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INDUCED PERFECT COLORINGS

S.V.AVGUSTINOVICH, I.YU.MOGILNYKH

Abstract. We introduce the operator that maps an eigenspace of a
halved graph of a distance-2 biregular graph to an eigenspace of the
second halved graph. Using the introduced notion, we show that Steiner
triple and Steiner quadruple systems give new infinite series of perfect
2-colorings of the Johnson graphs J(n, 4) and J(n, 5).
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1. Preliminaries

Let G = (V,E) be a graph. By G2 we denote the graph having the same vertex
set as G and edges connecting vertices at distance 2 in G. If G is a connected
bipartite graph, then the connected components of G2 are called the halved graphs
of G [2] and denoted by G′ and G′′. Note that the vertex sets of the halved graphs
coincide with parts V ′ and V ′′ of graph G.

For two vertices x and y of a graphG at distance two let t(x, y) denote the number
of vertices that are at distance one from x and y in G. A bipartite biregular graph
G with parts V ′ and V ′′ of degrees c′ and c′′ is called a (c′, c′′, t′, t′′) distance-2
biregular graph if t(x, y) is equal to t′ or t′′ depending on belonging of x and y to
V ′ or V ′′.

The notion of a distance-2 biregular graph generalizes the notion of a distance-
biregular graph, introduced in [4]. It is easy to see that the graphs of infinite
rectangular and hexagonal grids are not distance-biregular but are distance-2
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biregular. As far as finite graphs are concerned, any bipartite biregular graph of
girth more than four is a distance-2 biregular graph.

Let M be the adjacency matrix of a graph G. A function ϕ : V → R is called an
λ-eigenfunction of G if the vector ϕ consisting of the values of this function is an
eigenvector of M corresponding to the eigenvalue λ, i.e. : Mϕ = λϕ.

Let us introduce the main notion of this paper. Let G be a distance-2 biregular
graph, ϕ be a real-valued function defined on the vertices of G′. Consider the
function defined on the vertices of G′′ by the following equality:

ϕG′′(x) =
∑

y:(x,y)∈E

ϕ(y).

We say that ϕG′′(x) is the function induced in G′′ by ϕ.
Tight connection between completely regular codes, perfect colorings (also known

as equitable partitions [8]) in association schemes and eigenfunctions of these schem-
es has been exploited intensely starting from Delsarte’s work [5] for establishing
various properties of codes from this class.

In [7] Godsil used induced eigenfunctions for studying properties of the Johnson
association scheme.

In this paper we show that inducing preserves the property of being an
eigenfunction in case of an arbitrary distance-2 biregular graph. We introduce the
notion of induced perfect coloring and show that in some cases inducing preserves
the property of being perfect 2-coloring. This approach applied to a pair of Johnson
graphs yields two new infinite series of perfect 2-colorings of the Johnson graphs
which arise from Steiner triple and Steiner quadruple systems.

The notion of perfect coloring generalizes the concept of completely regular
codes given by Delsarte [5]. This class of codes with good algebraic-combinatorial
properties includes well-known codes such as perfect, Preparata and some BCH
codes in the Hamming scheme and other important combinatorial objects including
Steiner triple systems and Steiner quadruple systems [10] in the Johnson scheme.

For more results on perfect colorings and completely regular codes in the Johnson
scheme see [1], [10].

2. Induced eigenfunctions

In this section we show that induced eigenfunction of a halved graph of distance-2
biregular graph is an eigenfunction of the second halved graph.

Theorem 1. Let G be a (c′, c′′, t′, t′′) distance-2 biregular graph with the halved
graphs G′ and G′′, ϕ be an λ′-eigenfunction of G′. Then

1. The induced function ϕG′′ is the constant zero function iff λ′ = − c
′

t′ ;
2. If λ′ is not equal to − c

′

t′ , then ϕG′′ is an c′−c′′+t′λ
t′′ -eigenfunction of G′′;

3. It is true that (ϕG′′)G′ = (λ′t′ + c′)ϕ.

Доказательство. First of all, we derive some useful equalities.
Let S be the |V ′|×|V ′′| incidence matrix that shows relationship between vertices

of the parts V ′ and V ′′ in G. Let M ′ and M ′′ be the adjacency matrices of the
graphs G′ and G′′, respectively, and I ′ and I ′′ be the identity matrices of the same
size asM ′ andM ′′ respectively. The definition of distance-2 biregular graph implies
the following two equalities:

(1) STS = t′M ′ + c′I ′,
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(2) SST = t′′M ′′ + c′′I ′′.

Since the matrix STS is a polynomial ofM ′, then the vector ϕ is its eigenvector:

(3) STSϕ = (λ′t′ + c′)ϕ.

The definition of ϕG′′ can be rewritten in the following form:

(4) ϕG′′ = Sϕ.

1. The necessity part of the first statement follows directly from (3) and (4).
Suppose that the equality λ′ = − c

′

t′ and the inequality Sϕ 6= 0 both hold. By (3)
the last equality implies

ϕTSTSϕ = 0

whereas the inequality gives
(Sϕ)TSϕ 6= 0,

a contradiction.
2. From (2) and (4) we get:

M ′′ϕG′′ =
1

t′′
SSTSϕ− c′′

t′′
Sϕ.

Substituting the expression for STS from (1) in the previous equality, we obtain

M ′′ϕG′′ =
t′

t′′
SM ′ϕ+

c′ − c′′

t′′
Sϕ.

Now by (4) we get

M ′′ϕG′′ = (
t′λ′ + c′ − c′′

t′′
)ϕG′′ ,

i.e. ϕG′′ is an eigenvector of G′′.
3. The third statement of the theorem follows directly from the equality (3).

�

3. Induced perfect colorings

In the previous section we proved that inducing preserves the property of being
eigenfunction. Note that a perfect 2-coloring of a graph can be treated as an
eigenfunction of the graph taking just two different values. In this section we show
that inducing preserves the property of being perfect 2-coloring if the initial coloring
is (α, β)-balanced.

A mapping T from the vertex set of an arbitrary graph G to the set of m colors
{1, . . . ,m} is called a perfect m-coloring with a matrix A = {aij}i,j=1,...,m (also
known as a graph divisor [3]) if for any i and j in {1, . . . ,m} an arbitrary vertex
of color i has exactly aij neighbors of color j. For convenience’ sake in case of two
colors the first color is called white and the second color is called black.

Consider a perfect 2-coloring T of a graph with the matrix
(
a11 a12
a21 a22

)
. Let

us adjust the values of the function T in the following way: if x is a white colored
vertex, then T̃ (x) equals −a21, otherwise T̃ (x) equals a12. By the definition of
perfect coloring the altered function T̃ is an (a21 − a11)-eigenfunction of the graph
if it is regular [3]. Now suppose we are given an eigenfunction of a graph taking two
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different values. Define the coloring with vertices of the same color being vertices
where the eigenfunction takes the same values. From the definition of eigenfunction
it is easy to see that the coloring is a perfect 2-coloring of the graph. Thus we
obtain:

Proposition 1. A perfect 2-coloring of a regular graph with the matrix(
a11 a12
a21 a22

)
is an (a11−a21)-eigenfunction of the graph taking two different values

per se. The conversion is also true.

Let G now be a distance-2 biregular graph. In accordance with the notion of
an induced eigenfunction, we introduce the notion of an induced coloring. Given
a coloring T of a halved graph G′ of G, we define the induced coloring TG′′ of
the halved graph G′′: two vertices of G′′ are colored in the same color if the color
decompositions of their neighborhoods in graph G coincide.

The following natural question arises: "In which cases induced coloring is
perfect?". We now introduce one more definition in order to give a complete answer
to this question when the initial coloring is perfect 2-coloring.

Given a distance-2 biregular graph G, a perfect 2-coloring of its halved graph G′
is called (α, β)-balanced in G if any vertex of V ′′ is adjacent with α or β vertices of
white color in graph G. To be definite we assume that the vertices of white color
in the induced coloring TG′′ are those that are adjacent with α vertices from G′.

Theorem 2. Let G be a (c′, c′′, t′, t′′) distance-2 biregular graph with the halved
graphs G′ and G′′, T be a (α, β)-balanced perfect 2-coloring of G′ with the matrix(
a11 a12
a21 a22

)
. Then TG′′ is a perfect 2-coloring of G′′ with the matrix

B =


c′′(c′−1)

t′′ − a21t
′c′′−αt′(a12+a21)

(β−α)t′′
a21t

′c′′−αt′(a12+a21)
(β−α)t′′

βt′(a12+a21)−a21t′c′′
(β−α)t′′

c′′(c′−1)
t′′ − βt′(a12+a21)−a21t′c′′

(β−α)t′′

 .

Доказательство. By Theorem 1 and Proposition 1, the eigenfunction T̃G′′

corresponding to TG′′ is an c′−c′′+t′(a11−a21)
t′′ -eigenfunction. Note that T̃G′′ takes

two different values due to T being balanced. In other words, TG′′ is a perfect

2-coloring with the matrix B =

(
b11 b12
b21 b22

)
, such that

(5) b11 − b21 =
c′ − c′′ + t′(a11 − a21)

t′′
.

Note that the definition of (c′, c′′, t′, t′′) distance-2 biregular graph implies thatG′

and G′′ are regular graphs of degrees c′(c′′−1)
t′ and c′′(c′−1)

t′′ respectively. Therefore,
the following equalities hold:

(6) b11 + b12 =
c′′(c′ − 1)

t′′
, a11 + a12 =

c′(c′′ − 1)

t′
.

Combining (5) and (6), we get

(7) b12 + b21 =
t′

t′′
(a12 + a21).
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We now count the number N of edges (x, y) in G, where x is a white vertex of
G′ and y is a vertex of G′′ of any color. On one hand, for a fixed vertex x there
exists exactly c′ possibilities for y. Therefore, N is equal to the number of white
vertices in G′ multiplied by the degree of part V ′ in G:

N = (
a21

a12 + a21
|V ′|)c′.

On the other hand, for a fixed vertex y there exists α or β possibilities for x
depending on the color of the vertex y. Hence, we get:

N =
αb21|V ′′|
b12 + b21

+
βb12|V ′′|
b12 + b21

.

Therefore, we get:

(
a21

a12 + a21
|V ′|)c′ = αb21|V ′′|

b12 + b21
+
βb12|V ′′|
b12 + b21

.

Since G is a bipartite biregular graph, we have the following equality:

|V ′|c′ = |V ′′|c′′.
From (7) and two previous equalities we obtain

α+ (β − α) b12t
′′

t′(a12 + a21)
=

a21
a21 + a12

c′′,

which gives the required value for b12. The values of the remaining elements
b11, b22, b21 of the matrix B are obtained using equalities (6) and (7).

�

4. Induced perfect 2-colorings of the Johnson graphs

In this section we illustrate an application of the described approach for perfect
2-colorings of the Johnson graph.

We need few more definitions. Given a collection C of vertices of a graph G,
define a pair of vertices to be colored in the same color if they are at the same
distance from C. The obtained coloring is called the distance coloring with respect
to C. The Johnson graph J(n,w) has vertices given by the w-subsets of {1, . . . , n},
with two vertices connected iff their intersection is of size w − 1. A collection of
w-subsets of {1, . . . , n} is t−(n,w, λ)-design if every w-element subset of {1, . . . , n}
occurs exactly in λ blocks.

4.1. (w-1)-(n,w,1)-designs. Consider a bipartite graph G with the parts
V (J(n,w)) and V (J(n,w + 1)) and adjacency showing the inclusion of a w-subset
into a w + 1-subset. The graph G is known to be distance-biregular [2].

Suppose a (w−1)−(n,w, 1)-designD is given. The block set of this design admits
the obvious embedding into the vertex set of J(n,w). Martin [10] noted that the
distance coloring of J(n,w) with respect to D is a perfect coloring of J(n,w) with
the matrix (

0 w(n− w)
w w(n− w − 1)

)
.

Note that this coloring is (0,1)-balanced in G, because no pair of vertices of D is
adjacent in J(n,w). Applying Theorem 2 to the coloring, we obtain
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Proposition 2. Let D be a (w − 1)− (n,w, 1)-design. Then there exists a perfect
2-coloring of J(n,w + 1) with the matrix(

(w + 1)(n− 2w − 1) (w + 1)w
w(n− 2w) w2 − 2w − 1 + n

)
.

Taking into account existence of Steiner triple and quadruple systems [6], [9] we
get:

Proposition 3. For every n, n ≡ 1, 3(mod 6) there exists a perfect 2-coloring of
J(n, 4) with the matrix (

4n− 28 12
3(n− 6) n+ 2

)
.

Proposition 4. For every n, n ≡ 2, 4(mod 6) there exists a perfect 2-coloring of
J(n, 5) with the matrix (

5(n− 5) 20
4(n− 8) n+ 7

)
.

4.2. Perfect codes in the Johnson graphs. The long-standing hypothesis
proposed by Delsarte in [5] states that no perfect codes in the Johnson graphs
exist. We show that the existence of 1-perfect code in the Johnson graph J(n,w)
would imply the existence of particular perfect 2-coloring of J(n,w + 1).

Suppose that 1-perfect code in J(n,w) exists. It is not hard to see that the
distance coloring T of J(n,w) with respect to a 1-perfect code is a perfect coloring

with the matrix
(

0 w(n− w)
1 w(n− w)− 1

)
. Note that the coloring T is (0, 1)-balanced

in G, so, by Theorem 2, induced coloring TJ(n,w+1) is perfect. Thus, we obtain

Proposition 5. If there exists a 1-perfect code in J(n,w) then there exists a perfect
2-coloring of J(n,w + 1) with the matrix:(

(w + 1)(n− w − 2) w + 1
w(n− w − 1) n− w − 1

)
.
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