S@MR

ISSN 1813-3304

СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports http://semr.math.nsc.ru

Том 9, стр. 156–160 (2012)

УДК 519.17 MSC 05C15

ON A QUESTION OF DIRAC ON CRITICAL AND VERTEX CRITICAL GRAPHS

TOMMY JENSEN AND MARK SIGGERS

ABSTRACT. We give a construction which for any N provides a graph on n > N vertices which is vertex-critical with respect to being 4-chromatic, has at least cn^2 edges that are non-critical (i.e., the removal of any one does not change the chromaticity) and has at most Cn critical edges for some fixed positive constants c and C.

Thus for any $\varepsilon > 0$ we get 4-vertex-critical graphs in which less than an ε -proportion of the edges are non-critical.

Keywords: critical graph, vertex-criticality, critical edge, Dirac problem

1. INTRODUCTION

A graph is k-critical if it is k-chromatic but any proper subgraph is (k-1)colourable; that is, it becomes (k-1)-colourable upon the removal of any edge or vertex. A graph is k-vertex-critical if it is k-chromatic, but becomes (k-1)colourable upon the removal of any vertex. Clearly k-critical graphs are k-vertexcritical, but the converse statement is not necessarily true, and one would like to see how far a k-vertex-critical graph can be from being k-critical. When k = 3, it cannot be far: the 3-vertex-critical graphs are exactly the 3-critical graphs, that is, odd cycles. Where an edge in a k-vertex-critical graph is critical if its removal makes the graph (k-1)-colourable, Dirac asked the following question (see [2], [4]).

Problem 1 (Dirac). For all integers $k \ge 4$, do there exist k-vertex-critical graphs without any critical edges?

Tommy Jensen, Mark Siggers On a question of Dirac on Critical and Vertex Critical Graphs.

^{© 2012} T.JENSEN, M.SIGGERS.

This research was supported by the Kyungpook National University Research Fund, 2011. Received February, 3, 2012, published February, 21, 2012.

In [1] Brown exhibited the first known example of such a graph, for k = 5. In [3], Jensen showed that for each $k \ge 5$ there are in fact infinitely many examples, and in [5], Lattanzio showed further constructions for odd values of $k \ge 5$. But the case k = 4 remains stubbornly unanswered.

Given a graph G with edge set E = E(G) and vertex set V = V(G), let $E_* = E_*(G) \subset E$ be the set of critical edges of G. The question of Dirac asks if there are k-vertex-critical graphs for which E_* is empty.

We consider the set E_* in the case that k = 4 with regards to the supposition that if it is necessarily non-empty, then perhaps it also satisfies some stronger properties, such as being large. Anything with we can say about E_* will hopefully help in eventually proving whether or not it is empty.

Our first result is to show that E^* , as would be expected of any empty set, is not necessarily large.

Theorem 1. There exist $c_1, c_2 > 0$ such that for infinitely many n > 1 there is a 4-vertex-critical graph H on n vertices such that $|E(H)| > c_1 n^2$ but $|E_*(H)| < c_2 n$.

2. Proof of Theorem 1

The proof is constructive, and depends on a fixed integer $m \ge 3$. We start with the graph B, a simple blowup of the triangle.

Construction 1 (B = B(m)). Let B be the complete tripartite graph with three disjoint sets S_1 , S_2 and S_3 of 2m vertices each.

The following is clear.

Lemma 1. The only 3-colouring of B = B(m) $(m \ge 3)$, up to permutation of the colours is $\phi(v) = i$ if $v \in S_i$. Further, this remains the only colouring of B on the removal of any edge.

 \mathcal{A} okasamentocmeo. Indeed, assume that some vertex v_1 of S_1 has $\phi(v_1) = 1$. Then for any other vertex v'_1 in S_1 , there are adjacent common neighbours v_2 and v_3 of v_1 and v'_1 . So $\phi(v_2)$ and $\phi(v_3)$ are different and different from 1, forcing $\phi(v'_1) = 1$. Without loss of generality, we may say that $\phi(v_2) = 2$ and $\phi(v_3) = 3$, and the same argument as above allows us to conclude that ϕ is monochromatic on both S_2 and S_3 .

This argument works until at least m-2 edges have been removed from B, so as $m \ge 3$ works with the removal of any one edge.

The idea of the construction is simple. We construct another graph G containing the vertex set $S_1 \cup S_2 \cup S_3$ as an independent set, and having relatively few (constant times m) vertices and edges. Any 3-colouring of G will disagree with the unique 3-colouring of B on exactly one vertex of B. Removing any vertex of B, we then get a good colouring, while removing any edge of B will not change things. Thus we can get a vertex-critical graph in which none of the $12m^2$ edges in B are critical.

We construct the graph G in a couple of stages. We begin with an auxiliary graph T = T(m). The notation [m] is used to denote the set $\{1, \ldots, m\}$.

Construction 2 (T = T(m)). (See Figure 1.) For m > 3, construct T(m) from the path $x_0x_1 \ldots x_{2m+1}$, and the independent vertices y_1, \ldots, y_m , by adding the edges y_ix_{2i-1} and y_ix_{2i} for $i \in [m]$. Let $Y = \{y_1, \ldots, y_m\}$ and $Y^+ = \{x_0, x_{2m+1}\} \cup Y$.

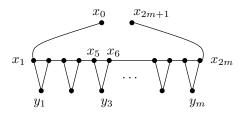


РИС. 1. The graph T(m)

Lemma 2. The graph T = T(m) satisfies the following properties.

- (1) Any 3-colouring ϕ of Y^+ with $\phi(x_0) = \phi(x_{2m+1}) = c_0$ can be extended to a proper 3-colouring of T if and only if there is some $i \in [m]$ for which $\phi(y_i) = c_0$.
- (2) Any 3-colouring ϕ of Y^+ with $\phi(x_0) \neq \phi(x_{2m+1})$ can be extended to a proper 3-colouring of T.
- (3) For any vertex $v \in V(T)$, any 3-colouring ϕ of $Y^+ \setminus \{v\}$ can be extended to a proper 3-colouring of $T \setminus v$.

 \mathcal{A} okasamentocmeo. We prove item (i) and in doing so also prove item (ii). Before we address item (i) directly though, we make an observation about a 3-colouring ϕ of $Y^+ \setminus \{x_{2m+1}\} \cup \{x_{2i}\}$ for some $i \in [m]$. Observe that if $\phi(y_{i+1}) \neq \phi(x_{2i})$ the only possible good extension of ϕ to x_{2i+1} and $x_{2(i+1)}$ has $\phi(x_{2(i+1)}) = \phi(x_{2i})$. On the other hand, if $\phi(y_{i+1}) \neq \phi(x_{2i})$ then ϕ can be extended to x_{2i+1} and $x_{2(i+1)}$ in two ways, which differ, in particular, on $x_{2(i+1)}$.

Now let ϕ be a 3-colouring of $Y^+ \setminus \{x_{2m+1}\}$, with $\phi(x_0) = 1$. We show that ϕ can be extended to a 3-colouring of T with $\phi(x_{2m+1}) = 1$ if and only if $1 \in \phi(Y)$. This is equivalent to item (i).

If $1 \notin \phi(Y)$, then if follows by induction from the observation, that $\phi(x_{2i}) = 1$ for all $i \in [m]$, and so $\phi(x_{2m+1}) \neq \phi(x_{2m}) = 1$.

On the other hand, let *i* be the smallest integer such that $\phi(y_i) = 1$. Then as we saw above, there is a good extension of ϕ to $\{x_1, \ldots, x_{2(i-1)}\}$ with $\phi(x_{2(i-1)}) = 1$, and two extensions of ϕ to $\{x_1, \ldots, x_{2i}\}$ that differ on x_{2i} . If one of them has $\phi(x_{2i}) = \phi(y_{i+1})$, then it extends in two ways to $\{x_{2i+1}, x_{2(i+1)}\}$. Otherwise, they both have $\phi(x_{2i}) \neq \phi(y_{i+1})$ so extend respectively to colourings including $\{x_{2i+1}, x_{2(i+1)}\}$, which differ on $x_{2(i+1)}$. By induction, ϕ extends to at least two colourings on $T \setminus x_{2m+1}$ which differ on x_{2m} . At least one of these extends to a colouring of T with $\phi(x_{2m+1}) = 1$, as needed.

Item (ii) has been proved in our proof of item (i). Item (iii) follows from items (i) and (ii) by assigning the appropriate colour to the missing vertex v.

Construction 3 (T' = T'(m)). Let T'(m) be the graph constructed from T(m) by adding a leaf z_i adjacent to y_i for each $i \in [m]$. Let $Z = \{z_1, \ldots, z_m\}$ and $Z^+ = Z \cup \{x_0, x_{2m+1}\}.$

The following is clear.

Lemma 3. Lemma 2 holds for T' in place of T if we replace Y^+ with Z^+ and $\phi(y_i) = c_0$ with $\phi(z_i) \neq c_0$, in item (i).

Construction 4 (G = G(m)). Fix m > 2 and for $i \in [3]$ let T_i be a copy of T(m)and T'_i be a copy of T'(m). For $i \in [3]$ let S_i be the union of the copy of Y in T_i and the copy of Z in T'_i . Construct G = G(m) from the star with center v_0 and leaves v_1, v_2 and v_3 , and from the graphs T_i and T'_i for i = 1, 2, 3, as follows.

- Identify v_i with the copies of x_0 in T_i and T'_i for i = 1, 2, 3.
- Identify v_{i+1} with the copies of x_{2m+1} in T_i and T'_i for i = 1, 2, 3.

As T(m) has 3m + 2 vertices and 3m + 1 edges, and T'(m) has 4m + 2 vertices and 4m + 1 edges, one can check that G(m) has n = 21m + 4 vertices and 21m + 6edges.

Lemma 4. The following are true of G:

- (1) Under any 3-colouring of G at least one of the sets S_i is not monochromatic.
- (2) For any vertex $v_* \in S_1 \cup S_2 \cup S_3$, there is a 3-colouring of $G \setminus v_*$ under which $S_i \setminus \{v_*\}$ is monochromatic for each i = 1, 2, 3.

 \mathcal{A} okasamentecmeo. First we show statement (i). Indeed, if ϕ is a 3-colouring of G then some two of the vertices v_1, v_2, v_3 , all being adjacent to v_0 , must have the same colour. Assume, without loss of generality, that $\phi(v_1) = \phi(v_2) = 1$. As v_1, v_2 are identified with x_0 and x_{2m+1} in T_1 and T'_1 , the copy Y_1 of Y in T_1 contains some vertex of colour 1, and the copy Z_1 of Z in T'_1 contains some vertex of colour different from 1. So S_1 contains vertices of two different colours.

For statement (ii), let $v_* \in S_1$. We define a 3-colouring ϕ of $G \setminus v_*$ that extends the 3-colouring of $(S_1 \cup S_2 \cup S_3) \setminus \{v_*\}$ which is defined by $\phi(v) = i$ if $v \in S_i$. As S_1 is the union of the copy Y_1 of Y in T_1 and the copy Z_1 of Z in T'_1 , we have two (very similar) cases to deal with.

Case $v_* \in Y_1$: We extend ϕ to $V(G) \setminus \{v_*\}$ by extending it first to the v_i , and then extending it, using Lemmas 2 and 3, to the graphs T_i and T'_i .

- Let $\phi(v_0) = 1$, $\phi(v_1) = \phi(v_2) = 2$, and $\phi(v_3) = 3$.
- The colouring ϕ is so far defined on the copy of Y^+ in T_1 except the vertex v_* that has been removed from the copy Y_1 of Y. By Lemma 2(iii), it can thus be extended to $T_1 \cap (G \setminus v_*)$.
- The copies x_0 and x_{2m+1} in T_2 are v_2 and v_3 respectively, so $\phi(x_0) = 2 \neq 3 = \phi(x_{2m+1})$. By Lemma 2(ii), therefore ϕ , which is so far defined only on the copy of Y^+ in T_2 , can be extended to a good colouring of T_2 .
- The copies of x_0 and x_{2m+1} in T_3 are v_3 and v_1 respectively, so ϕ can similarly be extended to a good colouring of T_3 .
- The copies of x_0 and x_{2m+1} in T'_1 are v_1 and v_2 respectively, so $\phi(x_0) = 2 = \phi(x_{2m+1})$. The copy Z_1 of Z is a subset of S_1 so $\phi(v) = 1$ for all $v \in Z_1$. Thus by Lemma 3(i), ϕ can be extended to a good colouring of T'_1 .
- The copies of x_0 and x_{2m+1} in T'_2 are v_2 and v_3 respectively, so $\phi(x_0) = 2 \neq 3 = \phi(x_{2m+1})$. Thus by Lemma 3(ii), ϕ can be extended to a good colouring of T'_2 . Similarly it can be extended to T'_3 .

We have thus extended ϕ to a good 3-colouring of $G \setminus v_*$ in the case that v_* is in $Y_1 \subset S_1$.

Case $v_* \in Z_1$ is very similar: In this case we start by defining ϕ on the v_i as follows. Let $\phi(v_0) = 3$, $\phi(v_1) = \phi(v_2) = 1$, and $\phi(v_3) = 2$.

From here, the proof that ϕ extends to T_2, T_3, T'_2 and T'_3 is the same, as again $\phi(x_2) \neq \phi(x_3)$ and $\phi(x_3) \neq \phi(x_1)$. The argument that it extends to T'_1 is the same as the argument for T_1 in the previous case, except using Lemma 2(iii), and the argument that it extends to T_1 is the same as the argument for T'_1 in the previous case, except using Lemma 2(ii).

Now we are ready to prove the Theorem. For $m \geq 3$ let H' be the graph we get from B = B(m) and G = G(m) by identifying, for i = 1, 2, 3, the set S_i of B with the set S_i of G. By Lemmas 1 and 4(i), H' is not 3-colourable. Let H be a 4-critical subgraph that we get from H' by removing vertices as long as this does not make the graph 3-colourable. By Lemma 4(ii), V(H) must contain all of $S_1 \cup S_2 \cup S_3$. Further, by Lemma 1, none of the edges of B are critical, so $E_*(H) \subset E(H) \setminus E(B) \subset E(G)$.

Now, as we observed just before Lemma 4 G has 21m + 4 vertices and 21m + 6 edges. So H has $n \leq 21m + 4$ vertices and $|E(H)| \geq |E(B)| = 12m^2 > \frac{12}{21^2}n^2$ edges, of which at most $|E(G)| = 21m + 6 = n + \varepsilon$ are in $E_*(H)$. Thus the Theorem is proved with $c_1 = 12/21^2$ and $c_2 = 1 + \varepsilon$.

3. Concluding Remarks

Our aim is to discover properties of the set E_* of critical edges in a 4-critical graph H. In our construction, we showed, as must be true if Dirac's Question is to be answered positively, that E_* may be small. In our construction, E_* was connected, and even a spanning subgraph of H. We cannot see how to avoid this.

If Dirac's Question has a negative answer for k = 4, it does not seem unlikely that one could further say that the graph E_* of critical edges is connected, or even spanning. We think it would be interesting to investigate even questions such as this.

References

- J.I. Brown, A vertex critical graph without critical edges, Discrete Math. 102 (1992), 99–102. MR1168138
- [2] P. Erdős, On some aspects of my work with Gabriel Dirac, Graph Theory in Memory of G.A. Dirac, volume 41 of Annals of Discrete Mathematics, North-Holland 1989, pp. 111–116. MR0975995
- [3] T.R. Jensen, Dense critical and vertex-critical graphs, Discrete Math. 258 (2002), 63-84. MR2002072
- [4] T.R. Jensen and B. Toft, Problem 5.14, Graph Coloring Problems, Wiley 1995, pp. 105–106. MR1304254
- [5] J.J. Lattanzio, A note on a conjecture of Dirac, Discrete Math. 258 (2002), 323–330. MR2002768

Tommy Jensen College of Natural Sciences, Kyungpook National University, Daegu 702-701, South Korea *E-mail address*: tjensen@knu.ac.kr

Mark Siggers College of Natural Sciences, Kyungpook National University, Daegu 702-701, South Korea *E-mail address*: mhsiggers0knu.ac.kr