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ON 2-GROUPS, ALL OF WHOSE FINITE SUBGROUPS ARE OF
NILPOTENCY CLASS 2

D.V. LYTKINA

Abstract. We prove that if all finite subgroups of a 2-group G are of
nilpotency class 2 then G is of nilpotency class 2.

Keywords: p-group, nilpotent group.

1. Introduction

The goal of this article is to prove the following result.

THEOREM. If all finite subgroups of a 2-group G are of nilpotency class 2
then G is of nilpotency class 2.

Obvious corollary of this theorem is that a 2-group is Abelian if and only if all
of its finite subgroups are Abelian. Note that the analog even of the last assertion
is not true for p-groups where p > 2, since for example all finite subgroups of
Novikov-Adjan group (non locally finite free group of odd period) are cyclic [1].
On the other hand all finite subgroups of not nilpotent free Burnside groups of
period 2n for n > 13 can be embedded into direct product of dihedral groups of
order 2n+1 [2], Theorem 2 and therefore this group is nilpotent of class n. Hence
Theorem cannot be generalised for the case of 2-groups with finite subgroups of
bounded nilpotency class. Nevertheless naturally arise
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QUESTIONS. 1. What is the maximal number n which guarantees nilpotency
of every 2-group every finite subgroup of which is of nilpotency class n?

2. Is it true that a 2-group every finite subgroup of which has nilpotency class 3
is nilpotent?

2. Proof of Theorem

Let G be a 2-group all finite subgroups of which are of nilpotency class 2.

Lemma 1. The order of the product of any two involutions of G is at most 4.

Proof. If u, v are involutions from G, then 〈u, v〉 is a finite dihedral group and
if 2m is the order of uv, then nilpotency class of 〈u, v〉 is equal to m. The lemma is
proved.

Lemma 2. The group

H = 〈x, y, z | x2 = y2 = z2 = (xy)4 = (xz)4 = (yz)4 =
(
(xy)2z

)4
=

=
(
(xz)2y

)4
=

(
(yz)2x

)4
=

(
(xy)2(xz)2

)4
= 1〉

is finite.

Proof. Calculations in GAP [3] using coset enumeration algorithm show that
|H| = 219.

Lemma 3. If a, b, c are involutions of G, then 〈a, b, c〉 is a finite subgroup and
[[a, b], c] = 1.

Proof. By Lemma 1 〈a, b, c〉 is a homomorphic image of the group H from Lemma
2 and therefore finite. The lemma is proved.

Denote by I the (normal) subgroup, generated by all involutions of G.

Lemma 4. The subgroup I is nilpotent of nilpotency class 2, in particular, it is
locally finite.

Proof. If a, b are involutions of G, then [a, b] lies in the center Z(I) of I by
Lemma 3. Hence I/Z(I) is Abelian. The lemma is proved.

Lemma 5. If G is generated by three elements then it is finite.

Proof. Suppose G = 〈a, b, c〉 and 2m is the maximum of orders of a, b, c. Use
induction on m. If m 6 1 then G 6 I, therefore by Lemma 4 G is finite.

Let m > 2. If X = {x1, . . . , xx} is a finite subgroup of G/I then by Schmidt’s
theorem the full preimage of X in G is locally finite being a finite extension of
a locally finite group, hence the subgroup X = 〈x1, . . . , xs〉 where xiI = xi, i =
1, . . . , s, is finite. By assumption, X is nilpotent of class 2, therefore subgroup
X = XI/I which is isomorphic to X/X ∩ I is of nilpotency class 2.

So, G/I satisfies the assumption of Theorem and is generated by three elements
aI, bI, cI. Besides, the maximum of their orders is equal to 2m−1. By induction
G/I is finite. Since I is locally finite by Lemma 4 and Schmidt’s theorem and also
finitely generated then G is finite. The lemma is proved.

Lemma 6. The group G is nilpotent of class 2.

Proof. Suppose a, b, c ∈ G and K = 〈a, b, c〉. By Lemma 5 K is finite and hence
nilpotent of class 2, thus [[a, b], c] = 1 and the lemma is proved.
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Lemma 6 completes the proof of Theorem.
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