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Abstract. This is a translation into English of the classsical paper of
Yu. G Reshetnyak and V. A. Zalgaller “On rectifiable curves, additive
vector functions, and the Minkowski sum of straight line segments”.

1. Introduction

1. The operation of the Minkowski sum of bodies was introduced into geometry
by Brunn and Minkowski. Recall the appropriate definition. Given some bodies
Pi and nonnegative numbers λi for i = 1, 2, . . . ,m, the Minkowski sum, or linear
combination, of Pi with coefficients λi is the body P traced by the endpoint of the
variable vector

r =

m∑
i=1

λi ri

when the endpoints of the vectors ri run over the corresponding Pi independently
of each other.

The Minkowski sum of convex bodies is again a convex body. Parallel translation
of some Pi yields a parallel translation of P .

Everything under discussion in this article refers to the ndimensional Euclidean
space. As a rule, we consider bodies up to parallel translation, without further
specification, and only if need be we mark the location of bodies with respect to
the origin.
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2. Refer as a zonotope1 to any body expressible as the Minkowski sum of
finitely many straight line segments.2 Every zonotope turns out a convex centrally
symmetric polyhedron, whose faces (of all dimensions) have centers of symmetry.
The Minkowski sum of straight line segments appeared in a series of articles (see
[1, pp. 28–29] for instance). Chŭıkina [2] used the term “parallelohedron” in the
same sense as above with the difference that she also included in the definition the
containment of the origin in a parallelohedron.

3. The goal of this article is to deal with the bodies expressible as limits of
parallelohedra, as well as to elucidate their connection with rectifiable curves and
use it for clearing up some questions of the theory of curves and additive vector
functions.

The Minkowski sum of finitely many straight line segments, out of which we
can compose broken lines by parallel translation, is not difficult to generalize to
the Minkowski sum of line elements of a rectifiable curve. Namely, the Minkowski
sum of straight line segments ri, considered up to parallel translation, is the body
traced by the endpoint of the vector

r =

m∑
i=1

µi ri,

when µi run over − 1
2 ≤ µi ≤

1
2 independently of each other. (This becomes obvious,

if beforehand we translate the midpoints of ri to the origin.) It is natural to define
the integral Minkowski sum of line elements of a rectifiable curve K = x(s) as the
body P filled by the endpoints of the vectors of the form

r =

∫ l

0

µx′ ds,

where µ(s) is an arbitrary measurable function with − 1
2 ≤ µ(s) ≤ 1

2 and l stands for
the total length of the curve, while s, for the arc length counted from the beginning
of the curve. The integral is understood in the sense of Lebesgue.

Most further results rest on this natural generalization and some theorem on the
sequence of curves in Section 1.

2. Rectification of Curves by Rearranging Their Fragments

Theorem 1. Given a sequence of rectifiable curvesK ′1,K ′2, . . . , we can transform
each of these curves by rearranging its fragments so that every converging
subsequence of transformed curves converges in length.

We refer as a rearrangement of fragments to the following transformation.
Subdivide the curve into finitely many fragments, translate them in the space, and
then make up a new curve. Separate fragments of the new curve may be traversed
in the opposite direction to the original curve.

But in Theorem 1 it suffices to use rearrangements that preserve the direction
of traversal of all fragments.

Firstly, let us prove Theorem 1 for broken lines.
1. Fix a sequence of partitions ξ1, ξ2, . . . of a unit sphere Ω (in the ndimensional

space) into finitely many disjoint Borel sets enumerated somehow and such that:

1Editor of Translation: The author used the term “parallelohedron” which is obsolete now.
2They should not be confused with another class of polyhedra, also called parallelohedra, which are

capable of filling the entire space without holes and overlaps in parallel lattice-like arrangements.
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(1) the maximal diameter of a set in ξk tends to zero with the growth of k; (2) ξk+1

is obtained by dividing each set in ξk into two parts; (3) the transition from ξk to
ξk+1 preserves the order of sets in ξk, and we only have to determine the order of
the two halves of each set of ξk.

2. Consider a sequence L′1, L′2, . . . of broken lines. The straight line segments of
every L′k are vectors. (In this article we always assume the directions of traversal
of all curves fixed.) Take the partition ξk and rearrange the straight line segments
of L′k, putting first those whose directions lie in the first set of ξk, then the straight
line segments directed into the second set of this partition, and so on. Doing likewise
for all broken lines L′k (k = 1, 2, . . . ), we obtain a sequence L1, L2, . . . of broken
lines. Verify that it enjoys the required property.

3. Take an arbitrarily small δ > 0, with δ < π
2 , and fix k0 for which every pair

of vectors directed into the same set of the partition ξk0
of Ω form an angle less

than δ. On every broken line Lk for k ≥ k0 we can mark a sequence of vertices
A1, A2, . . . , Am such that on the fragment AiAi+1 the straight line segments of the
broken line are directed into the ith the set of the partition.

The number of these vertices is m = 2k0 + 1, including the endpoints of the
curve. (Of course, some points A1, . . . , Am may coincide if no straight line segment
was directed into a set of ξk0 .)

The length of every fragment AiAi+1 of the broken line Lk obviously exceeds in
at most 1

cos δ times the distance AiAi+1
3, whence

len. Lk ≤
1

cos δ
len. A1A2 . . . Am. (1)

4. Suppose that among the broken lines L1, L2, . . . there is a subsequence
Lk1

, Lk2
, . . . converging to a curve K. Select a subsequence for which the lengths

converge to the upper limit and then select from the latter a subsequence for which
the points A1, . . . , Am lying on the broken lines converge to some points B1, . . . , Bm
on K.

It is obvious that the lengths of the broken lines A1A2 . . . Am converge to the
length of the broken line B1B2 . . . Bm. Since the latter is finite, the lengths of
A1A2 . . . Am, and with them, by (1), the lengths of the chosen broken lines Lki ,
are jointly bounded. This enables us to claim that K is rectifiable. In addition, the
convergence Lki → K implies that

len. K ≤ lim len. Lki . (2)

5. Since K is not shorter than the inscribed broken line B1 . . . Bm, whose length
is however well approximated by the lengths of A1 . . . Am, from which according
to (1) for small δ the lengths of Lki differ little, by the arbitrariness of δ we may
conclude that

len. K > lim len. Lki . (3)

It follows from (2) and (3) that len. Lki → len. K.
Now we can prove Theorem 1 for curves.

3This follows from the fact that the sum of the vectors ai forming with the direction e an angle less
than δ < π

2
, also forms with e an angle less than δ. Indeed, if c = Σai then

cos( c e) =
Σai e

|Σai|
>

Σ|ai| cos δ

|Σai|
≥ cos δ.
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6. Given a sequence K ′k of rectifiable curves (k=1, 2, ...), inscribe a broken line
L′k into every K ′k so that L′k for large k approach arbitrarily closely in length to
K ′k. Transform L′k, as described in subsection 3, into broken lines Lk, rearranging
together with their fragments the corresponding fragments ofK ′k. This yields certain
curves Kk circumscribed about Lk. They satisfy the requirements of Theorem 1.

Indeed, if Kki → K then Lki → K. By Theorem 1, established for broken lines,
len. Lki → len. K, which implies that len. Kki → len. K as well. The proof of
Theorem 1 is complete.

3. The Minkowski Sum of Line Elements

1. Above we defined the Minkowski sum of line elements x′ ds of a rectifiable
curve K = x(s) as the body P (K) filled by the endpoints of the vectors

r =

∫ l

0

µx′ ds, (4)

where µ(s) is an arbitrary measurable function with − 1
2 ≤ µ(s) ≤ 1

2 .
Refer as the variation ν e(K) of a curve K in some direction e to the least

upper bound over all broken lines inscribed in K of the sum of the lengths of the
projections onto e of the straight line segments of these broken lines. The least
upper bound of the sum of the lengths of the projections sharing the direction with
e is called the positive part of the variation of K in the direction e.

Refer to the body P (K) defined in (4) as the indicatrix of variations of the
curve K, which is justified by the fact that the support function H( e) of this body
(i.e., the distance from the origin to the supporting plane with the outer normal e)
coincides for every e with the half of ν e(K). (A proof of this almost obvious
statement appears in [3, p. 467].4)

Considering the body Q(K) filled by the endpoints of the vectors

r =

∫ l

0

µx′ ds, (5)

for all possible measurable 0 ≤ µ(s) ≤ 1, it is natural to call this body the indicatrix
of the positive part of variation of K since the support function coincides in all
directions with the positive part of variation of this curve. The body Q(K) results
from P (K) by parallel translation by the half of the vector going from the initial
point to the terminal point of K.

Subsequently, speaking of the indicatrices P (K) or Q(K), we will understand
the body that is determined respectively by the integral (4) or (5), while speaking
of the Minkowski sum of line elements of a curve, the same body considered up to
parallel translation.

The following lemma is noteworthy.
If a sequence of curves Ki converges to a rectifiable curve K together with

the lengths then the bodies satisfy P (Ki) → P (K) and Q(Ki) → Q(K). The
convergence of bodies is henceforth understood in the sense of the topological limit.

Proof. It is known that the convergence of curves in length implies the
convergence in variation in every direction. The latter means the convergence of the
support functions of P (Ki) to the support function of P (K), which is equivalent to

4In [3] the indicatrix of variations is a slightly different body (twice as large) satisfying H( e) =
ν e(K).
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the topological convergence P (Ki) → P (K) for convex bodies. The initial and
terminal points of Ki converge respectively to those of K since on all curves
we assume a fixed direction of traversal. This enables us to conclude also that
Q(Ki)→ Q(K).

2. Theorem 2. In order for a bounded body to be the Minkowski sum of line
elements of some rectifiable curve, it is necessary and sufficient that this body
be a limit of zonotopes.5 (For a body to be the indicatrix of the positive part of
variation of a rectifiable curve, it is necessary and sufficient that this body be a limit
of zonotopes and contain the origin, while for it to be the indicatrix of variations,
it is necessary and sufficient that it also be centered at the origin.)

Let us prove the main claim of the theorem.
Necessity: Suppose that R is the Minkowski sum of line elements of a curve K.

Inscribe into K a sequence of broken lines Li converging to K in length. The
indicatrices P (Li) are parallelohedra converging to a body P (K), from which R
differs only by parallel translation. Hence, R is a limit of parallelohedra as well.

Sufficiency: Suppose that a bounded body R is the limit of parallelohedra Ri.
From the straight line segments whose Minkowski sums are Ri we form broken lines
Li, assuming that their straight line segments are rearranged in accordance with
Theorem 1, while the broken lines themselves begin at the origin.

The indicatrices P (Li) are jointly bounded since they differ only by translation
from the bodies Ri converging to the bounded body R. This implies the
boundedness of all variations, and consequently, of the lengths of Li ([3, p. 464]).
By the well-known theorem on the compactness of the family of curves lying in
a bounded part of space and possessing a jointly bounded length, we can choose
from Li a subsequence Lik converging to a curve K.

Theorem 1 implies thatK is a rectifiable curve, and the broken lines Lik converge
to K in length. Therefore, P (Lik) → P (K). But the body R is the unique limit
of the bodies Ri differing from P (Li) only by translation. Hence, R differs only by
translation from P (K), and so it is the Minkowski sum of line elements of K. The
proof of Theorem 2 is complete.

(The additional claims of the theorem can be established similarly. Only while
proving sufficiency we must somewhat specialize the choice of directions of the
straight line segments in order to construct from a zonotope containing the origin
a broken line L for which it is the indicatrix Q(L). Then we can rearrange the
straight line segments of this broken line in accordance with Theorem 1, preserving
the directions of their traversal.)

3. Theorem 3. The collection of all curves possessing as the indicatrix of
variations the same body P as a rectifiable curve K0 is exhausted by the curves
resulting from K0 by a rearrangement of its fragments, and the curves resulting
from these curves by passing to limits with convergence in length.

Let us sketch a proof of Theorem 3. Consider a curve K = x(s) with the same
indicatrix of variations as K0 = x(s). Verify that by rearranging the fragments of
K0 we can obtain a sequence of curves K1, K2, . . . , converging to K in length. We
assume that all curves begin at the origin; the parameter s is the length counted
from the beginning, 0 ≤ s ≤ l.6

5Editor of Translation: The limits of zonotopes are called zonotopes nowadays.
6The lengths of K and K0 are obviously the same.
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As in the proof of Theorem 1, consider a special sequence of partitions ξ1, ξ2, . . .
of the sphere Ω, adding the condition that every partition ξk contains, along with
a set Mi, the set −Mi, symmetric to Mi about the center of Ω.

Denote by F (M) the measure of the set of those values s for which the tangent
vector x′(s) of K is directed into M . Similarly, let F0(M) stand for the measure of
those s for which the tangent vector x′0(s) of K0 is directed into M . According to
Theorem 6, which we prove in Section 4,

F (M) + F (−M) = F0(M) + F0(−M).

For each of the sets M1, M2, . . . ,Mm, −M1, . . . ,−Mm of the partition ξk, the
segment 0 ≤ s ≤ l splits, on the one hand, into the sets AiBi, where x′(s) ∈ Mi

and x′(s) ∈ −Mi, and on the other hand, into the sets A′iB′i, where x′0(s) ∈ Mi

and x′0(s) ∈ −Mi.
Since

mes(Ai) + mes(Bi) = mes(A′i) + mes(B′i),

we can always move some set C ′i from A′i to B′i or from B′i to A′i (assume for
definiteness that the first case holds) so that the equalities

mes(Ai) = mes(A′i − C ′i), mes(Bi) = mes(B′i + C ′i)

are separately satisfied.
Replace each of the sets Ai, Bi(A′i − C ′i), B′i, and C ′i, as it is done in [3] while

proving Theorem 6, by a finite system of intervals, “almost” exhausting in measure
the corresponding set and containing an ”insignificant amount” of outside points.
The words in quotes mean deviation to at most εk

m in measure, where εk → 0 as
k →∞. In addition, we assume that all these intervals are nonoverlapping both for
the system of sets Ai and Bi, and for the system of sets (A′i − C ′i), B′i, and C ′i.

Subdivide the curve K0 into fragments in accordance with the intervals of the
systems “covering” the sets (A′i − C ′i), B′i, and C ′i. Upon the rearrangement, the
fragments corresponding to C ′i are traversed in the opposite direction, while the
remaining fragments, in the proper direction. Rearrange all these fragments (or
their parts of necessary length) following the order of fragments “covering” the sets
Ai and Bi. This yields a curve Kk.

We can verify that as k →∞ the curves Kk = xk(s) converge to K = x(s). To
this end, we have to make rather simple estimates for the difference∫ s

0

x′k(s) ds−
∫ s

0

x′(s) ds,

which we skip because of their similarity to the estimates presented in [3] while
proving Theorem 6.

4. Let us make several remarks on Theorem 3.
(1) Passage to the limit cannot be dropped from statement of the theorem. For

instance, two halves of a circle have the same variation in all directions, but cannot
be obtained one from the other by rearranging finitely many parallely translated
straight line segments. It is less obvious that even for every broken line we can
construct a curve possessing the same variation but failing to be a line segment on
any of this pieces.

(2) From Theorem 3 we conclude easily that if the indicatrices of variations
P (K1), P (K2), . . . converge to a bounded body P then we can transform K1,
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K2, . . . by rearranging the fragments into curves converging to an arbitrarily
specified curve K whose indicatrix of variations is P .

(3) If we form from a rectifiable curveK0 new curves by rearranging its fragments
while preserving the direction of their traversal, and then adding also all curves
obtained from these curves by passage to the limit with respect to convergence
in length, then we obtain curves with the same indicatrix Q of the positive part
of variation, but we fail to exhaust all these curves. For instance, the contour of
an equilateral triangle traversed in one direction once, or the contour of a parallel
triangle of half the size traversed twice, in both proper and opposite directions, are
broken lines with the same indicatrix Q; but, these broken lines cannot be obtained
one from the other by the above means.

(4) Consider two measurable functions f(x) and g(x) on the segment [a, b]. One
of them is called a rearrangement of the other (see [4, p. 332]) if for every c the
measures of the sets on which f(x) ≥ c and g(x) ≥ c hold coincide. By analogy
with the proof of Theorem 3, in this case we can verify that by rearranging fragments
of [a, b] together with the values of f(x), we can always obtain from f(x) of some
functions f1(x), f2(x), . . . converging in measure to g(x).

4. On Additive Vector Functions

1. Considering an arbitrary set X, select a system B of subsets of X including
the empty set and invariant under complements and finite or countable unions. If
to every E ∈ B there is associated a vector ϕ(E) in the space Rn then we say that
the finite-dimensional vector function ϕ(E) is defined on B.

A function ϕ(E) is called countably additive if for every countable system of
pairwise disjoint Ei ∈ B we have

∞∑
i=1

ϕ(Ei) = ϕ

( ∞⋃
i=1

Ei

)
.

A function ϕ(E) is called nonatomic or differ if for every E ∈ B either ϕ(E) = 0
or E includes a subset E′ ∈ B such that 0 6= ϕ(E′) 6= ϕ(E).

2. Theorem 4. Every countably additive finitedimensional vector function ϕ(E)
on a Bsystem of sets E ⊂ X can be expressed as the Lebesgue–Stieltjes integral

ϕ(E) =

∫
E

x(t) dµ, (6)

where x(t) is the unit vector function defined for all t ∈ X, while µ(E) is the
variation of ϕ(E) on E.7

Proof. Consider the coordinates ϕ1(E), ϕ2(E), . . . , ϕn(E) of ϕ(E). Since∣∣ϕk(E)
∣∣ ≤ ∣∣ϕ(E)

∣∣ ≤ µ(E), it follows that each scalar function ϕk(E) is absolutely
continuous with respect to the measure µ(E), and so, according to the Radon–
Nikodým theorem ([5, § 31]; [6, p. 59]), there exist functions χk(t) summable with
respect to µ(E) ans satisfying

χk(E) =

∫
E

χk(t) dµ.

7The variation of the function ϕ(E) is sup Σ
∣∣ϕ(Ei)

∣∣ over all possible finite systems of pairwise
disjoint sets Ei ∈ B lying in E. The variation of a countably additive vector function is itself a countably
additive function defined on the sets of the system B. The variation of a nonatomic function is also
a nonatomic function.
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Therefore, (6) holds for the vector function

x(t) =
[
χ1(t), χ2(t), . . . , χn(t)

]
.

Verify that
∣∣x(t) = 1

∣∣ almost everywhere in the sense of the measure µ(E). To
this end, it suffices to show that every measurable set E satisfies

µ(E) =

∫
E

∣∣x(t)
∣∣ dµ. (7)

(Here and for the rest of this section we mean measurability with respect to µ.)
Choose in E, one by one, some finite systems of disjoint subsets Ei with∑

i

∣∣ϕ(Ei)
∣∣→ µ(E).

Since ∑
i

∣∣ϕ(Ei)
∣∣ =

∑
I

∣∣∣∣∫
Ei

x(t) dµ

∣∣∣∣ ≤∑∫
Ei

∣∣x(t)
∣∣ dµ =

∫
E

∣∣x(t)
∣∣ dµ,

it follows that
µ(E) ≤

∫
E

∣∣x(t)
∣∣ dµ.

Verify the reverse inequality. To this end, by dividing the space into half-open
cubes, divide the unit sphere into parts whose diameters are less than an arbitrary
given δ > 0. Take as Ei the part of E within which x(t) is directed into one part
of the partition of the unit sphere. The set Ei is obviously measurable and∣∣∣∣∫

Ei

x(t) dµ

∣∣∣∣ ≥ cos δ

∫
Ei

∣∣x(t)
∣∣ dµ.

Hence,

µ(E) ≥
∑
i

∣∣∣∣∫
Ei

x(t) dµ

∣∣∣∣ ≥ cos δ

∫
Ei

∣∣x(t)
∣∣ dµ.

Since δ is arbitrarily small, this yields

µ(E) ≥
∫
E

∣∣x(t)
∣∣ dµ,

which together with the reverse inequality above implies (7).
The proof of Theorem 4 is complete.
3. To every countably additive vector function of sets admitting, in accordance

with Theorem 4, representation as

ϕ(E) =

∫
E

x(t) dµ,

associate the set Q in Rn filled by the endpoints of the vectors of the form

r =

∫
X

x(t)α(t) dµ,

for all possible measurable (with respect to µ) functions α(t) with 0 ≤ α(t) ≤ 1.
Obviously, Q is a bounded convex body. It is easy to verify that the support

function of Q is equal to

H( e) =

∫
X

∣∣ ex(t)
∣∣+ ex(t)

2
dµ.
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In addition, Q is closed. Indeed, suppose that

ri =

∫
X

x(t)α(t) dµ→ r0.

On the subsets M of the unit sphere Ω define the measure µ(M) = µ(E), where
E = εt[x(t) ∈ M ]. It is easy to see that then the Borel sets of M are measurable.
Without loss of generality, assume that αi(t) is constant on every set of nonzero
measure whenever x(t) is constant on it. This enables us to uniquely define the
function α(x) = α

(
t(x)

)
for almost all points x ∈ Ω. In addition, put

ϕi(M) =

∫
M

αi(x)µ(dω),

where dω is the element of the sphere into which x is directed. In this notation,

ri =

∫
Ω

xαi(χ)µ(dω) =

∫
Ω

xϕi(dω).

From the bounded functions ϕi(M) ≤ µ(M) we can choose a weakly converging
sequence to some function ϕ0(M) (see [7, p. 215] for instance). Furthermore, the
open subsets M satisfy

ϕ0(M) ≤ limϕi(M) ≤ µ(M),

and so ϕ0(M) ≤ µ(M) for all Borel sets M . The latter implies that ϕ0(M) is
absolutely continuous, and by the Radon–Nikodým theorem we can express ϕ0(M)
as

ϕ0(M) =

∫
M

α0(x)µ(dω); 0 ≤ α0(x) ≤ 1.

The weak convergence yields

r0 =

∫
Ω

xϕ0(dω) =

∫
Ω

xα0(x)µ(dω) =

∫
Ω

x(t)α0(t)dµ ∈ Q.

Therefore r0 ∈ Q, and so Q is proved to be closed.
Lemma. For every nonatomic countably additive finitedimensional vector

function ϕ(E) its range, i.e., the body in Rn filled by the endpoints of the vectors
ϕ(E), and the body Q coincide.

The proof of the lemma goes by induction. For the case n = 1 the claim
holds since the range of ϕ(E) and the body Q reduce to the closed segment[

inf ϕ(E), supϕ(E)
]
(see [5, p. 171]). Assume that the claim holds for vector

functions of dimensions less than n.
Construct a family of measurable sets Xτ , with parameter 0 ≤ τ ≤ 1, expanding

with the growth of τ and satisfying µ(Xτ ) = τµ(X).8

It is easy to see that the characteristic functions χτ (t) of the sets Xτ (t) almost
everywhere satisfy χτ (t)→ χτ0(t) as τ → τ0.

8We can obtain the required family of sets, for instance, as follows. Since ϕ(E) is nonatomic, we can
subdivide X into two parts X0 and X1 so that µ(X0) = µ(X1) = 1

2
µ(X). Subdivide each of these

sets into two, denoted by X00, X01, and X10, X11 so that µ(X00) = µ(X01) = µ(X10) = µ(X11) =
1
4
µ(X), and so on. This yields sets of the form Xi1,i2,...,ik (ij = 0; 1). Furthermore, take an arbitrary

number a, 0 < a < 1, of the form a = m
2k

with integer m and k. Denote by Xa the union of all sets

Xi1,...,ik satisfying i1
2

+ · · ·+ ik
2k

< a. It is easy to see that µ(Xa) = aµ(X) and Xa1 ⊂ Xa2 provided
that a1 < a2. For every real τ denote by Xτ the sum of all Xa with a ≤ τ . It is not difficult to see
that Xτ constitute the required system.
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To every set Xτ associate the body Qτ filled by the endpoints of the vectors

r =

∫
Xτ

x(t)α(t) dµ =

∫
X

x(t)α(t)χτ (t) dµ

where 0 ≤ α ≤ 1 is an arbitrary measurable function, while x(t) is from the
representation (6) of the function ϕ(E) under consideration. It is easy to see that
the support function of Qτ is equal to

Hτ ( e) =

∫
X

∣∣ ex(t)
∣∣+ ex(t)

2
χτ (t) dµ,

which implies that Hτ ( e) → Hτ0( e) as τ → τ0. In other words, the bodies Qτ
continuously expand with the growth of τ . Furthermore, Q0 is a point (the origin),
while Q1 = Q.

Denote the range of ϕ(E) by Θ. The representation (6) and the definition of Q
directly imply that Θ ⊂ Q. It remains to prove the reverse inclusion.

Take r0 ∈ Q. Since the family Qτ is continuous, the terminal point of r0 lies
on the boundary of one of these bodies. Assume furthermore that τ satisfies this.
Consider the outer normal e to the supporting plane P of Qτ at r0. The set X
splits into measurable parts: E1 with ex(t) < 0; E2 with ex(t) = 0; E3 with
ex(t) > 0. It is easy to verify that the common part of Qτ and the supporting
plane P is filled by the vectors of the form

r =

∫
E1

x(t) dµ+

∫
E2

x(t)α(t) dµ,

where 0 ≤ α(t) ≤ 1 is an arbitrary measurable function. In particular, the vector r0

can be expressed in this form for some function α0(t). On the measurable parts E
of E2 there is some vector function of smaller dimension than n:

ψ(E) =

∫
E

x(t) dµ.

By the inductive assumption, for α0(t) in E2 there is a part E0
2 such that∫

E2

x(t)α0(t) dµ =

∫
E0

2

x(t) dµ.

Therefore,

r0 =

∫
E1

x(t) dµ+

∫
E0

2

x(t) dµ = ϕ(E1 + E0
2) ∈ Θ.

This proves the coincidence Q = Θ claimed in the lemma. �

4. The lemma proved above implies the results of Lyapunov [8] that the range
of an atomless countably additive finite-dimensional vector function is always
a centrally symmetric closed convex body containing the origin, and its intersection
with each of its supporting (n − 1)dimensional planes is also centrally symmetric.
These results are strengthened in the next theorem.

Theorem 5 In order for a body Q to be the range of a nonatomic countably
additive finitedimensional vector function, it is necessary and sufficient that it be
the indicatrix of the positive part of variation of some rectifiable curve.
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Necessity: Consider a function ϕ(E) =
∫
E

x(t) dµ satisfying the hypotheses of
the theorem. Its range Q has the support function

HQ( e) =

∫
X

∣∣ ex(t)
∣∣+ ex(t)

2
dµ.

Subdivide the sphere Ω into parts of diameter less than δ so that X splits into
measurable parts Ei, within each of which x(t) belongs to the same parts of Ω. Put
xi = x(ti), where ti ∈ Ei. The parallelohedron Πδ filled by the endpoints of the
vectors

ri =
∑

λi xiµ(Ei) (0 ≤ λi ≤ 1)

has the support function

H( e) =
∑
i

| exi|+ exi
2

µ(Ei).

Then ∣∣HQ( e)−H( e)
∣∣ < δµ(X).

As δ → 0, the zonotopes Πδ converge to Q. In addition, Q contains the origin.
Therefore, Theorem 2 implies thatQ is the indicatrix of the positive part of variation
of some rectifiable curve.

Sufficiency: Consider the indicatrix of variations Q of a curve K = x(s) of
length l. The body Q is filled by the endpoints of the vectors of the form

r =

∫ l

0

x′(s)α(s) ds
(
0 ≤ α(s) ≤ 1

)
.

By the lemma proved above, in this case Q coincides with the range of the vector
function

ϕ(E) =

∫
E

x′(s) ds

defined on the measurable subsets of the segment [0, l].
5. Chŭıkina in [2] introduced the concept of extendability of zonotopes, which

we can state as follows: A zonotope Q2 extends a zonotope Q1 whenever there exist
a broken line L2 and a broken line L1 inscribed into L2 with Q2 = Q(L2) and
Q1 = Q(L1). Here Q(L) means the indicatrix of the positive part of variations of
a curve L.

As established in [2], for Q to be the range of a continuous additive vector
function it is necessary and sufficient that Q be a limit of zonotopes extending
each other. As far as we know, Glivenko strengthened this result by showing that
every body serving as a limit of zonotopes and containing the origin is a limit of
zonotopes extending each other. Indeed, according to Theorem 2, this body Q is
the indicatrix of the positive part of variation of some rectifiable curve K. Inscribe
into K a sequence of broken lines Li so that every successive line passes through all
vertices of the previous line and Li converge to K in length. The indicatrices Q(Li)
obviously constitute a sequence of zonotopes extending each other and converging
to Q. (In the proof by Glivenko the required curve K is constructed by a more
complicated method than in Theorem 1 above.)
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5. The Supporting Function of a Body That Is the Minkowski Sum of
Straight Line Segments

1. It is known that the support function of a Minkowski sum of convex bodies
is the corresponding linear combination of the support functions of the summands.
It is natural to similarly obtain the support function for the Minkowski sum of
infinitely many bodies (see [1, p. 28] for instance).

In order to avoid introducing extra regularity requirements, we use the Lebesgue–
Stieltjes integral.

Theorem 6. 1) If a body P is the indicatrix of variations of a rectifiable curve
K = x(s) then the support function H( e) of P is expressed by the integral

H( e) =
1

2

∫
Ω

| e e′|F (dω), (8)

where e′ is the unit vector going into the element dω, while F (M) is the linear
measure of the set of those values of the parameter s for which the tangent line
x′(s) of K is directed into M .

2) The even part of every countably additive function F (M) defined on the Borel
sets of the unit sphere Ω and satisfying

H( e) =
1

2

∫
Ω

| e e′|F (dω) (9)

is uniquely determined by specifying H( e).9

3) For every nonnegative countably additive function F (M) defined on the Borel
sets of the sphere Ω there is a rectifiable curve K = x(s) for which F (M) is the
linear measure of the values of s for which x′(s) ∈M .

Proof. 2. Consider the indicatrix of variations P of a rectifiable curveK = x(s).
For Borel sets M ⊂ Ω the set E of values of s for which x′(s) ∈ M is measurable
since K is rectifiable. Therefore, the function F (M) = mesE is defined. Verify that
for this function F the support function H( e) of P is expressed by (8). Indeed,

1

2

∫
Ω

| e e′|F (dω) =
1

2
lim
∑
i

| e ei|F (Mi) =
1

2
lim
∑
i

| e ei|mesEi

=
1

2

∫ l

0

∣∣∣∣ edxds
∣∣∣∣ ds =

1

2
V e(K) = H( e).

The first the claim of Theorem 6 is established.
3.Proceed to the second claim of the theorem. Blaschke ([9, p. 155]) essentially

proved it, but restricting himself only to the regular case. His proof uses the trick
of expansion into spherical functions which was applied already by Minkowski [10].

Let us explain this trick in the form used by Aleksandrov ([11, pp. 1231–1233])
to obtain a similar result.

The eigenfunctions of the integral equation

Y ( e) = λ

∫
Ω

| e e′|Y ( e′) dω (10)

9The even part of F (M) is 1
2

[F (M) + F (−M)], where −M means the set symmetric to M with
respect to the center of the sphere Ω. The odd part is 1

2
[F (M)− F (−M)].
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are the spherical functions Y2k( e) of even order. Multiply (9) by Y2k( e) and
integrate over Ω. Switching the order of integrations on the right-hand side and
considering that Y2k satisfies (10) for some constant λk 6= 0, we obtain∫

Ω

H( e)Y2k( e′) dω =
λk
2

∫
Ω

Y2k( e′)F (dω). (11)

Consequently, as soon as H( e) is defined, so are the integrals appearing on the
right-hand side of (11). Verify that this defines the values of the even part of F on
all Borel sets. It suffices to do this for the open sets lying in one hemisphere.

Take a set G of this form and the function Z( e) equal to 1 on G and −G and to 0
on the rest of the sphere. Then Z( e) is a bounded even function. Since the system
of spherical functions is complete, there is a sequence of linear combinations Zm( e)
of spherical functions of even order converging to Z( e). By (11), the integrals∫

Ω

Zm( e′)F (dω)

are determined by H( e), and so is their limit,∫
Ω

Z( e′)F (dω) = F (G) + F (−G),

as required.
4. Proceed to the third claim of Theorem 6.
Consider a countably additive nonnegative function F (M) defined on the Bsets

of the sphere Ω.
As in the proof of Theorem 1, fix a sequence of partitions ξ1, ξ2, . . . of the

unit sphere Ω into finite systems of enumerated disjoint Borel sets such that the
maximal diameter δk of the sets Mk

i in ξk tends to zero with the growth of k, and
every partition ξk+1 results from ξk by subdivision.

Consider the segment (0, l), where l = F (Ω), and construct a sequence η1, η2, . . .
of its partitions such that every set Mk

i ∈ ξk corresponds to a set Nk
i ∈ ηk, while

mes(Ni) = F (Mi), and the next partition ηk+1 is constructed by subdividing the
previous partition in complete accordance with the way ξk+1 is obtained from ξk.
(For simplicity we may assume that all sets Ni of nonzero measure are half-open
intervals, while the measure zero sets are empty.)

On the segment 0 < s ≤ l define a sequence of vector functions ek(s) by
putting ek(s) equal to the unit vector going into one of the points Mk

i , where
Mk
i corresponds to the Nk

i containing s. It is easy to see that∣∣ ek(s)− ek+p(s)
∣∣ < δk

holds for all k and p, which implies that the functions ek(s) converge uniformly to
a measurable unit vector function e(s) as k →∞. Verify that

x(s) =

∫ s

0

e(s) ds

is the required curve.
The tangent vector of this curve for almost all s is equal to e(s). It remains to

verify that the measure of those s for which e(s) ∈M coincides with F (M) for all
Borel sets M ⊂ Ω. It suffices to establish this for open sets. Given an open set G,
denote by Ak the union of all sets of the partition ξk included into G together with
their closures Āk, and by Bk, the union of the corresponding sets of the partition ηk.
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Since Ak constitute an expanding sequence exhausting G, while the function F
is countably additive, it follows that

F (G) = lim
k→∞

F (Ak) = lim
k→∞

mesBk = mes
∞⋃
k=1

Bk. (12)

It is easy to verify however that
⋃∞
k=1Bk = B, where B is the set of values of s

with e(s) ∈ G. Indeed, for every s ∈ Bk we have ek(s) ∈ Ak; hence, ek+p(s) ∈ Ak,
and in the limit e(s) ∈ Āk ⊂ G. Therefore,

⋃∞
k=1Bk ⊂ B. On the other hand, if

e(s) ∈ G then, starting with a sufficiently large k, the vectors ek, converging to
e(s), lie in G together with the sets Mk

i containing ek(s), as well as their closures.
For these k we have s ∈ Bk; thus, B ⊂

⋃∞
k=1Bk, which together with the previous

inclusion yields B =
⋃∞
k=1Bk.

Therefore, (12) implies that F (G) = mesB; and the third claim of Theorem 6 is
established.

Theorem 6 implies that the representability of the support function of some
body in the integral form (8) with a nonnegative countably additive function F
is a necessary and sufficient condition for this body to be the integral Minkowski
sum of line elements. The definition of a body via the representation of its support
function as (8) is often taken as the definition of the integral Minkowski sum of
infinitely many straight line segments (see [1, p. 28]). Blaschke showed (see [9,
pp. 147–155]) that we can express the support function of every centrally symmetric
convex body (with center the origin) as (8) without requiring the nonnegativity of
F (M). (The converse claim fails, of course, since not every functionH( e) possessing
a similar representation is a support function.)

5. Let us make the following remark regarding the third claim of Theorem 6. As
F (M) we can take, in particular, the usual measure on Ω. The theorem implies that
every ball is a limit of parallelohedra, and there exist curves possessing the same
variation in all directions.10

In the three-dimensional space we can obtain a curve K of this kind as follows.
Subdivide the surface of the sphere into four equilateral spherical triangles ∆i and
form a broken line from the vectors

ri =

∫
∆i

e dω. (13)

This is a closed broken line consisting of four straight line segments. Then divide
every triangle into four triangles connecting the midpoints of its sides by the shortest
paths on the sphere. Accordingly, replace every segment of the broken line by the
fragments consisting of the vectors obtained using (13) for every triangle of the
finer partition, and so on. Each successive broken line passes through the vertices
of the previous broken line. These broken lines converge to the required curve K.

6. Note, without the proof, the following insignificant modification of Theorem 6:
(1) If a body Q is the indicatrix of the positive part of variation of a rectifiable

curve K = x(s) then we can express its support function H( e) as the integral

H( e) =

∫
Ω
2

( e e′)F (dω), (14)

10We can even show the existence of a smooth curve of this kind.
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where e′ is the unit vector going into the element dω; F (M) is the linear measure
of the values s for which x′(s) ∈M ; Ω

2 is the hemisphere within which e e′ > 0.
(2) If the support function H( e) of a convex body Q admits at least one

representation (14), where F (M) is a countably additive nonnegative function
defined on the Borel sets of the unit sphere Ω, then the even part of F (M) is
uniquely determined by Q. We can vary the odd part of F (M) (subject to the
condition that the countable additivity and nonnegativity of F are preserved) by
adding to F (M) an arbitrary odd function Φ(M) satisfying∫

Ω

e′Φ(dω) = 0;

moreover, (14) is preserved.

6. Criteria for the Bodies That Are Limits of Zonotopes

1. It is natural to pose the question of criteria distinguishing the bodies P that
are limits of zonotopes. In the two-dimensional case a necessary and also sufficient
condition is the central symmetry of the convex set P . In the general case Theorem 6
answers this question in some sense. From the support function of a centrally
symmetric convex body we can uniquely reconstruct the even function H( e)
appearing in (8); according to Theorem 6, its nonnegativity turns out a necessary
and sufficient condition.

For a regular surface the function F (M) itself is an integral over the subset M
of the unit sphere Ω of some function h defined at the points of Ω. As Blaschke
showed (see [9, pp. 154–155]), in this case the function h is found from the support
function H( e) of a given body using quadratures.11

2. Theorem 7. For a convex polyhedron to be a zonotope it is necessary and
sufficient that its every two-dimensional face has center of symmetry.

The necessity of the condition is obvious; let us prove its sufficiency. Consider
a polyhedron P with centrally symmetric two-dimensional faces. Divide its edges
(one-dimensional faces) into classes, putting in one class the edges that are equal
and parallel. Take an arbitrary support plane Rn−1 of P parallel to the edges of
some class K. Let us prove (by induction on the dimension n of P ) that it contains
at least one edge of this class.

For n = 2 the claim holds. Assume that it holds for n0 = n−1. In order to prove
it for n, it suffices to verify that the distance δ from Rn−1 to the nearest edge to
Rn−1 of the class K is equal to zero. Take an arbitrary edge a ∈ K. If it lies in
Rn−1 then δ = 0. Otherwise, take the plane Rn−1

1 parallel to Rn−1 and passing
through a. Consider all (n− 1)dimensional faces passing through a. At least one of
them contains points lying on the same side of Rn−1

1 as Rn−1. Take the supporting
plane to this face parallel to Rn−1 passing on the same side of Rn−1

1 as Rn−1. By
the inductive assumption, this plane contains an edge of this class whose distance
to Rn−1 is less than the distances to the edge a. Since a is arbitrary and the number
of edges is finite, this implies that δ = 0.

11Blaschke used the results of Funk [12] on reconstructing a function defined on the sphere
from the values of its integrals over large circles. The latter results are developed and expanded in
the ndimensional case in the student’s diploma work by Yu. A. Volkov entitled “On the areas of flat
sections of a centrally symmetric body” (Len. St. Univ., 1952).



546 YU. G. RESHETNYAK AND V. A. ZALGALLER

Now choose one edge from every class and construct their Minkowski sum, the
zonotope Q. Verify, again by induction on the dimension n of P , that P and Q can
be matched by parallel translation. This will prove that P is a zonotope.

For n = 2 the claim holds. Assume that it is established for all polyhedra of
dimension less than n. Take the supporting planes Rn−1

1 and Rn−1
2 to P and Q

with the same outer normals in Rn. Select all classes of edges of P containing the
edges parallel to Rn−1

1 , if these classes exist at all. According to a previous result,
the common part P ∩ Rn−1

1 contains at least one edge from each of these classes.
Select one edge in each of these classes. The common partQ∩Rn−1

2 is the Minkowski
sum of these edges.

By the inductive assumption, P∩Rn−1
1 andQ∩Rn−1

2 can be matched by a parallel
translation. Therefore, every face (i.e., the common part with some supporting plane
Rn−1) of the polyhedron P can be matched by parallel translation with the face of
the parallelohedron Q selected out of Q by the supporting plane parallel to Rn−1.
This implies that P and Q themselves can be matched by parallel translation. The
proof of Theorem 7 is complete.

3. Note the following lemma.
Lemma. The common part Q of a body P , that is a limit of parallelohedra in

the space Rn and the supporting plane Rn−1 to P is itself a limit of parallelohedra
in Rn−1.12

This implies not only the central symmetry of Q, but also the central symmetry
of the faces of Q (if there are any), their faces, and so on. Essentially, the claim of
this lemma is proved in [13, p. 469]. (A sequence of parallelohedra is constructed
there contracting to the plane Rn−1 and converging to Q. It suffices to project them
onto Rn−1 in order to obtain parallelohedra in Rn−1 converging to Q.)

This lemma and Theorem 7 imply
Theorem 8. A polyhedron which is a limit of parallelohedra is itself

a parallelohedron.
4. The property of a surface to bound a body which is a limit of parallelohedra

is obviously preserved under affine transformations. The question of local
characteristics of regular surfaces enjoying this property, arising in affine differential
geometry ([13, p. 82]; [14, p. 250]), remains unsolved as far as we know.

7. On the Connection of Variations of Converging and Limit Curves

1. In subsection 3.5 we gave a definition of parallelohedra extending each other.
Let us somewhat generalize the concept. Namely, say that a bounded body P
extends a body Q whenever there exists two sequences of parallelohedra Pk →
P and Qk → Q such that every parallelohedron Pk extends the corresponding
parallelohedron Qk.

Lemma. In order for P to extend Q, it is necessary and sufficient that both
these bodies be the indicatrices of the positive part of variation of some curves, and

12Since P is a limit of parallelohedra; P serves if we translate its center to the origin, as the indicatrix
of variations of some curve x(s). It is not difficult, incidentally, to show that Q is filled by the endpoints
of the vectors which can be expressed as

r =

∫
E1

µx′ ds+
1

2

∫
E2

sign( ex′) · x′ ds,

where e is the outer normal to the plane Rn−1; E1 is the set of values of s for which ex = 0; E2 is the
collection of the remaining values of s; µ(s) is an arbitrary measurable function with − 1

2
≤ µ(s) ≤ 1

2
.
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that for every broken line L inscribed in an arbitrary generator K of Q there exists
a generator K ′ of P passing through all vertices of L.13

Sufficiency: Take an arbitrary generator K of Q. Take a sequence of broken
lines L with vertices accumulating on K. Approximate the generators of P passing
through their vertices by broken lines passing through the vertices of L. We obtain
two sequences of broken lines, the indicatrices of the positive parts of whose
variations extend each other and converge respectively to P and Q.

Necessity: Suppose that P extends Q. Consider parallelohedra Pk and Qk
extending each other and converging to P and Q; broken lines Lk generating Qk;
broken lines Kk circumscribed about Lk generating Pk. Observe first of all that we
can always transform the broken line Kk by rearranging its straight line segments
so that it passes through an arbitrary predefined point of Lk. Indeed, if CD is
a segment of Lk and a point E lies on it, then, replacing the fragment of the broken
line Kk subtended by the chord CD by two fragments obtained from it by dilations
with similarity coefficients CE

CD and ED
CD , we obtain generators passing through E.

Do the same for other points.
Take a broken line L inscribed in some generator K of Q. By rearranging the

straight line segments, transform Lk into broken lines L′k converging to K, which
is always possible according to Remark 2 to Theorem 3. We may have to subdivide
the straight line segments of Lk. By the argument above we may assume that Kk

passes through the required points of the subdivision. Rearranging the fragments
of Lk and L′k, transform simultaneously Kk into K ′k. Mark on L′k some points
Ai converging to the vertices of L. We may assume that K ′k pass through these
points. We may assume that on the fragments AiAi+1 the straight line segments
of K ′k are rearranged in accordance with Theorem 1 so that for some subsequence
these fragments converge in length, forming the limit curve K ′. Obviously, K ′ is
the generator of P and passes through the vertices of L. The proof of the lemma is
complete.

This lemma implies in particular that if P and Q are parallelohedra and L is
a generator of Q which is a broken line then there exists a generator K of P passing
through the vertices of L. Furthermore, we can also make K a broken line. (In order
to prove this, we may consider the function F (M) of these curves, which in case
of a broken line reduces to finitely many “pointwise loadings.”) Therefore, if two
parallelohedra extend each other in the sense of the definition in this subsection
then they extend each other in the usual sense as well.

2. If a sequence of rectifiable curvesK1,K2, . . . converges to a rectifiable curveK,
while their indicatrices of the positive part of variation converge to a body P , then
P ⊂ Q, where Q is the indicatrix of the positive part of variation of the limit
curve. It was proved in [3, pp. 470–476] that in the planar case this exhausts the
relation between P and Q in some sense, while for the spaces of greater dimension
the situation is different. The next theorem presents the details of this relation.

Theorem 9. In order for a bounded body P to be a limit of the indicatrices
of the positive part of variation of curves Km converging to a curve K with the
indicatrix Q, it is necessary and sufficient that P extend Q.

Necessity: Consider some curves Km (m = 1, 2, . . . ) converging to a curve K
generating the bodyQ, with their indicatrices of variations converging to P . Inscribe

13Here we refer as a generator to an arbitrary curve the indicatrix of the positive part of whose
variation is this body.
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into each of Km a broken line Lm so that the difference between the lengths of Lm
and Km tends to zero with the growth of m. Into the limit curve K, inscribe broken
lines Mp (p = 1, 2, . . . ) whose vertices accumulate without bound on K with the
growth of p. Mark on the curves Lm some points converging to the vertices of Mp.
Connecting them, we obtain broken lines Mm

p . Denote by mp some integers such
that the difference between the lengths of the broken lines Np = M

mp
p and Mp and

the distance between them are less than 1
p . As p → ∞, the broken lines Np → K

together with their lengths; thus, the parallelohedra Qp = Q(Np) converge to Q,
while the parallelohedra Pp = Q(Lmp) converge to P . Since Np are inscribed into
Lmp , it follows that Pp extends Qp. The necessity of the condition is proved.

Sufficiency: Take a sequence of broken lines Mp inscribed into K with vertices
accumulating on K. By the lemma in the beginning of this section, for each of them
there is a generator Kp of P passing through all vertices of Mp. Replacing every
arc of Kp subtended by a segment of Mp by an arc composed of m arcs, each of
which is similar to the original arc and smaller by a factor of m, we obtain a curve
K ′p. For sufficiently large m the distance between K ′p and Mp is less than 1

p . It is
obvious that the curves K ′p constitute the required sequence.

Observe that when P and Q are parallelohedra then the criterion established in
Theorem 9 admits direct verification. Namely, if the vectors xi (i = 1, 2, . . . ,m)
constitute a broken line generating P , while the vectors yj (j = 1, 2, . . . , p),
a broken line generating Q, then the question whether P extends Q reduces to
the existence of nonnegative numbers λij satisfying

m∑
i=1

λij xi = yj ;

p∑
j=1

λij = 1.

If these m+p equations with mp unknowns have a solution then the latter depends
linearly on a number of parameters. It remains to verify the consistency of the linear
inequalities λij ≥ 0.

3. Finally, let us give a refinement of another result of [3]. It was proved there
that the convergence of curves in variation in a set of directions which is everywhere
dense on the sphere Ω implies the convergence of curves in length. The question is:
How much can we reduce the set of directions so that the convergence in variation
in these directions will always imply the convergence of curves in length?

Theorem 10. In order for the convergence of curves in variation in the direction
of the vectors e ∈ M to always imply their convergence in length, it is necessary
and sufficient that for all unit vectors e1 6= e2 there is a vector e ∈ M whose
orthogonal plane strictly separates e1 and e2.

The proof rests on the following result of Tonelli ([15, p. 331]).
Consider a function F (x, α) of vectors x and α such that
(1) F (x, α) ≥ 0;
(2) F (x, λα) = λF (x, α) for λ > 0;
(3) F (x, α + β) ≤ F (x, α) + F (x, β); moreover, equality holds if and only if

α = λβ and λ > 0.
If the curves

Km → K

and ∫ s(Km)

0

F
(
xm(s), x′m(s)

)
ds→

∫ s(K)

0

F
(
x(s), x′(s)

)
ds
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then
s(Km)→ s(K),

where s(K) stands for the length of K.
Basing on this, we prove Theorem 10.
Necessity: Suppose that some unit vectors e1 6= e2 are not separated by any

plane with the normal e ∈ M : for every e ∈ M the products e1 e and e2 e
are of the same sign. Construct a broken line Lm with 2m straight line segments
alternately equal to e1

m and e2

m . As m → ∞, the broken lines Lm converge to the
segment L = e1 + e2. Obviously, ν e(Lm) → ν e(L) for e ∈ M , but the lengths
s(Lm) fail to converge to s(L).

Sufficiency: Consider a countable set of directions ek ∈ M (k = 1, 2, . . . )
everywhere dense in M . Put

F (α) =

∞∑
k=1

| ekα|
2k

.

It is obvious that F (α) ≥ 0; F (λα) = |λ|F (α) for every λ. If α 6= λβ for no λ > 0
then there is ep such that α ep and β ep are of opposite signs. Hence,

F (α+ β) =
∑
k

∣∣ ek(α+ β)
∣∣

2k
<
∑
k 6=p

∣∣ ek(α+ β)
∣∣

2k
+
| epα|+ | epβ|

2p
≤ F (α) + F (β);

thus,
F (α+ β) < F (α) + F (β).

If we verify that for all curves Km → K together with variations in the directions
e ∈M we have ∫ s(Km)

0

F (x′m) ds→
∫ s(K)

0

F (x′) ds,

then by the result of Tonelli this would imply that

s(Km)→ s(K).

The set M obviously contains n linearly independent directions. Therefore, the
lengths of Km are jointly bounded by a number A. We have∫ s(Km)

0

F (x′m) ds =

∞∑
k=1

1

2k
ν ek(Km),

whence ∣∣∣∣∣
∫ s(Km)

0

F (x′m) ds−
N∑
k=1

1

2k
ν ek(Km)

∣∣∣∣∣ < A

2N

and similarly for K. Since
N∑
k=1

1

2k
ν ek(Km)→

N∑
k=1

1

2k
ν ek(K),

while the number N is arbitrary, it follows that∫ s(Km)

0

F (x′m) ds→
∫ s(K)

0

F (x′) ds,

as required. �
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Theorem 10 implies, for instance, that in the three-dimensional space the
convergence of curves in variation in all directions lying in three mutually orthogonal
planes implies the convergence in length. If we restrict to all directions lying, for
instance, only in two of these planes then the hypotheses of the theorem are not
fulfilled and there are sequences of curves not converging to a certain curve in
length, but converging to it in variation in all directions mentioned.
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Comments
on the Article by V. A. Zalgaller and Yu. G. Reshetnyak

A few words about the history of this article are in order. In the beginning
of 1953 Aleksandr Danilovich Alexandrov was asked to review the article by E. V.
Glivenko which contained some characterization of the range of a countably additive
set function, i. e a measure in modern parlance, which takes values in Rn. This set
is convex by the now classical theorem of Aleksĕı Andreevich Lyapunov.

Ms. Glivenko was a student of Luyapunov. In the article sent to A.D. there was
proved that each set of the sort is the limit of a sequence of some polyhedra of a
special type. A.D. was well known in the mathematical community as a specialist in
the theory of convex bodies and measure theory. It was natural that the Editorial
Board of Matematicheskĭı Sbornik chose him as a reviewer of the article.

Alexandrov asked me to read the article and make my comments. (I was then
a second-year postgraduate at Leningrad State University.) I had heard nothing
count the Lyuapunov work on additive set functions and the topic attracted me
strongly. I noticed that the convex sets, arising in the theorem, coincided with the
convex set that had already been distinguished by Zalgaller in studying rectifiable
curves in Rn. So I proposed Viktor Abramovich that we wrote a joint paper on the
matter. He agreed.
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We had finished the paper shortly and submitted it the editorial office of the
mathematical series of Herald of Leningrad State University. Some of out colleagues
wondered why we had submitted the paper to the journal rather than to some
central Soviet mathematical periodicals. It is difficult to recall the reasons of our
choice now, as some 60 years elapsed since then. Unfortunately, the article remained
unnoticed by the intended readership.

I think there were two reasons behind this. The first is that the article was
published in the journal that was not listed as leading in the mathematical
community. Vising the USA, I saw that only few university libraries have the issues
of the 1954 volume of Herald of Leningrad State University. The second reason is
concealed in the structure of the article itself, for it was focused on some problems of
the theory of curves. Therefore, the problems of the theory of set functions seemed
to be drifted slightly out of the main light.

In the 1960s the theory of set functions had again become topical In particular
this related to the Lyapunov Theorem. The new term zonoid was suggested for the
range of any measure in question. I did not find out the authorship of the term.
In our article we used the bulkier term, a body this is a mixing of straight line
segments.

Some of the results of our article ([ZR] for the sake of brevity in the sequel)
are widely used, as I can discern, in the papers dealing with various aspects of the
theory of zonoids. As sources these papers usually indicated the papers than were
published after 1969. This shows only some shortcomings of information available
to the authors, since since some of this results were proved in [ZR] and published
in 1954.

Below I list the results of the articles that I view as fundamental for the theory of
zonoids. In the Western mathematical literature the statements and proofs of these
results were published not before 1979. I will use the numeration that differs from
that in [ZR]. To avoid confusion, I put the letter C before each successive numeral
(i. e., C1, C2, etc.).

So, let (X,B) be a measure space; i. e., X is a set equipped with some σ-algebra
B of subsets of X.

Lemma C1. Each measure ϕ : B → Rn admits the representation

ϕ(E) =

∫
E

x(t) dµ(t),

Here µ is a positive measure, the variation of the vector-measure ϕ, while x(t) is a
function to Rn define on the whole of X and such that |x(t)| = 1 for all t ∈ X.

In [ZR] this is Theorem 4. I think that the title of theorem is undeserved by this
proposition, since this is a trivial corollary of the Radon–Nikodym, and the proof
in [ZR] may be slightly shortened.

Assume given a vector measure ϕ : B → Rn. Denote by Q(ϕ) the set of all
vectors of Rn that are presentable as

z =

∫
X

α(t)x(t)dµ(t),

where x(t) and µ have the same meaning as above, and α(t) is B-measurable
functions such that 0 ≤ α(t) ≤ 1 for all t ∈ X.
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The next proposition of [ZR] bore neither the title of theorem nor at least the
title of lemma. Its statement and full proof are given in the first part of subsection
3 of §4.

Theorem C1. If Let ϕ : B → Rn be a vector measure. Then Q(ϕ) is a
bounded closed convex subset of Rn. The support function H(ν) of Q(ϕ) admits
the representation

H( e) =

∫
X

∣∣〈 e, x(t)〉
∣∣+ 〈 e, x(t)〉
2

dµ.

The boundedness and convexity of Q(ϕ) are straightforward by definition. The
proof of sufficiency requires application of the properties of weak convergence of a
sequence of measures.

Theorem C2.If ϕ is a atomless (i. e., continuous in the sense of Lyapunov),
then Q(ϕ) coincides with the range of ϕ.

This is the Lemma of §3 of [ZR].
Theorem C3. The range of a atomless vector measure acting to Rn is a bounded

closed convex set in Rn.
Theorem C2 is the Lemma of §3 in [ZR]. Theorem C3 is an obvious corollary

of Theorem C2. Theorem C3 is the Lyapunov Convexity Theorem. We thus have
a proof of the theorem which was new in 1954. Note the claim of Theorem ’1 has
applications in optimization theory.

The following proposition belongs to the basic facts of the theory of zonoids.
Theorem C4. For a compact convex set x to be a zonoid it is necessary and

sufficient that its support function H(x) admit the representation:

H(x) =

∫
Ωn−1

〈x, ξ〉+ dµ(ξ),

where Ωn−1 is the (n− 1)-dimensional sphere in Rn.
There is no exactly this formulation in [ZR]. But [ZR] has the following

Theorem 5:
Theorem 5 of [ZR]. For a body Q to be the range of a atomless vector measure

acting to Rn it is necessary and sufficient that Q be the indicatrix of the positive
part od the variation of some rectifiable curve.

I will not state Theorem 6 of [ZR] since its statement is bulky. This theorem
implies in particular that the support function of the indicatrix of a rectifiable
curve admits the representation

H(x) =

∫
Ωn−1

〈x, ξ〉+ dµ(ξ),

By Theorem 5 of [ZR] this yields Theorem C4.
Finally, Lemma 6 states that if a measure µ on the sphere Ωn−1 is even then µ

is uniquely determined from H(x) in accord with the equation

H(x) =

∫
Ωn−1

〈x, ξ〉+ dµ(ξ)

The proof of this fact was based on using spherical functions and followed the
ideas of W. Blaschke and A. D. Alexandrov.
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The zonotopes, i. e. the polyhedra presenting the sums of finitely many line
segments, were called parrallelohedra in [ZR]. Here we followed the terminology of
Glivenko and Tyapkina, students of A. A. Lyapunov.

I also want to mention the next result of [ZR]:
Theorem C5. For a convex polyhedron in Rn to be a zonotope it is necessary

and sufficient that its every two-dimensional face have a center of symmetry.
This is Theorem 6 of [ZR]. The theorem is accompanied by the following
Theorem C6. If a convex polyhedron P in Rn is a zonoid, then P is a zonotope,

i. e., the sum of finitely many line segments.
In closing the author expresses his sincere gratitude to Professor Semën

Samsonovich Kutateladze for attention to my ancient paper written with my friend
Viktor Abramovich Zalgaller more than half a century ago. I also thank S. S.
Kutateladze for organizing the translation of our article into Latin of today, i. e.,
English.

Yu. G. Reshetnyak


