\mathbf{SeMR} ISSN 1813-3304

СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports http://semr.math.nsc.ru

Том 7, стр. 458-460 (2010)

УДК 515.16 MSC 57M25

О ЧИСЛЕ КОМПОНЕНТ ЗАЦЕПЛЕНИЙ, СООТВЕТСТВУЮЩИХ ПРЯМОУГОЛЬНЫМ РЕШЕТКАМ

Л. Р. НАБЕЕВА

ABSTRACT. We give a new short proof of the main result of [1], which states that any rectangular $(m \times n)$ -lattice determines a projection of a d-component link, where $d = \gcd(m+1, n+1)$.

Keywords: Lattice, medial graph, billiard trajectories, geodesic curves, flat torus.

Введение

Хорошо известно, что имеется естественное взаимно-однозначное соответствие между проекциями зацеплений и графами в \mathbb{R}^2 , задаваемое так называемой медиальной конструкцией [2]. Опишем ее. Пусть $G \subset \mathbb{R}^2$ — связный граф с множеством вершин $\mathbb{V}(G)$ и множеством ребер $\mathbb{E}(G)$. Тогда его медиальный граф $M(G) \subset \mathbb{R}^2$ можно задать следующим образом. Внутри каждого ребра графа G выберем точку. Эти точки назовем вершинами графа M(G). Если две такие вершины лежат на двух смежных ребрах $\overrightarrow{AB_1}, \overrightarrow{AB_2}$ графа G, то они соединяются ребром графа M(G), которое пересекает G только по своим концам и лежит внутри угла B_1AB_2 , образованного этими смежными ребрами. Все вершины графа M(G) имеют валентность 4. Поэтому объединение циклов графа M(G), построенных по правилу "прямо вперед" [3], является проекцией некоторого зацепления $L(G) \subset \mathbb{R}^3$, число компонент которого равно числу этих пиклов

В дальнейшем под прямоугольной $(m \times n)$ -решеткой мы будем понимать прямоугольник P на плоскости \mathbb{R}^2 , разбитый на mn равных квадратов отрезками, параллельными его сторонам. Будем обозначать ее $P_{m \times n}$.

Nabeyeva, L.R., The component number of links corresponding to lattices.

^{© 2010} Набевва Π .Р.

Работа выполнена при поддержке РФФИ – Урал 10-01-96035.

Поступила 19 ноября 2010 г., опубликована 4 декабря 2010 г.

1. Основные результаты

Теорема 1. Число компонент проекции зацепления $L(P_{m \times n})$, соответствующего решетке $P_{m \times n}$, равно наибольшему общему делителю чисел m+1, n+1.

Полное доказательство этой теоремы опубликовано в работе [1]. Оно носит индуктивный характер и занимает более 10 страниц. В настоящей статье мы даем новое, более короткое и концептуальное, доказательство, использующее траектории прямоугольных бильярдов и геодезические на плоском торе.

Доказательство. Удобно считать, что стороны прямоугольника P параллельны осям координат и вершины решетки расположены в точках с нечетными координатами, причем углы прямоугольника P находятся в точках (1,1),(2m+1,1),(1,2n+1),(2m+1,2n+1). Включим P в больший прямоугольник Q с углами в точках (0,0),(2m+2,0),(0,2n+2),(2m+2,2n+2), см. рис. 1 слева для m=3, n=1. Тогда вершины медиального графа $M(P_{m\times n})$ решетки $P_{m\times n}$ находятся в серединах сторон составляющих ее квадратов. Поэтому координаты каждой вершины являются целыми числами с нечетной суммой. На рис. 1 справа вершины отмечены. При этом точки, где медиальный граф касается сторон прямоугольника Q, вершинами не считаются.

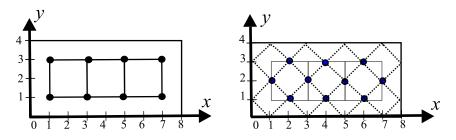


Рис. 1. Прямоугольная решетка и ее медиальный граф.

Прямые, проходящие через середины смежных сторон квадратов, наклонены к осям координат под углом 45 градусов. Отсюда следует, что проекция каждой компоненты зацепления $L(P_{m \times n})$, т. е. цикл графа $M(P_{m \times n})$, ведет себя как траектория бильярда в прямоугольнике Q, которая встречает стороны прямоугольника Q только в целых точках с нечетными суммами координат. Множество таких траекторий и их число обозначим S и t, соответственно.

Чтобы найти t, рассмотрим прямоугольник $T\subset R^2$, составленный из прямоугольника $Q_0=Q$ и трех его копий Q_1,Q_2 и Q_3 , которые получаются симметриями прямоугольника Q относительно оси x, оси y и начала координат, соответственно. Склеив противоположные стороны прямоугольника T с помощью соответствующих параллельных переносов, мы получим плоский тор \tilde{T} . Снабдим его системой координат, выбрав в качестве меридиана μ и параллели λ ориентированные образы отрезков в пересечении прямоугольника T с осями координат.

Имеется естественная непрерывная проекция $p\colon \tilde{T}\to Q$, которая отображает копии $Q_i, 0\le i\le 3$, в Q с помощью тождества и упомянутых выше симметрий. Заметим, что прообраз $p^{-1}(\alpha)$ каждой траектории $\alpha\in S$ состоит из двух ортогональных пар замкнутых геодезических кривых типа $(p,\pm q)$ на торе \tilde{T} , где p,q

– некоторые взаимно простые натуральные числа. См. рис. 2, где изображены два прообраза одной траектории.

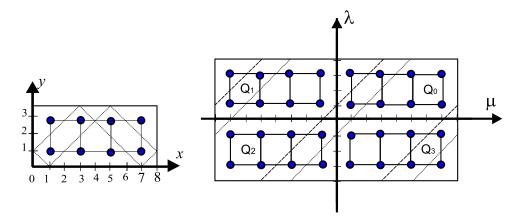


Рис. 2. Прямоугольник T составлен из четырех копий прямоугольника Q, показаны две геодезические типа (2,1), проектирующиеся в траекторию на рисунке слева.

Общее число таких геодезических равно 4t, по 2t геодезических в каждом семействе параллельных геодезических. При этом общее число точек в пересечении геодезических одного семейства с меридианом μ тора \tilde{T} равно числу 2(m+1) точек в T вида (k,0), где k нечетно. Аналогично, эти геодезические пересекают параллель λ тора \tilde{T} в 2(n+1) точках. Поскольку каждая геодезическая типа $(p,\pm q)$ пересекает μ в q и λ в p точках, то 2qt=2(m+1) и 2pt=2(n+1). Отсюда следует, что число t равно наибольшему общему делителю чисел m+1,n+1.

Список литературы

- [1] X. Jin, F.M. Dong, E.G. Tay, On the component number of links corresponding to lattices, Knot theory and its ramifications, 18 (2009), 1711–1727.
- [2] K. Murasugi, Knot theory and its applications, Birkhauser, 1996.
- [3] T. Pisanski, T.W. Tucker, A. Zitnik Straight-ahead walks in Eulerian graphs, Discrete Math, 281 (2010), 237–246.

Лилия Руслановна Набеева Челявинский Государственный Университет, Братьев Кашириных, 129, 454136, Челявинск, Россия *E-mail address*: Liya.nabeyeva@yandex.ru