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1. Introduction

Under a surface representable as difference of convex functions, or a “DC surface”
for short, we understand the surface that is defined in the Cartesian coordinates by
the equation z = f(x, y), where f is the difference of convex functions defined on
some plane domain:

z = f(x, y) = h1(x, y)− h2(x, y), (1)

with h1 and h2 such that the equations z = h1(x, y) and z = h2(x, y) define
convex surfaces. We impose no additional regularity conditions on the surfaces
under consideration, so that h1 and h2 are only subject to the convexity condition.

The convexity condition means that the straight line segment between two
arbitrary points of z = h1(x, y)

(
or z = h2(x, y)

)
lies above this surface (every

point on it has the value of z at least that of the point on the surface with the same
values of x and y).

We can, of course, regard as convex the surfaces lying below the chords. This is
utterly immaterial since if z = h1(x, y) is convex in the first sense then z = −h1(x, y)
is convex in the second sense, and conversely.
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We will understand convexity in the sense of the first definition.
In general, by a DC surface we can understand a surface whose every point has

a neighborhood admitting representation in some coordinates as difference of convex
functions. But we avoid using this generalized concept, restricting this exposition
to the surfaces determined by equations of the form (1).

Assume that the coordinates axes x, y, and z are fixed once and for all. Therefore,
the projection along the z-axis and similar operations are assumed defined without
specifying the choice of coordinate systems.

The DC surfaces are of interest for the following reasons: Once as I managed
to develop the intrinsic geometry of arbitrary convex surfaces (1), the question
arose naturally whether it is possible to construct a general theory of the surfaces
restricted neither by the convexity requirement nor by regularity requirements in
the spirit of classical differential geometry. Together with that, the surfaces to be
studied must be regular enough, so that we could count on obtaining for them
at least as meaningful a system of concepts and statements as that available now
for general convex surfaces. Consequently, we aim at indicating an appropriate
sufficiently wide class of surfaces. Of course, in this form the problem is certainly
indeterminate in a strict mathematical sense, but we do not mean to pose it as
such, rather we only wish to explain the reasons for studying DC surfaces. Namely,
it turns out that the class of these surfaces meets our general requirements to
a sufficient degree. In the framework of this article we are unable to establish this
in a proper volume, but restrict exposition only to some simple propositions that
are the starting point for studying DC surfaces deeper. I already presented some
of these results, like the general reasons just indicated, in the last section of my
Intrinsic Geometry of Convex Surfaces [1].

2. On the Volume of a Class of DC Surfaces

In this section we verify that the class of DC surfaces includes all twice
continuously differentiable surfaces, as well as all polyhedra. In addition, it trivially
includes all convex surfaces. Consequently, it covers all surfaces which have so far
been studied in detail in geometry.

Theorem 1. Every function whose first partial derivatives satisfy the Cauchy–
Lipschitz condition is the difference of convex functions.

Namely, if f(x, y) is such that∣∣fx(x+ ∆x, y + ∆y)− fx(x, y)
∣∣ ≤M(|∆x+ ∆y|

)
,∣∣fy(x+ ∆x, y + ∆y)− fy(x, y)

∣∣ ≤M(|∆x+ ∆y|
)
,

(2)

then the function
g(x, y) = M(x2 + y2)− f(x, y) (3)

is convex, so that f(x, y) is the difference of the convex functions M(x2 + y2) and
g(x, y).

Proof. Obviously, it suffices to show that on every line

x = a+ αs, y = b+ βs (4)

the derivative dg
ds is a monotone nondecreasing function of s. Therefore, g(a+αs, b+

βs) turns out a convex function of s; and since the line (4) is arbitrary, this means
precisely that the function g(x, y) itself is convex.
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Calculate the derivative

g′ = 2M(αx+ βy)− (αfx + βfy).

Calculate the difference ∆g′ for ∆x = α∆s and ∆y = β∆s:

∆g′ = 2M(α2 + β2)∆s− (α∆fx + β∆fy). (5)

By (2) we have

|∆fx| ≤M
(
|∆x|+ |∆y|

)
= M

(
|α|+ |β|

)
|∆s|, (6)

and similarly for ∆fy.
Therefore, (5) implies for ∆s > 0 that

∆g′

∆s
≥ 2M(α2 + β2)−M

(
|α|+ |β|

)2 ≥ 0. (7)

and this means that g′ is a nondecreasing function of s. The proof of the theorem
is complete.

Theorem 1 obviously implies the next theorem.

Theorem 1a. Every twice continuously differentiable surface, and in general
every surface with the bounded curvature of normal sections, is a DC surface.

Thus, the class of DC surfaces includes all surfaces that are studied in the classical
differential geometry.

Theorem 2. Every polyhedron is a DC surface. In other words, every piecewise
linear function f(x, y) is the difference of two convex andalsopiecewiselinear
functions.

Proof. Consider a polyhedral surface F with an equation z = f(x, y). Assume
that the domain of f

(
the projection of the polyhedron onto the plane (x, y)

)
is

convex. This is not restriction of generality since we can, if need be, extend this
polyhedron F so that the projection becomes convex. The dihedral angle at every
edge opens either upwards or downwards: it includes an infinite part of the semiaxis
z > 0 or the semiaxis z < 0.

A dihedral angle opening upwards is determined by a convex function (in the
sense that it lies below the chord). Naturally, a function vi of this type, determining
the dihedral angle Vi of the surface F , is defined on the entire plane (x, y), and we
assume that its domain is the same as that of the function f(x, y) determining the
polyhedron F .

Define now the function g(x, y) as the sum of all functions vi(x, y) corresponding
to all angles of F opening upwards:

g(x, y) =
∑
i

vi(x, y). (8)

This function is convex and piecewise linear as the sum of convex piecewise
linear functions vi. In other words, the equation z = g(x, y) determines a convex
polyhedron; denote the latter by G. This G is in a sense the sum of dihedral angles
Vi. Each of its edges lies below the corresponding edge of the polyhedron F : the
projection of every edge of G includes the projection of an edge of F with an angle
Vi opening upwards. Conversely, each edge of F with an angle opening upwards lies
below the corresponding edge of G.

Verify that the difference h(x, y) = g(x, y)− f(x, y) is a convex function as well.



ON THE SURFACES REPRESENTABLE AS DIFFERENCE OF CONVEX FUNCTIONS 363

Since g and f are piecewise linear functions, so is h = g − f ; thus, the equation
z = h(x, y) represents a polyhedron which we denote by H.

The projection of each edge of H onto the plane (x, y) coincides necessarily with
the projection of an edge of one of the polyhedra F and G since everywhere on F
and G away from the edges both functions f and g are linear, and so is their
difference. Verify that the dihedral angles at all edges of H open upwards. To this
end, consider the three possible cases of the location of the projection of an edge p
of H onto the plane (x, y):

(1) this projection coincides with the projection of an edge of F , but not G;
(2) it coincides with the projection of an edge of G, but not F ;
(3) it coincides with the projection of some edges of both F and G.
In the first case the dihedral angle at the corresponding edge q of F opens

downwards. Indeed, every edge with the angle opening upwards corresponds to
an edge of G, but in this case that is assumed excluded.

Thus, in a neighborhood of the projection of an edge p of H the function g
determining the polyhedron G is linear, which corresponds to a facet of G; but the
function f determining the polyhedron F is “concave” since the angle at q opens
downwards. In result, the difference h = g − f is convex, which means that the
angle at p opens upwards.

In the second case an edge of G, but not of F , corresponds to p. Therefore, the
function f is linear in a neighborhood of the projection of p, while g is everywhere
convex. Consequently, in this case h = g − f is convex and the angle at p opens
upwards.

In the third case some edges q and r of F and G correspond to p. Then by the
main property of the polyhedron G the angle Vk at the edge q of F opens upwards,
and by (8) the function vk(x, y) in the equation z = v(x, y) representing this angle
appears as a summand in g(x, y). Obviously, vk(x, y) near q coincides with f(x, y).

Therefore, in a neighborhood of p we have

h(x, y) = g(x, y)− f(x, y) =
∑
i

vi(x, y)− vk(x, y).

The right-hand side amounts to the sum of the convex functions vi, with
the exception of vk; thus, it is a convex function. Consequently, h(x, y) in
a neighborhood of the projection of p is convex, and the angle at the edge opens
upwards.

Thus, we have proved that all dihedral angles of the polyhedronH open upwards,
so that in a neighborhood of each edge it is convex downwards. It is known that
a locally convex polyhedron of this type is globally convex.1 Therefore, the proof
of the theorem is complete.

1This claim holds since we assume that the projection of F , and so of H as well, onto the plane
(x, y) is convex. Obviously we can assume that it represents a polygon. To prove the convexity
of H, take the plane P parallel to the plane (x, y) so that H lies entirely below it (i.e., in the
domain of smaller z). Connecting all points of H to this plane by perpendicular line segments, we
obtain a solid polyhedron K bounded below by H, above by its projection onto P , and on the
sides by a prismatic surface. Since all angles of H are convex downwards, all dihedral angles of K
are less than π.

If all dihedral angles of a polyhedral angle are less than π, then it is convex. Therefore, all
vertex figures of K are convex. Hence, it is now easy to conclude that K itself is convex, and so
is H.
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3. Derivatives of Differences of Convex Functions
and the Corresponding Properties of DC Surfaces

Since the differential of the difference of two functions is the difference of their
differentials, many properties of the differentials of convex functions carry over
easily to differences of convex functions. In this section we indicate the main
properties of the derivatives of differences of convex functions, obtained in this
way from the properties of the derivatives of convex functions. These properties
translate directly into equivalent geometric properties of DC surfaces.

The contingency of M at a point A is the figure formed by the limits of all
possible sequences of rays going from A into a variable point X of M as X → A.
If the contingency is a surface, then it is obviously a cone with apex A, and then
we speak of the tangent cone. Dihedral angles and planes also belong here; if the
tangent cone reduces to a plane then it is nothing but the tangent plane.

Lemma. In order for the surface F with an equation z = f(x, y) to have tangent
cone at A(x0, y0) also representable by an equation of the form z = g(x, y), it is
necessary and sufficient that f(x, y) at (x0, y0) have the derivative in every direction
depending continuously on the direction and, furthermore, the convergence of the
ratios of differences to the derivatives be uniform in all directions. The derivative
in a given direction is the angular coefficient of the corresponding generator of the
tangent cone.

This lemma is completely obvious from the relation between the derivative and
tangent line. The only part of it possibly not so obvious is that the existence of
the tangent cone implies uniform convergence of the ratios of differences to the
derivatives, or, which is the same, of the angular coefficients of the secant lines to
those of the tangent lines generating the cone. Let us verify this claim of the lemma.

Suppose that at A the surface F has tangent cone K. Suppose that the
convergence of the angular coefficients of secant lines to those of the generators
of K is not uniform in all directions. Then there is a sequence of secant lines AXn

such that Xn → A, but the angles between AXn and the generators Ln of K with
the same directions of the projections onto the plane (x, y) remain greater than
some ε > 0. Choosing a converging sequence of directions, we may assume that the
generators Ln converge. Then their limit is a generator L of K. But the limit of the
secant lines AXn is distinct from L, and by definition it is also a generator of K.
This is impossible since by assumption to every direction in the plane (x, y) there
corresponds only one generator of the tangent cone

(
obviously, this means precisely

that this cone is represented by an equation of the form z = g(x, y)
)
. Thus, we have

established our claim.

Theorem 3. Every DC surface has tangent cone at each point which is a DC
surface itself.

Proof. Each convex surface has tangent cone at every point. Using the lemma,
we translate this into the language of derivatives of convex functions. For derivatives
it is clear that the same result is valid for the differences of convex functions. Again
by our lemma, this means that every DC surface has tangent cones. Suppose that
z = g(x, y) is an equation of a tangent cone of the surface z = h1(x, y) − h2(x, y),
where h1 and h2 are convex functions. The function g is the difference of functions
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determining respectively the tangent cones to the convex surfaces z = h1(x, y) and
z = h2(x, y).

Consequently, each tangent cone to a DC surface is itself a DC surface.
Let us point out a series of properties of tangent cones to a DC surface,

which follow directly from the corresponding properties of tangent cones to convex
surfaces.

Theorem 4. The tangent cones to every DC surface enjoy the following
properties:

(A) The set of conical points, i.e., those where the tangent cone fails to reduce
to a dihedral angle or to a plane, is at most countable. The set of points where
the tangent cone reduces to a dihedral angle in the projection onto the plane (x, y)
has measure zero; moreover, it lies on an at most countable collection of rectifiable
curves. Consequently, every DC surface has tangent planes almost everywhere.

(B) If a DC surface has tangent plane P at a point A then the tangent cones at
X → A converge to this plane. The angle formed by the secant line XY passing
through arbitrary points X and Y of a surface with tangent plane P tends to zero
as X,Y → A; we express this by saying that P is the tangent plane in a strong
sense.

(C) In every closed domain inside a DC surface the slopes of the tangent lines
are bounded. In other words, derivatives in all directions are bounded.

Verify claim (A). Suppose that z = g(x, y) − h(x, y) is an equation for some
surface F and, furthermore, the equations z = g(x, y) and z = h(x, y) represent
convex surfaces G and H.

Take a conical point A on F . Then, since the tangent cone KF at it is the
“difference” of the tangent cones KG and KH at the corresponding points of G
and H, it follows that there are open only the two possibilities for KG and KH :

(1) at least one of the cones KG and KH fails to reduce to a plane or a dihedral
angle;

(2) KG and KH are dihedral angles with nonparallel edges.
In other cases KF is inevitably a plane or a dihedral angle.
On a convex surface the set of conical points is at most countable, and so the

set of points A for which the first possibility is realized is at most countable.
Suppose that the second possibility is realized. Consider the surface S with

equation z = g(x, y) + h(x, y). This S is convex. Its tangent cone KS at the point
corresponding to A is the “sum” of the dihedral angles KS and KH . Since their
edges are not parallel and both angles open upwards, their “sum” is a tetrahedral
angle. Consequently, in the second case the point on S corresponding to A is conical.
Since S is convex, it follows that the set of these points is at most countable.

Thus, both possibilities can be realized at at most countably many points.
Therefore, the set of conical points of a DC surface is at most countable.

The second part of claim (A) follows obviously from the similar properties of
convex surfaces. Besides, we should observe that by Theorem 3 claim (A) turns
out a corollary to a general theorem on tangent sets (contingencies) by Šmidov and
Verčenko [2].

Claims (B) and (C) are also obvious corollaries to the corresponding properties
of convex surfaces. For the latter they are established quite simply.

(The first part of claim (B) for convex surfaces is easily deduced from the fact
that the limit of supporting planes is a supporting plane. The second part also
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follows since if we take the supporting planes at X and Y and verify that when the
angle between it and P tends to zero, so does the angle between the chord X Y
and P .)

Theorem 5. The difference of convex functions has second differential almost
everywhere: the right (or left) partial derivatives fx and fy, existing everywhere by
Theorem 3, are almost everywhere differentiable; furthermore, wherever this holds,
∂fx
∂y =

∂fy
∂x and, in addition, the convergence of the ratios of the differences ∆fx

∆s and
∆fy
∆s to the derivatives dfxds and dfy

ds in every direction is uniform in all directions
(
i.e.,∣∣∣∆fx∆s −

dfx
ds

∣∣∣ < ε, where ε depends only on the displacement ∆s =
√

∆x2 + ∆y2
)
.

This follows from the similar properties of convex functions
(
see (3) and (4)

)
.

For DC surfaces Theorem 5 means that at almost all points they enjoy all local
properties of twice differentiable surfaces (the Dupin indicatrix, Meusnier’s, Euler’s,
Rodriguez’s theorems, and so on.)

Theorem 6. If a(x, y) is the difference of convex functions, then df(a+αs,b+βs)
ds

is always a function of s of bounded variation.2 This means that the section of
the surface z = f(x, y) by the plane parallel to the axis z represents a curve with
bounded swerve. By the latter we understand the least upper bound of the sums of
angles between the (right and left) tangents at the successive points of curve.

(For a regular curve this is the integral of the curvature, and for a broken line,
the sum of complements of its angles to π. All quantities are taken without sign,
only in absolute value).

In a plane section of the surface z = f(x, y) we obtain a curve that is the
difference of convex curves. Every convex curve or, more exactly, every convex
function of one variable, has monotone derivative. Consequently, for the difference
of convex functions the derivative has bounded variation.

The first claim of the theorem is verified; the second just translates it into
different terms.

The convex function of one variable is characterized by the fact that the
derivative is monotone. The difference of monotone functions is nothing but
a function of bounded variation.

Hence, we immediately deduce

Theorem 7. In order for a function of one variable to be the difference of convex
functions, it is necessary and sufficient that the function be the integral of a function
of bounded variation.

We are unaware of any similar characterization of the differences of convex
functions of two or more variables.

Also, we are unaware of any geometric definition of DC surfaces. In order for
a plane curve to be the difference of convex components, it is necessary and sufficient
that its swerve (or, if so wished, the variation of the swerve) be finite. We think that
something similar should hold for surfaces. Is the property indicated in Theorem 7
characteristic of DC surfaces and, accordingly, differences of convex functions?

2In any case, this holds on a closed interval inside the domain of the function, since as the
point approaches the boundary, the derivative can become infinite.
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Furthermore, if a function y = f(x) is the difference of convex components, then
finding its convex components and, moreover, the minimal ones, reduces to finding
the derivative and its variation. Indeed, 1

2

[
varf ′(x)+f ′(x)

]
and 1

2

[
varf ′(x)−f ′(x)

]
are monotone components of the derivative f ′(x), and the integrals of them yield
those minimal convex functions whose difference is f(x).

By the minimal convex components of a function f (of arbitrarily many variables)
we understand convex functions g and h such that

(1) f = g − h,
(2) g, h ≤ 0,
(3) for every convex g and h satisfying the first two conditions, g ≥ g1 and

h ≥ h1.
Here it is convenient to pass to the other understanding of a convex surface

(function): as one lying below its every chord. The functions g′ = −g and h′ = −h
are convex in this sense and the definition reduces to the conditions:

(1) f = h′ − g′,
(2) g′, h′ ≥ 0,
(3) if g′1 and h′1 are convex and satisfy (1) and (2) then g′ ≤ g′1 and h′ ≤ h′1.
In this case the intuitive meaning of the definitions becomes clearer: the surface

z = g′(x, y)
(
and respectively z = h′(x, y)

)
lies below the plane (x, y) and, together

with that, below every surface z = g′1(x, y).
The existence of minimal components for every function that is the difference of

convex functions follows from the next fact.
If two functions h′ξ are convex in the second sense and nonnegative then the

function h′ equal for all x and y to the infimum of the values of h′ξ is also convex.
This is just an analytic expression of the fact that the intersection of convex sets is
convex.

Thus, the minimal convex components always exist provided that the function is
the difference of convex functions. For a function f of one variable these components
are the integrals of the monotone components of its derivative f ′

(
the integrals of

1
2 [varf ′ + f ′] and 1

2 [varf ′ − f ′]
)
.

We can give a different method for constructing these “convex components” of
a function f(x). We construct the maximal convex function g1(x) such that f(x) ≥
g1(x). This function is drawn as the curve subtending the curve y = f(x) as the
boundary of the convex hull. Furthermore, we construct the function g2(x) from
g1(x)− f(x) in the same way as g1(x) is constructed from f(x). Then we construct
g3(x) in the same way from g2(x)−g1(x)+f(x), and so on. The sums of gi(x) with
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odd and even indices yield convex components of the function f(x):3

f(x) =

∞∑
i=1

g2i−1(x)−
∞∑
i=1

g2i(x).

The convergence of the series
∑
gi(x) at least at one point is a necessary and

sufficient condition for f(x) to be the difference of convex functions.
We have no method for finding “convex components” of a function of two

variables, not only minimal, but arbitrary components (if it is known that the
function is the difference of some convex functions).

Thus, two problems remain open:
1. Give a characterization of the differences of convex functions and DC surfaces.
2. Give a method for finding convex components of a function which would

always converge when the function is the difference of convex functions and diverge
otherwise.

4. Convergence and Approximation of DC Surfaces

For differences of convex functions it is natural to introduce the concept of “strong
convergence”, understanding by this that fn strongly converges to f if there exist
convex functions gn, hn, g, and h such that fn = gn − hn, f = g − h, and gn → g,
hn → h. This convergence automatically turns out uniform, since convex functions
always converge uniformly.4

We consider no convergence other than the strong convergence as defined.
Accordingly, we can speak of the strong convergence of DC surfaces.

Since convex surfaces admit approximation by analytic and polyhedral convex
surfaces, it follows that we have

Theorem 8. Given a DC surface, there exists a sequence of analytic (polyhedral)
DC surfaces converging strongly to it.

This opens up the possibility of studying a DC surface by passing to the limit
from analytic or polyhedral surfaces.

Theorem 9. Consider some surfaces Fn strongly converging to a surface F , and
take some points Xn on Fn converging to a point X on F . If F has tangent plane P
at X then the tangent cones of Fn at Xn converge to P . But if the tangent cone
at X is a dihedral angle V then the limit of every converging sequence of tangent
cones at Xn is a dihedral angle with the same edge as V (but it need not coincide
with V and can be different for different sequences; it is not excluded, and we should

3This is based on the following remark. If a function h(x) is convex and so is h(x)− f(x) then
h(x)− g1(x) is convex as well. Indeed, wherever g1(x) 6= f(x), i.e., the curve g1 goes below f , the
curve g1 reduces to a segment, i.e., there g1(x) is a linear function, and therefore, h(x)− g1(x) is
certainly convex. Also, wherever g1(x) = f(x), we have h(x)− g1(x) = h(x)− f(x), and therefore
the latter is convex as well. It is easy to verify that at the points of transition from g1 = f to
g1 < f the convexity is preserved.

Suppose now that f(x) = h(x)− k(x), where h and k are convex functions and, moreover, the
minimal ones. Then h(x)− g1(x) is convex by the remark just established.

Furthermore, we verify that h(x)− g1(x) + f(x) is convex and so h− g1 + g2 is convex as well,
and so on.

4Convergence of convex functions is equivalent to convergence of the convex surfaces they
represent, or, which is the same, of the corresponding convex bodies. Convergence of bounded
closed sets consists in their deviation tending to zero, and this precisely means uniform
convergence.
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take this more as a rule, that it is a plane). In addition, in every closed domain
inside the projection of the surfaces F and Fn onto the plane (x, y) the slopes of
the tangent lines are uniformly bounded for all surfaces Fn.

This theorem follows from the fact that converging convex surfaces enjoy these
properties; for convex surfaces we can deduce these properties easily since the limit
of supporting planes is a supporting plane. In particular, at the points where the
tangent cone is a dihedral angle, all supporting planes pass through its edge, and
consequently, all limits of supporting planes, and together with them the limits of
tangent cones, must pass through the same edge.

In the subsequent theorems we consider not the whole surface F , but only
a domain on it whose boundary avoids the boundary of F itself. This domain can, of
course, cover almost the whole surface with the exception of an arbitrarily narrow
strip along the boundary (considering this domain is equivalent to considering
a surface which admits an extension in all directions as a DC surface).

Restricting expositions to the above-indicated type of domains, by Theorem
4 (C) and the last part of Theorem 9 we guarantee bounded derivatives and avoid
the complications arising as we approach the boundary of the surface since on the
boundary it can completely lose its regularity.

Theorem 10. Consider some surfaces Fn strongly converging to a surface F .
Consider a rectifiable curve L on F (not approaching the boundary of F ), and some
curves Ln on Fn sharing with L the projections onto the plane (x, y). Then Ln are
rectifiable curves and their lengths converge to the length of L.

Proof. Take the equations

z = f(x, y) = g(x, y)− h(x, y), z = fn(x, y) = gn(x, y)− hn(x, y).

for F and Fn, with convex functions g, . . . , hn such that gn → g and hn → h.
Denote by λ the common projection of L and Ln. By hypotheses, λ stays away
from the boundary of the common projection of the surfaces F and Fn. Therefore,
at the points lying under λ the slopes of the supporting planes of the convex surfaces
z = gn(x, y) and z = hn(x, y) are bounded (otherwise, in the limit we would obtain
a vertical supporting plane inside the limit surfaces G and H, which is impossible).
Together with the slopes of the supporting planes, the slopes of chords are bounded,
i.e., the ratios of the form ∆gn√

∆x2+y2
, and thus so are the ratios ∆fn√

∆x2+y2
.

The curve λ, as the projection of a rectifiable curve L, is rectifiable. Denote
by ζ the arc length of λ. If the equation of λ is x = x(ζ), y = y(ζ), then take
z = fn

(
x(ζ), y(ζ)

)
as an equation for Ln. By what we have already proved, the

ratios ∆fn
∆ζ

are bounded on λ. And then, as it is known, (5) the curve Ln is rectifiable
and its length is expressed as

s(Ln) =

∫ √
1 +

(
dfn
dζ

)2

dζ. (9)

By analogy for L we have

s(L) =

∫ √
1 +

(
df

dζ

)2

dζ. (10)
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The derivatives dfn
dζ and df

dζ exist almost everywhere (in the sense of the measure
by the arc length ζ on λ), and are clearly bounded since so are the ratios ∆fn

∆ζ .
In addition, λ, as every rectifiable curve, almost everywhere has tangent line.
Consequently, Ln and L have tangent lines almost everywhere, and their slopes
are bounded. Since the union of countably many sets of measure zero has measure
zero, all curves Ln and L simultaneously have tangents almost everywhere.

According to Theorem 4, the set of conical points of Fn and F is at most
countable. Therefore, we can exclude the consideration of all conical points lying
on Ln and L either. Moreover, under this condition at every point where L(Ln) has
tangent line F (Fn) either has tangent plane or its tangent cone reduces to a dihedral
angle and, furthermore, the tangent curve goes along the edge of this angle.

Take the points X and Xn on L and Ln lying over the same point ξ of λ. The
points Xn converge to X. Denote by P the vertical plane (parallel to the z-axis)
passing through the tangent line to λ at ξ. The tangent lines to L and Ln are the
intersections of P with the tangent cones of F and Fn. As we pointed out, each of
these tangent cones can be either a plane or a dihedral angle. In the latter case its
edge lies in P .

By Theorem 9, if the tangent plane exists at X then the tangent cones at Xn

converge to this plane. Therefore, the tangent lines to Ln at Xn converge to the
tangent line to L at X.

But if the tangent cone at X is a dihedral angle then its edge q lies in every limit
of tangent cones at Xn. Together with that, it lies in P . Thus, the intersection of
the tangent cones at Xn with P converges to q. These intersections are precisely
the tangent lines to Ln.

Consequently, in this case too the tangent lines to Ln at Xn converge to the
tangent line to L at X.

Thus, we have proved that the tangent lines to Ln converge to the tangent lines
to L everywhere but a set of measure zero in the sense of the arc length ζ on λ.
This means that the derivatives dfn

dζ converge to df
dζ almost everywhere. In addition,

we saw that these derivatives are bounded. Thus, resting on a theorem on the
convergence of integrals, we can conclude that the integrals in (9) converge to the
integral in (10), and so we have the convergence of lengths: s(Ln) to s(L).

Therefore, the proof of the theorem is complete.
From this theorem we deduce a theorem on the convergence of intrinsic metrics of

strongly converging DC surfaces. The intrinsic metric of a surface F is determined as
follows. On assuming that every pair of points on F can be connected by a rectifiable
curve on F , take as the distance ρF (XY ) between two points X and Y on F the
greatest lower bound for the lengths of curves lying on F and connecting X and Y .
By the intrinsic metric we understand the function ρF of pairs of points defined in
this way whose values yield intrinsic distances between points on the surface.

Theorem 11. Every DC surface possesses intrinsic metric.

Take two points X and Y on F . Connect their projections onto the plane (x, y)
by a broken line. To each segment of the broken line there corresponds an arc of
a plane section of F . It is rectifiable since by Theorem 7 the swerve of its tangent
line is bounded. In result, the points X and Y are connected on F by a rectifiable
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curve,5 and then ρF (XY ) exists as the greatest lower bound for the lengths of these
curves.

Theorem 12. The intrinsic metrics of strongly converging surfaces uniformly
converge to the metric of the limit surface. In more detail: Consider some surfaces Fn
strongly converging to a F ; moreover, according to the condition indicated above,
the surfaces Fn and F are domains inside some DC surfaces. Take some points X
and Y on F and some points Xn and Yn on Fn with the same projections ξ and η
onto the plane (x, y). Then we may regard the distances ρFn(XnYn) and ρF (XY )
as functions of the pair of points ξ and η. These functions converge uniformly.

Proof. Given two points X and Y on F , take Xn and Yn on Fn with the same
projections ξ and η onto the plane (x, y). By the definition of ρF (XY ), for every
ε > 0 there exists a curve L on F connecting X and Y of length s(L) satisfying

s(L) < ρF (XY ) + ε. (11)

The curves Ln on surfaces Fn with the same projections onto the plane (x, y) are
rectifiable by Theorem 10, and

s(L) = lim
n→∞

s(Ln). (12)

Together with that, these curves join Xn and Yn, and the definition of the distances
ρFn(XnYn) ensures that

s(Ln) ≥ ρFn(XnYn). (13)

Comparing (11)–(13), we obtain

ρFn(XnYn) < ρF (XY ) + ε,

and since ε is arbitrary, it follows that

lim sup
n→∞

ρFn(XnYn) ≤ ρF (XY ). (14)

On the other hand, by the definition of the distances ρFn(XnYn) on each surface
Fn we can indicate a curve L′n connecting Xn and Yn and satisfying

s(L′n) < ρFn(XnYn) + ε. (15)

According to (14), all ρF ′
n
(XnYn), and so s(L′n) as well, are uniformly bounded.

Therefore, out of the curves L′n we can choose a converging sequence, and the
length of its limit curve L′ will satisfy

s(L′) ≤ lim inf
n→∞

s(L′n). (16)

The curve L′ joins X and Y , and so6

s(L′) ≥ ρF (XY ). (17)

Comparing (15)–(17), and keeping in mind that we can take an arbitrarily small ε,
we obtain

ρF (XY ) ≤ lim inf
n→∞

ρFn(XnYn). (18)

5In Theorem 10 we essentially proved the following much stronger claim: a curve on a DC
surface possessing a rectifiable projection is rectifiable itself.

6Here we use the assumption that F itself is a closed domain inside some DC surface. Otherwise,
the curve L′, which is the limit of L′

n, while getting to the boundary of the surface might be
leaving F .
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Together with (14), this implies that lim ρFn exists, and

ρF (XY ) = lim
n→∞

ρFn(XnYn). (19)

Thus, the convergence of metrics is established, and it remains to show that
this convergence is uniform. But we verify the equicontinuity of metrics, and the
equicontinuity of converging functions implies uniform convergence. We have the
following statement.

If for a surface F the slopes of the tangent semiaxes (derivatives in every
direction) are at most some M then the distance ρF between the points X(x, y)
and X ′(x+ ∆x, y + ∆y) is at most√

1 +M2 ·
√

∆x2 + y2.

Indeed, suppose that L is a plane section of F connecting the points X and X ′.
Then ρF (XX ′) ≤ s(L), while (10) yields

s(L) =

∫ √
1 +

(
df

dζ

)2

dζ ≤
√

1 +M2 ·
√

∆x2 + ∆y2,

so that
ρF (XX ′) ≤

√
1 +M2 ·

√
∆x2 + ∆y2. (20)

Together with that, for all points X, Y , X ′, and Y ′ on F we have∣∣ρF (XY )− ρF (X ′Y ′)
∣∣ ≤ ρF (XX ′) + ρF (Y Y ′). (21)

Together with (20), this implies that the metric ρF satisfies the Cauchy–Lipschitz
condition with a constant depending only on the bound M for the slope of tangent
lines.

According to Theorem 9, for all surfaces Fn strongly converging to F the slopes
of tangent lines are uniformly bounded. Thus, the metrics of these surfaces are
equicontinuous, as required.

Remark. From the convergence and equicontinuity of metrics it is easy to deduce
the following supplement to Theorem 12. For every ε > 0 there exist N and δ > 0
such that, as soon as n > N and the distances from the points Xn and Yn on Fn to
the points X and Y on F are less than δ, it follows that

∣∣ρFn(XnYn)−ρF (XY )
∣∣ < ε.

Theorem 13. If some surfaces Fn converge strongly then the absolute integral
curvatures (i.e., the integrals of the absolute value of the Gaussian curvature) are
jointly bounded for all domains with the same projection G not approaching the
boundary of the projection of Fn.

If z − gn(x, y) − hn(x, y) are equations for Fn with convex functions gn and hn
then, as we have already seen in the proof of Theorem 9, the derivatives ∂gn∂x , . . . ,

∂hn
∂y

are bounded in every domain G not approaching the boundary of the projection
of Fn.

By this remark, Theorem 13 turns out to be a corollary to

Theorem 13a. Suppose that z = f(x, y) = g(x, y) − h(x, y) is an equation of
a DC surface, where the functions g and h are convex and twice differentiable. Then
the absolute curvature Ω of the surface, i.e., the integral of the absolute value of its
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Gaussian curvature, is bounded and the bound depends only on the bound M for
the derivatives of g and h.

[
Namely, Ω < 2π(1 + 8M2)3/2

]
.

Proof. The Gaussian curvature is expressed as

K =
fxxfyy − f2

xy

(1 + f2
x + f2

y )3/2
. (22)

Since f = g = h, it follows that

fxxfyy − f2
xy = (gxxgyy − g2

xy) + (hxxhyy − h2
xy)− (gxxhyy + gyyhxx − 2gxyhxy),

or

|fxxfyy−f2
xy| ≤ |gxxgyy−g2

xy|+ |hxxhyy−h2
xy|+ |gxxhyy+gyyhxx−2gxyhxy|. (23)

But since g and h are convex functions, their second differentials are nonnegative
quadratic forms, and this is known to imply that all three quantities whose absolute
values appear here on the right are themselves nonnegative.7 Therefore, by simple
transformations we can replace (23) with

|fxxfyy − f2
xy| ≤ (gxx + hxx)(gyy + hyy)− (gxy + hxy)2,

or putting g + h = k, with

|fxxfyy − f2
xy| ≤ kxxkyy − k2

xy. (24)

The integral of the absolute value of the Gaussian curvature is

Ω =

∫∫
|K| ds =

∫∫ |fxxfyy − f2
xy|

(1 + f2
x + f2

y )3/2
dx dy ≤

∫∫
(kxxkyy − k2

xy) dx dy. (25)

Since k = g + h and |gx|, . . . , |hy| < M , it follows that

|kx|, |ky| < 2M, (1 + k2
x + k2

y) < 1 + 8M2.

Therefore,∫∫
(kxxkyy − k2

xy) dx dy < (1 + 8M2)3/2

∫∫
kxxkyy − k2

xy

(1 + k2
x + k2

y)
dx dy. (26)

The integral on the right-hand side is nothing but the integral curvature of the
surface with the equation z = k(x, y), which is convex since k is the sum of the
convex functions g and h.

The spherical image of this surface is included into on a hemisphere since it is
uniquely projected onto the plane (x, y). Consequently, its integral curvature is at
most 2π. Thus, estimating the integral on the right-hand side of (26), and combining
(26) with (25), we obtain

Ω ≤ 2π(1 + 8M2)3/2.

This completes the proof of Theorem 13a and, therefore, Theorem 13 as well.
Theorems 12 and 13 provide a foundation for studying some deeper properties

of DC surfaces.
Namely, resting on Theorems 12 and 13, we can apply to DC surfaces the

general theory of intrinsic geometry of surfaces or “manifolds of bounded curvature”
whose foundations appeared in my article “Foundations of intrinsic geometry of

7For the first terms this is obvious. But if by a linear transformation of the variables x and y
we obtain hxy = 0 at this point, then the third quantity reduces to gxxhyy + gyyhxx, which is
nonnegative since gxx, . . . , hyy ≥ 0.
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surfaces” [6] and even earlier were sketched in the last section of my book [1]. Thus,
Theorems 12 and 13 open up a path to thoroughly studying the intrinsic geometry
of DC surfaces. Here belong, apart from the main results of [6], some results of the
notes [7, 8], as well as many others so far unpublished. In addition, we obtain the
possibility of studying the relation of the intrinsic geometry of a DC surface to its
“extrinsic” geometry, i.e., the properties of itself and figures on it as figures in space.

Theorem 14, proved in the next section, is a simple example from this area.

5. On the Tangent Cone

We defined the tangent cone of a surface F at A as the cone formed by the
limits of secant semiaxes emanating from A. It is known that this definition is
equivalent to the following: the tangent cone of a surface F at A is the limit of
surfaces obtained from F as dilations centered at A as the coefficient of dilation
increases indefinitely.8

This view of the tangent cone turns out more advantageous in a series of
questions. Using it and resting on Theorem 12 on the convergence of metrics, we
verify that a DC surface is “infinitesimally isometric to its tangent cone”.

By this we mean, more exactly, the following result:

Theorem 14. Consider a DC surface F and its tangent cone K at some point A.
Project F onto K in the direction of the z-axis. Given ε > 0 there is δ > 0 such
that, as soon as the distance from two points X and Y on F from A is less than δ,
it follows that ∣∣ρF (XY )− ρK(X ′Y ′)

∣∣ < εmax
[
ρF (AX), ρF (AY )

]
, (27)

where ρf and ρK are the distances measured on F and K, while X ′ and Y ′ are the
projections of X and Y onto the cone K.

Speaking intuitively, (27) means that the projection under consideration in
an infinitely small neighborhood of A is an isometric mapping; according to (27),
the difference of the distances on F andK is infinitely small relative to the distances
to A.

Proof9. Subject the surface F to a dilation centered at A. Denote the coefficient
of dilation by λ. Denote the resulting surfaces by λF , and the points obtained from
some point X, by λX.

Take the circle of radius 1 centered at the projection of A onto the plane (x, y)
and consider only the parts of surfaces lying under this circle. Project the surfaces
λF onto K along the z-axis.

As λ → ∞, the surfaces λF converge to the tangent cone K at A. Therefore,
by Theorem 12 for every ε > 0 there is λ0 such that, as soon as λ > λ0, for all
points B and C on λF and the corresponding projections of the points B′ and C ′
on K we have ∣∣ρλF (BC)− ρK(B′C ′)

∣∣ < ε. (28)

Now take the points X and Y on F going into B and C:

B = λX, C = λY. (29)

8The equivalence of both definitions can be established in an obvious fashion.
9This proof verbatim repeats the proof of the same theorem for convex surfaces in [1].
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Under the dilation centered at A the cone K goes into itself, while the projections
of X and Y , into the projections of A and B:

B′ = λX ′, C ′ = λY ′. (30)

The dilation under consideration increases all distances by a factor of λ, and so the
distances on λF and K satisfy

ρλF (BC) = λρF (XY ), ρK(B′C ′) = λρK (X ′Y ′). (31)

Inserting this into (28), we obtain∣∣ρF (XY )− ρK(X ′Y ′)
∣∣ < ε

λ
. (32)

Take X and Y so close to A that

max
[
ρF (AX), ρF (AY )

]
<

1

λ0
(33)

and put

max
[
ρF (AX), ρF (AY )

]
=

1

λ
, (34)

so that λ > λ0.
Since dilation with coefficient λ increases distances by a factor of λ, for B and

C this means that
max

[
ρλF (AB), ρλF (AC)

]
= 1.

Therefore, B and C remain in the domain under consideration (lie inside the circle
of unit radius), and so our conclusion applies to them: for X and Y we have (32)
with λ defined in (34). Thus,∣∣ρF (XY )− ρK(X ′Y ′)

∣∣ < εmax
(
ρF (AX), ρF (AY )

)
. (35)

This holds for all points satisfying (33). Therefore, once we only put 1
λ0

= δ, (33)
becomes equivalent to

max
[
ρF (AX), ρF (AY )

]
< δ. (36)

Consequently, if (36) holds then so does (35), and this is precisely the claim of the
theorem, which is therefore established.

In closing, note without proof some important results established by Theorem 14:
(I) Every geodesic (the shortest curve on every sufficiently small segment) on

a DC surface at every point has right and left tangent lines; at every point where
the surface has tangent plane, the geodesics have ordinary tangent lines (the right
and left tangent lines coincide).

(II) The angle between the geodesics emanating from a point A, defined
intrinsically,10 equals the angle between their tangent lines measured on the tangent
cone at A.

(III) In order for a curve on a DC surface to have direction at the initial point A,
it is necessary and sufficient that it have tangent line at A. The angle between
two curves emanating from A, defined intrinsically, equals the angle between their
tangent lines measured on the tangent cone.

The proofs of these statements rest on quite deep conclusions about the intrinsic
geometry of DC surfaces.

10For convex surfaces, I gave [1] definitions of an angle between curves and the direction of
a curve avoiding the differentiability assumption. These definitions carry over verbatim to DC
surfaces, as indicated in [7].
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In the case of convex surfaces, their proofs appeared in [1]. Liberman originally
proved [9] the first of them in full generality by a beautiful geometric argument
which, however, rests crucially on the convexity of surfaces under consideration,
and so fails to carry over to other types of surfaces. Our argument is quite different,
and so it yields a new proof of Liberman’s theorem for geodesics on convex surfaces.

In fact, we directly prove the general claim (III), of which (I) and (II) are only
particular cases.
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