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Abstract. The concept of a σ-locally countable mapping is used for
establishing relations between metric spaces and spaces with σ-locally
countable sn-networks (cs∗-networks, weak bases).
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1. Introduction

The general idea of establishing relations between topological spaces and metric
spaces by means of various mappings is due to Alexandroff [1]. In [19], the concept
of a σ-locally countable mapping was introduced and employed for establishing
relations between metric spaces and spaces with σ-locally countable networks (k-
networks, cs-networks, bases). The authors of [6, 7, 8, 12, 13, 15] ([3, 11, 12, 18,
20]) succeeded in studying spaces with various sn-networks (weak bases). In this
paper, relations between metric spaces and spaces with σ-locally countable sn-
networks (cs∗-networks, weak bases) are established by means of σ-locally countable
mappings. It is also shown that σ-locally countable mappings provide an efficient
tool for studying spaces with σ-locally countable collections.

Definition 1.1. Let P be a cover of a space X.
(1) The cover P is called a cs-network [10] if, for every sequence {xn} convergent

to a point x ∈ X and every neighborhood U of x, we have {x} ∪ {xn : n ≥ m} ⊂
P ⊂ U for some m ∈ N and some P ∈ P.
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(2) The cover P is called a cs∗-network [5] if, for every sequence {xn} convergent
to a point x ∈ X and every neighborhood U of x, we have {x} ∪ {xni

: i ∈ N} ⊂
P ⊂ U for some subsequence {xni

} and some P ∈ P .
Definition 1.2 ([4]). Let X be a space.

(1) Let x ∈ P ⊂ X. The set P is called a sequential neighborhood of x in X
if, for every sequence {xn} convergent to x, we have {xn : n ≥ m} ⊂ P for some
m ∈ N.

(2) Let P ⊂ X. The set P is called a sequentially open subset of X if P is a
sequential neighborhood of x for every x ∈ P .

(3) The space X is called a sequential space if every sequentially open subset of
X is open.

Definition 1.3. Let P = ∪{Px : x ∈ X} be a cover of a space X such that, for
each x ∈ X,

(1) Px is a network of x in X, i.e., x ∈ ∩Px and, given an open subset U of X
with x ∈ U , we have P ⊂ U for some P ∈ Px;

(2) if P1, P2 ∈ Px then there exists P ∈ Px such that P ⊂ P1 ∩ P2.
Say that P is a weak base [2] for X if, for every U ⊂ X, U is open in X if and

only if for each x ∈ U there exists P ∈ Px such that P ⊂ U .
Whenever the above holds, Px is called a weak neighborhood base of x in X. If

each Px, x ∈ X, is countable, the space X is called g-first countable. Say that P is
an sn-network [12, 13] for X if each element of Px is a sequential neighborhood of
x for every x ∈ X. If the latter holds, Px is called an sn-network of x in X.

Definition 1.4. Let f : X → Y be a mapping.
(1) The mapping f is called a sequence-covering mapping [9] if each convergent

sequence of Y is the image of some compact subset of X.
(2) The mapping f is called a 1-sequence-covering mapping [12] if, for each y ∈ Y ,

there is x ∈ f−1(y) such that for every sequence {yn} convergent to y in Y there
exists a sequence {xn} converging to x in X with xn ∈ f−1(yn).

(3) The mapping f is weakly open [20] if there is a weak base B = ∪{By : y ∈ Y }
for Y and for each y ∈ Y there is x(y) ∈ f−1(y) such that every open neighborhood
U of x(y) in X satisfies By ⊂ f(U) for some By ∈ By.

(4) The mapping f is called a σ-locally countable mapping [19] if there exists a
base B for X such that f(B) = {f(B) : B ∈ B} is σ-locally countable in Y .

It is easy to check that every weakly open mapping is a quotient mapping.
In this paper, all spaces are regular T1, and all mappings are continuous and

surjective. The symbol N denotes the set of naturals.

2. Spaces with σ-locally countable cs∗-networks

Lemma 2.1 ([14]). Let P be a point-countable cs∗-network for X. Given a convergent
sequence {x}∪{xn} in X, put K = {x}∪{xn : n ∈ N}. If U is an open neighborhood
of K then there exists a finite subcollection F of P subject to the following property
denoted by F (K, U):

(i) K ⊂ ∪F ⊂ U ;
(ii) for each P ∈ F we have P ∩K 6= ∅; if P contains a subsequence of {xn}

then x ∈ P .

Theorem 2.2. A space X possesses a σ-locally countable cs∗-network if and only
if X is a sequence-covering σ-locally countable image of a metric space.
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Proof. Sufficiency. Suppose that X is a sequence-covering σ-locally countable image
of a metric space M under f . Let B be a base of M such that f(B) is a σ-locally
countable collection in X. Then it is easy to check that f(B) is a cs∗-network for
X.

Necessity. Let P =
⋃

n∈N Pn be a σ-locally countable cs∗-network for X. We may
assume that each Pn is closed under finite intersections and X ∈ Pn ⊂ Pn+1. Let
Pn = {Pα : α ∈ An}. Put

M =
{

α = (αn) ∈ ∏
n∈N

An :

{Pαn
: n ∈ N} forms a network at some point x(α) in X

}

and endow M with the subspace topology induced from the usual product topology
of the discrete spaces An. Then M is a metric space. Define f : M → X by putting
f(α) = x(α).

1) The mapping f is continuous and surjective.
Since P is a point countable network of X, it is easy to check that f is continuous

and surjective.
2) The mapping f is σ-locally countable.
For each n ∈ N and αn ∈ An put

U(α1, . . . , αn) =
{
γ ∈ M : the i th coordinate of γ is αi for i ≤ n

}
.

It is easy to check that {U(α1, . . . , αn) : n ∈ N} is a local neighborhood base of
α = (αn). Put

U = {U(α1, . . . , αn) : αi ∈ Ai, i ≤ n, n ∈ N}.
Then U is a base of M . We claim that f

(
U(α1, . . . , αn)

)
=

⋂
i≤n

Pαi . Indeed, if

β = (βi) ∈ U(α1, . . . , αn) then f(β) =
⋂

i∈N
Pβi ⊂

⋂
i≤n

Pαi , f
(
U(α1, . . . , αn)

) ⊂
⋂

i≤n

Pαi . If z ∈ ⋂
i≤n

Pαi then there is a subcollection {Pγi : i ∈ N} of P such

that γi = αi for i ≤ n, and {Pγi : i ∈ N} forms a network of z in X. Put γ =
(γi). Then γ ∈ U(α1, . . . , αn) and z = f(γ) ∈ f

(
U(α1, . . . , αn)

)
; hence,

⋂
i≤n

Pαi ⊂
f
(
U(α1, . . . , αn)

)
. Therefore, f(U) is a σ-locally countable collection of X and f is

a σ-locally countable mapping.
3) The mapping f is sequence-covering.
Given a convergent sequence xn → x, without loss of generality we may assume

that the terms of {xn} are different, and xn 6= x for all n ∈ N. Put K = {xn : n ∈
N} ∪ {x} and

Pi(K) =
{F ⊂ Pi : F satisfies F (K, X)

}
(see Lemma 2.1)

for each i ∈ N. Then |Pi(K)| ≤ ℵ0. Let Pi(K) = {Pij : j ∈ N} and put

P ′n =
{

P ∈ ∧
i,j≤n

Pij : P ∩K 6= ∅
}

(n ∈ N).

Then P ′n ⊂ Pn and P ′n satisfies F (K, X). Hence there is a finite subset Bn of An

such that P ′n = {Pα : α ∈ Bn}. Put
L =

{
α = (αn) ∈ ∏

n∈N
Bn : Pαn+1 ⊂ Pαn , n ∈ N

}
.
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Then it is not difficult to check that L is closed in
∏

n∈N
An. Hence L is a compact

subset of
∏

n∈N
Bn. Given α = (αn) ∈ L, put

K(α) = K ∩ (∩{Pαn : n ∈ N}).
Since {K ∩ Pαn

: n ∈ N} is a descending sequence of nonempty closed subsets of
the compact subset K of X, we have K(α) 6= ∅.

Take y ∈ K(α) and show that {Pαn
: n ∈ N} forms a network of y in X. Indeed,

let U be an open neighborhood of y in X.
Consider the case y = x. Then {y} ∪ {xn : n ≥ m} ⊂ U for some m ∈ N. Put

K1 = {y} ∪ {xn : n ≥ m}, K2 = K \ K1. By Lemma 2.1 there is a subcollection
F ′ of P subject to F (K1, U). Since K2 is finite and K2 ⊂ X \ {y}, there is a
finite subcollection F ′′ of P such that K2 ⊂ ∪F ′′ ⊂ X \ {y} and P ∩K2 6= ∅ for
each P ∈ F ′′. Put F = F ′ ∪ F ′′. Then F satisfies F (K,X), F = Pij for some
i, j ∈ N. Put m0 = max{i, j}. Since y ∈ Pαm0

∈ Pm0 and y /∈ ∪F ′′, we have
y ∈ Pαm0

⊂ ∪F ′ ⊂ U . Therefore, {Pαn
: n ∈ N} forms a network of y in X.

Consider the case y 6= x. Then y ∈ P ⊂ U \(K \{y}) for some P ∈ P. By Lemma
2.1 there is a subcollection F ′ of P subject to F (K \{y}, X \{y}). Put F = F ′∪P .
Then F satisfies F (K,X), F = Pij for some i, j ∈ N. Put m0 = max{i, j}. Since
y ∈ Pαm0

∈ Pm0 and y /∈ ∪F ′, we have y ∈ Pαm0
⊂ P ⊂ U .

Therefore, {Pαn : n ∈ N} forms a network of y in X, α = (αn) ∈ M , and
f(α) = y ∈ K.

We thus have L ⊂ M and f(L) ⊂ K. Conversely, if y ∈ K, then there exists
P ′n ∈ P ′n such that y ∈ P ′n for each n ∈ N; hence, there is αn ∈ Bn such that
Pαn = ∩{P ′i : i ≤ n} for each n ∈ N. Put α = (αn). Then α ∈ L and y ∈
K ∩ (∩{Pαn : n ∈ N}). By the above, {Pαn : n ∈ N} forms a network of y in X,
y = f(α). Consequently, K ⊂ f(L). Therefore, f(L) = K, f is a sequence-covering
mapping.

Remark 2.3. The method of constructing the metric space M is due to V. I.
Ponomarev and was first used for representing a specific nonmetric space as the
continuous image of a 0-dimensional metric space [17].

3. Spaces with σ-locally countable sn-networks

Lemma 3.1 ([12]). Let f : X → Y be a mapping. If {Bn : n ∈ N} is a decreasing
network of some point x and each f(Bn) is a sequential neighborhood of f(x) in Y
then, given a sequence yn → f(x), there exist xn ∈ f−1(yn) such that xn → x in
X.

Theorem 3.2. A space X possesses a σ-locally countable sn-network if and only
if X is a 1-sequence-covering σ-locally countable image of a metric space.

Proof. Sufficiency. Suppose that X is a 1-sequence-covering σ-locally countable
image of a metric space M under f . Let B be a base of M such that f(B) is a
σ-locally countable collection. For each x ∈ X there exists αx ∈ f−1(x) satisfying
Definition 1.4 (2). Put

Px = {f(B) : αx ∈ B ∈ B}, P = ∪{Px : x ∈ X}.
It is easy to check that P is an sn-network for X.
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Necessity. Let P =
⋃

n∈N
Pn be a σ-locally countable sn-network for X and let

Px =
⋃

n∈N
Pnx be an sn-network of x, where Pnx ⊂ Pn. We may assume that

X ∈ Pnx ⊂ P(n+1) x. Let Pn = {Pα : α ∈ An}. Put

M =
{

α = (αn) ∈ ∏
n∈N

An :

{Pαn
: n ∈ N} forms a network at some point x(α) in X

}

and endow M with the subspace topology induced from the usual product topology
of the discrete spaces An. Then M is a metric space. Define f : M → X by putting
f(α) = x(α). By the proof of Theorem 2.2 the mapping f is continuous, surjective,
and σ-locally countable. We only need to prove that f is a 1-sequence-covering
mapping. For each x ∈ X let Pix = {Pij : j ∈ N} and put Pn =

⋂
i, j≤n

Pij for

all n ∈ N. Then there exist k(n) ∈ N and P ′n ∈ Pk(n)x such that P ′n ⊂ Pn. Since
Pnx ⊂ P(n+1) x, we assume that k(n) < k(n + 1), n ∈ N. Put

Pγj =

{
Pjj , 1 ≤ j < k(1);
P ′n , k(n) ≤ j < k(n + 1), n ∈ N.

Then Pγj ∈ Pj x and {Pγj : j ∈ N} forms a network of x. Put γ = (γi). We have
γ ∈ M and γ ∈ f−1(x). For each n ∈ N put

U(γ1, . . . , γn) =
{
α ∈ M : the i th coordinate of α is γi for i ≤ n

}
.

It is easy to check that {U(γ1, . . . , γn) : n ∈ N} is a local decreasing base of
γ = (γi) and f

(
U(γ1, . . . , γn)

)
=

⋂
i≤n

Pγi . If xj → x in X then, due to the fact that

f
(
U(γ1, . . . , γn)

)
is a sequential neighborhood of x, by Lemma 3.1 there exist βj ∈

f−1(xj) such that βj → γ in M . Therefore, f is a 1-sequence-covering mapping.

4. Spaces with σ-locally countable weak bases

Theorem 4.1. A space X possesses a σ-locally countable weak base if and only
if X is a σ-locally countable weakly open image of a metric space.

Proof. Sufficiency. Suppose that X is a σ-locally countable weakly open image of
a metric space M under f . Let B be a base of M such that f(B) is a σ-locally
countable collection in X. Let P = ∪{Px : x ∈ X} be a weak base for X satisfying
Definition 1.4 (3). For each x ∈ X there exists αx ∈ f−1(x) satisfying Definition
1.4 (3). Put

P ′x = {f(B) : αx ∈ B ∈ B}, P ′ = ∪{P ′x : x ∈ X}.
Consider an open subset U of X and a point x ∈ U . There exists αx ∈ f−1(x) ⊂
f−1(U). Since B is a base of M , there is B ∈ B such that αx ∈ B ⊂ f−1(U) and
hence x ∈ f(B) ⊂ U , f(B) ∈ P ′x. Conversely, suppose that for each x ∈ U we have
f(B) ⊂ U for some f(B) ∈ P ′x. Since f is weakly open, there exists Px ∈ Px such
that Px ⊂ f(B) ⊂ U . Consequently, U is open in X. It is easy to check that P ′
satisfies (1), (2) of Definition 1.3. Therefore, P ′ is a σ-locally countable weak base
for X.
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Necessity. Let P =
⋃

n∈N
Pn be a σ-locally countable weak base for X and let

Px =
⋃

n∈N
Pnx be a local weak base of x, where Pnx ⊂ Pn. We may assume that

X ∈ Pnx ⊂ P(n+1) x. Let Pn = {Pα : α ∈ An}. Put

M =
{

α = (αn) ∈ ∏
n∈N

An :

{Pαn
: n ∈ N} forms a network at some point x(α) in X

}

and endow M with the subspace topology induced from the usual product topology
of the discrete spaces An. Then M is a metric space. Define f : M → X by putting
f(α) = x(α). By the proof of Theorem 2.2 the mapping f is continuous, surjective,
and σ-locally countable. We only need to prove that f is a weakly open mapping.
For each x ∈ X let Pix = {Pij : j ∈ N} and put Pn =

⋂
i, j≤n

Pij for all n ∈ N. Then
there exist k(n) ∈ N and P ′n ∈ Pk(n) x such that P ′n ⊂ Pn. Since Pnx ⊂ P(n+1) x, we
assume that k(n) < k(n + 1), n ∈ N. Put

Pγj =

{
Pjj , 1 ≤ j < k(1);
P ′n , k(n) ≤ j < k(n + 1), n ∈ N.

Then Pγj ∈ Pj x and {Pγj : j ∈ N} forms a network of x. Put γ = (γi). Then γ ∈ M

and γ ∈ f−1(x). For each n ∈ N put

U(γ1, . . . , γn) =
{
α ∈ M : the i th coordinate of α is γi for i ≤ n

}
.

It is easy to check that {U(γ1, . . . , γn) : n ∈ N} is a local decreasing base of
γ = (γi) and f

(
U(γ1, . . . , γn)

)
=

⋂
i≤n

Pγi ; hence, there exists Pnx ∈ Px such that

Pnx ⊂ f
(
U(γ1, . . . , γn)

)
for each n ∈ N. Given an open neighborhood V of γ in

M , there is Pnx ∈ Px such that Pnx ⊂ f
(
U(γ1, . . . , γn)

) ⊂ f(V ) for some n ∈ N.
Therefore, f is a weakly open mapping.

Lemma 4.2 ([20]). Let f : X → Y be a weakly open mapping. If X is first
countable then f is a 1-sequence-covering mapping.

Lemma 4.3 ([12]). If P is an sn-network for a sequential space X then P is a
weak base for X.

Corollary 4.4. Given a space X, the following are equivalent:
(1) X is a σ-locally countable weakly open image of a metric space;
(2) X is a σ-locally countable 1-sequence-covering quotient image of a metric

space;
(3) X is a sequential space and X possesses a σ-locally countable sn-network;
(4) X possesses a σ-locally countable weak base;
(5) X is a g-first countable space and X possesses a σ-locally countable cs-

network.

Proof. (1)⇒(2) follows from Lemma 4.2.
(2)⇒(3) follows from Theorem 3.2 and Theorem 6.D.2 in [16].
(3)⇒(4) follows from Lemma 4.3.
(4)⇔(5) by Theorem 3.4 in [21].
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