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ON A QUESTION OF DIRAC ON CRITICAL AND VERTEX
CRITICAL GRAPHS

TOMMY JENSEN AND MARK SIGGERS

Abstract. We give a construction which for any N provides a graph on
n > N vertices which is vertex-critical with respect to being 4-chromatic,
has at least cn2 edges that are non-critical (i.e., the removal of any one
does not change the chromaticity) and has at most Cn critical edges for
some fixed positive constants c and C.

Thus for any ε > 0 we get 4-vertex-critical graphs in which less than
an ε-proportion of the edges are non-critical.
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1. Introduction

A graph is k-critical if it is k-chromatic but any proper subgraph is (k − 1)-
colourable; that is, it becomes (k − 1)-colourable upon the removal of any edge
or vertex. A graph is k-vertex-critical if it is k-chromatic, but becomes (k − 1)-
colourable upon the removal of any vertex. Clearly k-critical graphs are k-vertex-
critical, but the converse statement is not necessarly true, and one would like to
see how far a k-vertex-critical graph can be from being k-critical. When k = 3, it
cannot be far: the 3-vertex-critical graphs are exactly the 3-critical graphs, that
is, odd cycles. Where an edge in a k-vertex-critical graph is critical if its removal
makes the graph (k−1)-colourable, Dirac asked the following question (see [2], [4]).

Problem 1 (Dirac). For all integers k ≥ 4, do there exist k-vertex-critical graphs
without any critical edges?
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In [1] Brown exhibited the first known example of such a graph, for k = 5. In
[3], Jensen showed that for each k ≥ 5 there are in fact infinitely many examples,
and in [5], Lattanzio showed further constructions for odd values of k ≥ 5. But the
case k = 4 remains stubbornly unanswered.

Given a graph G with edge set E = E(G) and vertex set V = V (G), let E∗ =
E∗(G) ⊂ E be the set of critical edges of G. The question of Dirac asks if there are
k-vertex-critical graphs for which E∗ is empty.

We consider the set E∗ in the case that k = 4 with regards to the supposition
that if it is necessarily non-empty, then perhaps it also satisfies some stronger
properties, such as being large. Anything with we can say about E∗ will hopefully
help in eventually proving whether or not it is empty.

Our first result is to show that E∗, as would be expected of any empty set, is
not necessarily large.

Theorem 1. There exist c1, c2 > 0 such that for infinitely many n > 1 there is a
4-vertex-critical graph H on n vertices such that |E(H)| > c1n

2 but |E∗(H)| < c2n.

2. Proof of Theorem 1

The proof is constructive, and depends on a fixed integer m ≥ 3. We start with
the graph B, a simple blowup of the triangle.

Construction 1 (B = B(m)). Let B be the complete tripartite graph with three
disjoint sets S1, S2 and S3 of 2m vertices each.

The following is clear.

Lemma 1. The only 3-colouring of B = B(m) (m ≥ 3), up to permutation of the
colours is φ(v) = i if v ∈ Si. Further, this remains the only colouring of B on the
removal of any edge.

Доказательство. Indeed, assume that some vertex v1 of S1 has φ(v1) = 1. Then
for any other vertex v′1 in S1, there are adjacent common neighbours v2 and v3 of
v1 and v′1. So φ(v2) and φ(v3) are different and different from 1, forcing φ(v′1) = 1.
Without loss of generality, we may say that φ(v2) = 2 and φ(v3) = 3, and the same
argument as above allows us to conclude that φ is monochromatic on both S2 and
S3.

This argument works until at least m − 2 edges have been removed from B, so
as m ≥ 3 works with the removal of any one edge. �

The idea of the construction is simple. We construct another graph G containing
the vertex set S1∪S2∪S3 as an independent set, and having relatively few (constant
times m) vertices and edges. Any 3-colouring of G will disagree with the unique
3-colouring of B on exactly one vertex of B. Removing any vertex of B, we then
get a good colouring, while removing any edge of B will not change things. Thus
we can get a vertex-critical graph in which none of the 12m2 edges in B are critical.

We construct the graph G in a couple of stages. We begin with an auxiliary
graph T = T (m). The notation [m] is used to denote the set {1, . . . ,m}.

Construction 2 (T = T (m)). (See Figure 1.) For m > 3, construct T (m) from the
path x0x1 . . . x2m+1, and the independent vertices y1, . . . , ym, by adding the edges
yix2i−1 and yix2i for i ∈ [m]. Let Y = {y1, . . . ym} and Y + = {x0, x2m+1} ∪ Y .
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Рис. 1. The graph T (m)

Lemma 2. The graph T = T (m) satisfies the following properties.
(1) Any 3-colouring φ of Y + with φ(x0) = φ(x2m+1) = c0 can be extended to

a proper 3-colouring of T if and only if there is some i ∈ [m] for which
φ(yi) = c0.

(2) Any 3-colouring φ of Y + with φ(x0) 6= φ(x2m+1) can be extended to a proper
3-colouring of T .

(3) For any vertex v ∈ V (T ), any 3-colouring φ of Y + \ {v} can be extended to
a proper 3-colouring of T \ v.

Доказательство. We prove item (i) and in doing so also prove item (ii). Before
we address item (i) directly though, we make an observation about a 3-colouring
φ of Y + \ {x2m+1} ∪ {x2i} for some i ∈ [m]. Observe that if φ(yi+1) 6= φ(x2i) the
only possible good extension of φ to x2i+1 and x2(i+1) has φ(x2(i+1)) = φ(x2i). On
the other hand, if φ(yi+1) 6= φ(x2i) then φ can be extended to x2i+1 and x2(i+1) in
two ways, which differ, in particular, on x2(i+1).

Now let φ be a 3-colouring of Y + \ {x2m+1}, with φ(x0) = 1. We show that φ
can be extended to a 3-colouring of T with φ(x2m+1) = 1 if and only if 1 ∈ φ(Y ).
This is equivalent to item (i).

If 1 6∈ φ(Y ), then if follows by induction from the observation, that φ(x2i) = 1
for all i ∈ [m], and so φ(x2m+1) 6= φ(x2m) = 1.

On the other hand, let i be the smallest integer such that φ(yi) = 1. Then as we
saw above, there is a good extension of φ to {x1, . . . , x2(i−1)} with φ(x2(i−1)) = 1,
and two extensions of φ to {x1, . . . , x2i} that differ on x2i. If one of them has
φ(x2i) = φ(yi+1), then it extends in two ways to {x2i+1, x2(i+1)}. Otherwise,
they both have φ(x2i) 6= φ(yi+1) so extend respectively to colourings including
{x2i+1, x2(i+1)}, which differ on x2(i+1). By induction, φ extends to at least two
colourings on T \ x2m+1 which differ on x2m. At least one of these extends to a
colouring of T with φ(x2m+1) = 1, as needed.

Item (ii) has been proved in our proof of item (i). Item (iii) follows from items
(i) and (ii) by assigning the appropriate colour to the missing vertex v.

�

Construction 3 (T ′ = T ′(m)). Let T ′(m) be the graph constructed from T (m)
by adding a leaf zi adjacent to yi for each i ∈ [m]. Let Z = {z1, . . . , zm} and
Z+ = Z ∪ {x0, x2m+1}.

The following is clear.
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Lemma 3. Lemma 2 holds for T ′ in place of T if we replace Y + with Z+ and
φ(yi) = c0 with φ(zi) 6= c0, in item (i).

Construction 4 (G = G(m)). Fix m > 2 and for i ∈ [3] let Ti be a copy of T (m)
and T ′i be a copy of T ′(m). For i ∈ [3] let Si be the union of the copy of Y in Ti and
the copy of Z in T ′i . Construct G = G(m) from the star with center v0 and leaves
v1, v2 and v3, and from the graphs Ti and T ′i for i = 1, 2, 3, as follows.

• Identify vi with the copies of x0 in Ti and T ′i for i = 1, 2, 3.
• Identify vi+1 with the copies of x2m+1 in Ti and T ′i for i = 1, 2, 3.

As T (m) has 3m+ 2 vertices and 3m+ 1 edges, and T ′(m) has 4m+ 2 vertices
and 4m+1 edges, one can check that G(m) has n = 21m+4 vertices and 21m+6
edges.

Lemma 4. The following are true of G:
(1) Under any 3-colouring of G at least one of the sets Si is not monochromatic.
(2) For any vertex v∗ ∈ S1 ∪ S2 ∪ S3, there is a 3-colouring of G \ v∗ under

which Si \ {v∗} is monochromatic for each i = 1, 2, 3.

Доказательство. First we show statement (i). Indeed, if φ is a 3-colouring of G
then some two of the vertices v1, v2, v3, all being adjacent to v0, must have the
same colour. Assume, without loss of generality, that φ(v1) = φ(v2) = 1. As v1, v2
are identified with x0 and x2m+1 in T1 and T ′1, the copy Y1 of Y in T1 contains
some vertex of colour 1, and the copy Z1 of Z in T ′1 contains some vertex of colour
different from 1. So S1 contains vertices of two different colours.

For statement (ii), let v∗ ∈ S1. We define a 3-colouring φ of G \ v∗ that extends
the 3-colouring of (S1 ∪ S2 ∪ S3) \ {v∗} which is defined by φ(v) = i if v ∈ Si. As
S1 is the union of the copy Y1 of Y in T1 and the copy Z1 of Z in T ′1, we have two
(very similar) cases to deal with.
Case v∗ ∈ Y1: We extend φ to V (G) \ {v∗} by extending it first to the vi, and
then extending it, using Lemmas 2 and 3, to the graphs Ti and T ′i .

• Let φ(v0) = 1, φ(v1) = φ(v2) = 2, and φ(v3) = 3.
• The colouring φ is so far defined on the copy of Y + in T1 except the vertex
v∗ that has been removed from the copy Y1 of Y . By Lemma 2(iii), it can
thus be extended to T1 ∩ (G \ v∗).

• The copies x0 and x2m+1 in T2 are v2 and v3 respectively, so φ(x0) = 2 6=
3 = φ(x2m+1). By Lemma 2(ii), therefore φ, which is so far defined only on
the copy of Y + in T2, can be extended to a good colouring of T2.

• The copies of x0 and x2m+1 in T3 are v3 and v1 respectively, so φ can
similarily be extended to a good colouring of T3.

• The copies of x0 and x2m+1 in T ′1 are v1 and v2 respectively, so φ(x0) = 2 =
φ(x2m+1). The copy Z1 of Z is a subset of S1 so φ(v) = 1 for all v ∈ Z1.
Thus by Lemma 3(i), φ can be extended to a good colouring of T ′1.

• The copies of x0 and x2m+1 in T ′2 are v2 and v3 respectively, so φ(x0) =
2 6= 3 = φ(x2m+1). Thus by Lemma 3(ii), φ can be extended to a good
colouring of T ′2. Similarily it can be extended to T ′3.

We have thus extended φ to a good 3-colouring of G \ v∗ in the case that v∗ is
in Y1 ⊂ S1.
Case v∗ ∈ Z1 is very similar: In this case we start by defining φ on the vi as
follows. Let φ(v0) = 3, φ(v1) = φ(v2) = 1, and φ(v3) = 2.
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From here, the proof that φ extends to T2, T3, T ′2 and T ′3 is the same, as again
φ(x2) 6= φ(x3) and φ(x3) 6= φ(x1). The argument that it extends to T ′1 is the same
as the argument for T1 in the previous case, except using Lemma 2(iii), and the
argument that it extends to T1 is the same as the argument for T ′1 in the previous
case, except using Lemma 2(i).

�

Now we are ready to prove the Theorem. For m ≥ 3 let H ′ be the graph we get
from B = B(m) and G = G(m) by identifying, for i = 1, 2, 3, the set Si of B with
the set Si of G. By Lemmas 1 and 4(i), H ′ is not 3-colourable. Let H be a 4-critical
subgraph that we get fromH ′ by removing vertices as long as this does not make the
graph 3-colourable. By Lemma 4(ii), V (H) must contain all of S1∪S2∪S3. Further,
by Lemma 1, none of the edges of B are critical, so E∗(H) ⊂ E(H)\E(B) ⊂ E(G).

Now, as we observed just before Lemma 4 G has 21m+ 4 vertices and 21m+ 6
edges. So H has n ≤ 21m+4 vertices and |E(H)| ≥ |E(B)| = 12m2 > 12

212n
2 edges,

of which at most |E(G)| = 21m + 6 = n + ε are in E∗(H). Thus the Theorem is
proved with c1 = 12/212 and c2 = 1 + ε.

3. Concluding Remarks

Our aim is to discover properties of the set E∗ of critical edges in a 4-critical
graphH. In our construction, we showed, as must be true if Dirac’s Question is to be
answered positively, that E∗ may be small. In our construction, E∗ was connected,
and even a spanning subgraph of H. We cannot see how to avoid this.

If Dirac’s Question has a negative answer for k = 4, it does not seem unlikely
that one could further say that the graph E∗ of critical edges is connected, or even
spanning. We think it would be interesting to investigate even questions such as
this.
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[2] P. Erdős, On some aspects of my work with Gabriel Dirac, Graph Theory in Memory of
G.A. Dirac, volume 41 of Annals of Discrete Mathematics, North-Holland 1989, pp. 111–116.
MR0975995

[3] T.R. Jensen, Dense critical and vertex-critical graphs, Discrete Math. 258 (2002), 63–84.
MR2002072

[4] T.R. Jensen and B. Toft, Problem 5.14, Graph Coloring Problems, Wiley 1995, pp. 105–106.
MR1304254

[5] J.J. Lattanzio, A note on a conjecture of Dirac, Discrete Math. 258 (2002), 323–330.
MR2002768

Tommy Jensen
College of Natural Sciences,
Kyungpook National University,
Daegu 702-701, South Korea
E-mail address: tjensen@knu.ac.kr

Mark Siggers
College of Natural Sciences,
Kyungpook National University,
Daegu 702-701, South Korea
E-mail address: mhsiggers@knu.ac.kr


