_7 = K_{3,3,1}$ содержится нечетное число гамильтоновых пар (α, β) с ненулевыми значениями $lk_2(f(\alpha), f(\beta))$. В силу выбора ребра e, число таких пар, содержащих e, нечетно. Следовательно, число таких пар, не содержащих e, четно. Отметим, что гамильтоновы пары в G_7 , не содержащие ребро e, это в точности гамильтоновы пары в G'_7 , не содержащие ребра (v, w_1) и (v, w_2) . Значит, в G'_7 содержится нечетное число гамильтоновых пар (α, β) , проходящих через ребра (v, w_1) и (v, w_2) , для которых $lk_2(f(\alpha), f(\beta)) \neq 0$. Такие пары являются гамильтоновыми парами циклов в $G_8 = K_{3,3,1,1}$. Таким образом, для каждого пространственного вложения $f(G_8)$ в графе G_8 найдется такая гамильтонова пара циклов, что ее вложение является нетривиальным зацеплением.

Для произвольного n доказательство проводится аналогично. При этом, вместо цепи $\{(w_1, v), (v, w_2)\}$ нужно рассмотреть в G_n простую цепь длины (n-6) соединяющую вершины w_1 и w_2 и проходящую через те вершины графа G_n , которые не принадлежат G_7 .

Следствие 1. При $n \ge 7$ любое пространственное вложение графа K_n содержит нетривиальное зацепление, являющееся вложением гамильтоновой пары циклов.

Доказательство. Следует из теоремы 5 и того факта, что каждая гамильтонова пара циклов в G_n является гамильтоновой парой циклов в K_n .

Очевидно, класс графов, любое пространственное вложение которых имеет зацепленную гамильтонову пару, шире чем класс полных графов. В частности, имеет место следующее свойство.

Следствие 2. Пусть H – граф, имеющий п вершин, $n \ge 7$, и содержащий подграф G_n . Тогда любое пространственное вложение графа H содержит нетривиальное зацепление, являющееся вложением гамильтоновой пары циклов.

Следующий вопрос, по-видимому, до сих пор является открытым: Верно ли, что любое пространственное вложение полного двудольного графа $K_{m,m}$, $m \ge 5$, содержит двухкомпонентное зацепление, являющееся вложением гамильтоновой пары циклов?

Список литературы

- P. Blain, G. Bowlin, J. Foisy, J. Hendricks, J. LaCombe, Knotted Hamiltonian cycles in spatial embedding of complete graphs, New York J. of Math. 13 (2007), 11–16.
- [2] J.H. Conway, C.McA. Gordon, Knots and links in spatial graphs, J. Graph Theory, 7 (2003), 445–453.
- J. Foisy, Corrigendum to "Knotted Hamiltonian cycles in spatial embedding of complete graphs", New York J. of Math. 14 (2008), 285–287.
- [4] H. Sachs, On spatial representations of finite graphs, in: A. Hajnal, L. Lovasz, V.T. Sos (Eds.)/ Colloquia Mathematica Societatis Janos Bolyai, North-Holland, Amsterdam, 37 (1984), 649– 662.
- [5] M. Shimabara, Knots in certain spatial graphs, Tokyo J. Math. 11(2) (1988), 405–413.

392

[6] R. Motwani, A. Raghunathan, H. Saran, Constructive results from graph minors: linkless embeddings, 29-th Asian Symposium on Foundations of Computer Sciences, IEEE, 1988, 398– 408.

Андрей Юрьевич Веснин Институт математики им. С. Л. Соболева СО РАН, пр. академика Коптюга 4, 630090, Новосибирск, Россия *E-mail address*: vesnin@math.nsc.ru

Анна Викторовна Литвинцева Новосибирский госуниверситет, ул. Пирогова 2, 630090, Новосибирск, Россия *E-mail address:* annalitvinceva@gmail.com