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FINE AND WILF’S THEOREM FOR PERMUTATIONS

A. E. FRID

Abstract. We try to extend to permutations the famous Fine and
Wilf’s theorem valid for words and see that it is possible to do it only
partially: the theorem is valid for coprime periods, but if the periods are
not coprime, there is another statement valid instead.
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1. Introduction

A finite word w = w1 · · ·wn, where wi are symbols of an alphabet Σ, is called
m-periodic if wi = wi+m for all 1 ≤ i ≤ n−m.

The following theorem by Fine and Wilf’s [5] is one of keystones of combinatorics
on words.

Theorem 1 (Fine and Wilf). If a word of length at least p+ q− (p, q) is p-periodic
and q-periodic, then it is (p, q)-periodic. The length p+ q− (p, q) is the best possible
for non-unary words since there exist binary words of length p+ q− (p, q)−1 which
are p-periodic and q-periodic but not (p, q)-periodic.

Initially stated for periodic functions [2], this theorem was naturally reformulated
for words, and later extended to words with more than two periods, to partial words,
to bidimensional words and to other periodicity notions, see [7] for a survey.

In this paper we study its possible extensions to permutations interpreted as
linear orders on {1, . . . , n}. We see that in the case of coprime periods, the theorem
is valid on them, but if the periods are not coprime, we have to state another
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theorem instead: there exists arbitrarily long permutations which are p- and q-
periodic, but not (p, q)-periodic; however, all its suffucuently long factors must be
(p, q)-periodic.

2. Permutations

In this paper we shall use the definition of a permutation α of n elements as
a linear ordering on {1, . . . , n} which can be different from the natural one. We
shall write the fact that i is less than j according to that ordering as αi < αj

and represent the permutation α as a sequence of abstract elements α1, . . . , αn,
somehow ordered.

This definition fits to the standard definition of a permutation: indeed, the fact
that an element αi1 is the least one means exactly that i1 goes to 1, if an element
αi2 is greater than αi1 but less than all other elements, it means exactly that i2 goes
to 2, and so on. At the same time, the definition we use can be naturally extended
to infinite sets, which has been done in [3]. Infinite permutations were studied then
in [1, 4]; the particular case of infinite permutations arising from infinite words is
considered in [6] and other papers.

Another way to define a permutation α is by a representative sequence of pairwise
distinct real numbers a = a1, . . . , an, such that ai < aj if and only if αi < αj . We
denote this fact by α = a. Clearly, each permutation has an uncountable number
of representatives.

However, in this paper we use only two notions developped by the theory of
infinite permutations, namely, the periodicity of permutations and its factors, defined
already in [3]. Applied to the finite case, they look as follows.

A permutation of n elements is called t-periodic if αi < αj if and only if αi+t <
αj+t for all 1 ≤ i < j ≤ n− t.

Consider a 1-periodic permutation; then α1 < α2 if and only if α2 < α3, if and
only if α3 < α4 and so on; we see that either α1 < α2 < · · · < αn, and then
the permutation is increasing, or α1 > α2 > · · · > αn, and then the permutation is
decreasing. In both cases we say that α is monotonic; so, a permutation is 1-periodic
if and only if it is monotonic, and there exist only two 1-periodic permutations of
each length.

A permutation β ofm elements is called a factor of a permutation α of n elements,
n ≥ m, if there exists some k, 1 ≤ k ≤ n−m+1, such that for all i, j we have βi < βj
if and only if αi+k−1 < αj+k−1. In this case we say that β is a factor of α of length
m starting from position k and denote this fact by β = α[k..k+m) = α[k..k+m−1].

At last, we define the following convenient notation. Given a permutation α =
α0 · · ·αn, let us denote by γij the relation < or > between αi and αj , so that
by the definition we have αiγijαj . For each k let us denote by γk the word γk =
γ0,kγ1,k+1 · · · γn−i,n on the alphabet {<,>}.

3. The theorems

For the case of coprime periods, we can immediately extend the Fine and Wilf’s
theorem to permutations as follows.

Theorem 2. If a permutation α of length at least p+q is p-periodic and q-periodic,
where (p, q) = 1, then α is 1-periodic, that is, monotonic. The length p + q is the
best possible since there exist permutations of length p+ q − 1 which are p-periodic
and q-periodic but not monotonic.
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Рис. 1. Non-monotonic 3-periodic and 5-periodic permutations of
length 7

Proof. If the permutation of length at least p+ q is p- and q-periodic, it means
in particular that γi,i+1 = γi+p,i+p+1 and γi,i+1 = γi+q,i+q+1 for all i such that
these relations are well-defined. It means exactly that the word γ1 is p-periodic and
q-periodic. Its length is equal to the length of α minus one, that is, it is at least
p+ q − 1, and the Fine and Wilf’s theorem for words is applicable to it. Thus, the
word γ1 is 1-periodic, that is, equal to << · · · < or >> · · · >. It means exactly
that the permutation α is monotonic.

To prove the second part of the statement, let us consider a word u on the
alphabet {<,>} of length p + q − 2 which is p-periodic and q-periodic but not
1-periodic. It exists due to Theorem 1 and contains both symbols < and >. Now
let us find a permutation α of length p+q−1 with γ1 = u. Let the greatest number
of consecutive symbols > in u be l. We can always define the permutation α by a
representative a = a0 · · · ap+q−2 of the form a0 = 0 and

ai+1 =

{
ai + (2l + 1), if ui =<,

ai − 1, if ui =>,

for all i = 0, . . . , p + q − 3. For all i < j we see that ai > aj if and only if
ui · · ·uj−1 => · · · > and ai < aj if the word ui · · ·uj−1 contains an occurrence of
the symbol <. So, the permutation whose representative is a is well-defined and p-
and q-periodic since u is; at the same time, it is not monotonic. 2

Example 1. As we have proven, a permutation of length 8 which is 3-periodic and
5-periodic must be monotonic. To construct a permutation of length 7 which is 3-
periodic, 5-periodic but not 1-periodic, consider first the word of length 6 with these
properties, that is, the word abaaba: it is unique up to renaming of symbols. We can
rewrite this word either as <><<><, or as ><>><>. Following our technique, in
the first case we construct the permutation α of length 7 given by the representative
0 3 2 5 8 7 10, that is, by the inequalities α0 < α2 < α1 < α3 < α5 < α4 < α6.
In the second case we have a representative 0 (−1) 4 3 2 7 6 and α is given by
α1 < α0 < α4 < α3 < α2 < α6 < α5. Both permutations are shown at Fig. 1. Note
that there exist also other permutations with that property.

Now let us show that for the p and q not coprime, the Fine and Wilf’s theorem
for permutations does not hold.

Let us call an ascending saw a finite permutation α with γ1 = (><)x/2 for
some x ∈ N and γ2 =<x−1. Ascending saws give most known examples of “almost
periodic” permutations, and here is one of them.
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Рис. 2. Arbitrarily long permutation which is 4- and 6-periodic
but not 2-periodic

Example 2. Let us consider an ascending saw α = α0α1 · · ·α2n−1 with α2n−5 <
α0 < α2n−3 < α2n−1 < α2: these conditions uniquely define the saw shown at Fig.
3

This permutation is not 2-periodic since γ0,2n−3 =< and γ2,2n−1 =>. However, it
is not difficult to see that it is 2l-periodic for all l > 1: in particular, it is 4-periodic
and 6-periodic. Since its length n can be arbitrarily large, it already disproves the
Fine and Wilf’s theorem for (p, q) = 2.

Example 3. To give a counterexample for any other (p, q) = k > 1, we shuffle α
with k − 2 monotonic permutations. Namely, consider β = β0 · · ·βk(n−1)+1 defined
by βki = α2i and βki+1 = α2i+1 for all i; βki+j < βk(i+1)+j for all i and all
j 6= 0, 1 mod k; and βki1+j1 < βki2+j2 whenever j1 < j2 for j1, j2 ∈ {0, . . . , k − 1},
except for the case of {j1, j2} = {0, 1}. Clearly these conditions uniquely define the
permutation which is not k-periodic (since γ0,k(n−2)+1 =< and γk,k(n−1)+1 =>)
but is kl-periodic for all l > 1.

However, the following statement can be considered as the Fine and Wilf’s
theorem for general permutations.

Theorem 3. Suppose that a finite permutation α of length n is p-periodic and
q-periodic. Then each its factor of length at most n − p − q + 2(p, q) + 1 is (p, q)-
periodic.

Proof. If α is p-periodic and q-periodic, then so are all its strings γi on the
alphabet {<,>}, i = 1, . . . , n− 1. The length of γi for each i is equal to n− i, and
whenever the length of γi at least p+q−(p, q) (that is, i is at most n−p−q+(p, q)),
from the Fine and Wilf’s theorem for words we get that γi is (p, q)-periodic. But a
factor β of α of length l ≤ n−p−q+2(p, q)+1, say, β = αm · · ·αm+l−1 is uniquely
defined by the list of underlying relations γk,k+i withm ≤ k < k+i ≤ m+l−1. They
all are elements either of some γi for i ≤ l ≤ n−p−q+(p, q), which have been shown
to be (p, q)-periodic, or of some γi for n− p− q+ (p, q) + 1 ≤ i ≤ n− p− q+ 2(p, q),
and the factor of γi involved into the latter case is of length at most (p, q). So, all
involved factors of sequences γi are (p, q)-periodic, and so is β. 2

Example 4. Let us consider the permutation of length 10 defined by the inequalities

α1 < α3 < α2 < α5 < α7 < α4 < α6 < α9 < α8 < α10
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Рис. 3. Factors of length at most 5 of this permutation are 2-periodic

and depicted at Fig. 3. It is 4-periodic and 6-periodic but not 2-periodic since
γ3 =<<<><<<. Nevertheless, all its factors of length at most 5 = 10−6−4+2∗2+1
are 2-periodic, and the shortest factors which are not 2-periodic are of length 6:
these are exactly factors covering three elements of γ3 including the element >, that
is, the factors α[2..7], α[3..8], α[4..9].
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