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ON MORSE THEORY FOR MANIFOLDS WITH CROSS
PRODUCTS

DMITRY V. EGOROV

Abstract. We consider the finite-dimensional Morse theory for closed
Riemannian manifolds equipped with the vector cross product on the
tangent bundle. These are, for example,G2-manifolds. Under some conditions
toric actions generate the Morse–Bott function, whose gradient trajectories
are explicit. This allows us to construct the Morse–Bott complex and
calculate the real cohomology ring of the manifold.
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1. Introduction

It is well-known that the definition of symplectic manifolds takes its origin
in classical mechanics. Namely, symplectic manifolds are generalizations of phase
spaces of mechanical systems. The dynamics in phase space are described by the
Hamilton equations, which imply an existence of the real-valued function called
Hamiltonian. Frankel was first to show that the Hamiltonian may serve as the
Morse–Bott function [1].

Theorem 1.1 (Frankel). Let M be a simply-connected connected closed Kähler
manifold. Suppose that there exists an isometric S1-action on M that preserves the
Kähler structure. Let X be the Killing vector field generated by this action. Then
f : M → R such that

(1.1) dfX = iXω, or equivalently −∇fX = JX,
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is a perfect Morse–Bott function.

Remark 1.2. One can substitute S1-action with an action of torus. Then the Killing
vector field is generated by the 1-parametric dense subgroup of the torus.

Remark 1.3. Frankel notes that his theorem can be easily generalized to symplectic
manifolds.

Using (1.1), one can construct the filtered Morse–Bott complex [2]. Under some
conditions on the Morse–Bott function the spectral sequence of this complex gives
the real cohomology ring of the manifold. For finite-dimensional case this is proved
in [3].

Theorem 1.4 (Austin–Braam). Let M be a closed manifold and let f : M → R be
a Morse–Bott function. Assume that f satisfies the following conditions.

(1) If a gradient trajectory connects critical submanifold α to critical submanifold
β, then the index of α is strictly greater than the index of β.

(2) Stable and unstable manifolds of any critical submanifold intersect transversely.
(3) All critical submanifolds and negative normal bundles over them are oriented.
Then the cohomology of the Morse–Bott complex of f is isomorphic to the de

Rham cohomology of M .

In this paper we consider Morse–Bott functions such that −∇fX,Y = X × Y ,
where × is the vector cross product, X and Y are vector fields generated by toric
actions.

2. The main theorem

Let M be a simply-connected connected Riemannian manifold; let × be a vector
cross product, determined by a real 3-form Ω

X × Y := (iY iXΩ)\,

where X,Y ∈ Γ(TM), i is the inner product, and \ is the duality between vectors
and 1-forms.

Manifolds admitting the vector cross product are Riemannian 3-manifolds and
G2 structure manifolds.

Theorem 2.1. Suppose that there exist two toric actions on M such that their
fixed point sets are non-empty and do not intersect. Suppose that vector fields X
and Y generated by these actions are linearly independent everywhere except critical
points. If

(2.1) diX iY Ω = 0,

then f : M → R such that
dfX,Y = iX iY Ω,

or equivalently
−∇fX,Y = X × Y

is the Morse–Bott function.

Доказательство. The proof follows the one by Frankel. SinceM is simply-connected,
(2.1) implies existence of fX,Y : M → R such that dfX,Y = iX iY Ω or

∂f

∂xk
= ΩijkY

iXj .
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Differentiating, we obtain Hessian H. If for example Y = 0, then H equals to

Hkl =
∂2f

∂xk∂xl
= ΩijkX

i ∂Y
j

∂xl
= ωjkS

j
l ,

where ω is a non-degenerate 2-form on the complement to X and S is an adjoint
action generated by Y .

If SZ = 0, then Z is tangent to the critical submanifold of f . Hence, H is non-
degenerate on the vectors normal to critical submanifold and f is the Morse–Bott
function.

�

Remark 2.2. If X and Y vanish simultaneously or happen to be linearly dependent,
then the Hessian degenerates.

The following special cases of the main theorem are more convenient for possible
applications.

Proposition 2.3. If in the statement of the main theorem toric actions preserve
Ω and commute, then (2.1) can be omitted.

Доказательство. Since Ω is closed with respect to d, LX , and LY , the RHS of

diX iY Ω = i[X,Y ]Ω− iXdiY Ω + iY diXΩ− iY iXdΩ

vanishes. Here Cartan’s formula LX = diX + iXd is used.
�

By Bochner’s theorem, if a manifold is Ricci flat, then any Killing vector field
is parallel [4]. Since G2-structure canonically determines the Riemannian metric,
Proposition 2.3 can not be applied to G2 holonomy manifolds.

Example 2.4. Consider a 3-sphere made of two solid tori T1 and T2 glued by the
diffeomorphism of boundaries, which maps meridians to parallels and vice versa.
Let ri, ϕi, and ψi be the coordinate chart on Ti, where ϕi and ψi are along parallels
and meridians respectively.

We define two S1-actions S1 and S2. The S1 is a shift along ϕ1 together with a
shift along ψ2. The second action is symmetric to the first. The fixed point set Ci
of Si is the central parallel ri = 0.

The action S1 generates smooth vector field X = ∂
∂ϕ1

and X = ∂
∂ψ2

. The action
S2 generates Y symmetric to X. Then form iX iY Ω is equal to r1dr1 on T1 and
to −r2dr2 on T2. By the main theorem, smooth function f = (r1)2 on T1 and
f = −(r2)2 on T2 is the Morse–Bott function.

The E1 term of the spectral sequence of the Morse–Bott complex is

0 0 0 0
R 0 R 0
R 0 R 0

.

The differential d22,0 : R → R is given by integrating the volume form over the
moduli space M̃(C1, C2) = T 2 of gradient trajectories form C1 to C2. Therefore,
d0,12 (ω) = 1 and the E∞ is

0 0 0 0
0 0 R 0
R 0 0 0

.
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We obtain that H0(S3;R) = H3(S3;R) = R and all other groups vanish.

Proposition 2.5. If in the statement of the main theorem
(1) LXΩ = 0, where Ω is a closed G2-form;
(2) LY iXΩ = 0,

then (2.1) can be omitted.

Доказательство.

diY iXΩ = LY iXΩ− iY diXΩ = LY iXΩ− iY LXΩ = 0.

�

Since X is the Killing vector field, the critical point set of the Morse–Bott
function coincides with the zero set of Y .

Example 2.6. Consider M = N ×S1, where N is the Calabi–Yau manifold. Then
ΩM = ΩN + ωN ∧ dt, where ΩN is a real part of the holomorphic volume form on
N and ωN is a Kähler form. X = ∂/∂t is the Killing vector field. Then

0 = LY iXΩM = LY ωN .

It means that Y preserves the Kähler form on N . Note that, if Y preserves the
complex structure, then Y is Killing and parallel.

The author would like to thank the referee for pointing out numerous typos.
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Math. 133, Birkhäuser, 1995, 123–183. MR1362827

[4] S. Bochner, Vector fields and Ricci curvature // Bull. AMS, 52 (1946), 776–797. MR0018022

Ammosov Northeastern federal university,
Kulakovsky str. 48,
677000, Yakutsk, Russia
E-mail address: egorov.dima@gmail.com


