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Abstract. We consider necessary and sufficient conditions for non-
symmetric relations of semi-isolation in terms of colorings for neighbor-
hoods of types, quasi-neighborhoods, and the existence of limit models.
We show that, for any type p in a small theory, its non-symmetry of
isolation is equivalent to the non-symmetry of semi-isolation (where a
realization ā of p isolates a realization b̄ of p and b̄ does not semi-isolates
ā) and is equivalent to the existence of a limit model over p. We generalize
the Tsuboi theorem on the absence of Ehrenfeucht unions of pseudo-
superstable theories and the Kim theorem on the absence of Ehrenfeucht
supersimple theories for unions of pseudo-supersimple theories. We also
present a survey of results related to non-symmetric semi-isolation.

Keywords: relation of semi-isolation, (p, q)-preserving formula, Ehren-
feucht theory, powerful type, quasi-neighborhood, coloring of a structure,
strict order property, limit model.

The non-symmetry of the semi-isolation is a key property in the study of Ehren-
feucht theories. In this paper, we consider new necessary and sufficient conditions for
non-symmetric relations of semi-isolation in terms of colorings of neighborhoods for
types as well as in terms of quasi-neighborhoods. In addition, using these notions,
we obtain some known propositions on the non-symmetry of the semi-isolation, col-
lected in [1, Chapter 1], and a criterion for the existence of a limit model over a type
in terms of non-symmetry of the relation of semi-isolation, the Tsuboi theorem [2, 3]
on non-representability of Ehrenfeucht theory without non-identical definable dense
orders (and, in particular, without the strict order property) as a union of countably
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categorical theories. We prove a generalization of the Tsuboi theorem [3] on non-
representability of Ehrenfeucht theory as a union of pseudo-superstable theories
and of the Kim theorem [4] on absence of Ehrenfeucht supersimple theories. This
generalization includes the Baldwin — Lachlan theorem on the number of countable
models for ω1-categorical theories [5], the Lachlan theorem [6] on non-existence of
Ehrenfeucht theories in the class of superstable theories; analogous results were
proven by A. Pillay [7, 8] for normal and 1-based theories and by E. Hrushovski [9]
for theories admitting finite codings.

The authors thanks Byunghan Kim, Vadim G. Puzarenko, and Predrag Tanović
for helpful remarks. We are grateful to the anonymous referee for the detailed
reading of the text and comments that helped us to improve the exposition.

We denote infinite structures (i. e., models of elementary theories) by M,N, . . .,
possibly with indices; and we use corresponding Latin letters M,N, . . . to denote
their universes. The type of a tuple ā in M over a set A ⊆ M will be denoted by
tpM(ā/A) or by tp(ā/A) if the structure is given. If A = ∅, we write tp(ā) instead
of tp(ā/∅). We denote by Sn(T ) and by Sn(∅) the set of n-types of a theory T .
The set of all types of T over the empty set is denoted by S(T ) and by S(∅).

In what follows, we consider only complete theories T without finite models.

1. Semi-isolation and (p, q)-preserving formulas

Definition (A. Pillay [7]). Let M be a model of a theory T , ā and b̄ be tuples in M,
and let A be a subset of M . We say that the tuple ā semi-isolates the tuple b̄ over
the set A if there exists a formula ϕ(ā, ȳ) ∈ tp(b̄/Aā) for which ϕ(ā, ȳ) ` tp(b̄/A)
holds. In this case we say that the formula ϕ(ā, ȳ) (with parameters in A) witnesses
that b̄ is semi-isolated over ā with respect to A.

Similarly, a tuple ā isolates a tuple b̄ over A if there exists a formula ϕ(ā, ȳ) ∈
tp(b̄/Aā) for which ϕ(ā, ȳ) ` tp(b̄/A) and ϕ(ā, ȳ) is a principal (i. e., isolating)
formula. In this case we say that the formula ϕ(ā, ȳ) (with parameters in A)
witnesses that b̄ is isolated over ā with respect to A.

If ā (semi-)isolates b̄ over ∅, we simply say that ā (semi-)isolates b̄; and if a
formula ϕ(ā, ȳ) witnesses that ā (semi-)isolates b̄ over ∅ then we say that ϕ(ā, ȳ)
witnesses that ā (semi-)isolates b̄.

Notice that if ā (semi-)isolates b̄ overA by means of a formula ϕ(ā, ȳ) and b̄ = b̄1b̄2

then ā (semi-)isolates b̄1 and b̄2 over A by means of the formulas ∃ȳ2ϕ(ā, ȳ1, ȳ2)
and ∃ȳ1ϕ(ā, ȳ1, ȳ2) respectively.

The following notion proposed by B. S. Baizhanov generalizes the notion of p-
stability introduced in [10] (see also B. S. Baizhanov, B. Sh. Kulpeshov [11]).

Definition. Let p 
 p(x̄) and q 
 q(ȳ) be some (may be incomplete) types over
a set A ⊆ M in a model M of a theory T . A formula ϕ(x̄, ȳ) with parameters in
A is said to be (p, q)-preserving, a (p → q)-formula, or a (q ← p)-formula if, for
any realization ā of p, ϕ(ā, ȳ) ` q(ȳ) holds. A formula ϕ(x̄, ȳ) is called a (p ↔ q)-
formula if ϕ(x̄, ȳ) is both a (p→ q)-formula and a (p← q)-formula. If p = q then a
(p, q)-preserving formula is called p-preserving or a (p→ p)-formula.

Lemma 1.1. A formula ϕ(x̄, ȳ) with parameters in A is (p, q)-preserving if and
only if for any formula θ(ȳ) (with parameters in A) satisfying q(ȳ) ` θ(ȳ) there
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exists a formula θ′(x̄) (with parameters in A) such that p(x̄) ` θ′(x̄) and

(1) M |= ∀x̄, ȳ ((θ′(x̄) ∧ ϕ(x̄, ȳ))→ θ(ȳ))) .

Proof. Suppose that a formula ϕ(x̄, ȳ) is (p, q)-preserving. Consider an arbitrary
formula θ(ȳ) (with parameters in A) such that q(ȳ) ` θ(ȳ). Assuming that there
are no formulas θ′(x̄) (with parameters in A) such that p(x̄) ` θ′(x̄) and M |=
∀x̄, ȳ ((θ′(x̄) ∧ ϕ(x̄, ȳ))→ θ(ȳ))), by Compactness Theorem we obtain a realization
ā of p such that M |= ∃ȳ (ϕ(ā, ȳ) ∧ ¬θ(ȳ)) . It contradicts the condition of (p, q)-
preservation for the formula ϕ(x̄, ȳ).

Now assume that for any formula θ(ȳ) such that q(ȳ) ` θ(ȳ) there exists a
formula θ′(x̄) such that p(x̄) ` θ′(x̄) and the condition (1) holds but the formula
ϕ(x̄, ȳ) is not (p, q)-preserving, i. e., for some realization ā of p, ϕ(ā, ȳ) 6` q(ȳ)
holds. This means that the formula ϕ(ā, ȳ) is consistent with some formula ¬θ(ȳ)
such that q(ȳ) ` θ(ȳ). Then for any formula θ′(x̄) with p(x̄) ` θ′(x̄) we have
M |= ∃x̄, ȳ (θ′(x̄) ∧ ϕ(x̄, ȳ) ∧ ¬θ(ȳ)), which is impossible by the assumption. 2

The following example shows that the existence of a (p, q)-preserving formula
does not necessarily imply the completeness of the types p and/or q.

Example 1.2. Consider the language Σ consisting of unary predicate symbols
Q(1), Q

(1)
n , P (1), R

(1)
n , n ∈ ω, and one binary predicate symbol S(2). Construct a

structure M of language Σ with a universe M = N ∪ {an | n ∈ ω} ∪ {bn | n ∈ ω},
where N is the set of naturals. We interpret the predicate symbols as follows:
Q(M) = N , ¬Q(M) = {an | n ∈ ω} ∪ {bn | n ∈ ω}, P (M) = {an | n ∈ ω},
M |= Qn(k) ⇐⇒ k = n, M |= ∀x∀y(S(x, y)→ (¬Q(x)∧Q(y)), M |= Rn(aj) ⇐⇒
j = n, M |= Rn(bj) ⇐⇒ j = n, M |= S(an, k) ⇐⇒ n ≤ k, M |= S(bn, k) ⇐⇒
n ≤ k.

For a non-principal and incomplete type p(x) consisting of formulas θ(x) which
are deducible from the set {¬Q(x)} ∪ {¬Rn(x) | n ∈ ω} and for the complete
type q(y), consisting of formulas θ′(y) which are deducible from the set {Q(y)} ∪
{¬Qn(y) | n ∈ ω}, the formula S(x, y) is (p, q)-preserving. 2

The following statement is obvious.

Lemma 1.3. A formula ϕ(ā, ȳ) witnesses that ā semi-isolates b̄ iff ϕ(x̄, ȳ) is
(tp(ā), tp(b̄))-preserving and M |= ϕ(ā, b̄).

Lemma 1.4 (A. Pillay [7]). The relation of semi-isolation with respect to A forms
a preorder (i. e. a reflexive and transitive relation) on the set of tuples in the model
M.

Proof. Notice that any tuple ā = 〈a1, . . . , an〉 semi-isolates itself with respect to A

by the formula
n∧
i=1

(ai ≈ yi)
( n∧
i=1

(xi ≈ yi) is a (tp(ā)↔ tp(ā))-formula
)
, i. e., the

relation of semi-isolation is reflexive.
Assume now that, for tuples ā, b̄, and c̄, a formula ϕ(ā, ȳ) (with parameters in

A) witnesses that b̄ is semi-isolated over ā and a formula ψ(b̄, z̄) (with parameters
in A) witnesses that c̄ is semi-isolated over b̄. The formula ∃ȳ (ϕ(x̄, ȳ) ∧ ψ(ȳ, z̄)).
is (tp(ā), tp(c̄))-preserving and, moreover, it witnesses that ā semi-isolates c̄ with
respect to A. Thus, the relation of semi-isolation is transitive. 2
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The set of (p, q)-preserving formulas ϕ(x̄, ȳ) (with parameters from A, in a model
M) is denoted by Presp,q(x̄, ȳ) and the set of p-preserving formulas ϕ(x̄, ȳ) is denoted
by Presp(x̄, ȳ).

Let p(x̄) and q(ȳ) be complete types over a set A, M |= p(ā), M |= q(b̄), and
M |= ϕ(ā, b̄). We say that the formula ϕ(x̄, ȳ) is (non-)symmetric with respect to
(p, q)-preservation if ϕ(x̄, ȳ) ∈ Presp,q(x̄, ȳ)∩Presq,p(ȳ, x̄) (ϕ(x̄, ȳ) ∈ Presp,q(x̄, ȳ)÷
Presq,p(ȳ, x̄), where ÷ is the operation of symmetric difference for sets).

By Lemma 1.3, the symmetry with respect to (p, q)-preservation for the formula
ϕ(x̄, ȳ) means that there exist realizations ā and b̄ of types p and q respectively
connected by ϕ(x̄, ȳ) such that ϕ(x̄, ȳ) simultaneously witnesses that ā semi-isolates
b̄ over A and that b̄ semi-isolates ā over A.

Again, by Lemma 1.3, the non-symmetry with respect to (p, q)-preservation for
ϕ(x̄, ȳ) means that ϕ(x̄, ȳ) witnesses that ā semi-isolates b̄ over A, but it cannot
witness that b̄ semi-isolates ā over A or, conversely, ϕ(x̄, ȳ) witnesses that b̄ semi-
isolates ā over A, but it cannot witness that ā semi-isolates b̄ over A.

The following remark is obvious.

Remark 1.5. Let p(x̄) and q(ȳ) be complete types over a set A, M |= p(ā), M |=
q(b̄). The tuple ā semi-isolates b̄ over A, and b̄ does not semi-isolate ā over A if
and only if there exists a formula ϕ(x̄, ȳ) ∈ Presp,q(x̄, ȳ) such that M |= ϕ(ā, b̄)
and there is no formula ψ(x̄, ȳ) ∈ Presq,p(x̄, ȳ) with the properties M |= ψ(ā, b̄) and
` ψ(x̄, ȳ)→ ϕ(x̄, ȳ).

If p, q ∈ S(A) then we denote by SIp,q (in a model M) the relation of semi-
isolation (over A) connecting realizations of types p and q:

SIp,q = {(ā, b̄) | M |= p(ā) ∧ q(b̄) and ā semi-isolates b̄}∪

∪{(b̄, ā) | M |= p(ā) ∧ q(b̄) and b̄ semi-isolates ā}.
In accordance with Lemma 1.1, the non-symmetry of SIp,q means that some

(p→ q)-formula (or (q → p)-formula) ϕ connects some realizations ā and b̄ of types
p and q respectively and there is no (q → p)-formula (accordingly a (p→ q)-formula)
ψ connecting these tuples and such that ` ψ → ϕ.

The following two propositions show that, for the characterization on non-sym-
metry of SIp,q, it suffices to consider a case when the types p and q are non-principal.

Proposition 1.6. If p(x̄), q(ȳ) ∈ S(A) are principal types isolated by formulas
θp(x̄) and θq(ȳ) respectively, then θp(x̄)∧ θq(ȳ) is a (p↔ q)-formula. Moreover, for
any realizations ā and b̄ in a model M of types p and q respectively, the formula
θp(x̄) ∧ θq(ȳ) witnesses that ā semi-isolates b̄ over A and that b̄ semi-isolates ā
over A.

Proof is obvious. 2

Proposition 1.7. If T is a countable theory, p(x̄) ∈ S(A) is a non-principal
type, q(ȳ) ∈ S(A) is a principal type isolated by a formula θq(ȳ) then the formula
ϕ(x̄, ȳ)
 θq(ȳ) is non-symmetric with respect to (p, q)-preservation. Moreover, for
any realizations ā and b̄ in a model M of types p and q respectively, the formula
ϕ(x̄, ȳ) witnesses that ā semi-isolates b̄ over A and there is no formula ψ(x̄, ȳ), with
parameters in A, witnessing that b̄ semi-isolates ā over A.

Proof. Since the formula θq(ȳ) isolates q(ȳ), we have M |= ϕ(ā, b̄) (= θq(b̄)) and
ϕ(x̄, ȳ) (= θq(ȳ)) ` q(ȳ). On the other hand, there is no formula ψ(x̄, ȳ), with
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parameters in A, witnessing that b̄ semi-isolates ā over A since otherwise, for a
model N omitting the type p and realizing the principal type q(ȳ) by some tuple
b̄′, ψ(x̄, b̄′) ` p(x̄) holds, which is impossible in view of N |= ∃xψ(x̄, b̄′). 2

We say that a type q(x̄) (not necessarily complete) over a set A is isolated (or
defined) by a set Φ(x̄, A) of formulas in q if Φ(x̄, A) ` q(x̄).

Consider non-principal types p(x̄), q(ȳ) ∈ S(A) over at most countable set A
and realized in a countable model M of a countable theory T . Let Θ(x̄) ⊂ p(x̄)
and Θ′(ȳ) ⊂ q(ȳ) be isolating sets for these types consisting of formulas θn(x̄) and
θ′n(ȳ), n ∈ ω, respectively, such that the following conditions are satisfied:

1) ` ∀x̄ θ0(x̄) ∧ ∀ȳ θ′0(ȳ);
2) ` θn+1(x̄)→ θn(x̄), |= ∃x̄(θn(x̄) ∧ ¬θn+1(x̄));
3) ` θ′n+1(ȳ)→ θ′n(ȳ), |= ∃ȳ(θ′n(ȳ) ∧ ¬θ′n+1(ȳ)).1

If p = q, we assume that θn = θ′n, n ∈ ω.
The formula θn is called an n-neighborhood of type p, and the formula θ′n is called

an n-neighborhood of type q. We say that a tuple ā (accordingly b̄) has the color n
if M |= θn(ā) ∧ ¬θn+1(ā) (M |= θ′n(b̄) ∧ ¬θ′n+1(b̄)). The realizations of types p and
q are said to have the infinite color ∞. Here we assume that n <∞ for any n ∈ ω.

Proposition 1.8. For any non-principal types p(x̄) and q(ȳ) in S(A) realized in a
countable model M of a countable theory T by tuples ā and b̄ accordingly and for
any formula ϕ(x̄, ȳ) with parameters in A satisfying the condition M |= ϕ(ā, b̄), the
formula ϕ(x̄, ȳ) witnesses that b̄ is semi-isolated over ā with respect to A if and only
if, for any n′ ∈ ω, there exists n ∈ ω such that, for any tuple ān of color ≥ n with
M |= θn(ān), any realization of the formula ϕ(ān, ȳ) in M has color ≥ n′.

Proof. Suppose that the formula ϕ(x̄, ȳ) witnesses that b̄ is semi-isolated over ā with
respect to A. By Lemmas 1.1 and 1.3, it is equivalent to the statement that, for
any formula θ′n′(ȳ), there exists a formula θn(x̄) such that

M |= ∀x̄, ȳ ((θn(x̄) ∧ ϕ(x̄, ȳ))→ θ′n′(ȳ)) .

This means that, for any tuple ān of color ≥ n with M |= θn(ān), any realization
of ϕ(ān, ȳ) in M has a color ≥ n′. 2

Corollary 1.9. For any non-principal types p(x̄) and q(ȳ) in S(A), realized in a
countable model M of a countable theory T by tuples ā and b̄ respectively, as well as
for any formula ϕ(x̄, ȳ) with parameters in A satisfying the condition M |= ϕ(ā, b̄),
the following conditions are equivalent:

1) the formula ϕ(x̄, ȳ) witnesses that b̄ is semi-isolated over ā with respect to A
but cannot witness that ā is semi-isolated over b̄ with respect to A;

2) the following conditions are satisfied:
(a) for any n′ ∈ ω, there exists an n ∈ ω such that for any tuple ān of color ≥ n

with M |= θn(ān), any realization of ϕ(ān, ȳ) in M has a color ≥ n′;
(b) there exists n ∈ ω such that for any n′ ∈ ω there are tuples ān and b̄n′ of

finite colors < n and ≥ n′ respectively such that M |= ϕ(ān, b̄n′).

1The existence of these isolating sets of formulas follows from the fact that the set of formulas
with parameters in A is countable. Indeed, we enumerate all formulas belonging, for instance,
to the type p(x̄): ϕn, n ∈ ω. For any n ∈ ω, we denote by ψn the formula

∧
i<n

ϕi assuming

ψ0 = (x̄ ≈ x̄). Now we remove from the sequence of formulas ψn all formulas equivalent to some
their predecessors and obtain the sequence (θn(x̄))n∈ω .
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Proof. By Proposition 1.8, the condition that the formula ϕ(x̄, ȳ) witnesses that b̄
is semi-isolated over ā with respect to A is equivalent to the property (a).

Now we assume that the formula ϕ(x̄, ȳ) does not witness that ā is semi-isolated
over b̄ with respect to A. Then, by Lemmas 1.1 and 1.3, this means that there exists
a formula θn(x̄) such that for any formula θ′n′(ȳ) the following holds:

M |= ∃x̄, ȳ (θ′n′(ȳ) ∧ ϕ(x̄, ȳ) ∧ ¬θn(x̄)) .

This means that there exists an n ∈ ω such that for any n′ ∈ ω there are tuples ān
and b̄n′ of finite colors < n and ≥ n′ respectively such that M |= ϕ(ān, b̄n′), i. e.,
the property (b) holds. 2

2. Ehrenfeucht theories, powerful types, relations of semi-isolation,
and quasi-neighborhoods

For a theory T , we denote by I(T, λ) the number of pairwise non-isomorphic
models of T in a power λ. A theory T is called Ehrenfeucht if 1 < I(T, ω) < ω.

Definition (M. Benda [12]). A type p(x̄) ∈ S(T ) is said to be powerful in a theory
T if every model M of T realizing p also realizes every type q ∈ S(T ), that is,
M |= S(T ).

Since for any type p ∈ S(T ) there exists a countable model M of T , realizing
p, and the model M realizes exactly countably many types, the availability of a
powerful type implies that T is small , that is, the set S(T ) is countable. Hence for
any type q ∈ S(T ) and its realization ā, there exists a model M(ā) prime over ā.
Since all prime models over realizations of q are isomorphic, we often denote these
models by Mq.

The condition that p(x̄) is a powerful type means that every type in S(T ) is
realized in Mp, that is, Mp |= S(T ). Every type in S(T ) of ω-categorical theory T
is powerful.

Proposition 2.1 (M. Benda [12]). Every Ehrenfeucht theory T has a powerful type.

Proof. Assume on the contrary that, for any type q(x̄) ∈ S(∅) there exists a type
rq(ȳ) ∈ S(∅) such that a modelMq (of T ) omits rq(ȳ). Denote by p0(x̄) an arbitrary
type in S(∅) and by p1(x̄, ȳ) a type in S(∅) containing the type p0(x̄) ∪ rp0(ȳ).
Now we construct by induction a sequence pn ∈ S(∅), n ∈ ω, such that pn ⊂ pn+1

and Mpn omits pn+1. By the construction we have that pn ⊂ pm for n < m and
hence Mpn omits pm if and only if n < m. Then Mpn 6' Mpm for n 6= m. Thus
I(T, ω) ≥ ω and we get a contradiction. 2

As illustrations, we consider the following Ehrenfeucht examples [13] of theories
Tn, n ∈ ω, with I(Tn, ω) = n ≥ 3.

Example 2.2. Let Tn be the theory of a structure Mn obtained from the structure
〈Q;<〉 by adding constants ck, k ∈ ω, such that lim

k→∞
ck =∞ and unary predicates

P0, . . . , Pn−3 which form a partition of the set Q of rationals, with

|= ∀x, y ((x < y)→ ∃z ((x < z) ∧ (z < y) ∧ Pi(z))), i = 0, . . . , n− 3.

The theory Tn has exactly n pairwise non-isomorphic models:
(a) a prime model Mn ( lim

k→∞
ck =∞);

(b) prime models Mn
i over realizations of types pi(x) ∈ S1(∅), isolated by sets

of formulas {ck < x | k ∈ ω} ∪ {Pi(x)}, i = 0, . . . , n− 3
(

lim
k→∞

ck ∈ Pi
)
;
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(c) a saturated model M
n
(the limit lim

k→∞
ck is irrational). 2

If p ∈ S(T ) then SIp (in the model M) denotes the relation of semi-isolation
(over ∅) on a set of realizations of p:

SIp 
 {(ā, b̄) |M |= p(ā) ∧ p(b̄) and ā semi-isolates b̄}.

Analogously, we denote by Ip (in the model M) the isolation relation (over ∅)
on the set of realizations of p:

Ip 
 {(ā, b̄) | M |= p(ā) ∧ p(b̄) and ā isolates b̄}.

Repeating the arguments on the preorder of semi-isolation for the set of realiza-
tions of type p, we obtain that the relation SIp is also a preorder. The preorder SIp
is called the preorder of semi-isolation on the set of realizations of type p.

At the same time, contrasting to the semi-isolation, it is easy to construct an
example of a theory with a non-transitive relation Ip, i. e., generally speaking, the
isolation can be not preserved under two-step transitions by the relation of isolation.

Proposition 2.3 (A. Pillay [7]). If p ∈ S(T ) is a non-principal powerful type having
a realization in a model M of T , then the relation SIp on the set of realization of p
in M is non-symmetric. Moreover, there exist realizations ā and b̄ of p in M such
that the type tp(b̄/ā) is principal and b̄ does not semi-isolate ā.

Proof. At first we consider the set

q(x̄, ȳ)
 p(x̄) ∪ p(ȳ) ∪ {¬ϕ(x̄, ȳ) | ϕ(x̄, ȳ) is a p-preserving formula}

and show that it is consistent. Since any disjunction of p-preserving formulas is
p-preserving as well, by Compactness Theorem it suffices to prove that any formula
θ(ȳ) ∧ ¬ϕ(ā, ȳ) is consistent, where θ(ȳ) ∈ p(ȳ), ϕ(x̄, ȳ) is a p-preserving formula,
and M |= p(ā). The consistency of this formula follows from ϕ(ā, ȳ) ` p(ȳ) and the
fact that the non-principality of p implies the existence of a tuple b̄ ∈M such that
M 6|= p(b̄) and M |= θ(b̄). This tuple b̄ realizes the formula θ(ȳ) ∧ ¬ϕ(ā, ȳ) in M.

Since the set q(x̄, ȳ) is consistent, it could be extended to a complete type
r(x̄, ȳ) ∈ S(T ). As p is powerful, the type r is realized in any model realizing
p. So there exists a consistent formula ψ(x̄, ȳ, z̄) such that ψ(c̄, ȳ, z̄) ` r(ȳ, z̄) for
any (some) realization c̄ of p. Assuming that M |= ψ(c̄, ā, b̄) for realizations ā, b̄, c̄
of p, we get (ā, b̄) 6∈ SIp.

Now assuming on the contrary, that SIp is symmetric, we get that SIp is an
equivalence relation. Since (c̄, āˆ b̄) ∈ SIp,r then, because c̄ semi-isolates ā and b̄, we
have (c̄, ā) ∈ SIp and (c̄, b̄) ∈ SIp. Thus, ā and b̄ belong to the same SIp-class, which
contradicts to (ā, b̄) 6∈ SIp.

Since the type p is powerful, the type q(x̄, ȳ) is realized by some pair (b̄, c̄) in the
model Mp, which is M(ā) for some realization ā of p. Then (ā, b̄) ∈ Ip and b̄ cannot
semi-isolate ā, since otherwise, by transitivity of semi-isolation, b̄ semi-isolates c̄ in
spite of definition of q. 2

Thus the availability of a non-principal powerful type p(x̄) presumes the existence
of a formula ϕ(x̄, ȳ), l(x̄) = l(ȳ), such that, for any (some) realization ā of p, the
following conditions hold:

(1) ϕ(ā, ȳ) ` p(ȳ);
(2) ϕ(x̄, ā) 6` p(x̄), and moreover, there exists a tuple b̄ which realizes type p and

is such that |= ϕ(b̄, ā) and ā does not semi-isolate b̄.
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Every formula ϕ(x̄, ȳ), satisfying the conditions 1 and 2, is called a formula,
witnessing that the relation SIp is non-symmetric.

Definition (B. S. Baizhanov [14]). Let p(x̄) be some (may be incomplete) n-type
over a set A ⊆M in a model M of a theory T , B be a set in the model M. A quasi-
neighborhood of B in p is the set QVp,M(B) of all tuples c̄ ∈ M such that there
exist a tuple b̄ ∈ B and a (tp(b̄/A), p)-preserving formula ϕ(x̄, ȳ) with M |= ϕ(b̄, c̄).

A quasi-neighborhood of B in Sn(A) is a set

QVn
A,M(B)


⋃
p∈Sn(A)

QVp,M(B).

A quasi-neighborhood of B in S(A) is a set

QVA,M(B)

⋃
n∈ω

QVn
A,M(B).

For a tuple ā = 〈a1, . . . , an〉, we write QVp,M(ā) (accordingly
QVn

A,M(ā), QVA,M(ā)) instead of QVp,M({a1, . . . , an}) (QVn
A,M({a1, . . . , an}),

QVA,M({a1, . . . , an})).

Obviously, any quasi-neighborhood of form QVp,M(ā), where p is a n-type and
M |= p(ā), is nonempty: ā ∈ QVp,M(ā). Thus, ā ∈ QVn

A,M(ā). At the same time,
the set QVp,M(B) can be empty (for instance, one can take the empty set for B
and a non-principal type for p).

Notice that for any tuples ā and b̄ in M, the tuple ā semi-isolates b̄ if and only
if b̄ ∈ QVtp(b̄),M(ā). In particular, the relation SIp on the set of realizations of type
p in the model M coincides with the set of pairs (ā, b̄) such that M |= p(ā) and
b̄ ∈ QVp,M(ā).

The reflexivity and the transitivity of the semi-isolation correspond to the follo-
wing properties:

1. Let ā ∈M be a realization of type p ∈ S(A). Then ā ∈ QVp,M(ā).
2. Let q, r be types in S(A), ā be a tuple in M, b̄ ∈ QVq,M(ā), and c̄ ∈ QVr,M(b̄).

Then c̄ ∈ QVr,M(ā).
Thus, the relation ā ∈ QVp,M(b̄) is a preorder on the set of realizations of p in

M. By the same way we get that the relation ā ∈ QVn
A,M(b̄) is a preorder on Mn

and that ā ∈ QVA,M(b̄) is a preorder on the set of all tuples in M .
The transitivity property above implies that if b̄ ∈ QVp,M(ā) then QVp,M(b̄) ⊆

QVp,M(ā).

Proposition 2.4 The relation SIp on the set of realizations of a type p in a model
M is non-symmetric if and only if, for every (some) realization ā of p in M, there
exists a tuple b̄ ∈ QVp,M(ā) such that QVp,M(b̄) ⊂ QVp,M(ā).

Proof follows directly from the definitions. 2

In view of Proposition 2.4, Proposition 2.3 admits the following reformulation:

Proposition 2.5 If p is a non-principal powerful type realized in a model M
via some tuple ā then there exists a tuple b̄ ∈ QVp,M(ā) such that QVp,M(b̄) ⊂
QVp,M(ā).

Definition. Let p(x̄) be some (may be incomplete) n-type over a set A ⊆ M in
a model M of a theory T and let B be a set in M. The neighborhood of B in the
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type p is the set Vp,M(B) consisting of all tuples c̄ ∈ M such that M |= p(c̄) and
there exist a tuple b̄ ∈ B and a (tp(b̄/A) ↔ tp(c̄/A))-formula ϕ(x̄, ȳ) such that
M |= ϕ(b̄, c̄).

The set
V nA,M(B)


⋃
p∈Sn(A)

Vp,M(B)

is the neighborhood of set B in Sn(A).
The set

VA,M(B)

⋃
n∈ω

V nA,M(B)

is the neighborhood of set B in S(A).

Note the following easy properties of neighborhoods.
1. Let p, q be types in Sn(A), ā be a realization of p in a model M of a theory

T , A ⊆ M . Then b̄ ∈ Vq,M(ā) if and only if there exists a (p ↔ q)-formula ϕ(x̄, ȳ)
such that M |= ϕ(ā, b̄).

2. Let ā be a realization of a type p ∈ Sn(A) in a model M of a theory T , A ⊆M .
Then ā ∈ Vp,M(ā) and ā ∈ V nA,M(ā).

3. Let ā be a realization of a type p ∈ Sn(A) and b̄ be a realization of a type
q ∈ Sn(A), both in a model M of a theory T , A ⊆ M . If ā ∈ Vp,M(b̄) then
b̄ ∈ Vq,M(ā). Besides, if ā ∈ V nA,M(b̄) then b̄ ∈ V nA,M(ā).

4. Let p and q be types in S(A) and B be a set in a model M of theory T ,
A ⊆ M . If b̄ ∈ Vp,M(B) and c̄ ∈ Vq,M(b̄) then c̄ ∈ Vq,M(B). A similar property is
satisfied for V nA,M and for VA,M.

Thus, the relation ā ∈ Vp,M(b̄) is an equivalence relation on the set of realizations
of type p in the model M, as well as ā ∈ V nA,M(b̄) is an equivalence relation on the
set Mn, and ā ∈ VA,M(b̄) is an equivalence relation on the set of all tuples in the
model M.

Finally we obtain that, for instance, the relation ā ∈ QVA,M(b̄) modulo the
equivalence relation ā ∈ VA,M(b̄) forms a partial order on the set of equivalence
classes of tuples in M.

If a theory has a non-principal powerful type p then this preorder contains an
infinite chain in any model realizing p.

3. Colorings of structures and semi-isolation

The notions we consider here enable us to justify some possibilities for colorings
of neighborhoods of types described in Corollary 1.9 and guaranteeing the non-
symmetry of semi-isolation.

Let M be a structure. Any function Col: M → λ∪{∞}, where λ is a power and
∞ is a symbol of infinity, is said to be a coloring of structure M. Here, for any
a ∈ M , the value Col(a) is said to be the color of element a. A pair 〈M,Col〉 is
said to be a colored structure.

Below, colored structures 〈M,Col〉 will be identified with expansions of M by
unary predicates Colµ = {a ∈ M | Col(a) = µ}, µ < λ.

Definition (S. V. Sudoplatov [1, 15, 16]). A coloring Col of a structure M is n-
inessential , n ∈ ω \ {0}, if for any model 〈M′,Col′〉 |= Th(〈M,Col〉) the type tp(ā)
of each tuple ā in 〈M′,Col′〉 of length n is isolated by the type of this tuple in M′

being united with the set of formulas describing colors for elements in ā.
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Let M be a model of a theory T and ϕ(x, y) be a formula of T . A coloring
Col: M → λ∪{∞} (where λ is an infinite cardinality) is said to be ϕ-ordered if the
following conditions are satisfied:

(a) for any µ ≤ ν < λ there exist elements a, b ∈ M such that |= Colµ(a) ∧
Colν(b) ∧ ϕ(a, b);

(b) if µ < ν < λ then there are no elements c, d ∈ M such that |= Colµ(c) ∧
Colν(d) ∧ ϕ(d, c).

Recall, that a theory T is said to be transitive if T has unique 1-type over the
empty set.

Note that if Col: M → λ ∪ {∞} is a surjective 1-inessential coloring of a model
M of a transitive theory T , then the set of complete 1-types of Th(〈M,Col〉) over
∅ consists of types pµ(x), µ ∈ λ ∪ {∞}, where pµ(x) is a type isolated by the
formula Colµ(x), µ ∈ λ, and p∞(x) is a (unique) non-principal type isolated by set
of formulas {¬Colµ(x) | µ < λ}.

The colorings in Section 1 can be transformed into colorings of structures, and
the Ehrenfeucht examples illustrate this transformation.

In the Ehrenfeucht example of theory T3 with three countable models, the
model expansion of a transitive theory Th(〈Q;<〉) by constants ck, k ∈ ω, can
be interpreted as an inessential coloring Col specified by the following conditions:

Col(a) =

 0 if a < c0,
2k + 1 if a = ck,
2k + 2 if ck < a < ck+1.

It is easy to note that Col is ϕ-ordered, where ϕ(x, y) 
 x < y. In addition,
the relation SIp∞ on the set of realizations of powerful type p∞ is non-symmetric,
and the formula ϕ witnesses this. In Ehrenfeucht examples of Tn, n ≥ 4, constant
expansions of the structures 〈Q;<, P0, . . . , Pn−3〉 can also be seen as color models
with inessential ordered colorings.

Now we show that if a theory is obtained by means of an 1-inessential ordered
coloring of a transitive theory and has a unique non-principal complete 1-type then
this coloring has the cardinality λ = ω.

Proposition 3.1. If ϕ(x, y) is a formula of a transitive theory T and Col: M →
λ ∪ {∞} is a surjective 1-inessential ϕ-ordered coloring of a model M of a theory
T then λ = ω.

Proof. As it was noticed above, the 1-inessentiality of coloring implies that there
exists the unique non-principal complete 1-type of theory Th(〈M,Col〉).

Now assume that λ > ω. Consider the following sets of formulas:

q0(x) = {∃y, z(Coln(y) ∧ Colω(z) ∧ ϕ(y, x) ∧ ϕ(x, z)) | n ∈ ω},
q1(x) = {∃y(Colµ(y) ∧ ϕ(y, x)) | µ < λ}.

By Compactness Theorem, each qi, i = 0, 1, is consistent. Since the coloring Col is
ϕ-ordered, the set q0(x)∪ q1(x) is inconsistent. At the same time, since the coloring
Col is surjective and ϕ-ordered, each qi, i = 0, 1, is extensible to a complete non-
principal 1-type of theory Th(〈M,Col〉). Thus we get a contradiction. 2

Consider sufficient conditions for a ϕ-ordered 1-inessential coloring to imply a
non-symmetry of relation SIp∞ witnessed by ϕ.
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Proposition 3.2 (S. V. Sudoplatov [1, 16]). Let ϕ(x, y) be a principal formula of a
transitive theory T and Col be an 1-inessential ϕ-ordered coloring of a model M of
T such that 〈M′,Col′〉 |= Th(〈M,Col〉) and 〈M′,Col′〉 |= ϕ(a, b) imply that the type
tp〈M′,Col′〉(ab) is isolated both by tpM′(ab) and by formulas for colors of a and b.
Then for any (i. e., some) realization a of type p∞(x) the following conditions are
satisfied:

(1) if |= ϕ(a, b) then |= p∞(b) and a semi-isolates b;
(2) if |= ϕ(a, b) then b does not semi-isolate a.

Proof. By Proposition 3.1, w.l.o.g. λ = ω.
(1) Consider the following set of formulas:

q(x) = {¬Colm(x) | m < ω}∪

{
¬∃y

(
ϕ(x, y) ∧

∨
n∈w

Coln(y)

) ∣∣∣∣∣
w is a finite set of natural numbers

}
.

By the item (b) of the definition of ϕ-ordered coloring, that set is locally consistent
(it suffices to consider a formula

¬∃y

(
ϕ(x, y) ∧

∨
n∈w

Coln(y)

)
with a finite set w = {i1, . . . , ik}, a finite set of formulas ¬Colj(x), j = j1, . . . , jm,
and to take, for a realization, an element of a color k < ω, greater than all
i1, . . . , ik, j1, . . . , jm). By Compactness Theorem, the set q(x) is consistent. Since the
coloring Col is 1-inessential, the theory Th(〈M,Col〉) has the unique non-principal
1-type p∞(x), and the consistency of this type with the set q(x) implies the validity
of the inclusion q(x) ⊂ p∞(x). Finally we notice that, by the definition of q(x), the
formula ϕ(a, y), where |= p∞(a), cannot have realizations b with some condition
Col(b) = n, n < ω. So |= ϕ(a, b) implies |= p∞(b), ϕ(a, y) ` p∞(y), and thus a
semi-isolates b.

(2) At first we show that the formula ϕ(x, y) is not p∞-preserving with respect
to the first coordinate. To do so, we consider, for an arbitrary m < ω, the following
set of formulas in the language of the structure 〈M,Col〉:

rm(y)
 {¬Coln(y) | n < ω} ∪ {∃x(Colm(x) ∧ ϕ(x, y))}.
Since the set rm(y) is consistent with the type p∞(y) by item (a) of the definition of
ϕ-ordering, and the ϕ-ordered coloring Col is 1-inessential, we obtain an inclusion
rm(y) ⊂ p∞(y). This means that, for any realization b of p∞(y) in a model N of
Th(〈M,Col〉) and for any m < ω, N |= ϕ(am, b)∧Colm(am) holds for some element
am in N . Hence, ϕ(x, y) is not p∞-preserving with respect to the first coordinate.

Assume now to the contrary, that |= p∞(a), |= ϕ(a, b), and b semi-isolates a.
The condition that the formula ϕ(x, y) is not p∞-preserving with respect to the
first coordinate implies that ϕ(x, b) cannot witness that b semi-isolates a. On the
other hand, by the assumption, there is a formula ψ(x, y) such that |= ψ(a, b)
and ψ(x, b) ` p∞(x). In this case the set p∞(x) ∪ p∞(y) ∪ {ϕ(x, y) ∧ ψ(x, y)} is
consistent. By Compactness Theorem and since p∞(x) is a non-principal type,
p∞(x) ∪ p∞(y) ∪ {ϕ(x, y) ∧ ¬ψ(x, y)} is consistent too. Hence the set

{¬Colm(x) ∧ ¬Colm(y) | m < ω} ∪ {ϕ(x, y)}
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does not semi-isolate a complete type. The latter conflicts with the fact that ϕ(x, y)
is a principal formula in T , and with the property that, for any (a, b) with |= ϕ(a, b),
the type of (a, b) is isolated by the type of this tuple in M′ being united with the
set of formulas describing colors of a and b. Thus, |= ϕ(a, b) and |= p∞(a) imply
that b does not semi-isolate a. 2

4. (p1, . . . , pn)-types, the strict order property, relations of
semi-isolation, and powerful types

S. V. Sudoplatov [1, 17] introduced the notion of (n, p)-type. Before it was used
implicitly in R. Woordow [18, 19] and A. Tsuboi [3]. The following notion generalizes
this definition.

Definition (K. Ikeda, A. Pillay, A. Tsuboi [20]). Let p1(x̄1), . . . , pn(x̄n) be types
in S(T ) with disjoint free variables. A type q(x̄1, . . . , x̄n) ∈ S(T ) is said to be

a (p1, . . . , pn)-type if q(x̄1, . . . , x̄n) ⊇
n⋃
i=1

pi(x̄i). The set of all (p1, . . . , pn)-types

of T is denoted by Sp1,...,pn(T ). A theory T is almost ω-categorical if for any
types p1(x1), . . . , pn(xn) ∈ S(T ) there are only finitely many types q(x1, . . . , xn) ∈
Sp1,...,pn(T ).

It is shown in [20] that if T is an almost ω-categorical theory with I(T, ω) = 3,
then a dense linear ordering is interpretable in T .

If p1(x̄) = . . . = pn(x̄) = p(x̄), a (p1, . . . , pn)-type q(x̄1, . . . , x̄n) is said to be
a (n, p)-type. The set of all (n, p)-types of T is denoted by Sn,p(T ) and elements
of Sp(T )


⋃
n∈ω\{0}

Sn,p(T ) are called p-types.

A type q(ȳ) in Sp1,...,pn(T ), where ȳ is a concatenation of tuples ȳi, pi = pi(ȳi),
i = 1, . . . , n, is said to be (p1, . . . , pn)-principal if there is a formula ϕ(ȳ) ∈ q(ȳ)
such that ∪{pi(ȳi) | i = 1, . . . , n} ∪ {ϕ(ȳ)} ` q(ȳ). If q(ȳ) is a (p, . . . , p)-principal
p-type then this type is said to be p-principal .

The following proposition is obvious.

Proposition 4.1. For any types p1(x̄1), . . . , pn(x̄n) ∈ S(∅) the following conditions
are equivalent:

(1) the set of (p1, . . . , pn)-types with free variables in (x̄1, . . . , x̄n) is finite;
(2) any (p1, . . . , pn)-type is (p1, . . . , pn)-principal.

By Proposition 4.1, a theory T is almost ω-categorical if and only if for any types
p1(x1), . . . , pn(xn) ∈ S(T ) any (p1, . . . , pn)-type is (p1, . . . , pn)-principal. Notice
also that Proposition 4.1 admits a natural generalization for uncomplete types
p1(x̄1), . . . , pn(x̄n).

Recall, that a theory T has the strict order property if there exists a formula
ϕ(x̄, ȳ) of T and tuples āi, i ∈ ω such that the following equivalence holds:

(2) ` ϕ(āi, ȳ)→ ϕ(āj , ȳ)⇔ i ≤ j.

Proposition 4.2. If p(x̄) is a non-principal powerful type of a theory T without
strict order property then, for any tuple ā realizing p in a model M |= T , the set
QVp,M(ā) is not ā-definable (i. e., a set of solutions of a formula ϕ(ā, ȳ), in M).

Proof. Assume that QVp,M(ā) is ā-definable by some formula ϕ(ā, ȳ). Using Propo-
sition 2.5 we obtain that some QVp,M(b̄) ⊂ QVp,M(ā) is b̄-definable by the formula
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ϕ(b̄, ȳ). Since tuples ā and b̄ realize the same type p, there exists an automorphism f
in some homogeneous elementary extension N of M taking b̄ to ā. Denoting f i(b̄) by
āi, f0 = idN , i ∈ ω, we obtain the condition (2), which contradicts the assumption
that T does not have the strict order property. 2

Remark 4.3. The proof implies that in the theory T without the strict order
property each formula ϕ(x̄, ȳ) witnessing that SIp is non-symmetric has the
following property: ϕ(b̄,M) 6⊂ ϕ(ā,M) for any realizations ā and b̄ of p in a model
M |= T such that ā semi-isolates b̄ by ϕ(x̄, ȳ), and b̄ does not semi-isolate ā.
Consider a p-preserving formula Hϕ(x̄, ȳ) 
 ∃z̄(ϕ(x̄, ȳ) ∧ ϕ(ȳ, z̄) ∧ ¬ϕ(x̄, z̄)) for
which we obviously have |= Hϕ(ā, b̄). Since ā and b̄ realize the same type p, there
exists a sequence b̄0 = b̄, b̄1, . . . , b̄n, . . . of realizations of p that forms on the set
of realizations of p with the relation defined by Hϕ(x̄, ȳ) the graph with distances
ρ(b̄i, b̄j) = |i− j|. The diameter of this graph equals ∞. 2

By the definition, theories with infinite definable linear orders have the strict
order property. In particular, the Ehrenfeucht examples (see Example 2.2) have
this property because they are almost ω-categorical.

The following proposition, which is implicitly contained in R. E. Woodrow [19],
clarifies that the described situation is impossible for the theories without strict
order property.

Proposition 4.4. If p(x̄) is a non-principal powerful type of theory T and T does
not have strict order property, then |S2,p(T )| = ω. Moreover, for any model M of
T realizing the type p, there are infinitely many p-preserving formulas which are
pairwise non-equivalent on the set of realizations of p in M.

Proof. Notice that the set QVp,M(ā) is ā-definable if and only if there exists the
greatest by inclusion set ϕ(ā,M), where ϕ(x̄, ȳ) is a p-preserving formula. Then, by
Proposition 4.2, there are infinitely many p-preserving formulas which are pairwise
non-equivalent on the set of realizations of p. Indeed, if there were only finitely many
such formulas, we could take their disjunction to obtain a p-preserving formula
producing the greatest set. 2

Propositions 2.1 and 4.4. imply

Corollary 4.5. Any almost ω-categorical Ehrenfeucht theory has the strict order
property.

Proposition 4.6 (S. V. Sudoplatov [1, 17]). If a non-p-principal p-type q is
realized in a model M(a), where a is a realization of p, then, for every element bi
of a realization b̄ of q in M(a), the pair (a, bi) belongs to Ip and (bi, a) does not
belong to SIp.

Proof. Let a be a realization of type p and ϕ(a, ȳ) be a formula isolating a non-
p-principal p-type q(ȳ). Assume, that some element bi of a realization b̄ of q(ȳ) in
M(a) semi-isolates the element a. Consider a formula ψ(bi, x) witnessing that bi
semi-isolates a. Then the type q(ȳ) is isolated by set

∪{p(yi) | yi ∈ ȳ} ∪ {∃x (ϕ(x, ȳ) ∧ ψ(yi, x))}.

This is impossible since the p-type q(ȳ) is not p-principal. 2
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5. Semi-isolation and limit models

Definition (S. V. Sudoplatov [1, 16, 21]). A countable model M of a theory T is
limit (accordingly limit over a type p ∈ S(T )) if M is not prime over a tuple and
M =

⋃
n∈ω

M(ān), where (M(ān))n∈ω is an elementary chain of prime models over

tuples ān (and M |= p(ān)), n ∈ ω.

Theorem 5.1 (S. V. Sudoplatov [1, 16, 21]). Any countable model of a small theory
T is either prime over a tuple or limit.

Proof. Let M be an arbitrary countable model of T . It suffices to construct an
elementary chain C of prime models M(āi) over tuples āi, i ∈ ω, such that M =⋃
i∈ω

M(āi). For this purpose, we enumerate all elements of M: M = {bk | k ∈ ω},

and also all formulas of the form ϕ(x, c̄), c̄ ∈ M : Φ = {ϕm(x, c̄m) | m ∈ ω}. We
shall construct C inductively and, at any step k, some finite sequence of tuples
ā0, . . . , ān will be defined, and each such a tuple will be connected to a finite set
Xk
i , 0 ≤ i ≤ n, such that unions of these sets by all k with respect to fixed i will

define universes of models M(āi). If a tuple āi is not defined before the step k then
the sets X l

i are supposed to be empty for any l < k.
At the initial step, we fix the tuple ā0 
 〈b0〉 and for the formula ϕm(x, b0)

from Φ having the minimal number and satisfying M |= ∃x ϕm(x, b0) we find a
realization dm of a principal complete type p(x, b0) containing ϕm(x, b0). Now we
let X0

0 
 {b0, dm}.
Suppose that at step k we have already found tuples ā0, . . . , ān and have formed

finite sets Xk
0 , . . . , X

k
n satisfying the following conditions:

(1) all elements of āi are contained in the set of elements of āi+1, i < n, and
belong to Xk

i ;
(2) {b0, . . . , bk} ⊆ Xk

n;
(3) Xk

i ⊂ Xk
i+1, i < n− 1;

(4) for the formula ϕm(x, c̄m) we chose at step k, which is minimal with respect
to m and is not considered before, contains only elements of the maximal nonempty
set Xk−1

j , and satisfies M |= ∃x ϕm(x, c̄m), we have found a realization dm ∈M of
a principal complete type p(x,Xk−1

j ∪ {bk}) containing ϕm(x, c̄m) so that for any
tuple āi with c̄m ∈ Xk−1

i and for any tuple d̄ ∈ Xk−1
i ∪ {dm} the type tp(d̄/āi)

is principal; this realization is added to the minimal set Xk
i with respect to i such

that c̄m ∈ Xk−1
i .

At step k+1, we consider the element bk+1. If it belongs to Xk
n then the sequence

ā0, . . . , ān remains the same and we construct sets Xk+1
i by adding to Xk

i some
element dm satisfying the conditions (3) and (4) for k + 1 instead of k.

If bk+1 6∈ Xk
n and, starting from some i0 ≤ n, all types tp(b̄/āi), b̄ ∈ Xk

i ∪{bk+1},
are principal, we do not extend the sequence ā0, . . . , ān and add the element
bk+1 to the set Xk

i0
as well as to all consequent sets Xk

i , i0 ≤ i ≤ n. Then we
obtain sets Xk+1

i by adding an element dm satisfying the conditions (3) and (4)
for k + 1 instead of k.

If some type tp(b̄/ān), b̄ ∈ Xk
n ∪{bk+1}, is not principal, we add to the sequence

ā0, . . . , ān a tuple ān+1 consisting of all elements of the set Xk
n ∪ {bk+1}. Then we

add this set to the (initially empty) set Xk
n+1 and form the sets Xk+1

i , 0 ≤ i ≤ n+1,
by adding a realization dm of a principal complete type p(x,Xk

n∪{bk+1}) containing
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the minimal (with respect tom) formula ϕm(x, c̄m) which was not considered before
and contains only elements of Xk

n and satisfying M |= ∃x ϕm(x, c̄m), such that for
any tuple āi with c̄m ∈ Xk

i and for any tuple d̄ ∈ Xk
i ∪ {dm}, the type tp(d̄/āi)

is principal. We add the element dm to the minimal (with respect to i) set Xk
i ,

and also to the consequent sets such that c̄m ∈ Xk
j , i ≤ j ≤ n. Now we let

Xk+1
n+1 
 Xk

n ∪ {bk+1, dm}.
By construction, the sets Xi 


⋃
k∈ω

Xk
i are the universes of prime models M(āi)

over tuples āi. Moreover, we have M(āi) 4 M(āi+1) and M =
⋃
i

M(āi). If the

number of indices i is finite, the model M is prime over the greatest tuple āi and
we add the elementary chain of the models M(āi) to the countable chain taking the
model M countably many times. 2

If I(T, ω) < ω, for any elementary chain (Mi)i∈ω of prime models over tuples,
we obtain that there is an infinite subsequence of models (Mij )j∈ω such that all its
elements are isomorphic to a model Mp. Thus the following corollary holds.

Corollary 5.2 (S. V. Sudoplatov [1, 16]). Any countable model of an Ehrenfeucht
theory T is either prime over a tuple or limit over a type.

The following proposition gives a syntactical characterization of the existence of
limit model over a type.

Proposition 5.3 (S. V. Sudoplatov [1, 16]). A small theory T has a limit model
over a type p ∈ S(T ) if and only if for any (some) realization ā of type p there are a
realization b̄ of p in M(ā) and a tuple c̄ ∈M(ā) such that tp(c̄/b̄) is a non-principal
type.

Proof. Suppose that there exists a limit model M =
⋃
n∈ω

Mn of T over p, where

Mn ' Mp, M0 = M(ā), |= p(ā), and for any b̄ ∈ p(M0), c̄ ∈ M0 the type tp(c̄/b̄)
is principal. Then models Mn (and hence also M) realize just principal types over
any realizations of type p lying in Mn (in M). Hence the model M is prime over a
realization of p, which contradicts the assumption that M is limit.

Conversely, assume that for some tuple ā realizing p there are tuples b̄ ∈ p(M0)
and c̄ ∈ M0 such that q(x̄, b̄) = tp(c̄/b̄) is a non-principal type. Our goal is
to construct an elementary chain (M(ān))n∈ω over p satisfying the following
conditions: ā0 = b̄, ā1 = ā, and tp(ān+1ān) = tp(āb̄). We argue to show that
M =

⋃
n∈ω

M(ān) and Mp are non-isomorphic. By way of contradiction, find a

tuple d̄ ∈ p(M(ān)) such that M = M(d̄). By the construction of M, however,
the type q(x̄, ān) is omitted in the model M(d̄) but is realized in the model M, a
contradiction. 2

Lemma 5.4 (B. Kim [4], P. Tanović [22, 23]). (1) If a tuple ā isolates a tuple b̄,
whereas b̄ does not isolate ā, then b̄ does not semi-isolate ā.

(2) If (ā, b̄) ∈ Ip and (b̄, ā) ∈ SIp then (b̄, ā) ∈ Ip.

Proof. (1) Suppose that ϕ(ā, ȳ) isolates tp(b̄/ā). Assume the contrary (i. e. b̄ semi-
isolates ā) and take a formula ψ(x̄, b̄) witnessing that b̄ semi-isolates ā. Now as
tp(ā/b̄) is non-isolated, there exists a formula χ(x̄, ȳ) such that ϕ(x̄, b̄) ∧ ψ(x̄, b̄) ∧
χ(x̄, b̄) and ϕ(x̄, b̄)∧ψ(x̄, b̄)∧¬χ(x̄, b̄) are both consistent. Moreover both formulas
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imply tp(ā). Hence ϕ(ā, ȳ)∧χ(ā, ȳ) and ϕ(ā, ȳ)∧¬χ(ā, ȳ) are both consistent. This
contradicts the fact that ϕ(ā, ȳ) is a principal formula.

(2) follows immediately from (1). 2

Definition (A. Pillay [24]). A type p(x̄) ∈ S(T ) is good, if for any realizations ā
and b̄ of p, (ā, b̄) ∈ Ip implies (b̄, ā) ∈ Ip, i. e., the relation Ip is symmetric.

Lemma 5.4 immediately implies

Corollary 5.5 (P. Tanović [22, 23]). If p(x̄) is a complete type of theory T and for
any model of T the relation SIp is symmetric, then the type p is good.

P. Tanović [22, 23] noticed that there exist good types p with non-symmetric
SIp:

Example 5.6. In Th(〈ω;<〉), the unique non-algebraic 1-type p ∈ S1(∅) is good
and SIp is non-symmetric.

Indeed, if |= p(a) then any principal formula ϕ(a, y) describes a finite number of
steps for taking finitely many successors or predecessors to come to the (unique)
realization b of this formula. The existence of an reverse way from b to a means
that there exists a principal formula ψ(x, b) for which |= ψ(a, b).

At the same time, if a and b are realizations of p, a < b, they having infinitely
many intermediate elements, then a semi-isolates b by the formula a < y, but b
does not semi-isolate a. 2

Theorem 5.7. Let p(x̄) be a complete type of a small theory T . The following
conditions are equivalent:

(1) there exists a limit model over p;
(2) the relation Ip of isolation on a set of realizations of p in a (any) model

M |= T realizing p is non-symmetric;
(3) in some (any) model M |= T realizing p, there exist realizations ā and b̄

of p such that the type tp(b̄/ā) is principal and b̄ does not semi-isolate ā and, in
particular, SIp is non-symmetric on M.

Proof. At first we consider the conditions (2) and (3) for some model M.
(1)⇒ (2). Assume that the theory T has a limit model over p and the non-empty

relation Ip is symmetric on the set of realizations of p in M.
Consider realizations ā and b̄ of p in the model M and a tuple c̄ ∈ M , which

exist by Proposition 5.3, such that b̄, c̄ ∈ M(ā), M(ā) 4 M, and tp(c̄/b̄) is non-
principal. Choose a principal formula ϕ(ā, ȳ, z̄) for which M(ā) |= ϕ(ā, b̄, c̄) holds.
Since tp(b̄/ā) is principal, by the hypothesis, the type tp(ā/b̄) is also principal. Take
a principal formula ψ(x̄, b̄) for which M(ā) |= ψ(ā, b̄) holds. Now we consider the
formula

χ(b̄, z̄)
 ∃x̄(ϕ(x̄, b̄, z̄) ∧ ψ(x̄, b̄)).

Clearly, χ(b̄, z̄) ∈ tp(c̄/b̄). On the other hand, any two solutions of the formula
χ(b̄, z̄) are connected by an automorphism (in an elementary extension of M)
fixing b̄.

Indeed, let c̄′ and c̄′′ be tuples for which |= χ(b̄, c̄′) ∧ χ(b̄, c̄′′) holds. Take tuples
ā′ and ā′′ with

|= ϕ(ā′, b̄, c̄′) ∧ ψ(ā′, b̄) ∧ ϕ(ā′′, b̄, c̄′′) ∧ ψ(ā′′, b̄).
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Since the formula ψ(x̄, b̄) is principal, there exists an automorphism g fixing b̄ and
taking ā′ to ā′′. As the formula ϕ(ā′′, ȳ, z̄) is principal with

|= ϕ(ā′′, b̄, g(c̄′)) ∧ ϕ(ā′′, b̄, c̄′′),

there exists an automorphism h fixing the tuples ā′′, b̄ and taking g(c̄′) to c̄′′. Thus,
the b̄-automorphism g ◦h maps c̄′ to c̄′′ and the type tp(c̄/b̄) is principal in spite of
the assumption.

The obtained contradiction shows that, having the symmetric non-empty relation
Ip on the set of realizations of p in M, we have no limit models over p.

The implications (2) ⇒ (3) and (3) ⇒ (1) follow immediately from Lemma 5.4
and Proposition 5.3 respectively.

The equivalence of the existence and of the generality pointed out in (2) and (3)
for models realizing the type p is true since the considered properties are reduced to
the model M(ā), where |= p(ā), and M(ā) is isomorphic to an elementary submodel
of any model which realizes the type p. 2

Note that for the proof of Theorem 5.7 we can also use the following facts:
(1) (A. N. Gavryushkin [25]) there is no limit structure over a type p if and only

if the structure Mp is homogeneous;
(2) if Mp is homogeneous then Ip is symmetric.

Proposition 2.3 and Theorem 5.7 imply the following

Corollary 5.8 (S. V. Sudoplatov [1, 16]). If p ∈ S(T ) is a non-principal powerful
type then there exists a limit model over p.

Another argument for Corollary 5.8 is that any countable saturated model of T
is limit over a (any) non-principal powerful type, if T has these types.

6. The Tsuboi and Kim theorems

Recall that a theory T is ω-categorical if I(T, ω) = 1.
By a well-known Ryll-Nardzewski Theorem, a theory T is ω-categorical if and

only if for any tuple x̄ there are only finitely many types p(x̄) ∈ S(T ), i. e., there
are only finitely many pairwise non-equivalent formulas ϕ(x̄).

Recall [26, 27] that a (strict) dense order is an (ir)reflexive, transitive, anti-
symmetric relation such that any two different comparable elements a, b have an
intermediate element, i. e. an element greater than a and less than b, or less than a
and greater than b. An order is identical, if, relative to that order, only coincident
elements are comparable.

Obviously, a non-identical dense order, on a set containing at least two
comparable elements, has an infinite chain, i. e., infinitely many pairwise
comparable elements. There are also infinitely many pairwise comparable elements
for any strict dense order, connecting at least two elements.

An order ≤ (accordingly a strict order <) on a set A of tuples in a structure M
is (formula) definable if there exists a formula ϕ(x̄, ȳ), l(x̄) = l(ȳ), such that for any
tuples ā, b̄ in A,

ā ≤ b̄⇔M |= ϕ(ā, b̄)
(
ā < b̄⇔M |= ϕ(ā, b̄)

)
.

Clearly if a theory T (i. e. some model of T ) has a definable order with an infinite
chain on a definable set, then T has the strict order property. A theory T has also
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the strict order property if T has a definable set with a definable strict order having
infinitely many pairwise comparable elements.

Now we present the Tsuboi theorem on non-representability of Ehrenfeucht
theories without definable non-identical dense orders and, in particular, without
the strict order property, as unions of ω-categorical theories.

Theorem 6.1 (A. Tsuboi [3]). If T is an Ehrenfeucht theory and is a union of
ω-categorical theories Tm, m ∈ ω, such that Tm ⊆ Tm+1, m ∈ ω, then there exists
a formula ψ(x̄, ȳ) of T which defines a non-identical dense order on a definable set.

Proof. By Propositions 2.1 and 2.3, the Ehrenfeucht theory T has a non-principal
powerful type p(x̄) and a formula ϕ(x̄, ȳ) satisfying the following conditions:

1) the formula ϕ(x̄, ȳ) witnesses that the relation SIp is non-symmetric on the
set of realizations of p in a model M |= T ;

2) for any realization ā of p, the formula ϕ(ā, ȳ) is principal.
Consider a theory Tn such that ϕ(x̄, ȳ) is a formula of Tn. We set ϕ0(x̄, ȳ)
 (x̄ ≈

ȳ), ϕ1(x̄, ȳ) 
 ϕ(x̄, ȳ), ϕk+1(x̄, ȳ) 
 ∃z̄(ϕk(x̄, z̄) ∧ ϕ(z̄, ȳ)), k ∈ ω \ {0}. Since all
ϕk(x̄, ȳ) are formulas of Tn, and Tn is ω-categorical, there are at most finitely many
pairwise non-equivalent, in Tn, formulas ϕ0(x̄, ȳ), ϕ1(x̄, ȳ), . . . , ϕm−1(x̄, ȳ) among
all formulas ϕk(x̄, ȳ), k ∈ ω. For each i, j ∈ ω let F (i, j) be the set

{k < m |` ∃z̄(ϕi(x̄, z̄) ∧ ϕj(z̄, ȳ))↔ ϕk(x̄, ȳ)}.
Using that F , define Dl, l ∈ ω, by the following induction:

D0 
 m; Dl+1 

⋃
{F (i, j) | i, j ∈ Dl}.

It is clear that, for each l ∈ ω, Dl+1 ⊆ Dl and Dl 6= ∅. Since m is finite, D 

⋂
l∈ω

Dl

is a non-empty subset of cardinalitym which contains 0 and some non-zero cardinal.
For this D, we put

ψ(x̄, ȳ)

∨
i∈D

ϕi(x̄, ȳ).

By Compactness Theorem is suffices to show that ψ(x̄, ȳ) defines a non-identical
dense order on the set of realizations of p in M, i. e. the set

P 
 {(ā, b̄) |M |= ψ(ā, b̄),M |= p(ā),M |= p(ā)}
is that order.

Since D \ {0} 6= ∅, P is non-identical. As 0 ∈ D, P is reflexive. The relation P
is antisymmetric; indeed, if (ā, b̄) ∈ P then ā semi-isolates b̄, and b̄ can semi-isolate
ā only for ā = b̄.

By the definitions of F and D we have

p(x̄) ` (ψ(x̄, ȳ) ∧ ¬x̄ ≈ ȳ)↔ ∃z̄(ψ(x̄, z̄) ∧ ψ(z̄, ȳ) ∧ ¬x̄ ≈ z̄ ∧ ¬z̄ ≈ ȳ).

Thus P is transitive and dense. 2

Notice that, in the conditions of previous theorem, to prove the strict order
property for the theory T (it is asserted in a weak version of Tsuboi theorem [2])
it suffices to consider the set Φ(ā,M) 


⋃
k∈ω

ϕk(ā,M) which is an ā-formula, i. e.

equals χ(ā,M) for some formula χ(x̄, ȳ), and to prove that the strict order property
holds for the formula χ(x̄, ȳ) on a set of realizations of p(x̄).

Indeed, since ϕ(x̄, ȳ) witnesses that SIp is non-symmetric, there exists a
realization b̄ of p in M such that b̄ ∈ χ(ā,M) and χ(b̄,M) ⊂ χ(ā,M). Since ā
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and b̄ realize the same type p, there are realizations āi, i ∈ ω, of p in M such that
the following holds:

M |= ∀ȳ(χ(āi, ȳ)→ χ(āj , ȳ))⇔ i ≤ j.

It means that T has the strict order property.
Since the strict order property for a theory T implies that T is unstable, the

following Corollary holds.

Corollary 6.2 (A. Tsuboi [2, 3]). If T is a countable theory without non-identical
definable dense orders on definable sets (in particular, if T is stable) and T is
obtained from an ω-categorical theory by addition of axioms for new constants,
then I(T, ω) = 1 or I(T, ω) ≥ ω.

Recall several notions of Stability Theory related to the class of simple theories
[28, 29, 30].

Let k ∈ ω. A formula ϕ(x̄, ā) in a theory T k-divides over a set A if there are
tuples ān, n ∈ ω, of type tp(ā/A) such that the set {ϕ(x̄, ān) | n ∈ ω} of formulas
is k-inconsistent, i. e., for every w ⊂ ω of cardinality k the formula

∧
n∈w

ϕ(x̄, ān) is

inconsistent in T .
A partial type π(x̄) k-divides over A if there is a formula ϕ(x̄) implied by π(x̄)

which is k-divides over A. A formula or a partial type divides over A if they k-divide
for some k ∈ ω.

A partial type π(x̄) forks over A if there are n ∈ ω and formulas ϕ0(x̄), . . . , ϕn(x̄)
such that π(x̄) `

∨
i≤n

ϕi(x̄), and each ϕi(x̄) divides over A.

If p ∈ S(A), q ⊃ p, and q forks (does not fork) over A then q is called to be a
(non-)forking extension of p and it is denoted by q ⊃f p (q ⊃nf p).

A theory T is called (super)simple if, for any type p ∈ S(B), p does not fork over
a subset A of B with |A| ≤ |T | (|A| < ω).

Remark 6.3. By the definition, a supersimple theory is simple. Moreover, T is
supersimple if and only if there are no A0 ⊆ A1 ⊆ . . . ⊆ Ai . . . and pi ∈ S(Ai),
i ∈ ω, such that pi+1 ⊃f pi for each i ∈ ω.

Remark 6.4. Every (super)stable theory is (super)simple.

The following properties of non-forking in simple theories are shown by B. Kim
[31].

1. (Extension) For any p ∈ S(A) and A ⊆ B, p has a q ⊃nf p in S(B).
2. (Symmetry) A type tp(b̄/Ac̄) does not fork over A if and only if tp(c̄/Ab̄) does

not fork over A.
3. (Transitivity) If A ⊆ B ⊆ C and p ∈ S(C), then p does not fork over A if and

only if p does not fork over B and p � B, the restriction of p to B, does not fork
over A.

A tuple ā is dependent of b̄ over A if tp(ā/Ab̄) divides over A. If ā is not dependent
of b̄ over A, one say that ā is independent of b̄ over A.

Remark 6.5. In view of forking symmetry, the (in)dependence in simple theories
is symmetric too.

By Remark 6.5, if ā is (in)dependent of b̄ over A we may say that ā and b̄
are (in)dependent over A. Tuples being (in)dependent over ∅ are called simply
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(in)dependent. A sequence (set) of tuples is said to be independent (over A) if each
tuple of this sequence (set) is independent (over A) with every tuple formed by
coordinates of other elements of the sequence (set).

A theory T has the infinite weight if there exist a tuple ā, a set A, and an infinite
independent sequence (ān)n∈ω over A such that the tuples ā and ān are dependent
over A for each n ∈ ω.

Definition (A. Tsuboi [3]). A stable theory T is pseudo-superstable if T fails to
have the infinite weight.

Similarly to the previous definition, we say that a simple theory T is pseudo-
supersimple if T fails to have infinite weight.

Remark 6.6. Every supersimple theory is pseudo-supersimple. Actually the proof
of the Kim theorem [4] implies that any pseudo-supersimple theory is not an
Ehrenfeucht theory.

Example 6.7 (A. Tsuboi [3]). Let T be the theory of refining equivalence relations
En(x, y), n ∈ ω, such that each En-class is divided into infinitely many En+1-classes.
The theory T is stable since |S(M)| = |M | for any model M |= T of cardinality
2ω. The theory T is pseudo-supersimple since the dependence of elements a and b
means that a and b belong to some common En-class. And T is non-supersimple by
Remark 6.3 since each type p ∈ S(ā) that is realized by elements b being non-En-
equivalent to the elements of ā, has a forking extension q ∈ S(āb), that is realized
by elements c being En-equivalent and non-En+1-equivalent to the elements of āb.

Recall an example of a supersimple unstable theory [4]: this is the theory of
countable bipartite random graph M, consisting of disjoint infinite sets U, V with
the relation R between U, V such that for any finite disjoint subsets A,B of U there
is c ∈ V such that (a, c) ∈ R for a ∈ A and (b, c) 6∈ R for b ∈ B, and vice versa.

Taking a disjoint union of a union of pseudo-superstable theories (like Example
6.7) and of a theory of random graph we get a theory T which is the union of
pseudo-supersimple theories Tn with Tn ⊆ Tn+1 such that T is not a union of
pseudo-superstable theories T ′n with T ′n ⊆ T ′n+1, n ∈ ω.

Definition (A. Tsuboi [3]). Let S be a subset of S(A). A nonempty set R ⊆ S(A),
consisting of some types tp(āb̄/A) with tp(ā/A) ∈ S and tp(b̄/A) ∈ S is said to be
a transitive forking A-class (on S) if the following conditions hold:

(a) if tp(āb̄/A) ∈ R then tp(ā/Ab̄) ⊃f tp(ā/A);
(b) if tp(āb̄/A) ∈ R and tp(b̄c̄/A) ∈ R then tp(āc̄/A) ∈ R.
∅-classes are called simply classes.
Let T be a simple theory, R be a transitive forking A-class, and p be a type

in S(A). The R-weight wR(p) of p in R is the maximal cardinal κ such that, for
every λ < κ, there is a realization ā of p and tuples b̄i, i ≤ λ, such that (b̄i)i≤λ is
independent over A and tp(āb̄i/A) ∈ R for each i ≤ λ.

Remark 6.8. If T is pseudo-supersimple then wR(p) ≤ ω.

Proposition 6.9 (B. Kim [31]). Let T be a simple theory, ā, b̄ be realizations of a
type p ∈ S(T ). If (ā, b̄) ∈ SIp and (b̄, ā) 6∈ SIp then tp(ā/b̄) forks over ∅.

Proof. Take a formula ϕ(x̄, ȳ) witnessing that (ā, b̄) ∈ SIp. Let c̄ be any tuple such
that tp(āb̄) = tp(b̄c̄).
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We claim that ψ(x̄, ā, c̄) 
 ϕ(ā, x̄) ∧ ϕ(x̄, c̄) forks over ∅, and so tp(b̄/āc̄) forks
over ∅.

Indeed, let ā0 = ā, b̄0 = b̄, c̄0 = c̄. There exists a sequence (āib̄ic̄i)i∈ω such that
for all i ∈ ω, tp(āib̄ic̄i) = tp(āb̄c̄) and tp(āb̄) = tp(c̄iāi+1). By transitivity of semi-
isolation, (āi, āj) ∈ SIp for every i ≤ j. It suffices to show that {ψ(x̄, āi, c̄i) | i ∈ ω}
is 2-inconsistent. If not, then there is d̄ such that |= ϕ(āj , d̄) ∧ ϕ(d̄, c̄i) for some
j > i. Then (āj , d̄), (d̄, c̄i) ∈ SIp, so (āj , c̄i) ∈ SIp, and (āi+1, āj) ∈ SIp implies
(āi+1, c̄i) ∈ SIp. But since tp(āb̄) = tp(c̄iāi+1), it contradicts to (b̄, ā) 6∈ SIp.

Now if ā and b̄ are independent (over ∅), then by properties of non-forking we
can find a tuple c̄′ such that tp(āb̄) = tp(b̄c̄′) and {ā, b̄, c̄′} is independent. This
contradicts the claim above. Thus tp(ā/b̄) forks over ∅. 2

Lemma 5.4 and Proposition 6.9 imply

Corollary 6.10 (B. Kim [31]). Let T be a simple theory, ā, b̄ be realizations of a
type p ∈ S(T ). If (ā, b̄) ∈ Ip and (b̄, ā) 6∈ Ip then tp(ā/b̄) forks over ∅.

Corollary 6.11. Let T be a simple theory, p(x̄) ∈ S(T ),

R
 {tp(āb̄) | (ā, b̄) ∈ SIp and (b̄, ā) 6∈ SIp} 6= ∅.

Then R is a transitive forking class on {p}.
Repeating the proof of [3, Proposition 3.3] we obtain

Proposition 6.12. Let T be a pseudo-supersimple theory and R be a transitive
forking A-class on S. Then there is a type p ∈ S with wR(p) = 1.

Proof. By way of a contradiction, assume that, for any p ∈ S, wR(p) ≥ 2. We shall
construct by induction a sequence (āi)i∈ω of realizations of types in S such that

(1) both tp(ā2iā2i+1/A) and tp(ā2iā2i+2/A) belong to R;

(2) {ā2j+1 | j ≤ i} ∪ {ā2i+2} are independent over A.

Let (āj)j≤2i be already defined. We have to define ā2i+1 and ā2i+2. Since ā2i

realizes a type in S, by the assumption, there are two realizations b̄ and c̄ of types
in S such that

(1)′ both tp(ā2ib̄/A) and tp(ā2ic̄/A) belong to R;

(2)′ b̄ and c̄ are independent over A.

Now we choose tuples ā2i+1 and ā2i+2 so that

(3) tp(ā2i+1ā2i+2/A ∪ {ā2j+1 | j < i} ∪ {ā2i}) ⊃nf tp(b̄c̄/A ∪ {ā2i}).
We prove that these ā2i+1 and ā2i+2 satisfy the conditions (1) and (2) above. By

(3) and non-forking symmetry, we have

tp((ā2j+1)j<i/Aā2iā2i+1ā2i+2) ⊃nf tp((ā2j+1)j<i/Aā2i).

By the induction hypothesis, tp((ā2j+1)j<i/Aā2i) does not fork over A. Thus, by
non-forking transitivity, we have

(4) tp((ā2j+1)j<i/Aā2i+1ā2i+2) ⊃nf tp((ā2i+1)j<i/A).

Since (ā2j+1)j<i is independent over A, (4) shows that (ā2j+1)j≤i is also
independent over A. Again by (4),

tp(ā2i+1ā2i+2/A ∪ {ā2j+1 | j < i}) ⊃nf tp(ā2i+1ā2i+2/A).
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Thus we have

tp(ā2i+2/A ∪ {ā2j+1 | j ≤ i}) ⊃nf tp(ā2i+2/Aā2i+1).

Since b̄ and c̄ are independent over A, ā2i+1 and ā2i+2 are also independent over A.
Hence we have

tp(ā2i+2/A ∪ {ā2j+1 | j ≤ i}) ⊃nf tp(ā2i+2/A).

Thus the sequence {ā2j+1 | j ≤ i} ∪ {ā2i+2} is independent over A.
Now we obtain the independent set {ā2i+1 | i ∈ ω} over A and, by the transitivity

ofR, each tp(ā0ā2i+1) belongs toR. Hence ā0 and ā2i+1 are dependent over A, i ∈ ω.
This is a contradiction to the assumption that T is pseudo-supersimple. 2

Corollary 6.13. Let Tn be pseudo-supersimple theories, Tn ⊆ Tn+1, n ∈ ω, T be the
union of all Tn, and p be a type in S(T ). If R
 {tp(āb̄) | (ā, b̄) ∈ SIp and (b̄, ā) 6∈
SIp} 6= ∅ then wR(p) = 1.

Proof. If we assume wR(p) ≥ 2, as in the proof of Proposition 6.12, we have a
sequence (āi)i∈ω of realizations of p satisfying the following conditions:

(1) both tp(ā2iā2i+1) and tp(ā2iā2i+2) belong to R;

(2) {ā2j+1 | j ≤ i} ∪ {ā2i+2} are independent.
Moreover, there exist formulas ϕj(x̄, ȳ), witnessing that SIp is non-symmetric and
such that

(3) |= ϕj(ā2i, ā2i+j), j = 1, 2;

(4) every type q(x̄, ȳ) ∈ S(T ) containing p(x̄)∪{ϕj(x̄, ȳ)} belongs to R, j = 1, 2.

Notice that for ψ(x̄, ȳ)
 ϕ1(x̄, ȳ)∨ϕ2(x̄, ȳ), all ψk(x̄, ȳ), k > 1, witness that SIp
is non-symmetric. By Proposition 6.9, this implies that each element of the sequence
(ā2i+1)i∈ω is dependent with ā0 and this also true for the theory Tn, where ψ(x̄, ȳ)
is a formula of Tn. But this is a contradiction, since we are assuming that all Tn
are pseudo-supersimple. 2

Now we are ready to prove a generalization of both the Tsuboi theorem for unions
of pseudo-superstable theories [3] and the Kim theorem for supersimple theories [4].

Theorem 6.14. Let T be a union of pseudo-supersimple theories Tn, where Tn ⊆
Tn+1, n ∈ ω. Then I(T, ω) = 1 or I(T, ω) ≥ ω.

Proof. Suppose that T is an Ehrenfeucht theory. By Proposition 2.1, there exists a
powerful type p(x̄) ∈ S(T ). In view of Proposition 2.3 any non-empty relation SIp
is non-symmetric. By Corollary 6.11, the set

R
 {tp(āb̄) | (ā, b̄) ∈ SIp and (b̄, ā) 6∈ SIp}

is a transitive forking class on {p}. Corollary 6.13 implies wR(p) = 1.
At the same time, there are independent realizations b̄ and c̄ of p. Since each

type q ∈ S(T ) is realized in the model Mp and, by Proposition 2.3, there exist
realizations ā, d̄ of p such that (ā, d̄) ∈ Ip and (d̄, ā) 6∈ SIp, we can find such
independent b̄ and c̄ in M(d̄) and then consider an elementary extension M(ā) of
M(d̄). Thus (ā, b̄) ∈ Ip, (b̄, ā) 6∈ SIp, (ā, c̄) ∈ Ip, (c̄, ā) 6∈ SIp. Proposition 6.9 implies
that ā and b̄ are dependent, and ā and c̄ are dependent. Hence we have wR(p) ≥ 2,
which leads to a contradiction. 2
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[23] P. Tanović, Asymmetric RK-minimal types, Archive for Math. Logic, 49 (2010), 367–377.

MR2609988
[24] A. Pillay, Theories with exactly three countable models and theories with algebraic prime

models, J. Symbolic Logic, 45 (1980), 302–310. MR0569400
[25] A.N. Gavryushkin, A new spectrum of computable models, News of Irkutsk State University.

Series “Mathematics”, 3 (2010), 7–20. [in Russian]
[26] S.V. Sudoplatov, E.V. Ovchinnikova, Discrete mathematics, Edition of Novosibirsk State

Technical University, Novosibirsk, 2010. [in Russian]
[27] S.V. Sudoplatov, E.V. Ovchinnikova, Mathematical logic and theory of algorithms, Edition

of Novosibirsk State Technical University, Novosibirsk, 2010. [in Russian]



184 B.S.BAIZHANOV, S.V.SUDOPLATOV, V.V.VERBOVSKIY

[28] S. Shelah, Classification theory and the number of non-isomorphic models, North-Holland,
Amsterdam, 1990. MR1083551

[29] Handbook of mathematical logic. Vol. 1. Model Theory, ed. J. Barwise, Nauka, Moscow, 1982.
[in Russian] MR0686955

[30] F.O. Wagner, Simple theories, Kluwer Academic Publishers, Dordrecht, Boston, London,
2000. MR1747713

[31] B. Kim, Forking in simple unstable theories, J. London math. Soc., 57 (1998), 257–267.
MR1644264

Bektur Sembiuly Baizhanov
Institute of Mathematics, Informatics, and Mechanics,
ul. Pushkina, 125,
050010, Almaty, Kazakhstan
E-mail address: baizhanov@hotmail.com

Sergey Vladimirovich Sudoplatov
Sobolev Institute of Mathematics,
pr. Koptyuga, 4,
630090, Novosibirsk, Russia
E-mail address: sudoplat@math.nsc.ru

Viktor Valerievich Verbovskiy
Institute for Problems of Informatics and Control Sciences,
ul. Pushkina, 125,
050010, Almaty, Kazakhstan
E-mail address: vvv@ipic.kz


