SeMR ISSN 1813-3304

СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports http://semr.math.nsc.ru

Том 7, стр. 480–486 (2010)

УДК 515.12, 515.124 ${\rm MSC} \ 54{\rm D}55, 54{\rm E}35, 54{\rm E}40, 54{\rm E}99$

CHARACTERIZATIONS OF SPACES WITH σ -LOCALLY COUNTABLE sn-NETWORKS

SHENGXIANG XIA

ABSTRACT. The concept of a σ -locally countable mapping is used for establishing relations between metric spaces and spaces with σ -locally countable sn-networks (cs^* -networks, weak bases).

Keywords: cs^* -network, sn-network, weak base, σ -locally countable mapping, sequence-covering mapping

1. Introduction

The general idea of establishing relations between topological spaces and metric spaces by means of various mappings is due to Alexandroff [1]. In [19], the concept of a σ -locally countable mapping was introduced and employed for establishing relations between metric spaces and spaces with σ -locally countable networks (k-networks, cs-networks, bases). The authors of [6, 7, 8, 12, 13, 15] ([3, 11, 12, 18, 20]) succeeded in studying spaces with various sn-networks (weak bases). In this paper, relations between metric spaces and spaces with σ -locally countable sn-networks (cs^* -networks, weak bases) are established by means of σ -locally countable mappings. It is also shown that σ -locally countable mappings provide an efficient tool for studying spaces with σ -locally countable collections.

Definition 1.1. Let \mathcal{P} be a cover of a space X.

(1) The cover \mathcal{P} is called a cs-network [10] if, for every sequence $\{x_n\}$ convergent to a point $x \in X$ and every neighborhood U of x, we have $\{x\} \cup \{x_n : n \geq m\} \subset P \subset U$ for some $m \in \mathbb{N}$ and some $P \in \mathcal{P}$.

Received March, 1, 2006, published December, 27, 2010.

Shengxiang Xia, Characterizations of spaces with σ -locally countable sn-networks.

^{© 2010} Shengxiang Xia.

(2) The cover \mathcal{P} is called a cs^* -network [5] if, for every sequence $\{x_n\}$ convergent to a point $x \in X$ and every neighborhood U of x, we have $\{x\} \cup \{x_{n_i} : i \in \mathbb{N}\} \subset P \subset U$ for some subsequence $\{x_{n_i}\}$ and some $P \in \mathcal{P}$.

Definition 1.2 ([4]). Let X be a space.

- (1) Let $x \in P \subset X$. The set P is called a sequential neighborhood of x in X if, for every sequence $\{x_n\}$ convergent to x, we have $\{x_n : n \geq m\} \subset P$ for some $m \in \mathbb{N}$
- (2) Let $P \subset X$. The set P is called a sequentially open subset of X if P is a sequential neighborhood of x for every $x \in P$.
- (3) The space X is called a sequential space if every sequentially open subset of X is open.

Definition 1.3. Let $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ be a cover of a space X such that, for each $x \in X$,

- (1) \mathcal{P}_x is a network of x in X, i.e., $x \in \cap \mathcal{P}_x$ and, given an open subset U of X with $x \in U$, we have $P \subset U$ for some $P \in \mathcal{P}_x$;
 - (2) if $P_1, P_2 \in \mathcal{P}_x$ then there exists $P \in \mathcal{P}_x$ such that $P \subset P_1 \cap P_2$.

Say that \mathcal{P} is a weak base [2] for X if, for every $U \subset X$, U is open in X if and only if for each $x \in U$ there exists $P \in \mathcal{P}_x$ such that $P \subset U$.

Whenever the above holds, \mathcal{P}_x is called a weak neighborhood base of x in X. If each \mathcal{P}_x , $x \in X$, is countable, the space X is called g-first countable. Say that \mathcal{P} is an sn-network [12, 13] for X if each element of \mathcal{P}_x is a sequential neighborhood of x for every $x \in X$. If the latter holds, \mathcal{P}_x is called an sn-network of x in X.

Definition 1.4. Let $f: X \to Y$ be a mapping.

- (1) The mapping f is called a sequence-covering mapping [9] if each convergent sequence of Y is the image of some compact subset of X.
- (2) The mapping f is called a 1-sequence-covering mapping [12] if, for each $y \in Y$, there is $x \in f^{-1}(y)$ such that for every sequence $\{y_n\}$ convergent to y in Y there exists a sequence $\{x_n\}$ converging to x in X with $x_n \in f^{-1}(y_n)$.
- (3) The mapping f is weakly open [20] if there is a weak base $\mathcal{B} = \bigcup \{\mathcal{B}_y : y \in Y\}$ for Y and for each $y \in Y$ there is $x(y) \in f^{-1}(y)$ such that every open neighborhood U of x(y) in X satisfies $B_y \subset f(U)$ for some $B_y \in \mathcal{B}_y$.
- (4) The mapping f is called a σ -locally countable mapping [19] if there exists a base \mathcal{B} for X such that $f(\mathcal{B}) = \{f(B) : B \in \mathcal{B}\}$ is σ -locally countable in Y.

It is easy to check that every weakly open mapping is a quotient mapping.

In this paper, all spaces are regular T_1 , and all mappings are continuous and surjective. The symbol \mathbb{N} denotes the set of naturals.

2. Spaces with σ -locally countable cs^* -networks

Lemma 2.1 ([14]). Let \mathcal{P} be a point-countable cs^* -network for X. Given a convergent sequence $\{x\} \cup \{x_n\}$ in X, put $K = \{x\} \cup \{x_n : n \in \mathbb{N}\}$. If U is an open neighborhood of K then there exists a finite subcollection \mathcal{F} of \mathcal{P} subject to the following property denoted by F(K, U):

- (i) $K \subset \cup \mathcal{F} \subset U$;
- (ii) for each $P \in \mathcal{F}$ we have $P \cap K \neq \emptyset$; if P contains a subsequence of $\{x_n\}$ then $x \in P$.

Theorem 2.2. A space X possesses a σ -locally countable cs^* -network if and only if X is a sequence-covering σ -locally countable image of a metric space.

Proof. Sufficiency. Suppose that X is a sequence-covering σ -locally countable image of a metric space M under f. Let \mathcal{B} be a base of M such that $f(\mathcal{B})$ is a σ -locally countable collection in X. Then it is easy to check that $f(\mathcal{B})$ is a cs^* -network for X.

Necessity. Let $\mathcal{P} = \bigcup_{n \in \mathbb{N}} \mathcal{P}_n$ be a σ -locally countable cs^* -network for X. We may assume that each \mathcal{P}_n is closed under finite intersections and $X \in \mathcal{P}_n \subset \mathcal{P}_{n+1}$. Let $\mathcal{P}_n = \{P_\alpha : \alpha \in A_n\}$. Put

$$M = \left\{ \alpha = (\alpha_n) \in \prod_{n \in \mathbb{N}} A_n : \right\}$$

$$\{P_{\alpha_n}: n \in \mathbb{N}\}\$$
 forms a network at some point $x(\alpha)$ in X

and endow M with the subspace topology induced from the usual product topology of the discrete spaces A_n . Then M is a metric space. Define $f: M \to X$ by putting $f(\alpha) = x(\alpha)$.

1) The mapping f is continuous and surjective.

Since \mathcal{P} is a point countable network of X, it is easy to check that f is continuous and surjective.

2) The mapping f is σ -locally countable.

For each $n \in \mathbb{N}$ and $\alpha_n \in A_n$ put

$$U(\alpha_1, \ldots, \alpha_n) = \{ \gamma \in M : \text{ the } i \text{ th coordinate of } \gamma \text{ is } \alpha_i \text{ for } i \leq n \}.$$

It is easy to check that $\{U(\alpha_1,\ldots,\alpha_n):n\in\mathbb{N}\}$ is a local neighborhood base of $\alpha=(\alpha_n)$. Put

$$\mathcal{U} = \{ U(\alpha_1, \dots, \alpha_n) : \alpha_i \in A_i, \ i \le n, \ n \in \mathbb{N} \}.$$

Then \mathcal{U} is a base of M. We claim that $f\big(U(\alpha_1,\ldots,\alpha_n)\big)=\bigcap_{i\leq n}P_{\alpha_i}$. Indeed, if $\beta=(\beta_i)\in U(\alpha_1,\ldots,\alpha_n)$ then $f(\beta)=\bigcap_{i\in\mathbb{N}}P_{\beta_i}\subset\bigcap_{i\leq n}P_{\alpha_i}$, $f\big(U(\alpha_1,\ldots,\alpha_n)\big)\subset\bigcap_{i\leq n}P_{\alpha_i}$. If $z\in\bigcap_{i\leq n}P_{\alpha_i}$ then there is a subcollection $\{P_{\gamma_i}:i\in\mathbb{N}\}$ of \mathcal{P} such that $\gamma_i=\alpha_i$ for $i\leq n$, and $\{P_{\gamma_i}:i\in\mathbb{N}\}$ forms a network of z in X. Put $\gamma=(\gamma_i)$. Then $\gamma\in U(\alpha_1,\ldots,\alpha_n)$ and $z=f(\gamma)\in f\big(U(\alpha_1,\ldots,\alpha_n)\big)$; hence, $\bigcap_{i\leq n}P_{\alpha_i}\subset f\big(U(\alpha_1,\ldots,\alpha_n)\big)$. Therefore, $f(\mathcal{U})$ is a σ -locally countable collection of X and f is a σ -locally countable mapping.

3) The mapping f is sequence-covering.

Given a convergent sequence $x_n \to x$, without loss of generality we may assume that the terms of $\{x_n\}$ are different, and $x_n \neq x$ for all $n \in \mathbb{N}$. Put $K = \{x_n : n \in \mathbb{N}\} \cup \{x\}$ and

$$\mathcal{P}_i(K) = \{ \mathcal{F} \subset \mathcal{P}_i : \mathcal{F} \text{ satisfies } F(K, X) \}$$
 (see Lemma 2.1)

for each $i \in \mathbb{N}$. Then $|\mathcal{P}_i(K)| \leq \aleph_0$. Let $\mathcal{P}_i(K) = {\mathcal{P}_{ij} : j \in \mathbb{N}}$ and put

$$\mathcal{P}'_n = \left\{ P \in \bigwedge_{i,j \le n} \mathcal{P}_{ij} : P \cap K \ne \emptyset \right\} \quad (n \in \mathbb{N}).$$

Then $\mathcal{P}'_n \subset \mathcal{P}_n$ and \mathcal{P}'_n satisfies F(K,X). Hence there is a finite subset B_n of A_n such that $\mathcal{P}'_n = \{P_\alpha : \alpha \in B_n\}$. Put

$$L = \left\{ \alpha = (\alpha_n) \in \prod_{n \in \mathbb{N}} B_n : P_{\alpha_{n+1}} \subset P_{\alpha_n}, \ n \in \mathbb{N} \right\}.$$

Then it is not difficult to check that L is closed in $\prod A_n$. Hence L is a compact subset of $\prod_{n} B_n$. Given $\alpha = (\alpha_n) \in L$, put

$$K(\alpha) = K \cap (\cap \{P_{\alpha_n} : n \in \mathbb{N}\}).$$

Since $\{K \cap P_{\alpha_n} : n \in \mathbb{N}\}$ is a descending sequence of nonempty closed subsets of the compact subset K of X, we have $K(\alpha) \neq \emptyset$.

Take $y \in K(\alpha)$ and show that $\{P_{\alpha_n} : n \in \mathbb{N}\}$ forms a network of y in X. Indeed, let U be an open neighborhood of y in X.

Consider the case y = x. Then $\{y\} \cup \{x_n : n \ge m\} \subset U$ for some $m \in \mathbb{N}$. Put $K_1 = \{y\} \cup \{x_n : n \geq m\}, K_2 = K \setminus K_1$. By Lemma 2.1 there is a subcollection \mathcal{F}' of \mathcal{P} subject to $F(K_1,U)$. Since K_2 is finite and $K_2 \subset X \setminus \{y\}$, there is a finite subcollection \mathcal{F}'' of \mathcal{P} such that $K_2 \subset \cup \mathcal{F}'' \subset X \setminus \{y\}$ and $P \cap K_2 \neq \emptyset$ for each $P \in \mathcal{F}''$. Put $\mathcal{F} = \mathcal{F}' \cup \mathcal{F}''$. Then \mathcal{F} satisfies F(K,X), $\mathcal{F} = \mathcal{P}_{ij}$ for some $i, j \in \mathbb{N}$. Put $m_0 = \max\{i, j\}$. Since $y \in P_{\alpha_{m_0}} \in \mathcal{P}_{m_0}$ and $y \notin \cup \mathcal{F}''$, we have $y \in P_{\alpha_{m_0}} \subset \cup \mathcal{F}' \subset U$. Therefore, $\{P_{\alpha_n} : n \in \mathbb{N}\}$ forms a network of y in X.

Consider the case $y \neq x$. Then $y \in P \subset U \setminus (K \setminus \{y\})$ for some $P \in \mathcal{P}$. By Lemma 2.1 there is a subcollection \mathcal{F}' of \mathcal{P} subject to $F(K \setminus \{y\}, X \setminus \{y\})$. Put $\mathcal{F} = \mathcal{F}' \cup P$. Then \mathcal{F} satisfies F(K,X), $\mathcal{F} = \mathcal{P}_{ij}$ for some $i,j \in \mathbb{N}$. Put $m_0 = \max\{i,j\}$. Since $y \in P_{\alpha_{m_0}} \in \mathcal{P}_{m_0}$ and $y \notin \cup \mathcal{F}'$, we have $y \in P_{\alpha_{m_0}} \subset P \subset U$. Therefore, $\{P_{\alpha_n} : n \in \mathbb{N}\}$ forms a network of y in X, $\alpha = (\alpha_n) \in M$, and

 $f(\alpha) = y \in K$.

We thus have $L \subset M$ and $f(L) \subset K$. Conversely, if $y \in K$, then there exists $P'_n \in \mathcal{P}'_n$ such that $y \in P'_n$ for each $n \in \mathbb{N}$; hence, there is $\alpha_n \in B_n$ such that $P_{\alpha_n} = \bigcap \{P'_i : i \leq n\}$ for each $n \in \mathbb{N}$. Put $\alpha = (\alpha_n)$. Then $\alpha \in L$ and $y \in L$ $K \cap (\cap \{P_{\alpha_n} : n \in \mathbb{N}\})$. By the above, $\{P_{\alpha_n} : n \in \mathbb{N}\}$ forms a network of y in X, $y = f(\alpha)$. Consequently, $K \subset f(L)$. Therefore, f(L) = K, f is a sequence-covering mapping.

Remark 2.3. The method of constructing the metric space M is due to V. I. Ponomarev and was first used for representing a specific nonmetric space as the continuous image of a 0-dimensional metric space [17].

3. Spaces with σ -locally countable sn-networks

Lemma 3.1 ([12]). Let $f: X \to Y$ be a mapping. If $\{B_n : n \in \mathbb{N}\}$ is a decreasing network of some point x and each $f(B_n)$ is a sequential neighborhood of f(x) in Y then, given a sequence $y_n \to f(x)$, there exist $x_n \in f^{-1}(y_n)$ such that $x_n \to x$ in

Theorem 3.2. A space X possesses a σ -locally countable sn-network if and only if X is a 1-sequence-covering σ -locally countable image of a metric space.

Proof. Sufficiency. Suppose that X is a 1-sequence-covering σ -locally countable image of a metric space M under f. Let B be a base of M such that f(B) is a σ -locally countable collection. For each $x \in X$ there exists $\alpha_x \in f^{-1}(x)$ satisfying Definition 1.4(2). Put

$$\mathcal{P}_x = \{ f(B) : \alpha_x \in B \in \mathcal{B} \}, \quad \mathcal{P} = \cup \{ \mathcal{P}_x : x \in X \}.$$

It is easy to check that \mathcal{P} is an sn-network for X.

Necessity. Let $\mathcal{P} = \bigcup_{n \in \mathbb{N}} \mathcal{P}_n$ be a σ -locally countable sn-network for X and let $\mathcal{P}_x = \bigcup_{n \in \mathbb{N}} \mathcal{P}_{nx}$ be an sn-network of x, where $\mathcal{P}_{nx} \subset \mathcal{P}_n$. We may assume that $X \in \mathcal{P}_{nx} \subset \mathcal{P}_{(n+1)\,x}$. Let $\mathcal{P}_n = \{P_\alpha : \alpha \in A_n\}$. Put

$$M = \left\{ \alpha = (\alpha_n) \in \prod_{n \in \mathbb{N}} A_n : \right\}$$

$$\{P_{\alpha_n}: n \in \mathbb{N}\}\$$
forms a network at some point $x(\alpha)$ in $X\Big\}$

and endow M with the subspace topology induced from the usual product topology of the discrete spaces A_n . Then M is a metric space. Define $f: M \to X$ by putting $f(\alpha) = x(\alpha)$. By the proof of Theorem 2.2 the mapping f is continuous, surjective, and σ -locally countable. We only need to prove that f is a 1-sequence-covering mapping. For each $x \in X$ let $\mathcal{P}_{ix} = \{P_{ij} : j \in \mathbb{N}\}$ and put $P_n = \bigcap_{\substack{i,j \leq n \\ i,j \leq n}} P_{ij}$ for all $n \in \mathbb{N}$. Then there exist $k(n) \in \mathbb{N}$ and $P' \in \mathcal{P}_{k(n)}$, such that $P' \subset P_n$. Since

all $n \in \mathbb{N}$. Then there exist $k(n) \in \mathbb{N}$ and $P'_n \in \mathcal{P}_{k(n)x}$ such that $P'_n \subset P_n$. Since $\mathcal{P}_{nx} \subset \mathcal{P}_{(n+1)x}$, we assume that k(n) < k(n+1), $n \in \mathbb{N}$. Put

$$P_{\gamma_j} = \begin{cases} P_{jj} \,, & 1 \le j < k(1); \\ P'_n \,, & k(n) \le j < k(n+1), \ n \in \mathbb{N}. \end{cases}$$

Then $P_{\gamma_j} \in \mathcal{P}_{j\,x}$ and $\{P_{\gamma_j} : j \in \mathbb{N}\}$ forms a network of x. Put $\gamma = (\gamma_i)$. We have $\gamma \in M$ and $\gamma \in f^{-1}(x)$. For each $n \in \mathbb{N}$ put

$$U(\gamma_1, \ldots, \gamma_n) = \{ \alpha \in M : \text{ the } i \text{ th coordinate of } \alpha \text{ is } \gamma_i \text{ for } i \leq n \}.$$

It is easy to check that $\{U(\gamma_1,\ldots,\gamma_n):n\in\mathbb{N}\}$ is a local decreasing base of $\gamma=(\gamma_i)$ and $f(U(\gamma_1,\ldots,\gamma_n))=\bigcap_{i\leq n}P_{\gamma_i}$. If $x_j\to x$ in X then, due to the fact that $f(U(\gamma_1,\ldots,\gamma_n))$ is a sequential neighborhood of x, by Lemma 3.1 there exist $\beta_j\in f^{-1}(x_j)$ such that $\beta_j\to\gamma$ in M. Therefore, f is a 1-sequence-covering mapping.

4. Spaces with σ -locally countable weak bases

Theorem 4.1. A space X possesses a σ -locally countable weak base if and only if X is a σ -locally countable weakly open image of a metric space.

Proof. Sufficiency. Suppose that X is a σ -locally countable weakly open image of a metric space M under f. Let \mathcal{B} be a base of M such that $f(\mathcal{B})$ is a σ -locally countable collection in X. Let $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ be a weak base for X satisfying Definition 1.4(3). For each $x \in X$ there exists $\alpha_x \in f^{-1}(x)$ satisfying Definition 1.4(3). Put

$$\mathcal{P}'_x = \{ f(B) : \alpha_x \in B \in \mathcal{B} \}, \quad \mathcal{P}' = \cup \{ \mathcal{P}'_x : x \in X \}.$$

Consider an open subset U of X and a point $x \in U$. There exists $\alpha_x \in f^{-1}(x) \subset f^{-1}(U)$. Since \mathcal{B} is a base of M, there is $B \in \mathcal{B}$ such that $\alpha_x \in B \subset f^{-1}(U)$ and hence $x \in f(B) \subset U$, $f(B) \in \mathcal{P}'_x$. Conversely, suppose that for each $x \in U$ we have $f(B) \subset U$ for some $f(B) \in \mathcal{P}'_x$. Since f is weakly open, there exists $P_x \in \mathcal{P}_x$ such that $P_x \subset f(B) \subset U$. Consequently, U is open in X. It is easy to check that \mathcal{P}' satisfies (1), (2) of Definition 1.3. Therefore, \mathcal{P}' is a σ -locally countable weak base for X.

Necessity. Let $\mathcal{P} = \bigcup_{n \in \mathbb{N}} \mathcal{P}_n$ be a σ -locally countable weak base for X and let $\mathcal{P}_x = \bigcup_{n \in \mathbb{N}} \mathcal{P}_{nx}$ be a local weak base of x, where $\mathcal{P}_{nx} \subset \mathcal{P}_n$. We may assume that $X \in \mathcal{P}_{nx} \subset \mathcal{P}_{(n+1)x}$. Let $\mathcal{P}_n = \{P_\alpha : \alpha \in A_n\}$. Put

$$M=\left\{\alpha=(\alpha_n)\in\prod_{n\in\mathbb{N}}A_n:\right.$$

$$\left\{P_{\alpha_n}:n\in\mathbb{N}\right\}\text{ forms a network at some point }x(\alpha)\text{ in }X\right\}$$

and endow M with the subspace topology induced from the usual product topology of the discrete spaces A_n . Then M is a metric space. Define $f: M \to X$ by putting $f(\alpha) = x(\alpha)$. By the proof of Theorem 2.2 the mapping f is continuous, surjective, and σ -locally countable. We only need to prove that f is a weakly open mapping. For each $x \in X$ let $\mathcal{P}_{ix} = \{P_{ij} : j \in \mathbb{N}\}$ and put $P_n = \bigcap P_{ij}$ for all $n \in \mathbb{N}$. Then

there exist $k(n) \in \mathbb{N}$ and $P'_n \in \mathcal{P}_{k(n),x}$ such that $P'_n \subset P_n$. Since $\mathcal{P}_{nx} \subset \mathcal{P}_{(n+1),x}$, we assume that k(n) < k(n+1), $n \in \mathbb{N}$. Put

$$P_{\gamma_j} = \begin{cases} P_{jj} \,, & 1 \le j < k(1); \\ P'_n \,, & k(n) \le j < k(n+1), \ n \in \mathbb{N}. \end{cases}$$

Then $P_{\gamma_j} \in \mathcal{P}_{j\,x}$ and $\{P_{\gamma_j} : j \in \mathbb{N}\}$ forms a network of x. Put $\gamma = (\gamma_i)$. Then $\gamma \in M$ and $\gamma \in f^{-1}(x)$. For each $n \in \mathbb{N}$ put

$$U(\gamma_1, \ldots, \gamma_n) = \{ \alpha \in M : \text{ the } i \text{ th coordinate of } \alpha \text{ is } \gamma_i \text{ for } i \leq n \}.$$

It is easy to check that $\{U(\gamma_1,\ldots,\gamma_n):n\in\mathbb{N}\}$ is a local decreasing base of $\gamma=(\gamma_i)$ and $f(U(\gamma_1,\ldots,\gamma_n))=\bigcap_{i\leq n}P_{\gamma_i}$; hence, there exists $P_{nx}\in\mathcal{P}_x$ such that

 $P_{nx} \subset f(U(\gamma_1, \ldots, \gamma_n))$ for each $n \in \mathbb{N}$. Given an open neighborhood V of γ in M, there is $P_{nx} \in \mathcal{P}_x$ such that $P_{nx} \subset f(U(\gamma_1, \ldots, \gamma_n)) \subset f(V)$ for some $n \in \mathbb{N}$. Therefore, f is a weakly open mapping.

Lemma 4.2 ([20]). Let $f: X \to Y$ be a weakly open mapping. If X is first countable then f is a 1-sequence-covering mapping.

Lemma 4.3 ([12]). If \mathcal{P} is an sn-network for a sequential space X then \mathcal{P} is a weak base for X.

Corollary 4.4. Given a space X, the following are equivalent:

- (1) X is a σ -locally countable weakly open image of a metric space;
- (2) X is a σ -locally countable 1-sequence-covering quotient image of a metric space;
 - (3) X is a sequential space and X possesses a σ -locally countable sn-network;
 - (4) X possesses a σ -locally countable weak base;
- (5) X is a g-first countable space and X possesses a σ -locally countable cs-network.

Proof. $(1) \Rightarrow (2)$ follows from Lemma 4.2.

- $(2)\Rightarrow(3)$ follows from Theorem 3.2 and Theorem 6.D.2 in [16].
- $(3)\Rightarrow (4)$ follows from Lemma 4.3.
- $(4)\Leftrightarrow(5)$ by Theorem 3.4 in [21].

References

- 1. P. Alexandroff, On some results concerning topological spaces and their continuous mappings, Proc. Symp. Gen. Top. (Prague, 1961), 41–54.
- 2. Arhangel'skii, Mapping and spaces, Russian Math. Survey, 21 (1966), 115-162.
- 3. L. Foged, On g-metrizability, Pacific J. Math., 98 (1982), 327–332.
- 4. S. P. Franklin, Spaces in which sequences suffice, Fund. Math., 57 (1965), 107-115.
- Z. Gao, κ-spaces is invariant under perfect mappings, Questions and Answers. General Topology, 5 (1987), 271–279.
- 6. Y. Ge, On sn-metrizable spaces, Acta Mathematica Sinica, 45 (2002), 355–360.
- Y. Ge, Spaces with countable sn-networks, Comment. Math. Univ. Carolinae, 45 (2004), 169– 176
- 8. Y. Ge, On pseudo-sequence coverings π -images of metric spaces, Matematicki Vesnik, 57 (2005), 113–120.
- G. Gruenhage, E. Michael, Y. Tanaka, Spaces determined by point-countable covers, Pacific J. Math., 113 (1984), 303–332.
- 10. J. A. Guthrie, A characterization of \aleph_0 , General Topology Appl., 1 (1971), 105–110.
- 11. K. B. Lee, On certain g-first countable spaces, Pacific J. Math., 65 (1976), 113-118.
- 12. S. Lin, On sequence-covering s-mappings, Adv. Math., 25 (1996), 548–551. (in Chinese)
- S. Lin, A note on the Arens' spaces and sequential fan, Topology and Its Applications, 81 (1997), 185–196.
- 14. S. Lin, The sequence-covering s-images of metric spaces, Northeastern. Math. J., 9 (1993), 81–85.
- 15. S. Lin, P. Yan, Sequence-covering s-mappings, Topology and Its Applications, 109 (2001), 301-314.
- 16. E. Michael, A quintuple quotient quest, General Topology and Appl., 2 (1972), 91–138.
- 17. V. I. Ponomarev, Axioms of countability and continuous mappings, Bull. Acad. Polon. Sci. Sér. Math. Astronom. Phys., 8 (1960), 127–134. (in Russian)
- 18. F. Siwiec, On defining a space by a weak base, Pacific J. Math., 52 (1974), 233-245.
- 19. S. Xia, The σ -locally countable images of metric spaces, Georgian Mathematical Journal, 16 (2009), 393–399.
- S. Xia, Characterizations of certain g-first countable spaces, Adv. Math., 29 (2000), 61–64.
 (in Chinese)
- 21. S. Xia, Spaces with σ -locally countable weak bases, Chinese Quarterly J. Math., 16 (2001), 37–41.

SHENGXIANG XIA
COLLEGE OF SCIENCE,
SHANDONG JIANZHU UNIVERSITY,
JINAN 250101 P.R. CHINA

E-mail address: xias@sdjzu.edu.cn