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Abstract. We obtain sufficient conditions for the existence and exactness
of the long homology sequence in a category semi-abelian in the sense of
Palamodov.
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Introduction

As is well known, the definition of homology in an abelian category can be
formulated in two ways dual to one another (see, for example, [5]). These two
definitions make it possible to construct a connecting morphism for the long exact
homology sequence corresponding to a short exact sequence of complexes in an
abelian category. It is now known that the same holds in quasi-abelian categories
[7, 13] and even in the nonadditive setting of homological categories in the sense of
Grandis [8] but in these cases the so-obtained long homology sequence is in general
not exact (see [7, 8, 13] for details). For another approach to the Snake Lemma and
homology in nonadditive categories, see [2].

In [11], we introduced the left and right homology objects in a preabelian category
and gave a sufficient condition for these objects to coincide in a P-semi-abelian
category. We also discussed the possibility of constructing the long (co)homology
sequence for a short strictly exact sequence of cochain complexes in a P-semi-
abelian category. In this note, we, basing on the exactness properties of the Ker-
Coker-sequence established in [12], prove sufficient conditions for the exactness of
a fragment of the long (co)homology sequence in terms of the properties of the
complexes and morphisms of the initial sequence.
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The article is organized as follows.
In Section 1, we give the necessary definitions and recall or prove some basic

facts. In Section 2, we review the exactness properties of the Ker-Coker-sequence in
a P-semi-abelian category as exposed in [12]. In Section 3, we recall the definitions of
the left and right (co)homology objects and prove that their canonical isomorphism
in a P-semi-abelian category implies that the category is quasi-abelian. Finally,
Section 4 contains the main assertions of the article, Theorems 5 and 6, which give
some sufficient conditions for the exactness of the long (co)homology sequence.

1. P-semi-abelian categories

We consider preabelian categories, i.e., additive categories satisfying the following
axiom.
Axiom 1. Each morphism has a kernel and a cokernel.

We denote by kerα (cokerα) an arbitrary kernel (cokernel) of α and by Kerα
(Cokerα) the corresponding object; the equality a = ker b (a = coker b) means that
a is a kernel of b (a is a cokernel of b).

In a preabelian category, every morphism α admits a canonical decomposition
α = (imα)α(coimα), where imα = ker cokerα, coimα = coker kerα. A morphism
α is called strict if α is an isomorphism.

We write α |β if α = kerβ and β = cokerα.

Lemma 1. [3, 4, 17, 26] The following assertions hold in a preabelian category :
(i) Strict monomorphisms = kernels, strict epimorphisms = cokernels.
(ii) α is a kernel ⇐⇒ α = imα, α is a cokernel ⇐⇒ α = coimα.
(iii) A morphism α is strict if and only if it is representable in the form α = α1α0

with α0 a cokernel and α1 a kernel; in every such representation, α0 = coimα and
α1 = imα.

(iv) Suppose that a commutative square

C
α−−−−→ D

g

y f

y
A

β−−−−→ B

(1)

is a pullback. Then ker f = α ker g. If f = kerh for some h then g = ker(hβ). If f
is a monomorphism then g is a monomorphism; if f is a kernel then g is a kernel.

In the dual manner, assume that (1) is a pushout. Then coker g = (coker f)β. If
g = coker e for some e then f = coker(αe). If g is an epimorphism then f is an
epimorphism; if g is a cokernel then f is a cokernel.

(v) The relations kerα = ker coimα and cokerα = coker imα hold for every
morphism α.

We call a sequence . . . a→ B
b→ . . . in an additive category semi-exact at the

term B if ba = 0. A sequence . . . a→ B
b→ . . . is said to be exact at the term B if

im a = ker b. Lemma 1(v), which is Lemma 1 of [26], implies that the sequence is
exact at the term B if and only if coker a = coim b.

A preabelian category is abelian if and only if α is an isomorphism for every α,
that is, if and only if every morphism is strict.

A preabelian category is called P-semi-abelian or semi-abelian (in the sense of
Palamodov) [19, 21] if it satisfies
Axiom 2. For every morphism α, α is a bimorphism, that is, a monomorphism
and an epimorphism.
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If the morphism α is a monomorphism (an epimorphism) for every α then,
following Rump [21, p. 167], we call the preabelian category left semi-abelian (right
semi-abelian).

Theorem 1. [15] A preabelian category A is P-semi-abelian if and only if it satisfies
one of the equivalent conditions (i)–(vii) and one of the equivalent conditions (i′)–
(vii′) listed below.

(i) A is right semi-abelian.
(ii) If h ◦ l is a kernel then so is l.
(iii) If (1) is a pushout and g is a kernel then (1) is a pullback.
(iv) If (1) is a pushout and g is a kernel then f is a monomorphism.
(v) If (1) is a pushout, g is a kernel and β is a cokernel then f is a monomorphism.
(vi) If l and h are kernels and h ◦ l is defined then h ◦ l is a kernel.
(vii) If (1) is a pushout and g is strict then the canonical morphism α̂ : Ker g →
Ker f is an epimorphism.

(i′) A is left semi-abelian.
(ii′) If h ◦ l is a cokernel then so is h.
(iii′) If (1) is a pullback and f is a cokernel then (1) is a pushout.
(iv′) If (1) is a pullback and f is a cokernel then g is an epimorphism.
(v′) If (1) is a pullback, f is a cokernel and α is a kernel then g is an epimorphism.
(vi′) If l and h are cokernels and h ◦ l is defined then h ◦ l is a cokernel.
(vii′) If (1) is a pullback and f is strict then the canonical morphism β̂ : Coker g →
Coker f is a monomorphism.

A preabelian category A is called left quasi-abelian (or left almost abelian [21])
if it satisfies
Axiom 3. If square (1) is a pullback then f is a cokernel =⇒ g is a cokernel.

Dually, a preabelian category A is called right quasi-abelian (or right almost
abelian [21]) if it satisfies
Axiom 3∗. If (1) is a pushout then g is a kernel =⇒ f is a kernel.

A left and right quasi-abelian category is referred to as quasi-abelian [24] (semi-
abelian in the sense of Răıkov [20], or almost abelian [21]).

As is well-known [17, 20, 21, 24], every quasi-abelian category is P-semi-abelian.
Răıkov thought that every semi-abelian category is quasi-abelian (which was men-
tioned in [17]). Kuz′minov and Cherevikin [17, Theorem 2] and later Rump [21,
Proposition 3] noticed that a P-semi-abelian category is quasi-abelian if and only if
it is left or right quasi-abelian. Several years ago Bonet and Dierolf [1], answering a
question of W. Rump, constructed an example of a pullback violating Axiom 3 in the
categoryBor of bornological locally convex spaces, thus proving that it is not quasi-
abelian. Later Rump [22] gave an algebraic example of a P-semi-abelian but not
quasi-abelian category. In [23], he carried out a thorough study of P-semi-abelian
subcategories of quasi-abelian categories and proved that Bor and the category
Bar of barreled locally convex spaces are P-semi-abelian but both categories are
not quasi-abelian. Recently Wengenroth [25] explained that the non-stability of
some cokernels under pullbacks in Bor is not unusual. The point is the existence of
non-α-regular (or non-β-regular) inductive limits of locally convex spaces (see [18]
and [25, Section 3]).

If, for a cokernel f in a preabelian category, in every pullback (1) g is a cokernel
(for a kernel g in a preabelian category, in every pushout (1), f is a kernel) then f
is called a semi-stable cokernel (g is called a semi-stable kernel).
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We recall some basic properties of semi-stable kernels and cokernels (following
from [10, Propositions 5.11 and 5.12]).

Lemma 2. The following hold in a preabelian category:
(i) if gf is a semi-stable kernel then so is f , if gf is a semi-stable cokernel then

so is g;
(ii) if f and g are semi-stable kernels and gf is defined then gf is a semi-stable

kernel; if f and g are semi-stable cokernels and gf is defined then gf is a semi-stable
cokernel.

(iii) a pushout of a semi-stable kernel is a semi-stable kernel; a pullback of a
semi-stable cokernel is a semi-stable cokernel.

2. The Ker-Coker-Sequence

Consider a commutative diagram of the form

A0
ϕ0−−−−→ B0

ψ0−−−−→ C0 −−−−→ 0

α

y β

y γ

y
0 −−−−→ A1

ϕ1−−−−→ B1
ψ1−−−−→ C1

(2)

in which ψ0 = cokerϕ0, ϕ1 = kerψ1, in a preabelian category.
Diagram (2) naturally extends to the diagram

Kerα
ε−−−−→ Kerβ

ζ−−−−→ Ker γ

kerα

y ker β

y ker γ

y
A0

ϕ0−−−−→ B0
ψ0−−−−→ C0 −−−−→ 0

α

y β

y γ

y
0 −−−−→ A1

ϕ1−−−−→ B1
ψ1−−−−→ C1

cokerα

y coker β

y coker γ

y
Cokerα

τ−−−−→ Cokerβ
θ−−−−→ Coker γ ,

(3)

where ζε = 0 and θτ = 0.
Suppose now that ψ0 is a semi-stable cokernel and ϕ1 is a semi-stable kernel

(or that the category is P-semi-abelian and one of these is semi-stable). Then, as
follows from [6, 14], there is a natural connecting morphism δ : Ker γ → Cokerα
uniting the first and last rows in (3) into the Ker-Coker-sequence

Kerα
ε→ Kerβ

ζ→ Ker γ
δ→ Cokerα

τ→ Cokerβ
θ→ Coker γ, (4)

in which the composition of two consecutive morphisms is zero [6, 14].
The proof of the following assertion may be found in [14].

Theorem 2. The following hold for a diagram of the form (2) in a P-semi-abelian
category:

(i) If in (2) ψ0 and cokerα are semi-stable cokernels and β is strict then (4) is
exact at Cokerα.

If in (2) ϕ1 and ker γ are semi-stable kernels and β is strict then (4) is exact at
Ker γ.

(ii) If in (2) α is strict then the upper row in (3) is exact.
If in (2) γ is strict then the lower row in (3) is exact.
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(iii) If in (2) α is strict and ker γ and ϕ1 are semi-stable kernels then (4) is
exact at Kerβ and Ker γ. If γ is strict and cokerα and ψ0 are semi-stable cokernels
then (4) is exact at Cokerβ and Cokerα.

3. Left and Right Homology Objects

Suppose first that the ambient category is preabelian.
Given a sequence of the form

A
ϕ→ B

ψ→ C (5)

such that ψϕ = 0, there are a natural morphism σ : A → Kerψ such that ϕ =
(kerψ)σ and a natural morphism τ : Cokerϕ→ C such that ψ = τ cokerϕ.

Definition 1. Call H−(B) = H−(B,ϕ, ψ) = Cokerσ and H+(B) = H+(B,ϕ, ψ) =
Ker τ the left and right homology objects of (5) at the term B.

It is classical that these two notions coincide for abelian categories (see, for
example, [5]). This remains valid for quasi-abelian categories [13]. As was shown
in [13], in a preabelian category, there is a unique morphism m : H−(B)→ H+(B)
such that

(ker τ)m cokerσ = (cokerϕ)(kerψ). (6)
In [11], we established the following P-semi-abelian version of Lemma 4 of [13]

(see [11, Lemma 7]).

Lemma 3. Let the ambient category be P -semi-abelian. The morphismm : H−(B)→
H+(B) is a bimorphism. If kerψ is a semi-stable kernel or cokerϕ is a semi-stable
cokernel then m is an isomorphism.

Using the technique used in the proof of Lemma 7 in [11], we may also obtain
the following:

Proposition 1. Let the ambient category be preabelian. If kerψ is a semi-stable
kernel then m is a semi-stable kernel and if cokerϕ is a semi-stable cokernel then
m is a semi-stable cokernel. Thus, if both conditions are fulfilled then m is an
isomorphism.

Proof. Indeed, as in the proof of Lemma 7 in in [11], we (easily) conclude that

Kerψ
cokerσ−−−−→ H−(B)

kerψ

y (ker τ)m

y
B

cokerϕ−−−−→ Cokerϕ

is a pushout.
Now, Lemma 2(iii) implies that (ker τ)m is a semi-stable kernel, from which by

Lemma 2(i), so is m.
By duality, we see that if cokerϕ is a semi-stable cokernel then m is a semi-stable

cokernel.
The proposition follows. �

If the category is quasi-abelian then all kernels and cokernels are stable, and
thus the left and right homology objects are canonically isomorphic. The referee
conjectured that the coincidence of the left and right homology objects in a preabelian
category in turn implies that this category is quasi-abelian. Using the results of
Kuz′minov and Cherevikin, we are now able to provethe following weakened version
of this conjecture:
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Theorem 3. Suppose that, in a P-semi-abelian category A, for every sequence

A
ϕ→ B

ψ→ C

with ψϕ = 0, the canonical morphism m : H−(B,ϕ, ψ) → H+(B,ϕ, ψ) is an
isomorphism. Then the category is quasi-abelian.

Proof. Since A is P-semi-abelian, from [17, Theorem 2] (see also [21, Proposition 3])
it follows that it suffices to prove that the category A is left quasi-abelian, that is,
that cokernels in A are stable under pullbacks. As follows from [17, Theorem 2], it
suffices to establish this only for pullbacks of cokernels along kernels. (We warn the
reader that the terminology of [17] differs from ours: therein, “preabelian” means
“P-semi-abelian” and “semiabelian” stands for “quasi-abelian”.)

So, consider a pullback

P
u′−−−−→ F

v′

y v

y
E

u−−−−→ G

(7)

in which u is a cokernel and v is a kernel (and thus v′ is a kernel) and prove that
u′ is also a cokernel.

Form the sequence

K
keru−→ E

coker v′−→ L. (8)
In (8), (coker v′) keru = (coker v′)v′ keru′ = 0.

Note that v′ = ker(coker v′) and u = coker(keru). As above, the relation
(coker v′) keru = 0 gives rise to two morphisms σ : K → P and τ : G → L
characterized uniquely by keru = v′σ and coker v′ = τu. We have σ = keru′. Since
u is a cokernel, the pullback (7) is a pushout (by Theorem 1(iii) or the assertion
dual to [17, Lemma 5]). Hence, by Lemma 1(iv), τ = coker v. Then

H−(E, keru, coker v
′) = Cokerσ = Coimu′

and
H+(E, keru, coker v

′) = Ker τ = F.

If m : Coimu′ → F is the canonical isomorphism between the left and right
homology objects then

vm(coimu′) = uv′ = vu′.

Since v is a monomorphism, this implies that u′ = m coimu′ withm an isomorphism.
Thus, u′ is a cokernel.

The theorem is proved. �

The proof of Theorem 3 in fact implies the following assertion.

Lemma 4. Let
P

u′−−−−→ F

v′

y v

y
E

u−−−−→ G
be a pullback in a P-semi-abelian category such that v is a kernel, u is a cokernel,
and u′ is not a cokernel. Let H−(E) and H+(E) be the left and right homology
objects of the sequence

K
keru−→ E

coker v′−→ L

at the term E. Then the canonical morphism m : H−(E) → H+(E) is not an
isomorphism.
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Consider the following
Example (Wengenroth [25]). Let Bor be the category of bornological locally

convex spaces. For details on bornological spaces, the reader is referred, for example,
to [9, Chapter 13] or [16, Chapter 6, Section 28]. The category Bor is P-semi-
abelian [23].

In [18] Makarov introduced the following terminology: the inductive limit X =
lim
−→

Xn of an increasing sequence of locally convex spacesX1 ⊂ X2 ⊂ · · · ⊂ Xn ⊂ . . .
is called α-regular if any set bounded in X is contained in some Xn; it is called
β-regular if any set that is bounded in X and contained in Xn is bounded in some
Xm. The first examples of non-α-regular and non-β-regular inductive limits were
given in [18]; other examples (connected with partial differential operators) may be
found in [25, Section 3].

The following theorem is proved in [25]:

Theorem 4. Let X = lim
−→

Xn be a non-α-regular inductive limit of an increasing
sequence of locally convex spaces X1 ⊂ X2 ⊂ · · · ⊂ Xn ⊂ . . . . Then there is a
normed space Y included continuously in X such that, in the pullback

P
πY−−−−→ Y

π0

y j

y⊕
Xn

s−−−−→ X

(9)

where i : Y → X is the inclusion mapping, the mapping πY is not open in the
associated bornological topology (and, hence, not a cokernel in Bor).

By the definition of a pullback, the space P of this theorem is as follows:

P = {((xn)n∈N, y) ∈
⊕

Xn × Y :
∑
n∈N

xn ∈ Y }.

and the mappings π0 : P → X and πY : P → Y are the corresponding restricted
projections. Note that πY , being an open surjection in the (quasi-abelian) category
LCS of locally convex spaces, is a cokernel in this category.

Since a pullback of a cokernel in a P-semi-abelian category is a pushout (by
Theorem 1(iii) or the dual of [17, Lemma 5]), Lemma 1(4) yields cokerπ0 =
(coker i)s.

As above, consider the sequence

Ker s
ker s−→

⊕
Xn

(coker i)s−→ Coker i,

corresponding to (9). If H−(
⊕
Xn) is the left homology at

⊕
Xn and H+(

⊕
Xn)

is the right homology at
⊕
Xn then we have the isomorhism of vector spaces

H−(
⊕
Xn) ∼= H+(

⊕
Xn) ∼= Y . However, by Lemma 4, the canonical morphism m :

H−(X)→ H+(X) (which is a bimorphism by Lemma 3) cannot be an isomorpism
in Bor.

4. The Long (Co)homology Sequence in a P-Semi-Abelian Category

In [11], we started discussing the possibility of constructing the long exact
cohomology sequence for a short strictly exact sequence of complexes in a P-
semi-abelian category. Here we improve the main theorem by giving more natural
sufficient conditions for the exactness of the (co)homology sequence.

By a (cochain) complex A = (An, dnA)n∈Z in an additive category we understand
a sequence

. . . −→ An−1 dn−1
A−→ An

dnA−→ An+1 dn+1
A−→ . . .
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which is semi-exact at each term, that is, dn+1
A dnA = 0 for all n. (Here and below,

for all objects and morphisms corresponding to a cochain complex A, we use the
subscript A instead of A.)

Let A = (An, dnA)n∈Z be a cochain complex in a preabelian category. As was
observed in [7], for each n ∈ Z the relations dn+1

A dnA = 0 and dnAd
n−1
A = 0 imply

the existence of a unique morphism anA : Coker dn−1
A → Ker dn+1

A satisfying the
condition

(ker dn+1
A )anA(coker d

n−1
A ) = dnA.

Put Hn
−(A) = H−(A

n, dn−1
A , dnA) and Hn

+(A) = H+(A
n, dn−1

A , dnA). As follows
from the previous section,

Hn
−(A) = Coker(an−1

A coker dn−2
A ) = Coker an−1

A

and
Hn

+(A) = Ker((ker dn+1
A )anA) = Ker anA.

We call the homology objectsHn
−(A) andHn

+(A) the left and right nth (co)homology
objects of the cochain complex A.

Denote by mn
A : Hn

−(A)→ Hn
+(A) the morphism of the previous section, defined

uniquely by the relation

(ker anA)m
n
A(coker a

n−1
A ) = (coker dn−1

A )(ker dnA) (10)

From now on, let our category be P-semi-abelian.

Lemma 5. The following hold:
(i) if the cokernel coker dnA is semi-stable then so is coker anA;
(ii) if the kernel ker dnA is semi-stable then so is ker anA.

Proof. (i) Writing down relations (10) for n := n + 1, we obtain the commutative
square

Ker dn+1
A

ker dn+1
A−−−−−→ An+1

coker anA

y coker dnA

y
Hn
A(A)

ker dn+1
A mn+1

A−−−−−−−−−→ Coker dnA,

(11)

which is a pushout (cf. the proof of Lemma 7 in [11]). Since ker dn+1
A is a kernel,

by Theorem 1(iii) (or [17, Lemma 5]), the square (11) is also a pullback. Now, by
Lemma 2(iii), the semi-stability of coker dnA implies that of coker anA.

Assertion (ii) is dual to (i).
The lemma is proved. �

Remark 1. It is easy to observe also that, for a cochain complex A = (An, dnA),
anA is strict if and only if dnA is strict.

By a morphism of two complexes A = (An, dnA)n∈Z and B = (Bn, dnB)n∈Z we
mean a family of morphisms (ϕn : An → Bn)n∈Z such that ϕn+1dnA = dnBϕ

n

for all n. For three complexes A = (An, dnA)n∈Z, B = (Bn, dnB)n∈Z, and C =
(Cn, dnC)n∈Z and morphisms ϕ : A→ B and ψ : B→ C, we call the sequence

0→ A
ϕ→ B

ψ→ C→ 0

short strictly exact if ϕn|ψn for all n.
A morphism ϕ : A→ B of complexes induces morphisms ϕ̂n : Ker dnA → Ker dnB

and ϕ̃n : Coker dn−1
A → Coker dn−1

B . These morphisms are characterized uniquely
by the equalities

(ker dnB)ϕ̂
n = ϕn ker dnA; ϕ̃n coker dn−1

A = (coker dn−1
B ϕn). (12)
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Like in the quasi-abelian case [7], to a short strictly exact sequence of complexes

0→ A
ϕ→ B

ψ→ C→ 0 (13)

in a P-semi-abelian category, there corresponds a commutative diagram

Coker dn−1
A

ϕ̃n

−−−−→ Coker dn−1
B

ψ̃n

−−−−→ Coker dn−1
C −−−−→ 0

anA

y anB

y anC

y
0 −−−−→ Ker dn+1

A

ϕ̂n+1

−−−−→ Ker dn+1
B

ψ̂n+1

−−−−→ Ker dn+1
C

(14)

Here ϕ̃n, ψ̃n, ϕ̂n+1 and ψ̂n+1 are defined in accordance with (12), ψ̃n = coker ϕ̃n,
and ϕ̂n+1 = ker ψ̂n+1. Diagram (14) yields two semi-exact sequences: the Ker-
sequence

Hn
+(A)

Hn
+(ϕ)
−→ Hn

+(B)
Hn

+(ψ)
−→ Hn

+(C) (15)
and the Coker-sequence

Hn+1
− (A)

Hn+1
− (ϕ)
−→ Hn+1

− (B)
Hn+1
− (ψ)
−→ Hn+1

− (C). (16)

According to Theorem 1 of [11], if ψn, coker dn−1
B , coker dn−1

C are semi-stable
cokernels or ϕn+1, ker dn+1

A , ker dn+1
B are semi-stable kernels, the morphism mn+1

A

diagram (14) yields a semi-exact Ker-Coker-sequence

Hn
+(A)

Hn
+(ϕ)
−→ Hn

+(B)
Hn

+(ψ)
−→ Hn

+(C)

∆n

−→ Hn+1
− (A)

Hn+1
− (ϕ)
−→ Hn+1

− (B)
Hn+1
− (ψ)
−→ Hn+1

− (C). (17)

Theorem 5. Given a short strictly exact sequence (13) in a P-semi-abelian category,
the corresponding sequences (15) and (16) have the following exactness properties:

(i) if dnA is strict then (15) is exact;
(ii) if dnC is strict then (16) is exact.

Proof. The theorem follows from Theorem 2(ii) with account taken of Remark 1.
�

Theorem 6. Given a short strictly exact sequence (13) in a P-semi-abelian category,
the corresponding sequence (17) has the following exactness properties:

(i) Suppose that dnB is strict.
If ϕn+1, ker dn+1

A , ker dn+1
B , ker dnC are semi-stable kernels then (17) is exact at

Hn
+(C).
If ψn, coker dn−1

B , coker dn−1
C , coker dnA are semi-stable cokernels then (17) is

exact at Hn+1
− (A).

(ii) Suppose that dnA is strict and ϕn+1, ker dn+1
A , ker dn+1

B , ker dnC are semi-stable
kernels. Then (17) is exact at Hn

+(B) and Hn
+(C).

Suppose that dnC is strict and ψn, coker dn−1
B , coker dn−1

C , coker dnA are semi-stable
cokernels. Then (17) is exact at Hn+1

− (A) and Hn+1
− (B).

Proof. (i) Prove the first assertion. Suppose that dnB is strict and ϕn+1, ker dn+1
A ,

ker dn+1
B , ker dnC are semi-stable kernels. Then Lemma 5(i) implies that ker anC is a

semi-stable kernel. Moreover, the equality (ker dn+1
B )ϕ̂n+1 = ϕn+1 ker dn+1

A together
with Lemma 2(i,ii) (as in the proof of Theorem 1 in [11]) easily implies that ϕ̂n+1 is
a semi-stable kernel, and we may apply Theorem 2(i) to obtain the desired exactness
of (17) at Hn

+(C). The second assertion of (i) is dual to the first.
(ii) Suppose that dnA is strict and ϕn+1, ker dn+1

A , ker dn+1
B , ker dnC are semi-stable

kernels. Then anA is also strict (Remark 1). Using the same argument as in the proof



ON THE HOMOLOGY SEQUENCE IN A P -SEMI-ABELIAN CATEGORY 199

of (i), we infer that ϕ̂n+1 is a semi-stable kernel. Applying Theorem 2(iii), we see
that sequence (17) is exact at Hn

+(B) and Hn
+(C). The second assertion follows by

duality.
The theorem is proved. �

The author expresses his gratitude to the anonymous referee, whose very useful
remarks led to a substantial improvement of the exposition.
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